JP2018189606A - Device and method for evaluating battery - Google Patents

Device and method for evaluating battery Download PDF

Info

Publication number
JP2018189606A
JP2018189606A JP2017094840A JP2017094840A JP2018189606A JP 2018189606 A JP2018189606 A JP 2018189606A JP 2017094840 A JP2017094840 A JP 2017094840A JP 2017094840 A JP2017094840 A JP 2017094840A JP 2018189606 A JP2018189606 A JP 2018189606A
Authority
JP
Japan
Prior art keywords
battery
current
internal resistance
voltage
interruption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017094840A
Other languages
Japanese (ja)
Inventor
昇 若月
Noboru Wakatsuki
昇 若月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAKAZUKI NOBORU
Original Assignee
WAKAZUKI NOBORU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAKAZUKI NOBORU filed Critical WAKAZUKI NOBORU
Priority to JP2017094840A priority Critical patent/JP2018189606A/en
Publication of JP2018189606A publication Critical patent/JP2018189606A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method for evaluating a battery that are highly resistant to noise and can easily measure such battery states of a storage battery as the internal resistance during or immediately after discharge (conduction) or during or immediately after charge (conduction) without relaying on currents.SOLUTION: A load is provided so that a current is flown from a chemical battery. The switch is connected to between the chemical battery and the load so that a discharge current from the chemical battery can be interrupted. A measuring circuit is provided to be capable of measuring a battery current and a battery voltage of the chemical battery. The measurement circuit measures a transient phenomenon before or after when the discharge current is blocked by the battery voltage, and can measure the internal resistance of the chemical battery from the ratio between the battery voltage difference and the discharge current before or after the interruption of the measured discharge current.SELECTED DRAWING: Figure 3

Description

本発明は、電池評価装置および電池評価方法に関する。   The present invention relates to a battery evaluation device and a battery evaluation method.

従来、電気を蓄えて、電池として使用できる化学電池、特に、充電を行うことにより電気を蓄えて電池として使用でき、繰り返し使用することが出来る二次電池または蓄電池と呼ばれる電池の状態を評価する簡便で精確な技術が求められている。例えば、代表的な化学電池である鉛蓄電池では、電池状態は、電池内の電気2重層の影響を含めて、図1の等価回路で表されることが多い。電池の劣化判定には、起電力と内部抵抗とが重要な因子である。しかし、誤差の小さな充電状態の管理に必要な測定手法はいまだ確立されていない。   Conventionally, a chemical battery that can store electricity and can be used as a battery, in particular, it can be used as a battery by storing electricity by charging, and it is easy to evaluate the state of a battery called a secondary battery or storage battery that can be used repeatedly. And precise technology is required. For example, in a lead storage battery which is a typical chemical battery, the battery state is often represented by the equivalent circuit of FIG. 1 including the influence of the electric double layer in the battery. An electromotive force and internal resistance are important factors in determining battery deterioration. However, a measurement method necessary for managing a state of charge with a small error has not yet been established.

鉛蓄電池などの内部抵抗の測定方法には、大きく分けて、以下の3つの方法がある。
(1)コンダクタンス法は、特定の周波数でバッテリーのセル及びユニットに交流信号を流し、端子間における電流レスポンスを測定する方法である。
(2)インピーダンス法は、特定の周波数でバッテリーから電流を採り、セル及びユニットの電圧の低下を測定する方法である。1/1000〜1/2秒間放電させ、その時に測定した電圧降下からオームの法則により内部抵抗(=インピーダンス)を算出する。ほとんどのバッテリーテスターで採用されている方式である。
(3)レジスタンス法(負荷測定法)は、セル及びユニットに負荷をかけ、電圧と電流の変化を測定する方式で、アナログ式ロードテスターなどに採用されている。
There are roughly the following three methods for measuring the internal resistance of lead-acid batteries and the like.
(1) The conductance method is a method in which an alternating current signal is passed through a battery cell and unit at a specific frequency to measure a current response between terminals.
(2) The impedance method is a method of taking a current from a battery at a specific frequency and measuring the voltage drop of the cell and unit. Discharge for 1/1000 to 1/2 second, and calculate the internal resistance (= impedance) from Ohm's law from the voltage drop measured at that time. This is the method used by most battery testers.
(3) The resistance method (load measurement method) is a method in which a load is applied to a cell and a unit to measure changes in voltage and current, and is adopted in an analog load tester or the like.

蓄電池の内部抵抗は低く、これらは電気二重層の影響を考慮した測定が必要であり、精度よく測るためには測定時間が長くなり、丁寧なノイズ対策が必要となる。特に、レジスタンス法では、蓄電池への負荷が問題になる場合がある。このような課題の解決を目的として、閉回路に、第1電流制御部兼逆流防止ダイオードと第2電流制御部兼逆流防止ダイオードとが、順方向及び逆方向に対をなして直列に設けられた蓄電池診断装置が提案されている(特許文献1参照)。   The internal resistance of the storage battery is low, and these require measurement in consideration of the influence of the electric double layer. In order to measure accurately, the measurement time becomes long and careful noise countermeasures are required. In particular, in the resistance method, the load on the storage battery may be a problem. For the purpose of solving such problems, the first current control unit / backflow prevention diode and the second current control unit / backflow prevention diode are provided in series in a closed circuit in pairs in the forward direction and the reverse direction. A storage battery diagnostic device has been proposed (see Patent Document 1).

特許第4372624号公報Japanese Patent No. 4372624

本発明は、放電(通電)中もしくは直後、または、充電中もしくは直後に、放電(通電)電流に依存することなく、蓄電池の内部抵抗などの電池状態を容易に測定可能で、ノイズに強い電池評価装置および電池評価方法を提供することを目的としている。   The present invention makes it possible to easily measure the battery state such as the internal resistance of the storage battery during or after discharge (energization) or immediately after charging or during or immediately after charging without depending on the discharge (energization) current, and is resistant to noise. An object is to provide an evaluation device and a battery evaluation method.

