JP2018190504A - Method for manufacturing nonaqueous electrolyte secondary battery - Google Patents

Method for manufacturing nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2018190504A
JP2018190504A JP2017089622A JP2017089622A JP2018190504A JP 2018190504 A JP2018190504 A JP 2018190504A JP 2017089622 A JP2017089622 A JP 2017089622A JP 2017089622 A JP2017089622 A JP 2017089622A JP 2018190504 A JP2018190504 A JP 2018190504A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
aqueous electrolyte
charging
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017089622A
Other languages
Japanese (ja)
Other versions
JP6863055B2 (en
Inventor
裕輝 井口
Hiroki Iguchi
裕輝 井口
佐野 秀樹
Hideki Sano
秀樹 佐野
藤田 秀明
Hideaki Fujita
秀明 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017089622A priority Critical patent/JP6863055B2/en
Publication of JP2018190504A publication Critical patent/JP2018190504A/en
Application granted granted Critical
Publication of JP6863055B2 publication Critical patent/JP6863055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a battery, which can suppress entry of dimethoxyethane into a negative electrode when nonaqueous electrolyte solution containing dimethoxyethane is used and a reduction in battery capacity.SOLUTION: A method for manufacturing a nonaqueous electrolyte secondary battery including a negative electrode and nonaqueous electrolyte solution comprises: a battery preparation step of preparing an uncharged nonaqueous electrolyte secondary battery; and an initial charging step of charging the uncharged nonaqueous electrolyte secondary battery, which has been prepared in the battery preparation step, plural times successively at least in a range of 2.5-2.9 V until reaching an intended voltage with a constant current and a constant voltage at a predetermined current rate, in which the battery is charged by a predetermined voltage at a time. The negative electrode comprises a negative electrode mixture layer including graphite. The nonaqueous electrolyte solution contains: dimethoxyethane of 20 vol.% or more; and 1,3-propane sultone of 0.1 mol/L or more and 0.6 mol/L or less.SELECTED DRAWING: Figure 1

Description

本開示は、非水電解液二次電池の製造方法に関する。   The present disclosure relates to a method for manufacturing a non-aqueous electrolyte secondary battery.

非水電解液二次電池に用いられる非水電解液の溶媒としては、一般的に高誘電率を有するエチレンカーボネート(EC)等の環状カーボネートと、低粘度であるエチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)等の鎖状のカーボネートとが混合されて用いられる。ECは、負極上にSEI(Solid Electrolyte Interphace)被膜を形成し、充放電を安定させるという機能を有する。   As a solvent for the non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery, generally, a cyclic carbonate such as ethylene carbonate (EC) having a high dielectric constant, ethyl methyl carbonate (EMC), dimethyl having a low viscosity, and the like. A chain carbonate such as carbonate (DMC) or diethyl carbonate (DEC) is mixed and used. The EC has a function of forming a SEI (Solid Electrolyte Interface) film on the negative electrode to stabilize charging and discharging.

特開2001−325988号公報(特許文献1)では、負極上に良好なSEI被膜を形成するために、被膜添加剤であるビニレンカーボネート(VC)が用いられている。特許文献1においてはさらに、溶媒の還元分解を防ぎつつ、VCを還元分解してVCの被膜を負極上に形成するために、溶媒が還元分解されない電位にて充電を行う工程を少なくとも含む、2段階以上の充電工程により初期充電を行うことが開示されている。なお、本明細書の「初期充電」とは、未充電の非水電解液二次電池(以下、非水電解液二次電池は「電池」とも略記される)に対して初めて行われる充電を意味する。   In Japanese Patent Laid-Open No. 2001-325988 (Patent Document 1), vinylene carbonate (VC) which is a film additive is used to form a good SEI film on a negative electrode. Patent Document 1 further includes at least a step of charging at a potential at which the solvent is not reductively decomposed in order to form a VC film on the negative electrode by reductively decomposing VC while preventing reductive decomposition of the solvent. It is disclosed that initial charging is performed by a charging process of stages or more. In this specification, “initial charge” refers to the first charge performed on an uncharged non-aqueous electrolyte secondary battery (hereinafter, the non-aqueous electrolyte secondary battery is also abbreviated as “battery”). means.

特開2001−325988号公報JP 2001-325988 A

一方、非水電解液の溶媒として、ジメトキシエタン(以下、「DME」とも略記される)を用いることが検討されている。DMEは低粘度であるため、非水電解液の電気伝導性の向上が期待される。しかしながら、DMEは負極に共挿入され、負極活物質である黒鉛の層間破壊を引き起こすことが知られている。仮に特許文献1において開示される電池において、非水電解液の溶媒としてDMEを用いた場合、黒鉛の層間破壊に起因して電池容量が低下するという懸念がある。さらには、黒鉛の層間破壊に起因して電池抵抗が増加する可能性もある。   On the other hand, the use of dimethoxyethane (hereinafter also abbreviated as “DME”) as a solvent for non-aqueous electrolytes has been studied. Since DME has a low viscosity, an improvement in the electrical conductivity of the non-aqueous electrolyte is expected. However, it is known that DME is co-inserted into the negative electrode and causes interlaminar fracture of graphite, which is the negative electrode active material. In the battery disclosed in Patent Document 1, when DME is used as the solvent for the non-aqueous electrolyte, there is a concern that the battery capacity is reduced due to the interlayer breakdown of graphite. Furthermore, battery resistance may increase due to graphite interlaminar fracture.

本開示の目的は、DMEを含む非水電解液を用いた電池の製造方法において、電池容量の低下を抑制することにある。   The objective of this indication is in suppressing the fall of battery capacity in the manufacturing method of the battery using the non-aqueous electrolyte containing DME.

以下、本開示の技術的構成および作用メカニズムが説明される。ただし本開示の作用メカニズムは推定を含んでいる。作用メカニズムの正否により、本開示の範囲が限定されるべきではない。   Hereinafter, the technical configuration and operation mechanism of the present disclosure will be described. However, the mechanism of action of the present disclosure includes estimation. The scope of the present disclosure should not be limited by the correctness of the mechanism of action.

本開示に係る電池の製造方法は、負極と非水電解液とを含む非水電解液二次電池の製造方法であり、未充電の非水電解液二次電池を準備する、電池準備工程と、未充電の非水電解液二次電池に対して、少なくとも2.5V〜2.9Vの範囲において、狙いの電圧となるまで所定の電圧刻みに所定の電流レートで複数回連続して定電流定電圧充電を行う、初期充電工程とを含む。負極は、黒鉛を含む負極合材層を含み、非水電解液は、ジメトキシエタンを20体積%以上、および1、3−プロパンスルトンを0.1mol/L以上0.6mol/L以下含んでいる。なお、「C」は電流レートの単位である。「1C」は、1時間の充電により、SOC(充電率:State of Charge)が0%から100%に到達する電流レートを示す。   A battery manufacturing method according to the present disclosure is a manufacturing method of a non-aqueous electrolyte secondary battery including a negative electrode and a non-aqueous electrolyte, and a battery preparation step of preparing an uncharged non-aqueous electrolyte secondary battery; For a non-charged non-aqueous electrolyte secondary battery, a constant current is continuously applied several times at a predetermined current rate in a predetermined voltage increment until a target voltage is reached in a range of at least 2.5 V to 2.9 V. An initial charging step of performing constant voltage charging. The negative electrode includes a negative electrode mixture layer containing graphite, and the non-aqueous electrolyte includes 20% by volume or more of dimethoxyethane and 0.1 to 0.6 mol / L of 1,3-propane sultone. . “C” is a unit of current rate. “1C” indicates a current rate at which SOC (State of Charge) reaches 0% to 100% by charging for one hour.

