JP2018189434A - Flying type drawing device - Google Patents

Flying type drawing device Download PDF

Info

Publication number
JP2018189434A
JP2018189434A JP2017090293A JP2017090293A JP2018189434A JP 2018189434 A JP2018189434 A JP 2018189434A JP 2017090293 A JP2017090293 A JP 2017090293A JP 2017090293 A JP2017090293 A JP 2017090293A JP 2018189434 A JP2018189434 A JP 2018189434A
Authority
JP
Japan
Prior art keywords
marker
drone
flight
flying
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017090293A
Other languages
Japanese (ja)
Other versions
JP6896501B2 (en
Inventor
大司 上野
Daiji Ueno
大司 上野
久雄 青木
Hisao Aoki
久雄 青木
大西 献
Ken Onishi
献 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Original Assignee
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Machinery Systems Co Ltd filed Critical Mitsubishi Heavy Industries Machinery Systems Co Ltd
Priority to JP2017090293A priority Critical patent/JP6896501B2/en
Publication of JP2018189434A publication Critical patent/JP2018189434A/en
Application granted granted Critical
Publication of JP6896501B2 publication Critical patent/JP6896501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a flying type drawing device capable of accurately and promptly drawing a marking point on a drawing object by launching a marker from air.SOLUTION: A flying type drawing device includes: a drone 10 flying in air above a drawing object part 100; a marker launching device mounted on a drone 10 and capable of launching the marker for each of a plurality of zones 12a; an information acquisition part for acquiring information including a present position in air of the drone 10; and a drone control part for controlling the flying of a drone 10 and controlling launching of the marker by the marker launching device. A drone control device creates a launching map 44 for determining a draw able range of the marker for each present position during flying of the drone 10 above the drawing object 100 according to the change of the present position. When a planned marking point M*is available within the launching map 44, the market is launched from the zone 12a corresponding to the planned marking M*among the plurality of zones 12a.SELECTED DRAWING: Figure 7

Description

本発明は、飛行型描画装置に関する。   The present invention relates to a flight drawing apparatus.

従来、例えば土木工事の用地整形や整形後の基礎工事において、作業基準となるマーキング(標識)点を描画するための技術が知られている。マーキング点の描画をするための位置測定について、GPS(Global Positioning System)等の高精度な計測手法を用いると共に、計測データのデジタル化が進むことによって、マーキング点の描画の自動化環境も改善されている。また、土木作業領域地形や既存の構造物の検査、観察等を行う場合、操縦性や飛行安定性が高いドローンを用いることで、従来は航空機等の利用でしか実現できなかった作業や、高所かつ狭い領域での作業が可能となっている。   2. Description of the Related Art Conventionally, for example, a technique for drawing a marking (marking) point that serves as a work reference in land preparation for civil engineering or foundation work after shaping is known. With regard to position measurement for drawing marking points, a high-precision measurement method such as GPS (Global Positioning System) is used, and the digitized measurement data advances, so the marking point drawing automation environment is improved. Yes. In addition, when inspecting and observing civil engineering work area topography and existing structures, by using a drone with high maneuverability and flight stability, work that was previously only possible with the use of aircraft, etc. Work in a small area is possible.

ドローンは、複数のロータと高精度のジャイロスコープの組み合わせにより飛行状態を自動制御で維持可能であり、飛行空間の制限や風等の外乱に対して、操縦者の負担を大きく軽減した操作が可能である。そのため、マーキング点の描画装置をドローンに搭載し、描画対象部に空中からマーキングを施すことがある。例えば、特許文献1には、塗料を封入したカラーボールを発射して、構造体・建造物の検査や事故・災害時等にターゲットとなる箇所に着弾破裂させて着色特定するためのカラーボール発射装置を、ドローンに搭載することが開示されている。   The drone can maintain the flight state with automatic control by combining multiple rotors and high-precision gyroscopes, and can perform operations that greatly reduce the burden on the operator against flight space restrictions and wind and other disturbances. It is. Therefore, a marking point drawing device may be mounted on the drone, and marking may be performed on the drawing target portion from the air. For example, in Patent Document 1, a color ball is fired to specify a color by firing a color ball filled with paint and landing on a target location in an inspection of a structure or a building or an accident or disaster. It is disclosed that the device is mounted on a drone.

国際公開第2016/181426号International Publication No. 2016/181426

しかしながら、空中を飛行するドローン等の飛行体を用いてマーキング点の描画を行う場合、空中で飛行体の軌道や姿勢を完全に望み通りに制御することは困難である。そのため、風速や飛行体の飛行速度に応じて、飛行体の実際の位置と制御上の目標位置との間には誤差が発生し、この状態でマーキングを行うと、マーキング点が目標位置からずれてしまう。また、飛行体の飛行方向を修正することで、マーキング点のずれの修正を図ることも考えられるが、飛行方向の修正には、ある程度の飛行距離や時間が必要となるため、マーキング位置のずれを速やかに修正できないおそれがある。   However, when drawing marking points using a flying object such as a drone flying in the air, it is difficult to completely control the trajectory and attitude of the flying object in the air as desired. Therefore, an error occurs between the actual position of the flying object and the control target position according to the wind speed and the flying speed of the flying object. If marking is performed in this state, the marking point will deviate from the target position. End up. In addition, it is conceivable to correct the deviation of the marking point by correcting the flight direction of the flying object. However, the correction of the flight direction requires a certain amount of flight distance and time. May not be promptly corrected.

本発明は、上記に鑑みてなされたものであって、空中からマーカーを発射して描画対象部上に高精度かつ速やかにマーキング点を描画可能な飛行型描画装置の提供を目的とする。   The present invention has been made in view of the above, and it is an object of the present invention to provide a flying drawing apparatus capable of firing a marker from the air and drawing a marking point on a drawing target portion with high accuracy and speed.

上述した課題を解決し、目的を達成するために、本発明は、描画対象部上において空中を飛行する飛行体と、前記飛行体に搭載され、複数の区画ごとにマーカーを発射可能なマーカー発射装置と、前記飛行体の空中での現在位置を含む情報を取得する情報取得部と、前記飛行体の飛行を制御すると共に、前記マーカー発射装置によるマーカーの発射を制御する制御部と、を備え、前記制御部は、前記飛行体が前記描画対象部上を飛行している間、前記情報取得部により取得された前記飛行体の前記現在位置の変化に応じて、前記現在位置ごとに前記マーカーを描画可能な範囲を規定した発射用マップを作成し、前記発射用マップ内に、前記描画対象部上に前記マーカーを描画するべき位置である複数の計画マーキング点があるとき、前記複数の区画のうち前記計画マーキング点に対応した区画から前記マーカーを発射させる、ことを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a flying object that flies in the air on a drawing target part, and a marker firing that is mounted on the flying object and can fire a marker for each of a plurality of sections. A device, an information acquisition unit that acquires information including a current position of the flying object in the air, and a control unit that controls the flight of the flying object and controls the marker emission by the marker emitting device. The control unit is configured to change the marker for each current position according to a change in the current position of the flying object acquired by the information acquiring unit while the flying object is flying over the drawing target unit. When a plurality of planned marking points that are positions where the marker should be drawn on the drawing target portion are included in the firing map, the plurality of planned marking points are defined. To fire the marker from the compartment which corresponds to the plan marking point of the separation, characterized in that.

この構成によれば、飛行体が描画対象部上を飛行している間、飛行体の現在位置の変化に応じて、現在位置ごとにマーカーを描画可能な範囲を規定した発射用マップを用いて、発射用マップ内に含まれる計画マーキング点に対応したマーカー発射装置の各区画からマーカーを発射させることができる。それにより、飛行体の現在位置が本来想定する位置からずれている場合に、飛行体自体を移動させなくとも、計画マーキング点と異なる位置にマーカーを描画することを抑制することができる。また、飛行体自体を移動させる必要がないため、速やかに計画マーキング点にマーカーを描画することができる。従って、本発明にかかる飛行型描画装置は、空中からマーカーを発射して描画対象部上に高精度かつ速やかにマーキング点を描画することができる。   According to this configuration, while the flying object is flying over the drawing target portion, using the launch map that defines the range in which the marker can be drawn for each current position according to the change in the current position of the flying object. The marker can be fired from each section of the marker firing device corresponding to the planned marking point included in the firing map. Thereby, when the current position of the flying object is deviated from the originally assumed position, it is possible to suppress the drawing of the marker at a position different from the planned marking point without moving the flying object itself. In addition, since it is not necessary to move the flying object itself, it is possible to quickly draw a marker at the planned marking point. Therefore, the flying drawing apparatus according to the present invention can draw a marking point on the drawing target portion with high accuracy and promptly by firing a marker from the air.

また、前記制御部は、前記発射用マップ内にある前記計画マーキング点が、前記マーカーを描画済みの実績マーキング点である場合には、前記複数の区画のうち前記実績マーキング点に対応した区画からは前記マーカーを発射させないことが好ましい。   In addition, when the planned marking point in the firing map is an actual marking point on which the marker has been drawn, the control unit is configured to start from a section corresponding to the actual marking point among the plurality of sections. Preferably does not fire the marker.

この構成によれば、一度マーカーを描画した箇所に重ねてマーカーを描画することを防ぐことができるため、マーキング点の描画品質を向上させることができる。   According to this configuration, since it is possible to prevent the marker from being drawn on the portion where the marker has been once drawn, the drawing quality of the marking point can be improved.

また、前記情報取得部は、前記飛行体の空中での姿勢をさらに取得し、前記制御部は、前記情報取得部により取得された前記飛行体の前記現在位置において、前記飛行体が前記情報取得部により取得された前記姿勢をとっている場合に、前記マーカーを描画可能な範囲を規定した前記発射用マップを作成する、ことが好ましい。   The information acquisition unit further acquires an attitude of the flying object in the air, and the control unit acquires the information at the current position of the flying object acquired by the information acquisition unit. In the case where the posture acquired by the unit is taken, it is preferable that the firing map defining a range in which the marker can be drawn is created.

この構成によれば、飛行体の現在位置において、飛行体の空中での姿勢に応じてマーカーを描画可能な範囲を規定した発射用マップを用いて、発射用マップ内に含まれる計画マーキング点に対応したマーカー発射装置の区画からマーカーを発射させることができる。それにより、飛行体の空中での姿勢が本来想定する姿勢からずれている場合に、飛行体の姿勢を修正させることなく、計画マーキング点と異なる位置にマーカーを描画することを抑制することができる。また、飛行体の姿勢自体を修正する必要がないため、速やかに計画マーキング点にマーカーを描画することができる。   According to this configuration, at the current position of the flying object, using the firing map that defines the range in which the marker can be drawn according to the attitude of the flying object in the air, the planned marking point included in the firing map is used. Markers can be fired from corresponding marker firing device sections. Thereby, when the attitude of the flying object in the air deviates from the originally assumed attitude, it is possible to suppress the drawing of the marker at a position different from the planned marking point without correcting the attitude of the flying object. . In addition, since it is not necessary to correct the attitude of the flying object, it is possible to quickly draw a marker at the planned marking point.