上記目的を達成するために、第1の本発明に係る電池評価装置は、化学電池の内部抵抗を測定する電池評価装置であって、前記化学電池からの電流を流すよう設けられた負荷と、前記化学電池と前記負荷との間に、前記化学電池からの放電電流を遮断可能に接続されたスイッチと、前記化学電池の電池電流および電池電圧を測定可能に設けられた測定回路とを有し、前記測定回路は、前記放電電流の遮断前後の過渡現象を電池電圧で測定し、測定された前記放電電流の遮断前後の電池電圧差と前記放電電流との比から、前記化学電池の内部抵抗を測定可能に構成されていることを特徴とする。   In order to achieve the above object, a battery evaluation apparatus according to a first aspect of the present invention is a battery evaluation apparatus for measuring an internal resistance of a chemical battery, and includes a load provided to flow a current from the chemical battery, A switch connected between the chemical battery and the load so as to cut off a discharge current from the chemical battery; and a measurement circuit provided to measure a battery current and a battery voltage of the chemical battery. The measurement circuit measures a transient phenomenon before and after the interruption of the discharge current with a battery voltage, and determines the internal resistance of the chemical battery from the ratio of the measured battery voltage difference before and after the interruption of the discharge current and the discharge current. It is comprised so that measurement is possible.

第2の本発明に係る電池評価装置は、二次電池の内部抵抗を測定する電池評価装置であって、前記二次電池を充電可能に設けられた充電器と、前記二次電池と前記充電器との間に、前記二次電池への充電電流を遮断可能に接続されたスイッチと、前記二次電池の電池電流および電池電圧を測定可能に設けられた測定回路とを有し、前記測定回路は、前記充電電流の遮断前後の過渡現象を電池電圧で測定し、測定された前記充電電流の遮断前後の電池電圧差と前記充電電流との比から、前記二次電池の内部抵抗を測定可能に構成されていることを特徴とする。   A battery evaluation apparatus according to a second aspect of the present invention is a battery evaluation apparatus for measuring an internal resistance of a secondary battery, the charger provided so as to be able to charge the secondary battery, the secondary battery, and the charging A switch connected to the battery so as to cut off a charging current to the secondary battery, and a measurement circuit provided to measure a battery current and a battery voltage of the secondary battery, and the measurement The circuit measures a transient phenomenon before and after the interruption of the charging current by a battery voltage, and measures an internal resistance of the secondary battery from a ratio of the measured battery voltage difference before and after the interruption of the charging current and the charging current. It is configured to be possible.

第1および第2の本発明に係る電池評価装置で、前記測定回路は、電池電圧を測定するとき、直流を遮断し、ノイズ源となる高周波数域を除去するよう構成されていることが好ましい。また、前記スイッチは過渡電流スイッチ回路から成っていてもよい。   In the battery evaluation apparatus according to the first and second aspects of the present invention, it is preferable that the measurement circuit is configured to block a direct current and remove a high frequency region that becomes a noise source when measuring a battery voltage. . The switch may comprise a transient current switch circuit.

第1の本発明に係る電池評価方法は、化学電池の内部抵抗を測定して評価する電池評価方法であって、前記化学電池に負荷を接続して電流を流し、その放電電流を遮断したときの遮断前後の過渡現象を電池電圧で測定し、前記放電電流の遮断前後の電池電圧差と前記放電電流との比から、前記化学電池の内部抵抗を測定し、測定された前記内部抵抗に基づいて前記化学電池を評価することを特徴とする。   The battery evaluation method according to the first aspect of the present invention is a battery evaluation method for measuring and evaluating the internal resistance of a chemical battery, wherein a load is connected to the chemical battery to pass a current and the discharge current is cut off. The transient phenomenon before and after the interruption of the battery is measured by the battery voltage, the internal resistance of the chemical battery is measured from the ratio of the battery voltage difference before and after the interruption of the discharge current and the discharge current, and based on the measured internal resistance The chemical battery is evaluated.

第2の本発明に係る電池評価方法は、二次電池の内部抵抗を測定して評価する電池評価方法であって、前記二次電池に充電器を接続して前記二次電池を充電し、その充電電流を遮断したときの遮断前後の過渡現象を電池電圧で測定し、前記充電電流の遮断前後の電池電圧差と前記充電電流との比から、前記二次電池の内部抵抗を測定し、測定された前記内部抵抗に基づいて前記二次電池を評価することを特徴とする。   The battery evaluation method according to the second aspect of the present invention is a battery evaluation method for measuring and evaluating the internal resistance of a secondary battery, and charging the secondary battery by connecting a charger to the secondary battery, The transient phenomenon before and after the interruption when the charging current is interrupted is measured by the battery voltage, and the internal resistance of the secondary battery is measured from the ratio of the charging voltage and the battery voltage difference before and after the interruption of the charging current, The secondary battery is evaluated based on the measured internal resistance.

本発明によれば、放電(通電)中もしくは直後、または、充電中もしくは直後に、放電(通電)電流に依存することなく、蓄電池の内部抵抗などの電池状態を容易に測定可能で、ノイズに強い電池評価装置および電池評価方法を提供することができる。   According to the present invention, the battery state such as the internal resistance of the storage battery can be easily measured without depending on the discharge (energization) current during or immediately after discharge (energization) or during or immediately after charging. A strong battery evaluation apparatus and a battery evaluation method can be provided.