非水電解液に含まれるDMEの共挿入電位と、1、3−プロパンスルトン(以下、「PS」とも略記される)の還元電位は近い数値を有する。なお本明細書の「DMEの共挿入電位」とは、DMEが支持塩と供に負極合材層に含まれる黒鉛に共挿入される電位を意味し、「PSの還元電位」とは、PSが還元分解される電位を意味する。初期充電において、2.5V〜2.9Vの範囲において、狙いの電圧となるまで所定の電圧刻みに所定の電流レートで複数回連続して定電流定電圧充電(以下、定電流定電圧充電は、「CCCV充電」とも略記される)を行うことにより、DMEの黒鉛への共挿入とPSの還元分解がほぼ同時に起こり、DMEおよび還元分解されたPSからなる、低抵抗な混合被膜が負極に形成されるものと考えられる。当該混合被膜により、DMEの黒鉛への共挿入が抑制されるものと考えられる。当該被膜を効率的に形成するために、非水電解液は20体積%以上のDME、および0.1mol/L以上0.6mol/L以下のPSを含む。さらに、ステップ充電とステップ放電を繰り返し行うことにより、負極合材層に含まれる黒鉛に共挿入されたDMEの少なくとも一部を黒鉛から脱離させると共に、黒鉛に共挿入されたDMEが、黒鉛のより内部に挿入されることを抑制することができると考えられる。なお本明細書の「ステップ充電」とは、所定の電圧刻みに所定の電流レートでCCCV充電を行う方法を意味し、「ステップ放電」とは、所定の電圧刻みに所定の電流レートで定電流定電圧放電(以下、定電流定電圧放電は、「CCCV放電」とも略記される)を行う方法を意味する。これらの効果が相乗することにより、電池容量の低下が抑制されることが期待される。すなわち、DMEを含む非水電解液を用いた際において、DMEの負極への共挿入が抑制され、電池容量の低下が抑制された、電池の製造方法を提供される。   The co-insertion potential of DME contained in the non-aqueous electrolyte and the reduction potential of 1,3-propane sultone (hereinafter also abbreviated as “PS”) have close numerical values. In this specification, “DME co-insertion potential” means a potential at which DME is co-inserted into the graphite contained in the negative electrode composite layer together with the supporting salt, and “PS reduction potential” means PS Means the potential at which reductive decomposition occurs. In the initial charging, constant current and constant voltage charging (hereinafter, constant current and constant voltage charging is performed in a range of 2.5 V to 2.9 V at a predetermined current rate at a predetermined current rate for a plurality of times until a target voltage is reached. , Which is also abbreviated as “CCCV charging”), co-insertion of DME into graphite and reductive decomposition of PS occur almost simultaneously, and a low-resistance mixed coating composed of DME and reductively decomposed PS is formed on the negative electrode. It is thought that it is formed. It is considered that the mixed coating suppresses co-insertion of DME into graphite. In order to efficiently form the coating film, the nonaqueous electrolytic solution contains 20% by volume or more of DME and 0.1 mol / L or more and 0.6 mol / L or less of PS. Furthermore, by repeating step charging and step discharging, at least a part of DME co-inserted into the graphite contained in the negative electrode mixture layer is desorbed from the graphite, and the DME co-inserted into the graphite is It is considered that the insertion into the inside can be suppressed. In this specification, “step charging” means a method of performing CCCV charging at a predetermined current rate at a predetermined voltage step, and “step discharging” is a constant current at a predetermined current rate at a predetermined voltage step. It means a method of performing constant voltage discharge (hereinafter, constant current constant voltage discharge is also abbreviated as “CCCV discharge”). The synergistic effect of these effects is expected to suppress a decrease in battery capacity. That is, when a non-aqueous electrolyte containing DME is used, a battery manufacturing method is provided in which co-insertion of DME into the negative electrode is suppressed and a decrease in battery capacity is suppressed.

実施例1、3および比較例4の初期充電工程における、CC電流値と電池電圧値との関係を示す図である。It is a figure which shows the relationship between CC electric current value and battery voltage value in the initial stage charge process of Examples 1, 3 and Comparative Example 4. 実施例2の初期充電工程における、CC電流値と電池電圧値との関係を示す図である。It is a figure which shows the relationship between CC electric current value and battery voltage value in the initial stage charge process of Example 2. FIG. 比較例1および2の初期充電工程における、CC電流値と電池電圧値との関係を示す図である。It is a figure which shows the relationship between CC current value and a battery voltage value in the initial stage charge process of the comparative examples 1 and 2. 比較例3の初期充電工程における、CC電流値と電池電圧値との関係を示す図である。It is a figure which shows the relationship between CC electric current value and battery voltage value in the initial stage charge process of the comparative example 3. 比較例5の初期充電工程における、CC電流値と電池電圧値との関係を示す図である。It is a figure which shows the relationship between CC current value and a battery voltage value in the initial stage charge process of the comparative example 5.

以下、本開示の実施形態(以下「本実施形態」と記される)が説明される。ただし、以下の説明は、特許請求の範囲を限定するものではない。   Hereinafter, an embodiment of the present disclosure (hereinafter referred to as “the present embodiment”) will be described. However, the following description does not limit the scope of the claims.

<非水電解液二次電池の構成>
本開示の非水電解液二次電池は、以下で説明する負極と非水電解液とを備える限り、従来公知の構成を備えることができる。従来公知の構成とは、たとえば正極と、負極と、正極と負極との間に配置されたセパレータとを有する電極群を備え、この電極群が非水電解液と共に電池ケースに配置される構成などをいう。電極群は、扁平に巻回した形態(巻回電極群)とすることができる。
<Configuration of non-aqueous electrolyte secondary battery>
The non-aqueous electrolyte secondary battery of the present disclosure can have a conventionally known configuration as long as it includes a negative electrode and a non-aqueous electrolyte described below. The conventionally known configuration includes, for example, an electrode group having a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, and the electrode group is disposed in a battery case together with a non-aqueous electrolyte. Say. An electrode group can be made into the form (winding electrode group) wound flatly.

<非水電解液二次電池の製造方法>
本開示の非水電解液二次電池の製造方法は、未充電の非水電解液二次電池を準備する、電池準備工程と、当該電池準備工程にて準備された未充電の非水電解液二次電池に対して、少なくとも2.5V〜2.9Vの範囲において、狙いの電圧となるまで所定の電圧刻みに所定の電流レートで複数回連続して定電流定電圧充電を行う、初期充電工程とを含む。これらの工程を含む限り、他の工程を含むことができる。また、上記の2工程は、さらにサブ工程的な工程を含むこともできる。
<Method for producing non-aqueous electrolyte secondary battery>
A method for producing a non-aqueous electrolyte secondary battery according to the present disclosure includes an uncharged non-aqueous electrolyte secondary battery, a battery preparation step, and an uncharged non-aqueous electrolyte prepared in the battery preparation step. Initial charging for secondary battery with constant current and constant voltage charging continuously at a predetermined current rate at a predetermined voltage step multiple times at a predetermined voltage increment in a range of at least 2.5V to 2.9V. Process. As long as these steps are included, other steps can be included. In addition, the above two steps may further include sub-steps.