また、前記情報取得部は、前記飛行体の飛行速度をさらに取得し、前記制御部は、前記情報取得部により取得された前記飛行体の前記現在位置において、前記飛行体が前記情報取得部により取得された前記飛行速度で飛行している場合に、前記マーカーを描画可能な範囲を規定した前記発射用マップを作成する、ことが好ましい。   Further, the information acquisition unit further acquires a flight speed of the flying object, and the control unit obtains the flying object at the current position of the flying object acquired by the information acquisition unit by the information acquisition unit. In the case of flying at the obtained flight speed, it is preferable to create the launch map that defines a range in which the marker can be drawn.

この構成によれば、飛行体の現在位置において、飛行体の飛行速度に応じてマーカーを描画可能な範囲を規定した発射用マップを用いて、発射用マップ内に含まれる計画マーキング点に対応したマーカー発射装置の区画からマーカーを発射させることができる。それにより、飛行体の飛行速度を原因として、計画マーキング点と異なる位置にマーカーが描画されることを抑制することができる。   According to this configuration, at the current position of the flying object, it corresponds to the planned marking point included in the firing map using the firing map that defines the range in which the marker can be drawn according to the flying speed of the flying object. A marker can be fired from a compartment of the marker firing device. Thereby, it can suppress that a marker is drawn in the position different from a plan marking point due to the flight speed of a flying body.

また、前記マーカー発射装置は、前記マーカーを加速して発射し、前記情報取得部は、前記マーカーの発射速度をさらに取得し、前記制御部は、前記情報取得部により取得された前記飛行体の前記現在位置において、前記飛行体が前記情報取得部により取得された前記姿勢をとっており、前記情報取得部により取得された前記発射速度で前記マーカーが発射された場合に、前記マーカーを描画可能な範囲を規定した前記発射用マップを作成する、ことが好ましい。   Further, the marker launching device accelerates and fires the marker, the information acquisition unit further acquires a firing speed of the marker, and the control unit acquires the flying object acquired by the information acquisition unit. The marker can be drawn when the flying object takes the posture acquired by the information acquisition unit at the current position and the marker is fired at the firing speed acquired by the information acquisition unit. It is preferable to create the launch map that defines a specific range.

この構成によれば、飛行体の現在位置において、飛行体の空中における姿勢及びマーカーの発射速度に応じてマーカーを描画可能な範囲を規定した発射用マップを用いて、発射用マップ内に含まれる計画マーキング点に対応したマーカー発射装置の区画からマーカーを発射させることができる。それにより、飛行体の空中での姿勢が本来想定する姿勢からずれ、かつ、マーカーの発射速度に応じてマーカーの着弾位置が本来想定する位置からずれ得る場合にも、飛行体の姿勢を修正させることなく、計画マーキング点と異なる位置にマーカーを描画することを抑制することができる。また、飛行体の姿勢自体を修正する必要がないため、速やかに計画マーキング点にマーカーを描画することができる。   According to this configuration, at the current position of the flying object, it is included in the firing map using the firing map that defines the range in which the marker can be drawn according to the attitude of the flying object in the air and the firing speed of the marker. A marker can be fired from a section of the marker firing device corresponding to the planned marking point. Thereby, even when the attitude of the flying object in the air deviates from the originally assumed position and the landing position of the marker can deviate from the originally assumed position in accordance with the firing speed of the marker, the attitude of the flying object is corrected. Without drawing the marker at a position different from the planned marking point. In addition, since it is not necessary to correct the attitude of the flying object, it is possible to quickly draw a marker at the planned marking point.

また、前記マーカー発射装置は、前記マーカーを鉛直方向下側に向けて自由落下により発射することが好ましい。   Moreover, it is preferable that the marker launching device launches the marker by free fall with the marker directed downward in the vertical direction.

この構成によれば、マーカーを加速して強制発射する場合に比べて、マーカーの発射により飛行体に働く反力を低減することができるため、飛行体の空中での位置や姿勢の安定化を図ることができる。それにより、計画マーキング点に精度良くマーカーを描画することができる。   According to this configuration, since the reaction force acting on the flying object can be reduced by the firing of the marker, compared to the case where the marker is accelerated and forcedly fired, the position and posture of the flying object in the air can be stabilized. Can be planned. Thereby, a marker can be accurately drawn at the planned marking point.

また、前記マーカーは、前記描画対象部に着弾して突き刺さる杭状の部材であることが好ましい。   Moreover, it is preferable that the said marker is a pile-shaped member which lands and pierces the said drawing object part.

この構成によれば、描画対象部に杭状のマーカーを着弾させて固定することができるため、例えばマーカーとしてペイントボール等による塗料を用いた場合に、塗料が描画対象部に吸収されてしまうようなことがない。また、マーカーとしてペイントボール等による塗料を用いた場合、描画対象部上に凹凸(起伏)があり、飛行型描画装置から描画対象部までの距離が一定でないことに起因して、ペイントボールが着弾点で破裂せずに塗料が印字されなかったり、塗料による印字状態が大きく変化したり変形したりすることがない。そのため、描画したマーカーの視認性を向上させることができる。さらに、描画対象部の起伏形状にかかわらず、飛行体を一定の高さで飛行させながら、マーカーを描画することができるため、飛行体を安定に飛行させることができ、マーカーの描画精度をより高めることが可能となる。   According to this configuration, since a pile-shaped marker can be landed and fixed on the drawing target portion, for example, when a paint such as a paintball is used as the marker, the paint is absorbed by the drawing target portion. There is nothing. In addition, when paint using paintball or the like is used as a marker, there is unevenness (undulations) on the drawing target part, and the paintball has landed because the distance from the flying drawing device to the drawing target part is not constant. The paint does not rupture at the point, so that the paint is not printed, and the printed state by the paint does not change or deform. Therefore, the visibility of the drawn marker can be improved. In addition, the marker can be drawn while flying the flying object at a certain height regardless of the undulation shape of the drawing target part, so that the flying object can fly stably, and the marker drawing accuracy is improved. It becomes possible to raise.

また、前記制御部は、前記複数の計画マーキング点に基づいて作成される複数の予定飛行ラインに沿って前記飛行体を前記描画対象部上で飛行させながら、前記複数の計画マーキング点に前記マーカー発射装置から前記マーカーを発射させることが好ましい。   Further, the control unit is configured to cause the marker to be placed on the plurality of planned marking points while flying the flying object on the drawing target unit along a plurality of planned flight lines created based on the plurality of planned marking points. Preferably, the marker is fired from a launcher.

この構成によれば、複数の計画マーキング点の位置を反映して作成された複数の予定飛行ラインに沿って飛行体を飛行させつつ、計画マーキング点にマーカーを描画することができるため、効率的なマーカーの描画が可能となる。   According to this configuration, the marker can be drawn at the planned marking point while flying the flying object along the plurality of planned flight lines created by reflecting the positions of the plurality of planned marking points. It is possible to draw a simple marker.

また、前記制御部は、前記予定飛行ラインの一つに沿って前記飛行体を一定の前記飛行速度で停止させることなく飛行させることが好ましい。   Moreover, it is preferable that the said control part is made to fly, without stopping the said flight body at one said flight speed along one of the said scheduled flight lines.

この構成によれば、マーカーの描画中に飛行体の飛行速度が変化しないため、飛行体の姿勢を安定させ、マーカーの描画精度を高めることができる。   According to this configuration, since the flying speed of the flying object does not change during the drawing of the marker, the posture of the flying object can be stabilized and the drawing accuracy of the marker can be improved.

本発明にかかる飛行型描画装置は、空中からマーカーを発射して描画対象部上に高精度かつ速やかにマーキング点を描画することができるという効果を奏する。   The flight type drawing apparatus according to the present invention produces an effect that a marker can be fired from the air and marking points can be drawn on the drawing target portion with high accuracy and speed.

図1は、実施形態にかかる飛行型描画装置の概略を示す斜視図である。FIG. 1 is a perspective view illustrating an outline of a flying drawing apparatus according to an embodiment. 図2は、実施形態にかかる飛行型描画装置の概略構成図である。FIG. 2 is a schematic configuration diagram of the flying drawing apparatus according to the embodiment. 図3は、ドローン側制御部によって実行される自動飛行制御の処理の一例を示すフローチャートである。FIG. 3 is a flowchart showing an example of automatic flight control processing executed by the drone side control unit. 図4は、ドローン側制御部によって作成された複数の予定飛行ラインの一例を示す説明図である。FIG. 4 is an explanatory diagram illustrating an example of a plurality of scheduled flight lines created by the drone side control unit. 図5は、nライン飛行制御の処理の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of n-line flight control processing. 図6は、自動発射制御の処理の一例を示すフローチャートである。FIG. 6 is a flowchart illustrating an example of automatic firing control processing. 図7は、任意の時刻における発射用マップを模式的に示す説明図である。FIG. 7 is an explanatory diagram schematically showing a map for launching at an arbitrary time. 図8は、任意の時刻における発射用マップを模式的に示す説明図である。FIG. 8 is an explanatory view schematically showing a map for launching at an arbitrary time. 図9は、任意の時刻における発射用マップを模式的に示す説明図である。FIG. 9 is an explanatory diagram schematically showing a map for launching at an arbitrary time. 図10は、ドローンの空中での姿勢等に応じて描画対象部上にマーカーが着弾する位置の変化を説明するための模式図である。FIG. 10 is a schematic diagram for explaining a change in the position where the marker lands on the drawing target portion according to the attitude of the drone in the air or the like.

以下に、本発明にかかる飛行型描画装置の実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。   Embodiments of a flight drawing apparatus according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited by this embodiment.

図1は、実施形態にかかる飛行型描画装置の概略を示す斜視図であり、図2は、実施形態にかかる飛行型描画装置の概略構成図である。実施形態にかかる飛行型描画装置1は、例えば土木工事の用地整形や整形後の基礎工事において、地表面を描画対象部100として、描画対象部100上に空中からマーカーを発射してマーキング点を描画するための装置である。なお、マーキング点は、描画対象部100上において何らかの基準となるものであればよく、例えばマラソン等のコースを地表面に描画するものであってもよい。飛行型描画装置1は、図1及び図2に示すように、飛行体としてのドローン10と、地上操作装置20と、位置検出支援部30とを備える。   FIG. 1 is a perspective view illustrating an outline of a flying drawing apparatus according to the embodiment, and FIG. 2 is a schematic configuration diagram of the flying drawing apparatus according to the embodiment. The flight-type drawing apparatus 1 according to the embodiment, for example, in site preparation for civil engineering work or foundation work after shaping, uses the ground surface as a drawing target part 100 and fires a marker from the air on the drawing target part 100 to set a marking point. It is a device for drawing. In addition, the marking point may be any reference on the drawing target unit 100, and for example, a marathon course or the like may be drawn on the ground surface. As shown in FIGS. 1 and 2, the flying drawing apparatus 1 includes a drone 10 as a flying object, a ground operating device 20, and a position detection support unit 30.