また、本発明によれば、特殊な電源や負荷装置なしに、汎用の電流電圧測定器によって、蓄電池の内部抵抗などの電池状態の測定ができる。さらに、放電(通電)中の短時間電流遮断や、放電直後の電流電圧測定で、電池の内部抵抗が測定できる。電池起電圧と対応した内部抵抗の測定ができる。充電中の短時間電流遮断や、充電直後の電流電圧測定で、電池の内部抵抗が測定できる。電池内の電気2重層などによるイオン移動に大きな影響を受けず、ノイズに強い内部抵抗の測定が可能である。   Further, according to the present invention, it is possible to measure the battery state such as the internal resistance of the storage battery by using a general-purpose current / voltage measuring device without using a special power source or load device. Furthermore, the internal resistance of the battery can be measured by short-time current interruption during discharge (energization) or current-voltage measurement immediately after discharge. The internal resistance corresponding to the battery electromotive voltage can be measured. The internal resistance of the battery can be measured by short-time current interruption during charging or current-voltage measurement immediately after charging. It is possible to measure noise-resistant internal resistance without being greatly affected by ion migration caused by an electric double layer in the battery.

蓄電池の等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit of a storage battery. 電流遮断時の過渡現象向け蓄電池の等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit of the storage battery for transients at the time of an electric current interruption. (a)本発明の実施の形態の電池評価装置の、電池電流遮断時の過渡現象の電流電圧測定のための測定回路の回路図、(b) (a)により測定された、電流遮断時の電池電流と電池電圧の測定波形を示すグラフ、(c) (b)の時間軸を拡大したグラフである。(A) The circuit diagram of the measurement circuit for measuring the current voltage of the transient phenomenon at the time of battery current interruption of the battery evaluation device of the embodiment of the present invention, (b) at the time of current interruption measured by (a) It is the graph which shows the measurement waveform of a battery current and a battery voltage, (c) The graph which expanded the time axis | shaft of (b). 本発明の実施の形態の電池評価装置の、過渡電流スイッチ回路の回路図である。It is a circuit diagram of the transient current switch circuit of the battery evaluation apparatus of the embodiment of the present invention. (a)図3(a)に示す電池評価装置の、図4に示す過渡電流スイッチ回路を適用したとき、(b)図4に示す過渡電流スイッチ回路を適用しないときの、電流遮断時の電池電流と電池電圧の測定波形を示すグラフである。(A) When the transient current switch circuit shown in FIG. 4 is applied to the battery evaluation apparatus shown in FIG. 3 (a), (b) the battery at the time of current interruption when the transient current switch circuit shown in FIG. 4 is not applied It is a graph which shows the measurement waveform of an electric current and a battery voltage. 図3(a)に示す電池評価装置の、(a)電池電流と、交流および直流の電池電圧の測定波形、(b)電流遮断時の電池電流と、交流および直流の電池電圧の測定波形を示すグラフである。In the battery evaluation apparatus shown in FIG. 3 (a), (a) battery current and AC and DC battery voltage measurement waveforms, (b) battery current at current interruption and AC and DC battery voltage measurement waveforms. It is a graph to show. (a)本発明の実施の形態の電池評価装置の、充電時の過渡現象の電流電圧測定のための測定回路の回路図、(b) (a)により測定された、充電開始時の電池電流と電池電圧の測定波形を示すグラフ、(c) (a)により測定された、充電終了時の電池電流と電池電圧の測定波形を示すグラフである。(A) A circuit diagram of a measurement circuit for measuring a current voltage of a transient phenomenon during charging in the battery evaluation device according to the embodiment of the present invention; (b) a battery current at the start of charging measured by (a); And a graph showing the measured waveform of the battery voltage, (c) a graph showing the measured waveform of the battery current and the battery voltage at the end of charging, measured by (a). 図7(a)に示す電池評価回路の(a)充電終了時の電池電流と、交流および直流の電池電圧の測定波形、(b)放電終了時の電池電流と、交流および直流の電池電圧の測定波形を示すグラフである。The battery evaluation circuit shown in FIG. 7 (a) (a) battery current at the end of charging and AC and DC battery voltage measurement waveforms, (b) battery current at the end of discharging and AC and DC battery voltage It is a graph which shows a measurement waveform. 図3(a)に示す電池評価回路により、放電電流を変化させて測定した内部抵抗を示すグラフである。It is a graph which shows the internal resistance measured by changing discharge current with the battery evaluation circuit shown to Fig.3 (a). 図3(a)に示す電池評価回路により得られた、蓄電池の放電時間と復帰電圧と内部抵抗との関係を示すグラフである。It is a graph which shows the relationship between the discharge time of a storage battery, the return voltage, and internal resistance obtained by the battery evaluation circuit shown to Fig.3 (a). 図3(a)に示す電池評価回路により得られた、蓄電池の放電時間と電界液の比重と内部抵抗との関係を示すグラフである。It is a graph which shows the relationship between the discharge time of a storage battery, the specific gravity of an electrolysis solution, and internal resistance obtained by the battery evaluation circuit shown to Fig.3 (a). 図7(a)に示す電池評価回路により得られた、蓄電池の充電時間と復帰電圧と内部抵抗との関係を示すグラフである。It is a graph which shows the relationship between the charging time of a storage battery, the return voltage, and internal resistance obtained by the battery evaluation circuit shown to Fig.7 (a). 図3(a)に示す電池評価回路により得られた、リチウムイオン電池での電流遮断時の電池電流と電池電圧の測定波形を示すグラフ、(c) (b)の時間軸を拡大したグラフである。The graph which shows the measurement waveform of the battery current and battery voltage at the time of the current interruption in the lithium ion battery obtained by the battery evaluation circuit shown in FIG. 3A, and is a graph in which the time axis of FIG. is there. 図3(a)に示す電池評価回路により得られた、リチウムイオン電池の放電時間に対する、放電電流・起電圧および過渡現象で測定した放電抵抗の変化を示すグラフである。It is a graph which shows the change of the discharge resistance measured by the discharge current and the electromotive voltage, and the transient phenomenon with respect to the discharge time of the lithium ion battery obtained by the battery evaluation circuit shown to Fig.3 (a).