<負極>
負極は、負極集電体と、負極集電体の主面上に形成された負極合材層とを含む。負極集電体は、たとえば銅(Cu)箔等であってもよい。負極集電体は、たとえば5〜20μm程度の厚さを有してもよい。
<Negative electrode>
The negative electrode includes a negative electrode current collector and a negative electrode mixture layer formed on the main surface of the negative electrode current collector. The negative electrode current collector may be, for example, a copper (Cu) foil. The negative electrode current collector may have a thickness of about 5 to 20 μm, for example.

《負極合材層》
負極合材層は、負極活物質およびバインダを含む。負極合材層は、たとえば95〜99質量%の負極活物質、および1〜5質量%のバインダを含んでもよい。負極合材層は、たとえば50〜150μm程度の厚さを有してもよい。
<Negative electrode mixture layer>
The negative electrode mixture layer includes a negative electrode active material and a binder. The negative electrode mixture layer may include, for example, 95 to 99% by mass of a negative electrode active material and 1 to 5% by mass of a binder. The negative electrode mixture layer may have a thickness of about 50 to 150 μm, for example.

(負極活物質およびバインダ)
負極活物質は、少なくとも黒鉛を含む。すなわち、本開示の負極は、黒鉛を含む負極合材層を含む。黒鉛としては、塊状黒鉛、鱗片状黒鉛等の天然黒鉛、炭素前駆体を焼成処理して得られる人造黒鉛、あるいは、これらの黒鉛に粉砕、篩分け、プレス等の加工処理を施したものを用いることができる。また、非晶質炭素による被覆処理を黒鉛に行ってもよい。負極活物質は、黒鉛以外の活物質を含んでいてもよく、たとえば珪素、酸化珪素、錫、酸化錫等をさらに含んでもよい。バインダは特に限定されるべきではない。バインダは、たとえばカルボキシメチルセルロース(CMC)、スチレンブタジエンゴム(SBR)等であってもよい。
(Negative electrode active material and binder)
The negative electrode active material contains at least graphite. That is, the negative electrode of the present disclosure includes a negative electrode mixture layer containing graphite. As the graphite, natural graphite such as massive graphite and flake graphite, artificial graphite obtained by firing a carbon precursor, or those obtained by subjecting these graphite to processing such as pulverization, sieving, and pressing are used. be able to. Further, the graphite may be coated with amorphous carbon. The negative electrode active material may contain an active material other than graphite, and may further contain, for example, silicon, silicon oxide, tin, tin oxide and the like. The binder should not be particularly limited. The binder may be, for example, carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), or the like.

<非水電解液>
非水電解液は、非水溶媒、添加剤および支持塩を含む。非水溶媒は、少なくともDMEを含み、添加剤は、少なくともPSを含む。なお、非水電解液は非水溶媒としてDMEのみを含んでもよいし、DMEに加えてその他の非水溶媒を含んでもよい。その他の非水溶媒としては、たとえば、EC、EMC、DMC、DEC等の環状あるいは鎖状のカーボネートを用いてもよい。非水電解液は添加剤としてPSのみを含んでもよいし、PSに加えてその他の添加剤を含んでもよい。その他の添加剤としては、たとえばVC、シクロヘキシルベンゼン(CHB)等を用いてもよい。支持塩は、たとえば、ヘキサフルオロ燐酸リチウム(LiPF)、テトラフルオロ硼酸リチウム(LiBF)等のLi塩でよい。Li塩の濃度は、たとえば、0.5〜2.0mоl/L程度でよい。
<Non-aqueous electrolyte>
The nonaqueous electrolytic solution includes a nonaqueous solvent, an additive, and a supporting salt. The non-aqueous solvent contains at least DME, and the additive contains at least PS. The non-aqueous electrolyte may contain only DME as a non-aqueous solvent, or may contain other non-aqueous solvents in addition to DME. As other non-aqueous solvents, for example, cyclic or chain carbonates such as EC, EMC, DMC, and DEC may be used. The non-aqueous electrolyte may contain only PS as an additive, or may contain other additives in addition to PS. As other additives, for example, VC, cyclohexylbenzene (CHB) or the like may be used. The supporting salt may be a Li salt such as lithium hexafluorophosphate (LiPF 6 ) or lithium tetrafluoroborate (LiBF 4 ). The concentration of the Li salt may be, for example, about 0.5 to 2.0 mol / L.

非水電解液は、非水電解液中の総量に対して少なくとも20体積%以上のDMEを含む。非水電解液に含まれるDMEの含有量が20体積%未満の場合、非水電解液の電気伝導性の向上が期待されない場合がある。非水電解液に含まれるDMEの含有量の上限には特に制限は無いが、非水電解液に含まれるDMEの含有量の増加に伴い、DMEが黒鉛に共挿入されることを抑制することが困難となり、電池容量が低下する可能性がある。よって、非水電解液に含まれるDMEの含有量の上限は、非水電解液中の総量に対して、たとえば80体積%以下であってもよいし、70体積%以下であってもよいし、60体積%以下であってもよいし、50体積%以下であってもよいし、40体積%以下であってもよいし、30体積%以下であってもよい。   The nonaqueous electrolytic solution contains at least 20% by volume or more of DME with respect to the total amount in the nonaqueous electrolytic solution. When the content of DME contained in the non-aqueous electrolyte is less than 20% by volume, the electrical conductivity of the non-aqueous electrolyte may not be improved. The upper limit of the content of DME contained in the non-aqueous electrolyte is not particularly limited, but the DME is prevented from being co-inserted into the graphite with an increase in the content of DME contained in the non-aqueous electrolyte. May become difficult and battery capacity may be reduced. Therefore, the upper limit of the content of DME contained in the non-aqueous electrolyte may be, for example, 80% by volume or less, or 70% by volume or less with respect to the total amount in the non-aqueous electrolyte. 60 volume% or less, 50 volume% or less, 40 volume% or less, or 30 volume% or less may be sufficient.

非水電解液は、0.1mol/L以上0.6mol/L以下の濃度のPSを含む。すなわち、本開示の非水電解液は、DMEを20体積%以上、およびPSを0.1mol/L以上0.6mol/L以下含む。非水電解液中のPSの濃度が0.1mol/L未満の場合、非水電解液に含まれるPSの絶対量が少ないため、DMEおよびPSからなる混合被膜を作成することが困難になる傾向がある。非水電解液中のPSの濃度が0.6mol/Lを超える場合、非水電解液に含まれるDMEの量が20体積%未満となるおそれがある。   The non-aqueous electrolyte contains PS having a concentration of 0.1 mol / L or more and 0.6 mol / L or less. That is, the nonaqueous electrolytic solution of the present disclosure contains 20% by volume or more of DME and 0.1 to 0.6 mol / L of PS. When the concentration of PS in the non-aqueous electrolyte is less than 0.1 mol / L, the absolute amount of PS contained in the non-aqueous electrolyte is small, and it tends to be difficult to create a mixed film composed of DME and PS. There is. When the concentration of PS in the non-aqueous electrolyte exceeds 0.6 mol / L, the amount of DME contained in the non-aqueous electrolyte may be less than 20% by volume.