ドローン10は、図2に示すように、飛行装置11と、マーカー発射装置12と、情報取得部13と、ドローン側制御部14と、ドローン側記憶部15と、ドローン側通信部16とを備える。また、地上操作装置20は、地上側記憶部21と、地上側制御部22と、操縦部23と、地上側通信部24とを備える。   As shown in FIG. 2, the drone 10 includes a flying device 11, a marker launching device 12, an information acquisition unit 13, a drone side control unit 14, a drone side storage unit 15, and a drone side communication unit 16. . The ground operating device 20 includes a ground side storage unit 21, a ground side control unit 22, a control unit 23, and a ground side communication unit 24.

ドローン10の飛行装置11は、複数(本実施形態では、4つ)のロータ11aと、ロータ11aに取り付けられたプロペラ11bとを含む。ドローン10は、各ロータ11aを個別に回転駆動可能とされており、各ロータ11aの回転に伴って各プロペラ11bが回転することで、空中を飛行することができる。本実施形態において、飛行装置11すなわち各ロータ11aの駆動制御は、ドローン側制御部14により実行される。   The flying device 11 of the drone 10 includes a plurality (four in this embodiment) of rotors 11a and a propeller 11b attached to the rotor 11a. The drone 10 is configured such that each rotor 11a can be individually driven to rotate, and each propeller 11b rotates along with the rotation of each rotor 11a, so that it can fly in the air. In the present embodiment, drive control of the flying device 11, that is, each rotor 11 a is executed by the drone side control unit 14.

ドローン10のマーカー発射装置12は、複数の区画ごとにマーカー2を発射可能な装置である。本実施形態において、マーカー発射装置12は、ドローン10の下部に取り付けられている。マーカー発射装置12は、図1に示すように、隣り合って並べられた格子状の複数の区画12aごとに、複数のマーカー2が収納されており、各区画12aからマーカー2を一つずつ発射可能とされている。なお、図1においては、区画12aを模式的に示しており、区画12aの実際の数は、図示するものよりも多い。本実施形態において、マーカー発射装置12は、各区画12aからマーカー2を鉛直方向下側に向けて自由落下により発射する。   The marker firing device 12 of the drone 10 is a device capable of firing the marker 2 for each of a plurality of sections. In the present embodiment, the marker firing device 12 is attached to the lower part of the drone 10. As shown in FIG. 1, the marker firing device 12 stores a plurality of markers 2 for each of a plurality of grid-like sections 12a arranged side by side, and fires one marker 2 from each section 12a. It is possible. In FIG. 1, the sections 12 a are schematically illustrated, and the actual number of the sections 12 a is larger than that illustrated. In the present embodiment, the marker launching device 12 launches the marker 2 from each section 12a in the vertical direction downward by free fall.

本実施形態において、マーカー2は、空中から発射されることにより、地表面である描画対象部100に突き刺さることが可能な杭状の部材とされている。マーカー2は、描画対象部100に突き刺さった後、地上に露出している部分の少なくとも一部が放射状に展開するものであってもよい。それにより、マーカー2によるマーキング点の視認性を向上させることができる。   In the present embodiment, the marker 2 is a pile-shaped member that can be pierced into the drawing target portion 100 that is the ground surface by being fired from the air. The marker 2 may be one in which at least a part of the portion exposed to the ground expands radially after piercing the drawing target unit 100. Thereby, the visibility of the marking point by the marker 2 can be improved.

ドローン10の情報取得部13は、ドローン10の空中における現在位置P(X,Y,Z)、ドローン10の空中における姿勢(回転角度θ(α,β,γ))、及び、ドローン10の飛行速度Vを取得する。本実施形態において、情報取得部13は、GPSの受信機を含み、位置検出支援部30とドローン側通信部16を介して通信して、GPSによりドローン10の現在位置P(X,Y,Z)を取得する。また、情報取得部13は、ドローン10の空中における姿勢を検出するためのジャイロスコープを含む。情報取得部13は、ジャイロスコープにより、ドローン10のX軸回りの回転角度θ(α)、Y軸回りの回転角度θ(β)、Z軸回りの回転角度θ(γ)を計測することができる。また、情報取得部13は、ドローン10の飛行速度Vを検出する速度センサを含む。   The information acquisition unit 13 of the drone 10 includes the current position P (X, Y, Z) of the drone 10 in the air, the attitude of the drone 10 in the air (rotation angle θ (α, β, γ)), and the flight of the drone 10. Get the velocity V. In the present embodiment, the information acquisition unit 13 includes a GPS receiver, communicates with the position detection support unit 30 via the drone side communication unit 16, and the current position P (X, Y, Z) of the drone 10 by GPS. ) To get. The information acquisition unit 13 includes a gyroscope for detecting the attitude of the drone 10 in the air. The information acquisition unit 13 can measure the rotation angle θ (α) around the X axis, the rotation angle θ (β) around the Y axis, and the rotation angle θ (γ) around the Z axis by the gyroscope. it can. The information acquisition unit 13 includes a speed sensor that detects the flight speed V of the drone 10.

ドローン10のドローン側制御部14は、例えば、CPU(Central Processing Unit)、SoC(System−on−a−Chip)、MCU(Micro Control Unit)、及びFPGA(Field−Programmable Gate Array)を含む演算処理装置である。   The drone-side control unit 14 of the drone 10 includes, for example, a calculation process including a CPU (Central Processing Unit), a SoC (System-on-a-Chip), an MCU (Micro Control Unit), and an FPGA (Field-Programmable Gate Array). Device.

ドローン側制御部14は、地上側制御部22からドローン10の自動飛行指令が出力されている場合、自動飛行指令に従って飛行装置11を駆動制御し、ドローン10を飛行させる。また、ドローン側制御部14は、地上側制御部22からドローン10の手動飛行指令が出力されている場合、地上操作装置20の操縦部23に含まれる飛行操縦装置23aによる操縦指令に従って飛行装置11を駆動制御し、ドローン10を飛行させる。   When the automatic flight command for the drone 10 is output from the ground-side control unit 22, the drone-side control unit 14 drives and controls the flying device 11 according to the automatic flight command, and causes the drone 10 to fly. In addition, when the manual flight command for the drone 10 is output from the ground-side control unit 22, the drone-side control unit 14 performs the flying device 11 according to the control command from the flight control device 23 a included in the control unit 23 of the ground operating device 20. Is controlled to fly the drone 10.

ドローン側制御部14は、地上側制御部22からマーカー発射装置12の自動発射指令が出力されている場合、自動発射指令に従ってマーカー発射装置12を駆動制御し、マーカー発射装置12からマーカー2を発射させる。また、ドローン側制御部14は、地上側制御部22からマーカー発射装置12の手動発射指令が出力されている場合、地上操作装置20の操縦部23に含まれる発射操作装置23bによる操作指令に従ってマーカー発射装置12を駆動制御し、マーカー発射装置12からマーカー2を発射させる。   When the automatic firing command of the marker launching device 12 is output from the ground side control unit 22, the drone side control unit 14 drives and controls the marker launching device 12 according to the automatic firing command, and launches the marker 2 from the marker launching device 12. Let Further, when the manual firing command for the marker launching device 12 is output from the ground side control unit 22, the drone side control unit 14 performs the marker according to the manipulation command by the launching operation device 23 b included in the control unit 23 of the ground operating device 20. The launcher 12 is driven and controlled, and the marker 2 is fired from the marker launcher 12.

ドローン10のドローン側記憶部15は、飛行装置11の駆動制御やマーカー発射装置12の駆動制御に関する各種プログラム等を記憶している。ドローン側記憶部15は、各種プログラムをドローン側制御部14との間でやりとりする。   The drone side storage unit 15 of the drone 10 stores various programs relating to drive control of the flying device 11 and drive control of the marker launching device 12. The drone side storage unit 15 exchanges various programs with the drone side control unit 14.

ドローン10のドローン側通信部16は、地上操作装置20の地上側通信部24と無線により通信し、ドローン側制御部14と地上側制御部22との間での指令信号のやり取りや、情報取得部13と地上側制御部22との間でのドローン10の現在位置P(X,Y,Z)、回転角度θ(α,β,γ)、及び飛行速度Vのやり取りを行う。また、ドローン側通信部16は、位置検出支援部30と通信し、ドローン10の現在位置P(X,Y,Z)のやり取りを行う。ドローン側通信部16の無線規格は、いかなるものであってもよい。   The drone-side communication unit 16 of the drone 10 communicates with the ground-side communication unit 24 of the ground operating device 20 wirelessly, exchanges command signals between the drone-side control unit 14 and the ground-side control unit 22, and acquires information. The current position P (X, Y, Z), rotation angle θ (α, β, γ), and flight speed V of the drone 10 are exchanged between the unit 13 and the ground side control unit 22. The drone side communication unit 16 communicates with the position detection support unit 30 to exchange the current position P (X, Y, Z) of the drone 10. The wireless standard of the drone side communication unit 16 may be anything.

地上操作装置20の地上側記憶部21は、計画マップ41と、実績マップ42と、予定飛行ラインデータ43とを記憶している。計画マップ41は、図2に示すように、描画対象部100上にマーカー2を描画するべき位置である複数の計画マーキング点M*を記録したデータである。計画マップ41は、例えば、描画対象部100へのマーキング位置が線画で設定された図示しないCADデータを所定のピッチでドット状に変換したものである。すなわち、計画マップ41の各ドットが描画対象部100への計画マーキング点M*となる。本実施形態では、図示しないCADデータから計画マーキング点M*への変換を予め行った上で、計画マップ41を地上側記憶部21に記憶しておく。なお、描画対象部100へのマーカーの描画を行う際に、CADデータから計画マップ41への変換を行ってもよい。   The ground side storage unit 21 of the ground operating device 20 stores a plan map 41, a result map 42, and planned flight line data 43. As shown in FIG. 2, the plan map 41 is data in which a plurality of plan marking points M * that are positions where the marker 2 is to be drawn on the drawing target unit 100 are recorded. For example, the plan map 41 is obtained by converting CAD data (not shown) in which the marking position on the drawing target unit 100 is set as a line drawing into dots at a predetermined pitch. That is, each dot of the plan map 41 becomes a plan marking point M * for the drawing target unit 100. In the present embodiment, the plan map 41 is stored in the ground-side storage unit 21 after previously converting CAD data (not shown) into the plan marking point M *. Note that, when the marker is drawn on the drawing target unit 100, the CAD data may be converted into the plan map 41.