以下、図面に基づき、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[電池の電流遮断時の電池電圧の過渡現象に着目した電池の内部抵抗の測定方法]
蓄電池の等価回路は、図1のように、内部抵抗と電気2重層の等価回路で構成される。電気2重層の存在が、電池内部状態の観察を難しくしている。そこで、電流遮断時の過渡現象に着目する。充電時でも放電時でも、電流を急激に瞬断し、電気2重層コンデンサに電荷が溜まる以前の電流電圧特性の等価回路は、図2のようになる。化学電池における電気2重層は、イオンの挙動にも依存し、電流遮断に対して時間的に遅れが発生する。酸化還元反応など、電池内の電子の動きで決まる現象を中心にあらわれる過渡現象として電池電圧を観測する。
[Measurement method of battery internal resistance focusing on battery voltage transient phenomenon when battery current is interrupted]
As shown in FIG. 1, the equivalent circuit of the storage battery is composed of an equivalent circuit of an internal resistance and an electric double layer. The presence of the electric double layer makes it difficult to observe the internal state of the battery. Therefore, attention is paid to the transient phenomenon at the time of current interruption. FIG. 2 shows an equivalent circuit of the current-voltage characteristics before the electric current is suddenly interrupted at the time of charging or discharging and the electric charge is accumulated in the electric double layer capacitor. The electric double layer in a chemical battery also depends on the behavior of ions and causes a time delay with respect to current interruption. The battery voltage is observed as a transient phenomenon centered on a phenomenon determined by the movement of electrons in the battery, such as an oxidation-reduction reaction.

図3は、過渡現象の測定による内部抵抗の導出に関する説明図である。図3(a)に示すように、測定回路は、電池とスイッチと負荷回路とで構成され、電池(負荷)電流と接点電圧とを測定する。図3(b)および(c)に、電池電流と電池電圧の測定波形全体図、および、過渡現象に対応する時間軸拡大図を示す。なお、実験に用いた蓄電池は、自動車用12V鉛蓄電池で、5時間電流率は28Ah相当品である。電池電圧測定では、直流測定と交流測定(帯域幅10MHz)とを示した。これらから、図2の等価回路における内部抵抗が推定できる。   FIG. 3 is an explanatory diagram regarding the derivation of the internal resistance by measuring the transient phenomenon. As shown in FIG. 3A, the measurement circuit includes a battery, a switch, and a load circuit, and measures a battery (load) current and a contact voltage. FIGS. 3B and 3C show an overall view of measurement waveforms of the battery current and the battery voltage, and an enlarged view of the time axis corresponding to the transient phenomenon. In addition, the storage battery used for the experiment is a 12V lead storage battery for automobiles, and the 5-hour current rate is equivalent to 28 Ah. In the battery voltage measurement, direct current measurement and alternating current measurement (bandwidth 10 MHz) were shown. From these, the internal resistance in the equivalent circuit of FIG. 2 can be estimated.

[電池電流遮断への過渡電流スイッチ回路の適用]
電池からの電流を開閉するとき、機械的なスイッチやリレーが便利であるが、電流遮断時には、ブリッジ現象やアーク放電現象のような不安定な電流遮断現象となることが多い。それを避けるために、過渡電流スイッチ回路の適用が有利である。過渡電流スイッチ回路で電流を遮断すると、電流遮断時には、電流を遮断するスイッチの電流は遮断されるが、通電回路の電流はコンデンサの充電電流として流れ続ける。スイッチ部では、電圧変化が少ない時間で電流を遮断できる。電池電流は、コンデンサと負荷抵抗できまる時定数で穏やかに低減する。その結果、負荷や配電回路のサージ電圧の急な増大を抑止でき、機械的な開閉接点でのブリッジ現象やアーク放電を抑止できる。蓄電池の通電後の電流遮断時での過渡現象を制御できるので、安定に過渡現象としての電池電圧が測定できる。
[Application of transient current switch circuit to battery current interruption]
Mechanical switches and relays are convenient for opening and closing the current from the battery. However, when the current is interrupted, an unstable current interrupting phenomenon such as a bridge phenomenon or an arc discharge phenomenon often occurs. In order to avoid this, application of a transient current switch circuit is advantageous. When the current is interrupted by the transient current switch circuit, the current of the switch that interrupts the current is interrupted when the current is interrupted, but the current of the energizing circuit continues to flow as the charging current of the capacitor. In the switch part, the current can be cut off in a time when the voltage change is small. The battery current decreases gently with a time constant determined by the capacitor and load resistance. As a result, a sudden increase in the surge voltage of the load or the distribution circuit can be suppressed, and a bridge phenomenon or arc discharge at a mechanical switching contact can be suppressed. Since the transient phenomenon at the time of current interruption after energization of the storage battery can be controlled, the battery voltage as the transient phenomenon can be measured stably.

図4に、過渡電流スイッチ回路(TCS回路)の動作原理説明図を示す。図5(a)に示すように、過渡電流スイッチ回路によって、電池電流は、負荷抵抗と過渡電流スイッチ回路のコンデンサ容量とで決まる時定数で、安定に遮断される。なお、実験に用いた蓄電池は、自動車用12V蓄電池で、5時間電流率は28Ah相当品である。図5(b)は、過渡電流スイッチ回路を適用しないで、機械的なスイッチで放電電流を遮断したときの応答例であり、不安定な電流遮断とノイズとが顕著に現れている。適用するスイッチは、MOSFETのような半導体スイッチでも、サージ電圧やノイズ抑止などには同じ効果がえられる。   FIG. 4 is a diagram for explaining the operating principle of the transient current switch circuit (TCS circuit). As shown in FIG. 5A, the transient current switch circuit stably shuts off the battery current with a time constant determined by the load resistance and the capacitor capacity of the transient current switch circuit. In addition, the storage battery used for the experiment is a 12V storage battery for automobiles, and the 5-hour current rate is equivalent to 28 Ah. FIG. 5B shows a response example when the discharge current is cut off by a mechanical switch without applying the transient current switch circuit, and unstable current cut-off and noise remarkably appear. Even if the applied switch is a semiconductor switch such as a MOSFET, the same effect can be obtained for surge voltage and noise suppression.