<正極>
正極は、正極集電体と、正極集電体の主面上に形成された正極合材層とを含む。正極集電体は、たとえばアルミニウム(Al)箔等であってもよい。正極集電体は、たとえば10〜30μmの厚さを有してもよい。
<Positive electrode>
The positive electrode includes a positive electrode current collector and a positive electrode mixture layer formed on the main surface of the positive electrode current collector. The positive electrode current collector may be, for example, an aluminum (Al) foil. The positive electrode current collector may have a thickness of 10 to 30 μm, for example.

《正極合材層》
正極合材層は、正極活物質、導電材およびバインダを含む。正極合材層は、たとえば80〜98重量%の正極活物質、1〜15重量%以下の導電材および1〜5重量%以下のバインダを含んでもよい。正極合材層は、たとえば100〜200μmの厚さを有してもよい。
<< Positive electrode mixture layer >>
The positive electrode mixture layer includes a positive electrode active material, a conductive material, and a binder. The positive electrode mixture layer may include, for example, 80 to 98% by weight of the positive electrode active material, 1 to 15% by weight or less of a conductive material, and 1 to 5% by weight or less of a binder. The positive electrode mixture layer may have a thickness of 100 to 200 μm, for example.

(正極活物質、導電材およびバインダ)
正極活物質、導電材およびバインダは特に限定されるべきではない。正極活物質は、たとえばLiCoO、LiNiO、LiNi1/3Co1/3Mn1/3(NCM)、LiMnO、LiMn、LiFePO等であってもよい。導電材は、たとえばアセチレンブラック(AB)、ファーネスブラック、気相成長炭素繊維(VGCF)、黒鉛等であってもよい。バインダは、たとえばポリフッ化ビニリデン(PVdF)、スチレンブタジエンラバー(SBR)、ポリテトラフルオロエチレン(PTFE)等であってもよい。
(Positive electrode active material, conductive material and binder)
The positive electrode active material, the conductive material, and the binder should not be particularly limited. The positive electrode active material may be, for example, LiCoO 2 , LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM), LiMnO 2 , LiMn 2 O 4 , LiFePO 4 or the like. The conductive material may be, for example, acetylene black (AB), furnace black, vapor grown carbon fiber (VGCF), graphite or the like. The binder may be, for example, polyvinylidene fluoride (PVdF), styrene butadiene rubber (SBR), polytetrafluoroethylene (PTFE), or the like.

<セパレータ>
セパレータは、電気絶縁性の多孔質膜である。セパレータは、正極と負極とを電気的に隔離する。セパレータは、たとえば5〜30μmの厚さを有してもよい。セパレータは、たとえば多孔質ポリエチレン(PE)膜、多孔質ポリプロピレン(PP)膜等により構成され得る。セパレータは、多層構造を含んでもよい。たとえばセパレータは、多孔質PP膜、多孔質PE膜、および多孔質PP膜がこの順序で積層されることにより構成されていてもよい。セパレータは、その表面に耐熱層を含んでいてもよい。耐熱層は、耐熱材料を含む。耐熱材料としては、たとえばアルミナ等の金属酸化物粒子、ポリイミド等の高融点樹脂等が挙げられる。
<Separator>
The separator is an electrically insulating porous film. The separator electrically isolates the positive electrode and the negative electrode. The separator may have a thickness of 5 to 30 μm, for example. The separator can be composed of, for example, a porous polyethylene (PE) film, a porous polypropylene (PP) film, or the like. The separator may include a multilayer structure. For example, the separator may be configured by laminating a porous PP film, a porous PE film, and a porous PP film in this order. The separator may include a heat resistant layer on the surface thereof. The heat resistant layer includes a heat resistant material. Examples of the heat resistant material include metal oxide particles such as alumina, and a high melting point resin such as polyimide.

<電極群>
電極体は、正極と、負極と、正極と負極との間に設けられたセパレータとを有する。電極体は、たとえば円筒状の電極群としてもよい。
<Electrode group>
The electrode body has a positive electrode, a negative electrode, and a separator provided between the positive electrode and the negative electrode. The electrode body may be, for example, a cylindrical electrode group.

<電池ケース>
電池ケースは、たとえば角形(扁平直方体)であってもよいし、円筒形であってもよいし、袋状であってもよい。たとえばアルミニウム(Al)、Al合金等の金属が電池ケースを構成する。ただし、電池ケースが所定の密閉性を有する限り、たとえば金属および樹脂の複合材が電池ケースを構成してもよい。金属および樹脂の複合材としては、たとえばアルミラミネートフィルム等が挙げられる。電池ケースは、外部端子、注液孔、ガス排出弁、電流遮断機構(CID)等を備えていてもよい。
<Battery case>
The battery case may be, for example, a rectangular shape (flat rectangular parallelepiped), a cylindrical shape, or a bag shape. For example, a metal such as aluminum (Al) or an Al alloy constitutes the battery case. However, as long as the battery case has a predetermined sealing property, for example, a composite material of metal and resin may constitute the battery case. Examples of the composite material of metal and resin include an aluminum laminate film. The battery case may include an external terminal, a liquid injection hole, a gas discharge valve, a current interruption mechanism (CID), and the like.

<電池準備工程>
電池準備工程では、未充電の電池が用意される。電池準備工程は、たとえば正極を準備する工程と、負極を準備する工程と、セパレータを準備する工程と、セパレータを挟んで、正極と負極とが互いに対向するように、正極、セパレータ、負極およびセパレータを積層し、さらに渦巻状に巻回することにより、円筒状の電極群を製造する工程と、電極群を電池ケースに収納する工程と、非水電解液を電池ケースに注入する工程と、電池ケースを密閉する工程を含んでもよい。
<Battery preparation process>
In the battery preparation process, an uncharged battery is prepared. The battery preparation step includes, for example, a step of preparing a positive electrode, a step of preparing a negative electrode, a step of preparing a separator, and a positive electrode, a separator, a negative electrode, and a separator so that the positive electrode and the negative electrode face each other with the separator interposed therebetween. A cylindrical electrode group, a step of housing the electrode group in a battery case, a step of injecting a non-aqueous electrolyte into the battery case, and a battery A step of sealing the case may be included.

<初期充電工程>
初期充電工程では、上記電池準備工程で準備された未充電の電池に対して、初期充電が行われる。
<Initial charging process>
In the initial charging step, initial charging is performed on the uncharged battery prepared in the battery preparation step.

初期充電工程では、電池電圧が少なくとも2.5V〜2.9Vの範囲において、狙いの電圧となるまで、所定の電圧刻みに所定の電流レートで複数回連続してCCCV充電(ステップ充電)が行われる。本明細書の「所定の電圧刻み」とは、0.05〜0.2Vの電圧によって刻まれることが望ましく、「所定の電流レート」とは、0.01〜0.3Cの電流レートであることが望ましい。電池電圧2.5V〜2.9Vの範囲におけるステップ充電は少なくとも1回行わればよいが、初期充電工程において電池電圧が2.9Vに達した後、ステップ放電を行い、電池電圧を2.5Vまで下げた後、再度ステップ充電を行ってもよい。ステップ充電を複数回行うことにより、負極合材層に含まれる黒鉛に共挿入されたDMEの少なくとも一部を黒鉛から脱離させる効果、および黒鉛に共挿入されたDMEが、黒鉛のより内部に挿入されることを抑制する効果が増幅されるものと期待される。   In the initial charging process, CCCV charging (step charging) is continuously performed a plurality of times at a predetermined current rate at predetermined voltage increments until the battery voltage reaches a target voltage in a range of at least 2.5 V to 2.9 V. Is called. The “predetermined voltage increment” in this specification is desirably engraved with a voltage of 0.05 to 0.2 V, and the “predetermined current rate” is a current rate of 0.01 to 0.3 C. It is desirable. Step charging in the battery voltage range of 2.5V to 2.9V may be performed at least once. However, after the battery voltage reaches 2.9V in the initial charging step, step discharge is performed to reduce the battery voltage to 2.5V. Step charging may be performed again after being lowered. By performing step charging a plurality of times, the effect of detaching at least a part of DME co-inserted into the graphite contained in the negative electrode composite material layer from the graphite, and the DME co-inserted into the graphite are more inside the graphite. It is expected that the effect of suppressing insertion will be amplified.