実績マップ42は、計画マップ41に従ってマーカー発射装置12から描画対象部100へとマーカー2を描画した実績マーキング点Mを記録したデータである。実績マップ42は、地上側制御部22が実行するマーカー発射装置12の自動発射制御において作成される。実績マップ42は、マーカー発射装置12の自動発射制御の実行が進むことに伴って、随時更新されていく。   The actual result map 42 is data in which an actual marking point M at which the marker 2 is drawn from the marker emitting device 12 to the drawing target unit 100 according to the plan map 41 is recorded. The performance map 42 is created in the automatic firing control of the marker launching device 12 executed by the ground side control unit 22. The performance map 42 is updated as necessary as the automatic firing control of the marker launching device 12 proceeds.

予定飛行ラインデータ43は、ドローン10を描画対象部100上で飛行させる複数の予定飛行ラインLn(図4参照)を規定したデータである。予定飛行ラインデータは、地上側制御部23にて実行されるドローン10の自動飛行制御において作成される。予定飛行ラインLnは、図2に示すように、所定のピッチで設定されたドット状の複数の目標飛行位置P*をつないだラインである。なお、予定飛行ラインLnは、予め作成されて地上側記憶部21に記憶されるものであってもよい。   The scheduled flight line data 43 is data defining a plurality of scheduled flight lines Ln (see FIG. 4) that cause the drone 10 to fly on the drawing target unit 100. The scheduled flight line data is created in the automatic flight control of the drone 10 executed by the ground side control unit 23. As shown in FIG. 2, the scheduled flight line Ln is a line that connects a plurality of dot-like target flight positions P * set at a predetermined pitch. The scheduled flight line Ln may be created in advance and stored in the ground side storage unit 21.

地上操作装置20の地上側制御部22は、例えば、CPU(Central Processing Unit)、SoC(System−on−a−Chip)、MCU(Micro Control Unit)、及びFPGA(Field−Programmable Gate Array)を含む演算処理装置である。   The ground-side control unit 22 of the ground operating device 20 includes, for example, a CPU (Central Processing Unit), an SoC (System-on-a-Chip), an MCU (Micro Control Unit), and an FPGA (Field-Programmable Gate Array). An arithmetic processing unit.

地上側制御部22は、図示しないインターフェースを介して、ユーザーからドローン10を自動で飛行させる旨の指示がなされている場合、ドローン10の自動飛行制御を実行し、自動飛行制御の実行により作成した自動飛行指令をドローン側制御部14へと送信する。また、地上側制御部22は、図示しないインターフェースを介して、ユーザーからドローン10を手動で飛行させる旨の指示がなされている場合、ドローン10の手動飛行指令をドローン側制御部14、及び操縦部23へと出力する。   The ground side control unit 22 executes the automatic flight control of the drone 10 when an instruction to automatically fly the drone 10 is given from the user via an interface (not shown), and is created by executing the automatic flight control. The automatic flight command is transmitted to the drone side control unit 14. In addition, when an instruction to manually fly the drone 10 is given from the user via an interface (not shown), the ground side control unit 22 sends a manual flight command of the drone 10 to the drone side control unit 14 and the control unit. To 23.

地上側制御部22は、図示しないインターフェースを介して、ユーザーからマーカー発射装置12からのマーカー2の発射を自動で行う旨の指示がなされている場合、マーカー発射装置12の自動発射制御を実行し、自動発射制御の実行により作成した自動発射指令をドローン側制御部14へと送信する。また、地上側制御部22は、図示しないインターフェースを介して、ユーザーからマーカー発射装置12からのマーカー2の発射を手動で行う旨の指示がなされている場合、マーカー発射装置12の手動発射指令をドローン側制御部14、及び操縦部23へと出力する。   The ground side control unit 22 executes the automatic firing control of the marker launching device 12 when an instruction to automatically launch the marker 2 from the marker launching device 12 is given from the user via an interface (not shown). Then, the automatic firing command created by the execution of the automatic firing control is transmitted to the drone side control unit 14. Further, the ground side control unit 22 issues a manual firing command of the marker launching device 12 when an instruction to manually launch the marker 2 from the marker launching device 12 is given from the user via an interface (not shown). It outputs to the drone side control part 14 and the control part 23.

地上操作装置20の操縦部23は、飛行操縦装置23aと、発射操作装置23bとを有する。飛行操縦装置23aは、地上側制御部22からドローン10の手動飛行指令が操縦部23へと出力されている場合に、ドローン10の飛行をユーザーが手動により実行するためのインターフェースである。飛行操縦装置23aは、ユーザーの手動操作に従ってドローン10の操縦指令をドローン側制御部14へと出力する。また、発射操作装置23bは、地上側制御部22からマーカー発射装置12の手動発射指令が操縦部23へと出力されている場合に、マーカー発射装置12からのマーカー2の発射をユーザーが手動により実行するためのインターフェースである。発射操作装置23bは、ユーザーの手動操作に従ってマーカー発射装置12からのマーカー2の操作指令をドローン側制御部14へと出力する。   The control unit 23 of the ground control device 20 includes a flight control device 23a and a launch control device 23b. The flight control device 23a is an interface for the user to manually execute the flight of the drone 10 when a manual flight command of the drone 10 is output from the ground side control unit 22 to the control unit 23. The flight control device 23a outputs a control command for the drone 10 to the drone-side control unit 14 in accordance with a user's manual operation. Further, when the manual firing command of the marker launching device 12 is output from the ground side control unit 22 to the control unit 23, the launch operation device 23b manually launches the marker 2 from the marker launching device 12. It is an interface for execution. The firing operation device 23b outputs an operation command for the marker 2 from the marker firing device 12 to the drone-side control unit 14 in accordance with a user's manual operation.

地上操作装置20の地上側通信部24は、ドローン側通信部16と無線により通信し、ドローン側制御部14と地上側制御部22との間での指令信号のやり取りや、情報取得部13と地上側制御部22との間でのドローン10の現在位置P(X,Y,Z)、回転角度θ(α,β,γ)、及び飛行速度Vのやり取りを行う。地上側通信部24の無線規格は、いかなるものであってもよい。   The ground side communication unit 24 of the ground operating device 20 communicates with the drone side communication unit 16 by radio, exchanges command signals between the drone side control unit 14 and the ground side control unit 22, and the information acquisition unit 13 The current position P (X, Y, Z), rotation angle θ (α, β, γ), and flight speed V of the drone 10 are exchanged with the ground side control unit 22. The wireless standard of the ground side communication unit 24 may be anything.

位置検出支援部30は、本実施形態では、GPSの固定局である。位置検出支援部30は、ドローン側通信部16を介して情報取得部13のGPS受信機と通信し、ドローン10の現在位置P(X,Y,Z)を情報取得部13へと送信する。なお、位置検出支援部30は、ドローン10の現在位置P(X,Y,Z)を、地上側通信部22を介して地上側制御部22へと送信してもよい。   In this embodiment, the position detection support unit 30 is a GPS fixed station. The position detection support unit 30 communicates with the GPS receiver of the information acquisition unit 13 via the drone side communication unit 16 and transmits the current position P (X, Y, Z) of the drone 10 to the information acquisition unit 13. The position detection support unit 30 may transmit the current position P (X, Y, Z) of the drone 10 to the ground side control unit 22 via the ground side communication unit 22.

次に、地上側制御部22によるドローン10の自動飛行制御、及び、マーカー発射装置12の自動発射制御について説明する。ドローン10の自動飛行制御、及び、マーカー発射装置12の自動発射制御は、地上側制御部22によって並列的に実行される。それにより、ドローン10を描画対象部100上で飛行させながら、描画対象部100上の計画マーキング点M*にマーカー2を描画させていく。まずは、ドローン10の自動飛行制御について説明する。図3は、地上側制御部によって実行される自動飛行制御の処理の一例を示すフローチャートである。自動飛行制御においては、地上側制御部22からドローン側制御部14へと自動飛行指令が随時出力され、ドローン側制御部14は、自動飛行指令の内容に従ってドローン10が飛行するように飛行装置11を駆動制御する。   Next, automatic flight control of the drone 10 by the ground side control unit 22 and automatic launch control of the marker launching device 12 will be described. The automatic flight control of the drone 10 and the automatic launch control of the marker launching device 12 are executed in parallel by the ground side control unit 22. Accordingly, the marker 2 is drawn at the planned marking point M * on the drawing target unit 100 while the drone 10 is flying on the drawing target unit 100. First, automatic flight control of the drone 10 will be described. FIG. 3 is a flowchart showing an example of automatic flight control processing executed by the ground side control unit. In the automatic flight control, an automatic flight command is output as needed from the ground side control unit 22 to the drone side control unit 14, and the drone side control unit 14 causes the flying device 11 to fly so that the drone 10 flies according to the contents of the automatic flight command. Is controlled.

地上側制御部22は、ステップS1として、マーカー発射開始処理及びドローン10の離陸処理を実行する。地上側制御部22は、マーカー発射開始処理として、地上側記憶部21から、計画マップ41と、実績マップ42とを取得する。なお、実績マップ42は、本制御が開始されたタイミングにおいては、作成されていないが、マーカー発射装置12の自動発射制御の実行が進むに従って、随時更新されていく。また、地上側制御部22は、ドローン側制御部14に飛行装置11を駆動制御させ、ドローン10を離陸させる。地上側制御部22は、計画マップ41と、実績マップ42とを取得すると共に、ドローン10の離陸処理が完了すると、ステップS2に進む。   The ground side control part 22 performs the marker emission start process and the takeoff process of the drone 10 as step S1. The ground side control unit 22 acquires the plan map 41 and the actual result map 42 from the ground side storage unit 21 as the marker firing start process. The actual result map 42 is not created at the timing when this control is started, but is updated as needed as the automatic firing control of the marker firing device 12 proceeds. The ground side control unit 22 causes the drone side control unit 14 to drive and control the flying device 11 to take off the drone 10. The ground side control unit 22 acquires the plan map 41 and the actual result map 42, and proceeds to step S2 when the takeoff process of the drone 10 is completed.