[電池電圧の過渡現象測定で、直流信号成分を遮断し、ノイズ源となる高域にフィルターを適用した交流回路での測定]
過渡現象として電池電圧を観察する場合、直流成分を取り除いて、さらにノイズ除去するために、高周波遮断フィルターを組み合わせた“交流測定”を行う。正常に充電し、正常に使用される場合、通電時と電流遮断後の電池電圧差はわずかである。交流測定として過渡現象を取り出すことによって、帯域幅に合わせた増幅器を適用できるので、S/N比を改善した測定ができる。図3と同じ条件の交流測定による過渡現象電圧測定の妥当性の説明を、図6に示す。ただし、電池が消耗した条件での放電電流遮断直後の過渡現象での直流電圧測定と交流電圧測定との比較である。同じ電圧レンジで比較が可能な条件となるのは、内部抵抗が比較的大きな場合である。直流測定は、入力抵抗1MΩ、交流測定は、入力抵抗1MΩで、帯域幅10MHzの場合である。
[Measurement with an AC circuit that blocks the DC signal component and applies a filter to the high frequency range that becomes a noise source in the measurement of the transient phenomenon of the battery voltage]
When observing the battery voltage as a transient phenomenon, in order to remove the DC component and further eliminate noise, “AC measurement” is performed in combination with a high-frequency cutoff filter. When charged normally and used normally, the battery voltage difference between energization and current interruption is small. By taking out a transient phenomenon as an AC measurement, an amplifier adapted to the bandwidth can be applied, so that the S / N ratio can be improved. FIG. 6 shows the validity of transient voltage measurement by AC measurement under the same conditions as in FIG. However, this is a comparison between DC voltage measurement and AC voltage measurement in a transient phenomenon immediately after interruption of the discharge current under the condition that the battery is consumed. A condition that allows comparison within the same voltage range is when the internal resistance is relatively large. DC measurement is for an input resistance of 1 MΩ, and AC measurement is for an input resistance of 1 MΩ and a bandwidth of 10 MHz.

[蓄電池の充電時の電流遮断による内部抵抗の測定]
図2は蓄電池の等価回路であり、電池と負荷、電池と充電電源とをつなぐと、電気2重層のような現象が除かれると同時に、この等価回路は可逆的であると考えることができる。充電時電流を遮断して、前後の電圧差から同じ等価回路の内部抵抗を求めることができる。図7に、充電時の充電開始時と終了時(電流遮断時)の電池電圧電流の測定回路について、具体的な実施例を示す。電流は、図3で示した放電時と逆方向である。充電電源電圧は13Vに設定し、安定後電流は1.3A、復帰電圧は12.8Vの場合である。図8に、充電完了直後の充電電流で測定した内部抵抗の測定結果と、その直後の放電電流により測定した内部抵抗の測定結果とを比較して示した。両者はほぼ同じ値を示した。
[Measurement of internal resistance due to current interruption during charging of storage battery]
FIG. 2 shows an equivalent circuit of a storage battery. When a battery and a load, and a battery and a charging power source are connected, a phenomenon such as an electric double layer is removed, and at the same time, this equivalent circuit can be considered to be reversible. The internal resistance of the same equivalent circuit can be obtained from the voltage difference before and after the current during charging is cut off. FIG. 7 shows a specific example of a battery voltage / current measurement circuit at the start and end of charging (at the time of current interruption). The current is in the opposite direction to that during discharge shown in FIG. The charging power supply voltage is set to 13V, the current after stabilization is 1.3A, and the return voltage is 12.8V. In FIG. 8, the measurement result of the internal resistance measured by the charging current immediately after the completion of charging is compared with the measurement result of the internal resistance measured by the discharge current immediately after that. Both showed almost the same value.

[放電時の放電電流に依存しない内部抵抗の測定]
図9は、放電時の負荷抵抗を変えて測定した内部抵抗値である。負荷電流に依存しない内部抵抗測定が可能となった。これは、特殊な電子負荷装置など不要で、実際の負荷での放電電流での測定可能なことを示唆している。通常の動作状態で、負荷通電(放電状態)終了時の測定が可能である。
[Measurement of internal resistance independent of discharge current during discharge]
FIG. 9 shows the internal resistance values measured by changing the load resistance during discharge. Internal resistance measurement independent of load current is possible. This suggests that a special electronic load device or the like is unnecessary and measurement is possible with a discharge current at an actual load. Measurement at the end of load energization (discharge state) is possible in a normal operation state.

[電池起電圧および内部抵抗の両方を同時に、連続的に測定]
放電が持続すると内部抵抗は増加し、起電圧(復帰電圧)は減少する。起電圧の変化は小さいが、それに比べて内部抵抗の変化は大きく、安定な数値を示すので、蓄電池の状況の推定がより容易になる。図10に、放電時間に対する起電圧(復帰電圧)および内部抵抗の測定例をしめす。図中の黒線は、初期内部抵抗の3倍値である。蓄電池寿命を示す値と言われることがある。
[Simultaneous measurement of both battery voltage and internal resistance simultaneously]
When the discharge continues, the internal resistance increases and the electromotive voltage (return voltage) decreases. Although the change in the electromotive voltage is small, the change in the internal resistance is large compared to that and shows a stable numerical value, so that it is easier to estimate the state of the storage battery. FIG. 10 shows an example of measurement of electromotive voltage (return voltage) and internal resistance with respect to discharge time. The black line in the figure is three times the initial internal resistance. It may be said to be a value indicating the storage battery life.