初期充電は、適度に低い電流レートにより実施されることが好ましい。ただし、電流レートが過度に低いと、処理に長時間を要するため、初期充電の電流レートは、例えば、0.1〜1.0C程度である。また、初期充電工程の後に、電池を所定温度で所定期間静置することにより、電池のエージングが行われてもよい。   Initial charging is preferably performed at a reasonably low current rate. However, if the current rate is excessively low, the processing takes a long time, and the current rate of the initial charging is, for example, about 0.1 to 1.0C. Further, after the initial charging step, the battery may be aged by allowing the battery to stand at a predetermined temperature for a predetermined period.

以下、本開示の実施例が説明される。ただし以下の例は、特許請求の範囲を限定するものではない。   Hereinafter, examples of the present disclosure will be described. However, the following examples do not limit the scope of the claims.

<非水電解液二次電池の製造>
《実施例1》
1.正極の製造
以下の材料が準備された。
正極活物質:NCM
導電材:AB
バインダ:PVdF
溶媒:N−メチル−2ピロリドン(NMP)
正極集電箔:Al箔(厚さ15μm)
<Manufacture of non-aqueous electrolyte secondary batteries>
Example 1
1. Production of positive electrode The following materials were prepared.
Cathode active material: NCM
Conductive material: AB
Binder: PVdF
Solvent: N-methyl-2pyrrolidone (NMP)
Positive electrode current collector foil: Al foil (thickness 15 μm)

プラネタリミキサにより、NCM、AB、PVdFおよびNMPが混合された。これにより、ペースト状の正極合材(以下、「正極合材ペースト」と記載する)が調製された。正極合材ペーストの固形分組成は、質量比で「NCM:AB:PVdF=93:4:3」とされた。正極合材層用ペーストが正極集電体の表面に塗布され、乾燥された。これにより正極合材層が形成された。以上より、非水電解液二次電池用正極が形成された。正極は圧延され、帯状に裁断された。   NCM, AB, PVdF and NMP were mixed by a planetary mixer. As a result, a paste-like positive electrode mixture (hereinafter referred to as “positive electrode mixture paste”) was prepared. The solid content composition of the positive electrode mixture paste was “NCM: AB: PVdF = 93: 4: 3” in terms of mass ratio. The paste for the positive electrode mixture layer was applied to the surface of the positive electrode current collector and dried. As a result, a positive electrode mixture layer was formed. From the above, a positive electrode for a nonaqueous electrolyte secondary battery was formed. The positive electrode was rolled and cut into strips.

2.負極の製造
以下の材料が準備された。
負極活物質:非晶質コート天然黒鉛
増粘材:CMC
バインダ:SBR
溶媒:水
負極集電箔:Cu箔(厚さ10μm)
ここで、本明細書の「非晶質コート天然黒鉛」とは、天然黒鉛に、非晶質炭素による被覆処理を施したものを意味する。
2. Production of negative electrode The following materials were prepared.
Negative electrode active material: Amorphous coated natural graphite Thickener: CMC
Binder: SBR
Solvent: Water Negative electrode current collector foil: Cu foil (thickness 10 μm)
Here, the “amorphous coated natural graphite” in the present specification means a natural graphite that has been coated with amorphous carbon.

攪拌装置の攪拌槽に、非晶質コート球形化天然黒鉛、CMC、SBRおよび水を投入し、攪拌することにより、ペースト状の負極合材(以下、「負極合材ペースト」と記載する)が調製された。負極合材ペーストにおいて固形分の配合は、質量比で「非晶質コート天然黒鉛:CMC:SBR=98:1:1」とされた。負極合材層用ペーストが負極集電体の表面に塗布され、乾燥された。これにより負極合材層が形成された。以上により、非水電解液二次電池用負極が形成された。負極は圧延され、帯状に裁断された。   By putting amorphous coated spheroidized natural graphite, CMC, SBR and water into the stirring tank of the stirring device and stirring, a paste-like negative electrode mixture (hereinafter referred to as “negative electrode mixture paste”) is obtained. Prepared. In the negative electrode composite paste, the solid content was “amorphous coated natural graphite: CMC: SBR = 98: 1: 1” in mass ratio. The negative electrode mixture layer paste was applied to the surface of the negative electrode current collector and dried. As a result, a negative electrode mixture layer was formed. Thus, a negative electrode for a non-aqueous electrolyte secondary battery was formed. The negative electrode was rolled and cut into strips.

3.非水系電解液の準備
以下の組成を有する電解液が準備された。
溶媒組成:[EC:DMC:EMC:DME=3:1:3:3(体積比)]
支持塩:LiPF(1.1mоl/L)
添加剤:PS(0.28mоl/L)
3. Preparation of Nonaqueous Electrolytic Solution An electrolytic solution having the following composition was prepared.
Solvent composition: [EC: DMC: EMC: DME = 3: 1: 3: 3 (volume ratio)]
Supporting salt: LiPF 6 (1.1 mol / L)
Additive: PS (0.28 mol / L)

4.電池準備工程
帯状の正極、帯状の負極および帯状のセパレータ(ポリエチレン多孔質膜)がそれぞれ準備された。正極、セパレータ、負極、セパレータの順で積層された。これにより電極群が構成された。さらに、正極集電板、電極群、負極集電板の順で積層され、正極集電板および負極集電板に端子がそれぞれ接続された。電極群がラミネートフィルムからなる電池ケースに収納された。電池ケースに非水電解液が注入され、電池ケースが密閉された。以上より、電池が組み立てられ、未充電の電池が準備された。
4). Battery Preparation Step A strip-shaped positive electrode, a strip-shaped negative electrode, and a strip-shaped separator (polyethylene porous membrane) were prepared. The positive electrode, the separator, the negative electrode, and the separator were laminated in this order. Thus, an electrode group was configured. Furthermore, the positive electrode current collector plate, the electrode group, and the negative electrode current collector plate were laminated in this order, and terminals were connected to the positive electrode current collector plate and the negative electrode current collector plate, respectively. The electrode group was housed in a battery case made of a laminate film. A non-aqueous electrolyte was injected into the battery case, and the battery case was sealed. As described above, the battery was assembled and an uncharged battery was prepared.

5.初期充電工程
未充電の電池に対して、図1に示すような条件で初期充電工程を行った。最初のCCCV充電の条件は以下の通りである。
CC電流:0.1C、CV電圧:2.0V、終止電流:0.01C。
5. Initial Charging Step An initial charging step was performed on an uncharged battery under the conditions shown in FIG. The conditions for the initial CCCV charging are as follows.
CC current: 0.1 C, CV voltage: 2.0 V, end current: 0.01 C.