地上側制御部22は、ステップS2として、計画マーキング点M*にマーカー発射装置12からマーカー2を発射させながら、描画対象部100上でドローン10を飛行させる複数の予定飛行ラインLnを作成する。図4は、地上側制御部によって作成された複数の予定飛行ラインの一例を示す説明図である。図4に示す例では、予定飛行ラインLnは、描画対象部100上で間隔を空けて延びる直線状のラインである。本実施形態において、予定飛行ラインLnは、鉛直方向における高さが一定に作成される。ドローン側制御部14は、計画マップ41の計画マーキング点M*及び実績マップ42の実績マーキング点Mの位置に基づいて、マーカー2の描画前の計画マーキング点M*に効率的にマーカー2を描画可能な複数の予定飛行ラインLnを作成する。効率的にマーカー2を描画可能とは、描画対象部100の形状や、各計画マーキング点M*や実績マーキング点Mの位置、及び、マーカー発射装置12の各区画12aの最大幅等を考慮して、描画対象部100上を飛行するドローン10の飛行距離、または、飛行時間が最も少なくなるように、複数の飛行予定ラインLnを作成することを意味する。   The ground-side control unit 22 creates a plurality of scheduled flight lines Ln that cause the drone 10 to fly on the drawing target unit 100 while firing the marker 2 from the marker launching device 12 at the planned marking point M * as step S2. FIG. 4 is an explanatory diagram showing an example of a plurality of scheduled flight lines created by the ground side control unit. In the example illustrated in FIG. 4, the scheduled flight line Ln is a straight line extending on the drawing target unit 100 with an interval. In the present embodiment, the planned flight line Ln is created with a constant height in the vertical direction. The drone side control unit 14 efficiently draws the marker 2 at the planned marking point M * before drawing the marker 2 based on the positions of the planned marking point M * of the plan map 41 and the actual marking point M of the actual map 42. Create a plurality of possible scheduled flight lines Ln. The marker 2 can be efficiently drawn in consideration of the shape of the drawing target portion 100, the positions of the planned marking points M * and the actual marking points M, the maximum width of each section 12a of the marker firing device 12, and the like. This means that a plurality of scheduled flight lines Ln are created so that the flight distance or flight time of the drone 10 flying over the drawing target unit 100 is minimized.

また、マーカー発射装置12の各区画12aに収容されるマーカー2の数には、制限がある。さらに、本実施形態においては、マーカー2の発射に伴ってドローン10の重心がずれることで、ドローン10の姿勢が安定化しないことを防ぐため、同じタイミングで発射するマーカー2の数に制限を設ける。そのため、ドローン10を各予定飛行ラインLnに沿って1回だけ飛行させても、計画マーキング点M*のすべてにマーカー2を描画できない可能性がある。また、ドローン10の空中での現在位置P(X,Y,Z)が予定飛行ラインLnからずれたり、ドローン10の空中での姿勢が想定したものからずれたりすること等によっても、計画マーキング点M*のすべてにマーカー2を描画できない可能性がある。そこで、地上側制御部22は、各予定飛行ラインLnについて、ドローン10を往復させる回数の上限を設定する。地上側制御部22は、予定飛行ラインLnに沿ってドローン10を飛行させ、後述する自動発射制御を実行した結果、計画マーキング点M*にマーカー2の描画漏れがあった場合、設定した上限の範囲内で、ドローン10を予定飛行ラインLnに沿って往復させる。作成された予定飛行ラインLnは、予定飛行ラインデータ43として地上側記憶部21に記憶される。地上側制御部22は、予定飛行ラインLnを作成すると、ステップS3に進む。   Further, the number of markers 2 accommodated in each section 12a of the marker launcher 12 is limited. Furthermore, in this embodiment, in order to prevent the posture of the drone 10 from being stabilized due to the deviation of the center of gravity of the drone 10 as the marker 2 is fired, the number of markers 2 fired at the same timing is limited. . Therefore, even if the drone 10 is caused to fly only once along each scheduled flight line Ln, there is a possibility that the markers 2 cannot be drawn at all the planned marking points M *. Also, the planned marking point may be caused by the fact that the current position P (X, Y, Z) of the drone 10 is deviated from the planned flight line Ln, or the attitude of the drone 10 is deviated from the assumed position. There is a possibility that the marker 2 cannot be drawn on all M *. Therefore, the ground side control unit 22 sets an upper limit of the number of times the drone 10 is reciprocated for each scheduled flight line Ln. The ground side control unit 22 causes the drone 10 to fly along the planned flight line Ln and, as a result of executing automatic launch control described later, if there is a drawing omission of the marker 2 at the planned marking point M *, the upper limit of the set upper limit is set. Within the range, the drone 10 is reciprocated along the scheduled flight line Ln. The created planned flight line Ln is stored in the ground side storage unit 21 as planned flight line data 43. After creating the scheduled flight line Ln, the ground side control unit 22 proceeds to step S3.

地上側制御部22は、ステップS3として、ステップS2で作成し、地上側記憶部21に記憶された予定飛行ラインLnに沿ってドローン10を飛行させるnライン飛行制御を実行する。nライン飛行制御については、後述する。   The ground side control part 22 performs n line flight control which makes the drone 10 fly along the scheduled flight line Ln created in step S2 and stored in the ground side storage part 21 as step S3. The n-line flight control will be described later.

地上側制御部22は、nライン飛行制御が完了すると、ステップS4に進み、計画マップ41に規定されたすべての計画マーキング点M*にマーカー2の描画が完了したか否かを判定する。上述したように、マーカー発射装置12の自動発射制御がドローン10の自動飛行制御と並列的に実行されている。そのため、自動飛行制御の実行中には、計画マーキング点M*にマーカー2の描画が随時行われており、マーカー2の描画が完了した計画マーキング点M*は、実績マップ42において、実績マーキング点Mとして記録されていく。地上側制御部22は、計画マップ41に記録された計画マーキング点M*と、実績マップ42に記録された実績マーキング点Mとに基づいて、すべての計画マーキング点M*にマーカー2の描画が完了したか否かを判定する。   When the n-line flight control is completed, the ground side control unit 22 proceeds to step S4, and determines whether or not the drawing of the marker 2 has been completed at all the planned marking points M * defined in the plan map 41. As described above, the automatic launch control of the marker launcher 12 is executed in parallel with the automatic flight control of the drone 10. Therefore, during execution of the automatic flight control, the marker 2 is drawn at the planned marking point M * as needed. The planned marking point M * at which the marker 2 has been drawn is It will be recorded as M. The ground side control unit 22 draws the marker 2 at all the planned marking points M * based on the planned marking points M * recorded in the plan map 41 and the actual marking points M recorded in the actual result map 42. Determine if completed.

地上側制御部22は、すべての計画マーキング点M*にマーカー2の描画が完了していないと判定した場合(ステップS4、No)、再びステップS2以降の処理を実行する。それにより、マーカー2の描画が完了されていない計画マーキング点M*がある領域に向けてドローン10を飛行させる複数の予定飛行ラインLnが新たに作成され(ステップS2)、複数の予定飛行ラインLnに沿ったドローン10のnライン飛行制御が実行される。一方、地上側制御部22は、すべての計画マーキング点M*にマーカー2の描画が完了したと判定した場合(ステップS4、Yes)、自動飛行制御を終了する。   The ground side control part 22 performs the process after step S2 again, when it determines with drawing of the marker 2 not being completed at all the plan marking points M * (step S4, No). As a result, a plurality of scheduled flight lines Ln for flying the drone 10 toward an area having the planned marking point M * for which the drawing of the marker 2 has not been completed are newly created (step S2), and the plurality of scheduled flight lines Ln. The n-line flight control of the drone 10 along is performed. On the other hand, if it is determined that the drawing of the marker 2 is completed at all planned marking points M * (step S4, Yes), the ground side control unit 22 ends the automatic flight control.

次に、ステップS3のnライン飛行制御について説明する。図5は、nライン飛行制御の処理の一例を示すフローチャートである。   Next, the n-line flight control in step S3 will be described. FIG. 5 is a flowchart showing an example of n-line flight control processing.

地上側制御部22は、ステップS301として、ドローン側制御部14により飛行装置11を駆動制御させ、ドローン10を次の予定飛行ラインLnの始点位置に移動させる。その後、地上側制御部22は、ステップS302に進む。   In step S301, the ground side control unit 22 causes the drone side control unit 14 to drive and control the flying device 11, and moves the drone 10 to the start position of the next scheduled flight line Ln. Then, the ground side control part 22 progresses to step S302.

地上側制御部22は、ステップS302として、ドローン側制御部14により飛行装置11を駆動制御させ、予定飛行ラインLn上の次の目標飛行位置P*に向けてドローン10が飛行させる。本実施形態では、ドローン10を停止させる(ホバリング状態とする)ことなく、予定飛行ラインLnに沿って一定の飛行速度Vで飛行させる。また、予定飛行ラインLnは、鉛直方向における高さが一定とされているため、予定飛行ラインLnに沿って飛行するドローン10は、常に同じ高さを飛行することになる。その後、地上側制御部22は、ステップS303に進む。   In step S302, the ground-side control unit 22 causes the drone-side control unit 14 to drive and control the flying device 11, and causes the drone 10 to fly toward the next target flight position P * on the planned flight line Ln. In the present embodiment, the drone 10 is caused to fly along the scheduled flight line Ln at a constant flight speed V without stopping (hovering). Further, since the planned flight line Ln has a constant height in the vertical direction, the drone 10 flying along the planned flight line Ln always flies at the same height. Then, the ground side control part 22 progresses to step S303.

地上側制御部22は、ステップS303として、ドローン側通信部16と地上側通信部24との通信により情報取得部13からドローン10の現在位置P(X,Y,Z)及び回転角度θ(α、β、γ)を入力し、ステップS304に進む。   In step S303, the ground side control unit 22 communicates with the drone side communication unit 16 and the ground side communication unit 24 from the information acquisition unit 13 to the current position P (X, Y, Z) and the rotation angle θ (α , Β, γ) are input, and the process proceeds to step S304.

地上側制御部22は、ステップS304として、ドローン10の回転角度θ(α,β,γ)の値が所定角度θ1以上であるか否かを判定する。地上側制御部22は、回転角度θ(α,β,γ)の値が所定角度θ1以上であると判定した場合(ステップS304、Yes)、ドローン10の姿勢が予定飛行ラインLnに対して何れかの方向に傾斜しているため、ステップS305に進む。   The ground side control part 22 determines whether the value of rotation angle (theta) ((alpha), (beta), (gamma)) of the drone 10 is more than predetermined angle (theta) 1 as step S304. If the ground-side control unit 22 determines that the value of the rotation angle θ (α, β, γ) is equal to or greater than the predetermined angle θ1 (Yes in step S304), the attitude of the drone 10 is any relative to the planned flight line Ln. Since it is inclined in this direction, the process proceeds to step S305.

地上側制御部22は、ステップS305として、回転角度θ(α,β,γ)が所定角度θ1未満となるように、ドローン側制御部14により飛行装置11を駆動制御させ、ドローン10の姿勢を修正する。その後、地上側制御部22は、ステップS306に進む。   In step S305, the ground-side control unit 22 causes the drone-side control unit 14 to drive and control the attitude of the drone 10 so that the rotation angle θ (α, β, γ) is less than the predetermined angle θ1. Correct it. Then, the ground side control part 22 progresses to step S306.

地上側制御部22は、ドローン10の回転角度θ(α,β,γ)の値が所定角度θ1未満であると判定した場合(ステップS304、No)、ドローン10の姿勢が予定飛行ラインLnに対して傾斜していないため、ステップS305の処理を省略し、ステップS306へと進む。   If the ground side control unit 22 determines that the value of the rotation angle θ (α, β, γ) of the drone 10 is less than the predetermined angle θ1 (No in step S304), the attitude of the drone 10 is set to the planned flight line Ln. On the other hand, since it is not inclined, the process of step S305 is omitted, and the process proceeds to step S306.