[電解液の比重と内部抵抗とを同時に測定]
測定時間が短いので、放電を継続しながら、途中で電解液の比重と内部抵抗とを測定できる。図11に、その測定例を示す。比重は、バッテリー用汎用の比重計で測定した。両者は、良く対応している。比重値は、電池寿命予測に多用されてきたものである。
[Measures specific gravity and internal resistance of electrolyte simultaneously]
Since the measurement time is short, the specific gravity and internal resistance of the electrolyte can be measured along the way while continuing the discharge. FIG. 11 shows an example of the measurement. Specific gravity was measured with a general-purpose hydrometer for batteries. Both correspond well. The specific gravity value has been frequently used for battery life prediction.

[蓄電池の充電中の内部抵抗の測定]
充電期間中に、瞬時の電流遮断で内部抵抗を測定できる。その測定例を、図12に示す。図中には、充電前後に行った放電による内部抵抗測定値を記入してあるが、充電開始時、終了時の充電電流による測定結果と等しい。充電することにより、内部抵抗は、16.6mΩ→11mΩに低下した。その間、起電圧は、12V→12.5Vとわずかに上昇した。その充電期間に、電流を瞬断して内部抵抗を測定した。このような充電中の測定が可能となったので、過充電を予防できる。
[Measurement of internal resistance during storage battery charging]
The internal resistance can be measured by instantaneous current interruption during the charging period. An example of the measurement is shown in FIG. In the figure, measured values of internal resistance due to discharges performed before and after charging are entered, which are equal to the measurement results of charging current at the start and end of charging. By charging, the internal resistance decreased from 16.6 mΩ to 11 mΩ. During that time, the electromotive voltage slightly increased from 12V to 12.5V. During the charging period, the current was momentarily interrupted to measure the internal resistance. Since measurement during such charging is possible, overcharge can be prevented.

[リチウムイオン電池などへの応用]
電流遮断時の過渡応答に着目した内部抵抗の測定は、鉛蓄電池のみならず、その他の電池に適用できる。図13に、リチウムイオン2次電池での測定例を示す。起電圧38Vの電池に5Ωの負荷をつないだときの放電である。測定回路は、図3(a)と同じである。鉛電池と同様に、内部抵抗が測定できる。同様な手法で、乾電池でも放電時の測定をおこなえる。図14は、リチウムイオン電池の放電時間に対する、放電電流・起電圧および過渡現象で測定した放電抵抗の変化である。
[Application to lithium-ion batteries]
The measurement of the internal resistance focusing on the transient response at the time of current interruption can be applied not only to the lead storage battery but also to other batteries. FIG. 13 shows a measurement example using a lithium ion secondary battery. This is discharge when a load of 5Ω is connected to a battery with an electromotive voltage of 38V. The measurement circuit is the same as that shown in FIG. As with lead batteries, the internal resistance can be measured. A similar technique can be used to measure the discharge of a dry battery. FIG. 14 shows changes in discharge resistance measured by the discharge current / electromotive voltage and transient phenomenon with respect to the discharge time of the lithium ion battery.

[デジタル技術との組み合わせ]
電流電圧の測定では、汎用のシンクロスコープ型測定で波形観察した。実用的には、専用の電流電圧測定回路とデジタルメモリーとを組み合わせ、必要な時間のデンジタル信号を取り出し比較する。マイコン技術が容易に適用できる技術分野である。
[Combination with digital technology]
In the measurement of current voltage, the waveform was observed with a general-purpose synchroscope type measurement. Practically, a dedicated current / voltage measurement circuit and digital memory are combined, and a digital signal of the required time is extracted and compared. This is a technical field where microcomputer technology can be easily applied.

本発明の実施の形態の電池評価装置および電池評価方法によれば、以下も実現可能である。
(1)放電時の残留電力の推定。
たとえば、図10のように、電池の初期内部抵抗と消費電力との関係をあらかじめ測定して起き、その後、内部抵抗変化を測定すれば、残存の使用可能電力の推定ができる。また、内部抵抗の絶対値や変化の傾きや、比重計の測定結果と内部抵抗との対応によっても、残留電力や充電の必要時期を予測できる。
According to the battery evaluation apparatus and the battery evaluation method of the embodiment of the present invention, the following can also be realized.
(1) Estimation of residual power during discharge.
For example, as shown in FIG. 10, the remaining usable power can be estimated by measuring the relationship between the initial internal resistance of the battery and the power consumption in advance and then measuring the change in the internal resistance. Also, the residual power and the time required for charging can be predicted based on the absolute value of the internal resistance, the slope of the change, and the correspondence between the measurement result of the hydrometer and the internal resistance.

(2)充電時の内部抵抗の測定による過充電の防止
充電時の回路を短時間遮断するという簡易な手法で、電池の内部抵抗が測定できる。
(2) Prevention of overcharge by measuring internal resistance during charging The internal resistance of a battery can be measured by a simple technique of interrupting the circuit during charging for a short time.

(3)不可逆的な抵抗増加の検出
内部抵抗には、充電によって復帰できる可逆的な抵抗分のほかに、硫酸化鉛の結晶化や電極の消耗・破損などによる部分も含まれる。このような、故障や機能低下の予測・判断の根拠となりうる。すなわち、廃棄時期の推定データを提供できる。
(3) Detection of irreversible resistance increase In addition to the reversible resistance that can be restored by charging, the internal resistance includes parts due to lead sulfate crystallization and electrode wear and tear. It can be a basis for such prediction and judgment of failure and functional degradation. That is, it is possible to provide estimated data on the disposal time.

本発明に係る電池評価装置および電池評価方法は、蓄電池の利用において、使用可能な残留電力の推定を可能にするシステムを構築することができる。また、蓄電池の充電において、過電流による電池劣化を避けることができる充電システムを構築することができる。また、蓄電池の充電によっても回復しない劣化を定量的に評価し、不要な廃却を減らことができる。   The battery evaluation apparatus and the battery evaluation method according to the present invention can construct a system that enables estimation of usable residual power in the use of a storage battery. Further, in charging the storage battery, a charging system that can avoid battery deterioration due to overcurrent can be constructed. In addition, it is possible to quantitatively evaluate deterioration that does not recover even when the storage battery is charged, and reduce unnecessary disposal.