2.0Vまで充電された電池に対して、電池電圧が3.0Vとなるまでステップ充電を行った。終止電流は同様に0.01Cとした。なお、当該ステップ充電においては、電圧は0.1V刻みとし、電流レートは0.1Cとした。以下のステップ充電においても同様である。   Step charging was performed on the battery charged to 2.0V until the battery voltage reached 3.0V. Similarly, the end current was set to 0.01C. In this step charging, the voltage was set to 0.1V and the current rate was set to 0.1C. The same applies to the following step charging.

ステップ充電にて3.0Vまで充電された電池に対して、CCCV充電を行った。CCCV充電の条件は以下の通りである。
CC電流:0.7C、CV電圧:4.1V、終止電流:0.01C。
CCCV charging was performed on the battery charged to 3.0 V by step charging. The conditions for CCCV charging are as follows.
CC current: 0.7 C, CV voltage: 4.1 V, end current: 0.01 C.

以上により、本開示に係る電池を得た。4.1Vに充電された本開示に係る電池は、その後60℃において1日間エージングされた。以上により、表1に記載の実施例1に係る電池を得た。電池は、ラミネート形状(幅60mm、長さ90mm、厚み2.5mm))である。電池は、3.0〜4.1Vの電圧範囲で28mAhの容量を有するように設計されている。   Thus, a battery according to the present disclosure was obtained. The battery according to the present disclosure charged to 4.1 V was then aged at 60 ° C. for 1 day. Thus, a battery according to Example 1 shown in Table 1 was obtained. The battery has a laminate shape (width 60 mm, length 90 mm, thickness 2.5 mm). The battery is designed to have a capacity of 28 mAh in the voltage range of 3.0-4.1V.

<実施例2>
以下に説明するように、図2に示すような条件で初期充電工程を行ったことを除いては
、実施例1と同様に電池が製造された。
<Example 2>
As described below, a battery was manufactured in the same manner as in Example 1 except that the initial charging step was performed under the conditions shown in FIG.

組み立てられた未充電の電池に対して、最初のCCCV充電を行った。最初のCCCV充電の条件は以下の通りである。
CC電流:0.1C、CV電圧:2.5V、終止電流:0.01C。
An initial CCCV charge was performed on the assembled uncharged battery. The conditions for the initial CCCV charging are as follows.
CC current: 0.1 C, CV voltage: 2.5 V, end current: 0.01 C.

2.5Vまで充電された電池に対して、電池電圧が2.9Vとなるまで1回目のステップ充電を行った。   For the battery charged to 2.5V, the first step charge was performed until the battery voltage reached 2.9V.

1回目のステップ充電にて2.9Vまで充電された電池に対して、電池電圧が2.5Vとなるまで1回目のステップ放電を行った。なお、当該ステップ放電においては、電圧は0.1V刻みとし、電流レートは0.1Cとした。以下のステップ放電においても同様である。   For the battery charged to 2.9V in the first step charge, the first step discharge was performed until the battery voltage became 2.5V. In the step discharge, the voltage was set to 0.1V and the current rate was set to 0.1C. The same applies to the following step discharge.

1回目のステップ放電にて2.5Vまで放電された電池に対して、電池電圧が2.9Vとなるまで2回目のステップ充電を行った。   For the battery discharged to 2.5V in the first step discharge, the second step charge was performed until the battery voltage became 2.9V.

2回目のステップ充電にて2.9Vまで充電された電池に対して、電池電圧が2.5Vとなるまで2回目のステップ放電を行った。   For the battery charged to 2.9V in the second step charge, the second step discharge was performed until the battery voltage reached 2.5V.

2回目のステップ放電にて2.5Vまで放電された電池に対して、電池電圧が2.9Vとなるまで3回目のステップ充電を行った。   For the battery discharged to 2.5V in the second step discharge, the third step charge was performed until the battery voltage became 2.9V.

3回目のステップ充電にて2.9Vまで充電された電池に対して、CCCV充電を行った。CCCV充電の条件は以下の通りである。
CC電流:0.7C、CV電圧:4.1V、終止電流:0.01C。
CCCV charge was performed on the battery charged to 2.9 V in the third step charge. The conditions for CCCV charging are as follows.
CC current: 0.7 C, CV voltage: 4.1 V, end current: 0.01 C.

<実施例3>
下記表1に示すように、非水系電解液に含まれるPSの濃度を変更したことを除いては、実施例1と同じ製造方法により電池が製造された。
<Example 3>
As shown in Table 1 below, a battery was manufactured by the same manufacturing method as in Example 1 except that the concentration of PS contained in the nonaqueous electrolytic solution was changed.

<比較例1>
添加剤を用いないこと、および組み立てられた未充電の電池に対して、図3に示すような条件で初期充電工程を行ったことを除いては、実施例1と同様に電池が製造された。CCCV充電の条件は以下の通りである。
CC電流:0.7C、CV電圧:4.1V、終止電流:0.01C。
<Comparative Example 1>
A battery was produced in the same manner as in Example 1 except that the additive was not used and the assembled uncharged battery was subjected to the initial charging step under the conditions shown in FIG. . The conditions for CCCV charging are as follows.
CC current: 0.7 C, CV voltage: 4.1 V, end current: 0.01 C.

<比較例2>
組み立てられた未充電の電池に対して、図3に示すような条件で初期充電工程を行ったことを除いては、実施例1と同様に電池が製造された。CCCV充電の条件は以下の通りである。
CC電流:0.7C、CV電圧:4.1V、終止電流:0.01C。
<Comparative Example 2>
A battery was manufactured in the same manner as in Example 1 except that the initial charging process was performed on the assembled uncharged battery under the conditions shown in FIG. The conditions for CCCV charging are as follows.
CC current: 0.7 C, CV voltage: 4.1 V, end current: 0.01 C.

<比較例3>
組み立てられた未充電の電池に対して、図4に示すように、最初に0.1Cの電流値によって、電池電圧が3.4Vに充電されるまで定電流充電を行い、3.4Vまで充電された電池に対して、CCCV充電を行ったことを除いては、実施例1と同様に電池が製造された。CCCV充電の条件は以下の通りである。
CC電流:0.7C、CV電圧:4.1V、終止電流:0.01C。
<Comparative Example 3>
As shown in FIG. 4, the assembled uncharged battery is first charged at a constant current until the battery voltage is charged to 3.4 V with a current value of 0.1 C, and charged to 3.4 V. A battery was produced in the same manner as in Example 1 except that CCCV charging was performed on the obtained battery. The conditions for CCCV charging are as follows.
CC current: 0.7 C, CV voltage: 4.1 V, end current: 0.01 C.

<比較例4>
下記表1に示すように、添加剤をVCとしたことを除いては、実施例1と同様に電池が製造された。
<Comparative example 4>
As shown in Table 1 below, a battery was produced in the same manner as in Example 1 except that the additive was VC.

<比較例5>
以下に説明するように、図5に示すような条件で初期充電工程を行ったことを除いては、実施例1と同様に電池が製造された。
<Comparative Example 5>
As described below, a battery was manufactured in the same manner as in Example 1 except that the initial charging step was performed under the conditions shown in FIG.