地上側制御部22は、ステップS306として、現在位置P(X,Y,Z)が予定飛行ラインLnから所定距離D1以上に離れているか否かを判定する。地上側制御部22は、ドローン10の現在位置P(X,Y,Z)が予定飛行ラインLnから所定距離D1以上に離れていると判定した場合(ステップS306、Yes)、ステップS307に進む。   In step S306, the ground side control unit 22 determines whether or not the current position P (X, Y, Z) is separated from the planned flight line Ln by a predetermined distance D1 or more. If the ground-side control unit 22 determines that the current position P (X, Y, Z) of the drone 10 is away from the planned flight line Ln by a predetermined distance D1 or more (step S306, Yes), the process proceeds to step S307.

地上側制御部22は、ステップS307として、ドローン側制御部14により飛行装置11を駆動制御させ、ドローン10の現在位置P(X,Y,Z)が予定飛行ラインLnに近づく方向にドローン10の飛行を修正する。その後、地上側制御部22は、ステップS308に進む。   In step S307, the ground-side control unit 22 causes the drone-side control unit 14 to drive and control the flying device 11 so that the current position P (X, Y, Z) of the drone 10 approaches the planned flight line Ln. Correct the flight. Then, the ground side control part 22 progresses to step S308.

また、地上側制御部22は、現在位置P(X,Y,Z)が予定飛行ラインLnから所定距離D1以上に離れていないと判定した場合(ステップS306、No)、ステップS307の処理を省略し、ステップS308へと進む。   On the other hand, when it is determined that the current position P (X, Y, Z) is not separated from the planned flight line Ln by the predetermined distance D1 or more (No in Step S306), the ground side control unit 22 omits the process in Step S307. Then, the process proceeds to step S308.

地上側制御部22は、ステップS308として、ドローン10が予定飛行ラインLnの終点(最後の目標飛行位置P*)に到達したか否かを判定する。地上側制御部22は、ドローン10が予定飛行ラインLnの終点に到達していないと判定した場合(ステップS308、No)、再びステップS302以降の処理を実行する。また、地上側制御部22は、ドローン10が予定飛行ラインLnの終点に到達したと判定した場合(ステップS308、Yes)、ステップS309に進む。   The ground side control part 22 determines whether the drone 10 reached | attained the end point (last target flight position P *) of the scheduled flight line Ln as step S308. When it is determined that the drone 10 has not reached the end point of the scheduled flight line Ln (No at Step S308), the ground-side control unit 22 executes the processes after Step S302 again. If the ground side control unit 22 determines that the drone 10 has reached the end point of the scheduled flight line Ln (step S308, Yes), the process proceeds to step S309.

地上側制御部22は、ステップS309として、ステップS302からステップS308までの間に飛行した予定飛行ラインLnにおいて、後述する自動発射制御でマーカー2を描画できなかった計画マーキング点M*があったか否かを判定する。ステップS309の判定は、例えば、ドローン10が位置ずれや姿勢のずれを生じることなく予定飛行ラインLnに沿って飛行した場合にマーカー2が描画されるべき計画マーキング点M*に対して、マーカー2が実際に描画されたか否かを実績マップ42に基づいて判定すればよい。   In step S309, the ground side control unit 22 determines whether or not there is a planned marking point M * in which the marker 2 could not be drawn by the automatic firing control described later in the planned flight line Ln that flew between step S302 and step S308. Determine. In step S309, for example, when the drone 10 flies along the planned flight line Ln without causing a positional shift or a positional shift, the marker 2 is compared with the planned marking point M * to be drawn. Whether or not is actually drawn may be determined based on the result map 42.

地上側制御部22は、予定飛行ラインLnにおいて、後述する自動発射制御でマーカー2を描画できなかった計画マーキング点M*があったと判定した場合(ステップS309,Yes)、ステップS310に進む。   If the ground-side control unit 22 determines that there is a planned marking point M * on the planned flight line Ln where the marker 2 could not be drawn by automatic firing control described later (step S309, Yes), the process proceeds to step S310.

地上側制御部22は、ステップS310として、予定飛行ラインLnの往復の上限回数に達したか否かを判定する。地上側制御部22は、予定飛行ラインLnの往復の上限回数に達していないと判定した場合(ステップS310,No)、ステップS302の処理に戻り、予定飛行ラインLnに沿って、前回とは逆方向からドローン10を飛行させる。   The ground side control part 22 determines whether the upper limit frequency | count of the round trip of the scheduled flight line Ln has been reached as step S310. If the ground-side control unit 22 determines that the upper limit number of reciprocations of the scheduled flight line Ln has not been reached (No at Step S310), the process returns to Step S302 and reverses the previous time along the scheduled flight line Ln. Fly the drone 10 from the direction.

一方、地上側制御部22は、予定飛行ラインLnの往復の上限回数に達したと判定した場合(ステップS310,Yes)、ステップS311に進む。また、地上側制御部22は、予定飛行ラインLnにおいて、後述する自動発射制御でマーカー2を描画できなかった計画マーキング点M*がなかった(予定飛行ラインLnにおいて、すべての計画マーキング点M*にマーカー2を描画した)と判定した場合(ステップS309,No)も、ステップS311に進む。   On the other hand, if it is determined that the upper limit number of reciprocations of the scheduled flight line Ln has been reached (step S310, Yes), the ground side control unit 22 proceeds to step S311. Further, the ground side control unit 22 did not have the planned marking point M * that could not draw the marker 2 by the automatic firing control described later on the planned flight line Ln (all planned marking points M * on the planned flight line Ln). If it is determined that the marker 2 is drawn (No in step S309), the process proceeds to step S311.

地上側制御部22は、ステップS311として、すべての予定飛行ラインLnの飛行が完了したか否かを判定する。地上側制御部22は、すべての予定飛行ラインLnの飛行が完了していないと判定した場合(ステップS311、No)、ステップS301に戻り、次の予定飛行ラインLn+1に沿ってドローン10を飛行させる。また、地上側制御部22は、すべての予定飛行ラインLnの飛行が完了したと判定した場合(ステップS311、Yes)、nライン飛行制御を終了する。   The ground side control part 22 determines whether the flight of all the scheduled flight lines Ln was completed as step S311. When it is determined that the flight of all scheduled flight lines Ln has not been completed (No at Step S311), the ground side control unit 22 returns to Step S301 and causes the drone 10 to fly along the next scheduled flight line Ln + 1. . Moreover, the ground side control part 22 complete | finishes n line flight control, when it determines with the flight of all the schedule flight lines Ln having been completed (step S311, Yes).

次に、マーカー発射装置12の自動発射制御について説明する。図6は、自動発射制御の処理の一例を示すフローチャートである。図6に示す自動発射制御は、ドローン10の自動飛行制御が実行されている間、常時繰り返し実行されている。   Next, automatic firing control of the marker firing device 12 will be described. FIG. 6 is a flowchart illustrating an example of automatic firing control processing. The automatic launch control shown in FIG. 6 is repeatedly executed at all times while the automatic flight control of the drone 10 is being executed.

地上側制御部22は、ステップS11として、ドローン側通信部16と地上側通信部24との通信により情報取得部13からドローン10の現在位置P(X,Y,Z)、回転角度θ(α,β,γ)、及び飛行速度Vを入力し、ステップS12に進む。   In step S11, the ground side control unit 22 communicates with the drone side communication unit 16 and the ground side communication unit 24 from the information acquisition unit 13 to the current position P (X, Y, Z) of the drone 10, and the rotation angle θ (α , Β, γ) and the flight speed V are input, and the process proceeds to step S12.

地上側制御部22は、ステップS12として、ドローン10の現在位置P(X,Y,Z)において、ドローン10が回転角度θ(α,β,γ)の姿勢をとっており、かつ、ドローン10が飛行速度Vで飛行している場合に、マーカー2を描画可能な範囲を規定した発射用マップ44を作成する。地上側制御部22は、発射用マップ44を作成すると、ステップS13に進む。   In step S12, the ground-side control unit 22 takes the attitude of the drone 10 at the rotation angle θ (α, β, γ) at the current position P (X, Y, Z) of the drone 10, and the drone 10 Is flying at a flying speed V, a firing map 44 that defines a range in which the marker 2 can be drawn is created. After creating the launch map 44, the ground side control unit 22 proceeds to step S13.

地上側制御部22は、ステップS13として、計画マップ41から計画マーキング点M*を入力し、発射用マップ44内に計画マーキング点M*があるか否かを判定する。地上側制御部22は、発射用マップ44内に計画マーキング点M*がないと判定した場合(ステップS13、No)、再びステップS11以降の処理を実行する。一方、地上側制御部22は、発射用マップ44内に計画マーキング点M*があると判定した場合(ステップS13、Yes)、ステップS14に進む。   The ground side control part 22 inputs the plan marking point M * from the plan map 41 as step S13, and determines whether the plan marking point M * exists in the map 44 for discharge. If the ground-side control unit 22 determines that the planned marking point M * is not present in the launch map 44 (No at Step S13), the ground side control unit 22 executes the processes after Step S11 again. On the other hand, if the ground side control unit 22 determines that there is a planned marking point M * in the launch map 44 (step S13, Yes), the process proceeds to step S14.

地上側制御部22は、ステップS14として、地上側記憶部21から現時点での実績マップ42を入力し、発射用マップ44内の計画マーキング点M*に実績マーキング点Mが含まれるか否かを判定する。   The ground side control part 22 inputs the actual result map 42 from the ground side memory | storage part 21 as step S14, and whether the actual marking point M is contained in the plan marking point M * in the map 44 for discharge | emission. judge.