電池の起電力
Rs 内部抵抗
Rl 負荷抵抗
Cb 電気2重層の等価容量。
Rr 電気2重層に付随する等価抵抗
D1,D2 TCS回路ダイオード
R2 TCS回路コンデンサ放電抵抗
C TCS回路コンデンサ
SW1 TCS回路電流スイッチ
Electromotive force of V 0 battery Rs Internal resistance Rl Load resistance
Cb Equivalent capacity of electric double layer.
Rr Equivalent resistance associated with electrical double layer D1, D2 TCS circuit diode R2 TCS circuit capacitor discharge resistance C TCS circuit capacitor SW1 TCS circuit current switch

Claims (6)

化学電池の内部抵抗を測定する電池評価装置であって、
前記化学電池からの電流を流すよう設けられた負荷と、
前記化学電池と前記負荷との間に、前記化学電池からの放電電流を遮断可能に接続されたスイッチと、
前記化学電池の電池電流および電池電圧を測定可能に設けられた測定回路とを有し、
前記測定回路は、前記放電電流の遮断前後の過渡現象を電池電圧で測定し、測定された前記放電電流の遮断前後の電池電圧差と前記放電電流との比から、前記化学電池の内部抵抗を測定可能に構成されていることを
特徴とする電池評価装置。
A battery evaluation device for measuring the internal resistance of a chemical battery,
A load provided to flow current from the chemical battery;
A switch connected between the chemical battery and the load so as to cut off a discharge current from the chemical battery;
A measurement circuit provided so as to be able to measure a battery current and a battery voltage of the chemical battery,
The measurement circuit measures a transient phenomenon before and after the interruption of the discharge current with a battery voltage, and calculates the internal resistance of the chemical battery from the ratio of the measured battery voltage difference before and after the interruption of the discharge current and the discharge current. A battery evaluation device configured to be measurable.
二次電池の内部抵抗を測定する電池評価装置であって、
前記二次電池を充電可能に設けられた充電器と、
前記二次電池と前記充電器との間に、前記二次電池への充電電流を遮断可能に接続されたスイッチと、
前記二次電池の電池電流および電池電圧を測定可能に設けられた測定回路とを有し、
前記測定回路は、前記充電電流の遮断前後の過渡現象を電池電圧で測定し、測定された前記充電電流の遮断前後の電池電圧差と前記充電電流との比から、前記二次電池の内部抵抗を測定可能に構成されていることを
特徴とする電池評価装置。
A battery evaluation device for measuring the internal resistance of a secondary battery,
A charger provided to be able to charge the secondary battery;
A switch connected between the secondary battery and the charger so as to cut off a charging current to the secondary battery;
A measurement circuit provided so as to be able to measure a battery current and a battery voltage of the secondary battery,
The measurement circuit measures a transient phenomenon before and after the interruption of the charging current with a battery voltage, and calculates the internal resistance of the secondary battery from the ratio of the measured battery voltage difference before and after the interruption of the charging current and the charging current. A battery evaluation apparatus characterized by being configured to measure the above.
前記測定回路は、電池電圧を測定するとき、直流を遮断し、ノイズ源となる高周波数域を除去するよう構成されていることを特徴とする請求項1または2記載の電池評価装置。   3. The battery evaluation apparatus according to claim 1, wherein the measurement circuit is configured to cut off a direct current and remove a high frequency region that becomes a noise source when measuring a battery voltage. 4. 前記スイッチは過渡電流スイッチ回路から成ることを特徴とする請求項1乃至3のいずれか1項に記載の電池評価装置。   The battery evaluation apparatus according to claim 1, wherein the switch includes a transient current switch circuit. 化学電池の内部抵抗を測定して評価する電池評価方法であって、
前記化学電池に負荷を接続して電流を流し、
その放電電流を遮断したときの遮断前後の過渡現象を電池電圧で測定し、
前記放電電流の遮断前後の電池電圧差と前記放電電流との比から、前記化学電池の内部抵抗を測定し、
測定された前記内部抵抗に基づいて前記化学電池を評価することを
特徴とする電池評価方法。
A battery evaluation method for measuring and evaluating the internal resistance of a chemical battery,
Connect a load to the chemical battery to pass current,
Measure the transient phenomenon before and after the interruption when the discharge current is interrupted with the battery voltage,
From the ratio of the battery voltage difference before and after the interruption of the discharge current and the discharge current, the internal resistance of the chemical battery is measured,
A battery evaluation method, wherein the chemical battery is evaluated based on the measured internal resistance.
二次電池の内部抵抗を測定して評価する電池評価方法であって、
前記二次電池に充電器を接続して前記二次電池を充電し、
その充電電流を遮断したときの遮断前後の過渡現象を電池電圧で測定し、
前記充電電流の遮断前後の電池電圧差と前記充電電流との比から、前記二次電池の内部抵抗を測定し、
測定された前記内部抵抗に基づいて前記二次電池を評価することを
特徴とする電池評価方法。
A battery evaluation method for measuring and evaluating the internal resistance of a secondary battery,
Connect a charger to the secondary battery to charge the secondary battery,
Measure the transient phenomenon before and after the interruption when the charging current is interrupted with the battery voltage,
From the ratio of the battery voltage difference before and after the interruption of the charging current and the charging current, the internal resistance of the secondary battery is measured,
A battery evaluation method comprising evaluating the secondary battery based on the measured internal resistance.
JP2017094840A 2017-05-11 2017-05-11 Device and method for evaluating battery Pending JP2018189606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017094840A JP2018189606A (en) 2017-05-11 2017-05-11 Device and method for evaluating battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017094840A JP2018189606A (en) 2017-05-11 2017-05-11 Device and method for evaluating battery