組み立てられた未充電の電池に対して、1回目のCCCV充電を行った。1回目のCCCV充電の条件は以下の通りである。
CC電流:0.1C、CV電圧:2.9V、終止電流:0.01C。
A first CCCV charge was performed on the assembled uncharged battery. The conditions for the first CCCV charge are as follows.
CC current: 0.1 C, CV voltage: 2.9 V, end current: 0.01 C.

2.9Vまで充電された電池に対して、1回目のCCCV放電を行った。1回目のCCCV放電の条件は以下の通りである。
CC電流:0.1C、CV電圧:2.5V、終止電流:0.01C。
The first CCCV discharge was performed on the battery charged to 2.9V. The conditions for the first CCCV discharge are as follows.
CC current: 0.1 C, CV voltage: 2.5 V, end current: 0.01 C.

2.5Vまで放電された電池に対して、1回目のCCCV充電と同様の条件で、2回目のCCCV充電を行った。   The battery discharged to 2.5 V was subjected to the second CCCV charge under the same conditions as the first CCCV charge.

2.9Vまで充電された電池に対して、1回目のCCCV放電と同様の条件で、2回目のCCCV放電を行った。   A second CCCV discharge was performed on the battery charged to 2.9 V under the same conditions as the first CCCV discharge.

2.5Vまで放電された電池に対して、1回目のCCCV充電と同様の条件で、3回目のCCCV充電を行った。   The battery discharged to 2.5 V was subjected to the third CCCV charge under the same conditions as the first CCCV charge.

2.9Vまで充電された電池に対して、4回目のCCCV充電を行った。4回目のCCCV充電の条件は以下の通りである。
CC電流0.7C、CV電圧4.1V、終止電流:0.01C。
A fourth CCCV charge was performed on the battery charged to 2.9V. The conditions for the fourth CCCV charge are as follows.
CC current 0.7C, CV voltage 4.1V, end current: 0.01C.

<初期容量測定試験>
初期充電工程を経た各実施例および比較例に係る電池に対して、以下の条件でCCCV放電を行って、初期容量[Ah]を測定した。結果は下記表1の「初期容量」の欄に示されている。下記表1中、「初期容量」に示される値は、比較例3の初期容量を100%として、その他の実施例および比較例の電池容量を相対評価したものである。初期容量の値が大きいほど、電池の初期容量が大きいことを示す。
CCCV放電条件:CC電流値0.7C、CV電圧3.0V、終止電流0.01C。
<Initial capacity measurement test>
CCCV discharge was performed on the batteries according to the examples and comparative examples that had undergone the initial charging step under the following conditions, and the initial capacity [Ah] was measured. The results are shown in the column “Initial capacity” in Table 1 below. In Table 1 below, the value shown in “Initial capacity” is a relative evaluation of the battery capacities of other examples and comparative examples with the initial capacity of comparative example 3 as 100%. A larger initial capacity value indicates a higher initial capacity of the battery.
CCCV discharge conditions: CC current value 0.7C, CV voltage 3.0V, end current 0.01C.

<高温保存試験>
初期容量測定試験を経た各実施例および比較例に係る電池に対して、以下の条件でCCCV充電を行い、25℃において電池のSOCを100%に調整した。60℃に設定された恒温槽内で電池を7日間保存した。7日後、電池を取り出し、初期容量と同様にして高温保存後容量を測定した。高温保存後容量を初期容量で除することにより、高温保存後容量維持率を算出した。結果は表1の「高温保存後容量維持率」の欄に示されている。高温保存後容量維持率の値が大きいほど、高温保存試験後の電池容量維持率が大きいことを示す。
CCCV充電条件:CC電流値0.7C、CV電圧4.1V、終止電流0.01C。
<High temperature storage test>
CCCV charging was performed on the batteries according to the examples and comparative examples that had undergone the initial capacity measurement test under the following conditions, and the SOC of the battery was adjusted to 100% at 25 ° C. The battery was stored for 7 days in a thermostat set at 60 ° C. Seven days later, the battery was taken out, and the capacity after high temperature storage was measured in the same manner as the initial capacity. The capacity retention rate after high temperature storage was calculated by dividing the capacity after high temperature storage by the initial capacity. The results are shown in the column of “Capacity maintenance ratio after high temperature storage” in Table 1. It shows that the battery capacity maintenance rate after a high temperature storage test is so large that the value of the capacity maintenance rate after high temperature storage is large.
CCCV charge condition: CC current value 0.7C, CV voltage 4.1V, end current 0.01C.

<初期IV抵抗測定試験>
初期状態の各実施例および比較例に係る電池に対して、IV抵抗測定試験を行った。初期状態の各実施例および比較例に係る電池を温度25℃の環境下で充電を行い、SOC50%の充電状態に調整した。その後、25℃において5Cの電流で10秒間のパルス充電を行い、充電開始から10秒後の電圧上昇量からIV抵抗値(mΩ)が算出された。結果は下記表1に示されている。下記表1中、「IV抵抗」に示される値は、比較例3の初期IV抵抗値を100%として、その他の実施例および比較例のIV抵抗値を相対評価したものである。値が小さい程、初期IV抵抗値が小さいことを示している。
<Initial IV resistance measurement test>
An IV resistance measurement test was performed on the batteries according to the examples and comparative examples in the initial state. The batteries according to the examples and comparative examples in the initial state were charged in an environment at a temperature of 25 ° C., and adjusted to a charged state of SOC 50%. Thereafter, pulse charging was performed at 25 ° C. with a current of 5 C for 10 seconds, and the IV resistance value (mΩ) was calculated from the amount of voltage increase 10 seconds after the start of charging. The results are shown in Table 1 below. In Table 1 below, the value shown in “IV resistance” is a relative evaluation of IV resistance values of other examples and comparative examples, with the initial IV resistance value of comparative example 3 being 100%. The smaller the value is, the smaller the initial IV resistance value is.

<結果>
上記表1に示されるように、実施例1〜3は比較例1〜5と比較して、初期容量が優れており、かつ、高温保存後容量保持率についても優れていた。したがって、DMEを含む非水電解液を用いた際において、DMEの負極への共挿入が抑制され、電池容量の低下が抑制された、電池の製造方法を提供されることが理解される。また、実施例1〜3は比較例1〜5と比較して、初期IV抵抗値が小さいことも確認された。
<Result>
As shown in Table 1, Examples 1 to 3 were excellent in initial capacity and capacity retention after high-temperature storage as compared with Comparative Examples 1 to 5. Therefore, it is understood that when a non-aqueous electrolyte containing DME is used, a battery manufacturing method is provided in which the co-insertion of DME into the negative electrode is suppressed and the decrease in battery capacity is suppressed. Moreover, compared with Comparative Examples 1-5, Examples 1-3 were also confirmed that the initial IV resistance value is small.