地上側制御部22は、発射用マップ44内の計画マーキング点M*に実績マーキング点Mが含まれると判定した場合(ステップS14、Yes)、ステップS15に進む。地上側制御部22は、ステップS15として、発射用マップ44内の計画マーキング点M*のうち、実績マーキング点Mを削除し、ステップS16に進む。また、地上側制御部22は、発射用マップ44内の計画マーキング点M*に実績マーキング点Mが含まれないと判定した場合(ステップS14、No)、ステップS15の処理を省略し、ステップS16に進む。   If the ground side control unit 22 determines that the actual marking point M is included in the planned marking point M * in the launch map 44 (Yes in step S14), the process proceeds to step S15. The ground side control unit 22 deletes the actual marking point M from the planned marking points M * in the launch map 44 as step S15, and proceeds to step S16. On the other hand, when it is determined that the actual marking point M is not included in the planned marking point M * in the launch map 44 (No in step S14), the ground-side control unit 22 omits the process in step S15 and performs step S16. Proceed to

地上側制御部22は、ステップS16として、実績マーキング点Mを削除した発射用マップ44内の計画マーキング点M*に対応した区画12aから、マーカー2を発射させる自動発射指令をドローン側制御部14に出力する。それにより、自動発射指令を受け取ったドローン側制御部14が自動発射指令に従ってマーカー発射装置12を駆動制御し、計画マーキング点M*に対応した区画12aからマーカー2を発射させる。その結果、描画対象部100上の計画マーキング点M*に対応した位置にマーカー2が描画される。また、実績マーキング点Mに対応した区画12aからは、マーカー2が発射されない。なお、上述したように、本実施形態では、同じタイミングで発射するマーカー2の数に制限を設ける。そのため、発射用マップ44内の計画マーキング点M*が、同じタイミングで発射するマーカー2の制限数よりも多い場合、ドローン10の進行方向に対して上流側に位置する計画マーキング点M*にのみマーカー2を描画させる。   In step S16, the ground-side control unit 22 issues an automatic firing command for firing the marker 2 from the section 12a corresponding to the planned marking point M * in the launch map 44 from which the actual marking point M has been deleted. Output to. Accordingly, the drone side control unit 14 that has received the automatic firing command drives and controls the marker firing device 12 in accordance with the automatic firing command, and fires the marker 2 from the section 12a corresponding to the planned marking point M *. As a result, the marker 2 is drawn at a position corresponding to the planned marking point M * on the drawing target unit 100. Further, the marker 2 is not fired from the section 12a corresponding to the actual marking point M. Note that, as described above, in this embodiment, there is a limit on the number of markers 2 that are fired at the same timing. Therefore, when the planned marking point M * in the firing map 44 is larger than the limit number of the markers 2 to be fired at the same timing, only the planned marking point M * positioned upstream with respect to the traveling direction of the drone 10 is used. Marker 2 is drawn.

さらに、地上側制御部22は、ステップS17として、ステップS16においてマーカー2を描画した計画マーキング点M*を、実績マーキング点Mとして実績マップ42を更新し、更新した実績マップ42を地上側記憶部21に記憶させる。その後、地上側制御部22は、ステップS11以降の処理を再度実行する。   Furthermore, the ground side control part 22 updates the performance map 42 as the plan marking point M * which drawn the marker 2 in step S16 as a performance marking point M as step S17, and the updated performance map 42 is the ground side memory | storage part. 21 is stored. Then, the ground side control part 22 performs the process after step S11 again.

次に、自動発射制御におけるステップS11からS17の処理内容の例について、詳細に説明する。図7から図9は、任意の時刻における発射用マップを模式的に示す説明図である。各図中の二点鎖線は、ドローン10を示す。各図中の破線は、計画マップ41の一部を示し、各図中の白色の円は、計画マップ41に含まれる計画マーキング点M*を示している。また、図8から図9中の黒色の円は、実績マーキング点Mを示す。各図中の太い実線で囲んだ範囲は、任意の時刻t1〜t3における発射用マップ441〜443を示し、太い実線で囲んだ範囲内にある実線で区切られた格子状の領域は、発射用マップ441〜443におけるマーカー発射装置12の各区画12aを示す。また、各図中の上下方向に延びる実線矢印は、ドローン10が飛行している予定飛行ラインLnを示す。   Next, an example of the processing contents of steps S11 to S17 in the automatic firing control will be described in detail. FIG. 7 to FIG. 9 are explanatory diagrams schematically showing a map for launching at an arbitrary time. A two-dot chain line in each figure indicates the drone 10. The broken line in each figure shows a part of the plan map 41, and the white circle in each figure shows the plan marking point M * included in the plan map 41. Also, the black circles in FIGS. 8 to 9 indicate the actual marking points M. The range surrounded by the thick solid line in each figure shows the maps 441 to 443 for launching at arbitrary times t1 to t3, and the grid-like region delimited by the solid line within the range enclosed by the thick solid line is for launching Each section 12a of the marker firing device 12 in the maps 441 to 443 is shown. Moreover, the solid line arrow extended in the up-down direction in each figure shows the scheduled flight line Ln which the drone 10 is flying.

図7は、任意の時刻t1において、ドローン10が予定飛行ラインLnに沿って、かつ、予定飛行ラインLnに対して傾斜していない状態で、飛行速度Vで飛行している場合の例を示す。図7に示す例は、ドローン10が予定飛行ラインLnを1回目に飛行している場合を示す。   FIG. 7 shows an example in which the drone 10 is flying at the flight speed V in the state where the drone 10 is not inclined with respect to the planned flight line Ln at the arbitrary time t1. . The example shown in FIG. 7 shows a case where the drone 10 is flying the scheduled flight line Ln for the first time.

ドローン10が飛行速度Vで飛行しているとき、マーカー発射装置12から発射されるマーカー2は、飛行速度Vに応じてドローン10の進行方向側への慣性力を受けることになる。その結果、マーカー発射装置12から発射されたマーカー2は、想定した発射方向(本実施形態では、鉛直方向)からずれた方向に向かう可能性がある。   When the drone 10 is flying at the flying speed V, the marker 2 fired from the marker launching device 12 receives an inertial force in the traveling direction side of the drone 10 according to the flying speed V. As a result, there is a possibility that the marker 2 fired from the marker firing device 12 is directed in a direction deviated from the assumed firing direction (vertical direction in the present embodiment).

また、図7に示す例ではドローン10の姿勢が予定飛行ラインLnに対して傾斜していないものとしているが、ドローン10の姿勢がY軸回りに傾斜している場合にも、マーカー発射装置12から発射されたマーカー2は、想定した発射方向(本実施形態では、鉛直方向)からずれた方向に向かったり、想定した描画位置からずれた位置に描画されたりする可能性がある。図10は、ドローンの空中での姿勢等に応じて描画対象部上にマーカーが着弾する位置の変化を説明するための模式図である。図中において、実線矢印により挟まれた範囲は、ドローン10が空中で傾斜しておらず、かつ、マーカー発射装置12の区画12aからマーカー2を自由落下させる場合における、マーカー2の最大の描画幅W1を示す。また、図中において、破線矢印により挟まれた範囲は、ドローン10が空中で傾斜しており、かつ、マーカー発射装置12の区画12aからマーカー2を自由落下させる場合における、マーカー2の最大の描画幅W2を示す。図示するように、マーカー2を自由落下させる場合において、ドローン10の空中における姿勢が傾斜している場合のマーカー2の最大の描画幅W2は、ドローン10の空中における姿勢が傾斜していない場合のマーカー2の最大の描画幅W1よりも狭くなることがある。その結果、ドローン10の空中における姿勢が傾斜している場合、マーカー発射装置12から発射されたマーカー2が、想定した描画位置からずれた位置に着弾する可能性がある。   In the example shown in FIG. 7, it is assumed that the attitude of the drone 10 is not inclined with respect to the planned flight line Ln. However, even when the attitude of the drone 10 is inclined about the Y axis, the marker launcher 12 There is a possibility that the marker 2 fired from is directed in a direction deviated from the assumed firing direction (vertical direction in the present embodiment) or drawn at a position deviated from the assumed drawing position. FIG. 10 is a schematic diagram for explaining a change in the position where the marker lands on the drawing target portion according to the attitude of the drone in the air or the like. In the figure, the range between the solid arrows is the maximum drawing width of the marker 2 when the drone 10 is not inclined in the air and the marker 2 is allowed to fall freely from the section 12a of the marker launcher 12. W1 is shown. In the figure, the range between the broken arrows is the maximum drawing of the marker 2 when the drone 10 is inclined in the air and the marker 2 is allowed to fall freely from the section 12a of the marker launcher 12. The width W2 is indicated. As shown in the figure, when the marker 2 is allowed to fall freely, the maximum drawing width W2 of the marker 2 when the attitude of the drone 10 in the air is inclined is the case where the attitude of the drone 10 in the air is not inclined. The maximum drawing width W1 of the marker 2 may be narrower. As a result, when the attitude of the drone 10 in the air is inclined, there is a possibility that the marker 2 fired from the marker launching device 12 will land at a position deviated from the assumed drawing position.

そのため、地上側制御部22は、ドローン10の回転角度θ(α,β,γ)と、ドローン10の飛行速度Vとに基づいて、現在位置P(X,Y,Z)において、各区画12aから発射されたマーカー2が描画対象部100に着弾する予測位置を算出する。地上側制御部22は、算出した予測位置を現時点でマーカー2を描画可能な範囲であると判断して、図7に示す発射用マップ441を作成する(ステップS12)。   Therefore, the ground side control unit 22 determines each section 12a at the current position P (X, Y, Z) based on the rotation angle θ (α, β, γ) of the drone 10 and the flight speed V of the drone 10. The predicted position at which the marker 2 fired from the point lands on the drawing target unit 100 is calculated. The ground side control unit 22 determines that the calculated predicted position is within a range in which the marker 2 can be drawn at the present time, and creates a launch map 441 shown in FIG. 7 (step S12).

また、地上側制御部22は、各区画12aに収容されたマーカー2の残数に基づき、現時点で発射可能なマーカー2が残っている区画12aに対応する範囲が、現時点でマーカー2を描画可能な範囲であると判断して、図7に示す発射用マップ441を作成する(ステップS12)。   Moreover, the ground side control part 22 can draw the marker 2 at the present time based on the remaining number of the markers 2 accommodated in each section 12a, and the range corresponding to the section 12a where the marker 2 that can be fired at the present time remains. It is determined that the range is within the range, and the firing map 441 shown in FIG. 7 is created (step S12).

さらに、地上側制御部22は、予定飛行ラインLnを1回目に飛行している場合、図中に太い実線で囲んだ範囲で示すように、マーカー発射装置12の中心側に位置する区画12aから優先的にマーカー2を発射させるように発射用マップ441を作成する(ステップS12)。それにより、外側に位置する区画12a(図中の太い実線と太い破線とで囲まれる範囲の区画12a)から先にマーカー2が発射されないようにすることができる。その結果、外側に位置する区画12aからマーカー2が発射されることに伴って、マーカー発射装置12の重心がずれやすくなることを抑制し、ドローン10の姿勢の安定化を図ることが可能となる。従って、マーカー2の描画精度をより高めることができる。   Further, when the planned flight line Ln is flying for the first time, the ground side control unit 22 starts from the section 12a located on the center side of the marker launching device 12 as shown by a range surrounded by a thick solid line in the drawing. A firing map 441 is created so that the marker 2 is fired preferentially (step S12). Thereby, it is possible to prevent the marker 2 from being fired first from the section 12a located outside (the section 12a in the range surrounded by the thick solid line and the thick broken line in the drawing). As a result, it is possible to prevent the center of gravity of the marker firing device 12 from being easily shifted as the marker 2 is fired from the outer section 12a, and to stabilize the posture of the drone 10. . Therefore, the drawing accuracy of the marker 2 can be further increased.