Publications (1)

Publication Number Publication Date
JP2018189606A true JP2018189606A (en) 2018-11-29

Family

ID=64478597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017094840A Pending JP2018189606A (en) 2017-05-11 2017-05-11 Device and method for evaluating battery

Country Status (1)

Country Link
JP (1) JP2018189606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613442A (en) * 2018-12-27 2019-04-12 东莞钜威动力技术有限公司 Internal resistance of cell Dynamic calculation method and battery management system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862309A (en) * 1994-08-24 1996-03-08 N T T Facilities:Kk Storage battery measuring device
JPH10145979A (en) * 1996-11-07 1998-05-29 Nissan Motor Co Ltd Charging method for lithium ion battery
JP2000299137A (en) * 1998-08-10 2000-10-24 Toyota Motor Corp Secondary battery state judging method, state judging device and secondary battery regenerating method
JP2002006011A (en) * 2000-06-19 2002-01-09 Sony Corp Battery pack and method for detecting residual quantity of battery
JP2003139827A (en) * 2001-11-02 2003-05-14 Sanyo Electric Co Ltd Secondary battery device
JP2004270496A (en) * 2003-03-06 2004-09-30 Matsushita Electric Ind Co Ltd Method for determining storage battery state
JP2006343165A (en) * 2005-06-08 2006-12-21 Hioki Ee Corp Apparatus for measuring resistance of battery
JP2008016275A (en) * 2006-07-05 2008-01-24 Hioki Ee Corp Device for measuring internal electrical resistance of cell
JP2009058518A (en) * 2001-05-25 2009-03-19 Avestor Ltd Partnership Self-diagnostic system for energy storage device
JP2009117110A (en) * 2007-11-05 2009-05-28 Tsuruga Electric Corp Fuel battery characteristics diagnosing method and diagnosing device
JP2010231973A (en) * 2009-03-26 2010-10-14 Nissan Motor Co Ltd Electrochemical system and load connection/disconnection method for the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862309A (en) * 1994-08-24 1996-03-08 N T T Facilities:Kk Storage battery measuring device
JPH10145979A (en) * 1996-11-07 1998-05-29 Nissan Motor Co Ltd Charging method for lithium ion battery
JP2000299137A (en) * 1998-08-10 2000-10-24 Toyota Motor Corp Secondary battery state judging method, state judging device and secondary battery regenerating method
JP2002006011A (en) * 2000-06-19 2002-01-09 Sony Corp Battery pack and method for detecting residual quantity of battery
JP2009058518A (en) * 2001-05-25 2009-03-19 Avestor Ltd Partnership Self-diagnostic system for energy storage device
JP2003139827A (en) * 2001-11-02 2003-05-14 Sanyo Electric Co Ltd Secondary battery device
JP2004270496A (en) * 2003-03-06 2004-09-30 Matsushita Electric Ind Co Ltd Method for determining storage battery state
JP2006343165A (en) * 2005-06-08 2006-12-21 Hioki Ee Corp Apparatus for measuring resistance of battery
JP2008016275A (en) * 2006-07-05 2008-01-24 Hioki Ee Corp Device for measuring internal electrical resistance of cell
JP2009117110A (en) * 2007-11-05 2009-05-28 Tsuruga Electric Corp Fuel battery characteristics diagnosing method and diagnosing device
JP2010231973A (en) * 2009-03-26 2010-10-14 Nissan Motor Co Ltd Electrochemical system and load connection/disconnection method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613442A (en) * 2018-12-27 2019-04-12 东莞钜威动力技术有限公司 Internal resistance of cell Dynamic calculation method and battery management system
CN109613442B (en) * 2018-12-27 2021-03-02 东莞钜威动力技术有限公司 Dynamic measuring and calculating method for internal resistance of battery and battery management system

Similar Documents

Publication Publication Date Title
JP6527356B2 (en) Secondary battery deterioration detection system, secondary battery deterioration detection method
CN106324318B (en) Method for measuring battery current
TWI752787B (en) Method and system for evaluating soundness of battery
CN109521359B (en) Power battery cathode relay state detection circuit and method
JP5289083B2 (en) Secondary battery abnormality detection device and secondary battery device
US20110234166A1 (en) Battery module state detection method
JP2008253129A (en) Method for quick charging lithium-based secondary battery and electronic equipment using same
CN109616704B (en) Device for battery management and method for managing charging of a battery
JP7145865B2 (en) Rechargeable battery short-circuit prediction device and rechargeable battery short-circuit prediction method
JP2016176924A (en) Secondary battery deterioration detection system and method for detecting secondary battery deterioration
JP2016535564A (en) Method and apparatus for determining the deterioration of electronic interrupting elements, in particular contactors
US11233298B2 (en) Protective device, battery, motor vehicle, and method for switching off a battery cell
US20170131363A1 (en) Improved Battery Testing Device
JP2010271287A (en) Device and method of determining deterioration of battery, and program
KR101602848B1 (en) Method for predicting lifetime of battery
US20160178684A1 (en) Storage battery monitoring device
US9778307B2 (en) Insulation fault detection device for testing for insulation faults under critical conditions
RU2638912C2 (en) Device for determination of voltage and method of determination of battery voltage
KR20230002747A (en) How to detect insulation failure between power and ground
JP2018189606A (en) Device and method for evaluating battery
AU2015359509B2 (en) Method and device for detecting an overcharging of an accumulator of a battery
JP7207074B2 (en) BATTERY MANAGEMENT DEVICE, POWER STORAGE DEVICE, BATTERY MANAGEMENT METHOD, AND COMPUTER PROGRAM
JP7174327B2 (en) Method for determining state of secondary battery
JP5625282B2 (en) Battery deterioration determination device and battery deterioration determination method
JP2023538052A (en) Battery management system, battery pack, electric vehicle and battery management method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190924