実施例1〜3と比較例2、3および5との比較から、仮にDMEを20体積%以上、およびPSを0.1mol/L以上0.6mol/L以下含む非水電解液を用いたとしても、初期充電工程で2.5V〜2.9Vの範囲においてステップ充電を行わなければ、初期容量および高温保存後容量維持率が実施例に劣ることが示された。実施例1〜3においては、2.5V〜2.9Vの範囲において、ステップ充電を行っているため、負極合材層に含まれる黒鉛に共挿入されたDMEの一部を黒鉛から脱離させると共に、DMEが黒鉛のより内部に挿入されることが抑制されたものと考えられる。   From comparison between Examples 1 to 3 and Comparative Examples 2, 3 and 5, it was assumed that a non-aqueous electrolyte solution containing 20% by volume or more of DME and 0.1 mol / L or more and 0.6 mol / L or less of PS was used. However, it was shown that the initial capacity and the capacity retention rate after high-temperature storage are inferior to those of the examples unless step charging is performed in the range of 2.5 V to 2.9 V in the initial charging process. In Examples 1 to 3, since step charging is performed in the range of 2.5 V to 2.9 V, a part of DME co-inserted into the graphite included in the negative electrode mixture layer is desorbed from the graphite. At the same time, it is considered that DME is suppressed from being inserted into the interior of the graphite.

実施例1〜3と比較例1および4との比較から、添加剤としてPSを用いることにより、優れた初期容量および高温保存後容量保持率を有する電池が得られることが示された。また、実施例1〜3は比較例1および4と比較して、初期IV抵抗値も小さかった。添加剤としてPSを用いることにより、DMEおよびPSからなる、低抵抗な混合被膜が負極に形成されるとともに、当該混合被膜によりDMEの黒鉛への共挿入が抑制されたものと考えられる。   Comparison between Examples 1 to 3 and Comparative Examples 1 and 4 showed that a battery having excellent initial capacity and capacity retention after high-temperature storage can be obtained by using PS as an additive. In addition, Examples 1 to 3 had smaller initial IV resistance values than Comparative Examples 1 and 4. By using PS as an additive, it is considered that a low-resistance mixed coating composed of DME and PS is formed on the negative electrode, and that the mixed coating suppresses co-insertion of DME into graphite.

上記の実施形態および実施例はすべての点で例示であって制限的なものではない。特許請求の範囲によって定められる技術的範囲は、特許請求の範囲と均等の意味および範囲内でのすべての変更を含む。   The above embodiments and examples are illustrative in all respects and not restrictive. The technical scope defined by the claims includes meanings equivalent to the claims and all modifications within the scope.

Claims (1)

負極と、非水電解液とを含む非水電解液二次電池の製造方法であって、
未充電の非水電解液二次電池を準備する、電池準備工程と、
前記未充電の非水電解液二次電池に対して、少なくとも2.5V〜2.9Vの範囲において、狙いの電圧となるまで所定の電圧刻みに所定の電流レートで複数回連続して定電流定電圧充電を行う、初期充電工程とを含み、
前記負極は、黒鉛を含む負極合材層を含み、
前記非水電解液は、ジメトキシエタンを20体積%以上、および1、3−プロパンスルトンを0.1mol/L以上0.6mol/L以下含む、
非水電解液二次電池の製造方法。
A method for producing a non-aqueous electrolyte secondary battery comprising a negative electrode and a non-aqueous electrolyte,
A battery preparation step of preparing an uncharged non-aqueous electrolyte secondary battery;
For the non-charged non-aqueous electrolyte secondary battery, a constant current continuously at a predetermined current rate for a plurality of times at a predetermined voltage increment in a range of at least 2.5 V to 2.9 V until a target voltage is reached. Including an initial charging step for performing constant voltage charging,
The negative electrode includes a negative electrode mixture layer containing graphite,
The non-aqueous electrolyte contains 20% by volume or more of dimethoxyethane and 0.1 to 0.6 mol / L of 1,3-propane sultone,
A method for producing a non-aqueous electrolyte secondary battery.
JP2017089622A 2017-04-28 2017-04-28 Manufacturing method of non-aqueous electrolyte secondary battery Active JP6863055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017089622A JP6863055B2 (en) 2017-04-28 2017-04-28 Manufacturing method of non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017089622A JP6863055B2 (en) 2017-04-28 2017-04-28 Manufacturing method of non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2018190504A true JP2018190504A (en) 2018-11-29
JP6863055B2 JP6863055B2 (en) 2021-04-21

Family

ID=64478893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017089622A Active JP6863055B2 (en) 2017-04-28 2017-04-28 Manufacturing method of non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6863055B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325988A (en) * 2000-05-16 2001-11-22 Sony Corp Charging method of non-aqueous electrolyte secondary battery
JP2004047413A (en) * 2001-12-11 2004-02-12 Hitachi Maxell Ltd Nonaqueous electrolytic solution and nonaqueous electrolyte battery using it
WO2015104933A1 (en) * 2014-01-10 2015-07-16 日産自動車株式会社 Method for producing nonaqueous electrolyte secondary cell
JP2016122657A (en) * 2012-03-26 2016-07-07 国立大学法人 東京大学 Lithium secondary battery electrolyte, and secondary battery including the same
JP2016149211A (en) * 2015-02-10 2016-08-18 トヨタ自動車株式会社 Initial charging method and manufacturing method of lithium ion battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325988A (en) * 2000-05-16 2001-11-22 Sony Corp Charging method of non-aqueous electrolyte secondary battery
JP2004047413A (en) * 2001-12-11 2004-02-12 Hitachi Maxell Ltd Nonaqueous electrolytic solution and nonaqueous electrolyte battery using it
JP2016122657A (en) * 2012-03-26 2016-07-07 国立大学法人 東京大学 Lithium secondary battery electrolyte, and secondary battery including the same
WO2015104933A1 (en) * 2014-01-10 2015-07-16 日産自動車株式会社 Method for producing nonaqueous electrolyte secondary cell
JP2016149211A (en) * 2015-02-10 2016-08-18 トヨタ自動車株式会社 Initial charging method and manufacturing method of lithium ion battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
村山正樹 ほか: "黒鉛負極ハーフセル対照試験による充放電条件の探索と、その全固体ポリマー二次電池への適用", 三重県工業研究所 研究報告, JPN6020026414, 2013, pages 1 - 9, ISSN: 0004310753 *

Also Published As

Publication number Publication date
JP6863055B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
CN108808098B (en) Method for manufacturing lithium ion secondary battery
TWI504037B (en) Lithium secondary battery pack, and the use of this electronic machine, charging system and charging method
JP2001167791A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP6187506B2 (en) Lithium ion secondary battery
JP2001313071A (en) Nonaqueous electrolyte and lithium secondary cell using it
JP2001313072A (en) Electrolyte for lithium secondary cell and lithium secondary cell using it
KR20130098704A (en) Non aqueous electrolyte and secondary battery comprising the same
JP2020102348A (en) Manufacturing method of lithium ion battery, and lithium ion battery
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP6250941B2 (en) Nonaqueous electrolyte secondary battery
KR101872086B1 (en) Method of manufacturing nonaqueous electrolyte secondary battery
EP3742532A1 (en) Non-aqueous electrolyte secondary battery
JP7135333B2 (en) Nonaqueous electrolyte, nonaqueous electrolyte storage element, and method for manufacturing nonaqueous electrolyte storage element
CN111886744A (en) Electrolyte composition for lithium-ion electrochemical cells
JP2000149986A (en) Nonaqueous electrolytic solution and lithium secondary battery using it
JP5110057B2 (en) Lithium secondary battery
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2015162406A (en) Cylindrical nonaqueous electrolyte secondary battery
JP2000149987A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
JP2009283473A5 (en)
JP6863055B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2015060691A (en) Positive electrode for lithium ion secondary battery, lithium ion secondary battery and lithium ion secondary battery system
JP4432397B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6863055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250