地上側制御部22は、図7に示す発射用マップ441内に計画マーキング点M*が含まれるため(ステップS13、Yes)、発射用マップ441内の計画マーキング点M*に実績マーキング点Mが含まれるか否かを判定する(ステップS14)。図7に示す時刻t1における例では、発射用マップ441内に実績マーキング点Mが含まれないため、ドローン側制御部14は、発射用マップ441内の計画マーキング点M*に対応した区画12aから、マーカー2を発射させる自動発射指令をマーカー発射装置12に出力する(ステップS16)。また、地上側制御部22は、計画マーキング点M*にマーカー2を描画した実績を実績マーキング点M(図8中の黒色の円参照)として、地上側記憶部21に記憶させる(ステップS17)。   Since the planned marking point M * is included in the launch map 441 shown in FIG. 7 (step S13, Yes), the ground side control unit 22 includes the actual marking point M at the planned marking point M * in the launch map 441. It is determined whether it is included (step S14). In the example at time t1 shown in FIG. 7, since the actual marking point M is not included in the firing map 441, the drone side control unit 14 starts from the section 12a corresponding to the planned marking point M * in the firing map 441. Then, an automatic firing command for firing the marker 2 is output to the marker firing device 12 (step S16). Moreover, the ground side control part 22 memorize | stores in the ground side memory | storage part 21 as the performance marking point M (refer the black circle in FIG. 8) that the marker 2 was drawn on the plan marking point M * (step S17). .

次に、図8は、任意の時刻t2において、ドローン10が予定飛行ラインLnから離れ、かつ、予定飛行ラインLnに対して傾斜した状態で、飛行速度Vで飛行している場合の例を示す。図8に示す例は、ドローン10が予定飛行ラインLnを1回目に飛行している場合を示す。   Next, FIG. 8 shows an example in which the drone 10 is flying at the flight speed V in a state where the drone 10 is separated from the planned flight line Ln and tilted with respect to the planned flight line Ln at an arbitrary time t2. . The example shown in FIG. 8 shows a case where the drone 10 is flying the scheduled flight line Ln for the first time.

地上側制御部22は、上述した図7の例と同様の手順で図8に示す発射用マップ442を作成する(ステップS12)。すなわち、ドローン側制御部14は、ドローン10の回転角度θ(α,β,γ)と、ドローン10の飛行速度Vとに基づいて、現在位置P(X,Y,Z)において、各区画12aから発射されたマーカー2が描画対象部100に着弾する予測位置を算出する。地上側制御部22は、算出した予測位置を現時点でマーカー2を描画可能な範囲であると判断し、発射用マップ442を作成する。また、地上側制御部22は、現時点で発射可能なマーカー2が残っている区画12aに対応する範囲が現時点でマーカー2を描画可能な範囲であると判断し、発射用マップ442を作成する。さらに、地上側制御部22は、マーカー発射装置12の中心側に位置する区画12aから優先的にマーカー2を発射させるように発射用マップ442を作成する。   The ground side control unit 22 creates the launch map 442 shown in FIG. 8 in the same procedure as in the example of FIG. 7 described above (step S12). That is, the drone side control unit 14 determines each section 12a at the current position P (X, Y, Z) based on the rotation angle θ (α, β, γ) of the drone 10 and the flight speed V of the drone 10. The predicted position at which the marker 2 fired from the point lands on the drawing target unit 100 is calculated. The ground-side control unit 22 determines that the calculated predicted position is within a range in which the marker 2 can be drawn at the present time, and creates a launch map 442. Further, the ground-side control unit 22 determines that the range corresponding to the section 12a in which the marker 2 that can be fired at this time remains is the range in which the marker 2 can be drawn at the current time, and creates the firing map 442. Further, the ground-side control unit 22 creates the firing map 442 so that the marker 2 is preferentially fired from the section 12 a located on the center side of the marker launching device 12.

地上側制御部22は、図8に示す発射用マップ442内に計画マーキング点M*が含まれるため(ステップS13、Yes)、発射用マップ442内の計画マーキング点M*に実績マーキング点Mが含まれるか否かを判定する(ステップS14)。図8に示す例では、発射用マップ442内に黒色の円で示す実績マーキング点Mが含まれている(ステップS14、Yes)。そのため、地上側制御部22は、発射用マップ442内に含まれる計画マーキング点M*のうち、実績マーキング点Mを削除し(ステップS15)、残りの計画マーキング点M*に対応した区画12aから、マーカー2を発射させる自動発射指令をマーカー発射装置12に出力する(ステップS16)。また、地上側制御部22は、計画マーキング点M*にマーカー2を描画した実績を実績マーキング点Mとして、地上側記憶部21に記憶させる(ステップS17)。   Since the planned marking point M * is included in the firing map 442 shown in FIG. 8 (step S13, Yes), the ground side control unit 22 includes the actual marking point M at the planned marking point M * in the firing map 442. It is determined whether it is included (step S14). In the example shown in FIG. 8, the marking mark M shown with a black circle is included in the firing map 442 (step S14, Yes). Therefore, the ground side control unit 22 deletes the actual marking point M from the planned marking points M * included in the launch map 442 (step S15), and starts from the section 12a corresponding to the remaining planned marking points M *. Then, an automatic firing command for firing the marker 2 is output to the marker firing device 12 (step S16). Moreover, the ground side control part 22 is memorize | stored in the ground side memory | storage part 21 as the performance marking point M for the performance which drawn the marker 2 to the plan marking point M * (step S17).

このように、飛行型描画装置1は、ドローン10が予定飛行ラインLnから離れ、かつ、予定飛行ラインLnに対して傾斜した状態で飛行している場合にも、ドローン10の現在位置P(X,Y,Z)、姿勢(回転角度θ(α,β,γ))、飛行速度Vに基づいて、現時点でマーカー2を描画可能な範囲である発射用マップ442を作成し、発射用マップ442に従って計画マーキング点M*にマーカー2を描画する。そのため、計画マーキング点M*とは異なる位置にマーカー2が描画させることを抑制することができ、マーカー2の描画精度を高めることができる。また、ドローン10の現在位置P(X,Y,Z)や姿勢(回転角度θ(α,β,γ))の修正を行うことなく、速やかに計画マーキング点M*にマーカー2を描画することができる。この手順が繰り返し実行されることにより、予定飛行ラインLnの飛行中に、各計画マーキング点M*にマーカー発射装置12からマーカー2が順次描画されていき、予定飛行ラインLnにおいてマーカー2が描画された位置が実績マーキング点Mとして記憶されていく(図9の黒色の円参照)。   In this way, the flight-type drawing apparatus 1 also allows the current position P (X of the drone 10 to fly even when the drone 10 is flying away from the planned flight line Ln and tilted with respect to the planned flight line Ln. , Y, Z), posture (rotation angle θ (α, β, γ)), and flight speed V, a firing map 442 that is a range in which the marker 2 can be drawn at this time is created. Then, the marker 2 is drawn at the planned marking point M *. Therefore, the marker 2 can be prevented from being drawn at a position different from the planned marking point M *, and the drawing accuracy of the marker 2 can be increased. Further, the marker 2 is quickly drawn at the planned marking point M * without correcting the current position P (X, Y, Z) and posture (rotation angle θ (α, β, γ)) of the drone 10. Can do. By repeating this procedure, the marker 2 is sequentially drawn from the marker launcher 12 at each planned marking point M * during the flight of the planned flight line Ln, and the marker 2 is drawn on the planned flight line Ln. The recorded position is stored as the actual marking point M (see the black circle in FIG. 9).

次に、図9は、任意の時刻t3において、ドローン10が予定飛行ラインLnに沿った状態、かつ、ドローン10が予定飛行ラインLnに対して傾斜していない姿勢に戻った状態で、飛行速度Vで飛行している場合の例を示す。図9に示す例は、ドローン10が予定飛行ラインLnを2回目以降に飛行する場合を示す。   Next, FIG. 9 shows the flight speed in a state where the drone 10 is along the planned flight line Ln and the drone 10 is returned to a posture not inclined with respect to the planned flight line Ln at an arbitrary time t3. An example in the case of flying at V is shown. The example shown in FIG. 9 shows a case where the drone 10 flies on the scheduled flight line Ln for the second and subsequent times.

地上側制御部22は、図7及び図8に示す例と同様の手順で、発射用マップ433を作成する。ただし、地上側制御部22は、ドローン10が予定飛行ラインLnを2回目以降に飛行する場合、マーカー発射装置12の外側に位置する区画12aからもマーカー2を発射させるように、発射用マップ443を作成する。それにより、図9に示すように、1回目の予定飛行ラインLnの飛行時においてマーカー2が描画されなかった計画マーキング点M*に、より確実にマーカー2を描画することが可能となる。従って、計画マーキング点M*の描画漏れを良好に抑制することができる。   The ground side control unit 22 creates the launch map 433 in the same procedure as the example shown in FIGS. However, when the drone 10 flies on the scheduled flight line Ln for the second time or later, the ground side control unit 22 launches the firing map 443 so that the marker 2 is also fired from the section 12a located outside the marker launching device 12. Create As a result, as shown in FIG. 9, the marker 2 can be more reliably drawn at the planned marking point M * where the marker 2 was not drawn during the first flight of the planned flight line Ln. Accordingly, drawing omission of the planned marking point M * can be suppressed satisfactorily.

以上説明したように、実施形態にかかる飛行型描画装置1は、飛行体としてのドローン10が描画対象部100上を飛行している間、ドローン10の現在位置P(X,Y,Z)の変化に応じて、現在位置P(X,Y,Z)ごとにマーカー2を描画可能な範囲を規定した発射用マップ44(発射用マップ441〜443)を用いて、発射用マップ44内に含まれる計画マーキング点M*に対応したマーカー発射装置12の各区画12aからマーカー2を発射させることができる。それにより、ドローン10の現在位置P(X,Y.Z)が本来想定する位置からずれている場合に、ドローン10自体を移動させなくとも、計画マーキング点M*と異なる位置にマーカー2を描画することを抑制することができる。また、ドローン10自体を移動させる必要がないため、速やかに計画マーキング点M*にマーカー2を描画することができる。従って、実施形態にかかる飛行型描画装置1は、空中からマーカー2を発射して描画対象部100上に高精度かつ速やかにマーキング点を描画することができる。   As described above, the flying drawing apparatus 1 according to the embodiment has the current position P (X, Y, Z) of the drone 10 while the drone 10 as the flying object is flying over the drawing target unit 100. Included in the firing map 44 using a firing map 44 (launch maps 441 to 443) that defines a range in which the marker 2 can be drawn for each current position P (X, Y, Z) according to changes. The marker 2 can be fired from each section 12a of the marker firing device 12 corresponding to the planned marking point M *. Accordingly, when the current position P (X, Y.Z) of the drone 10 is deviated from the originally assumed position, the marker 2 is drawn at a position different from the planned marking point M * without moving the drone 10 itself. Can be suppressed. Further, since it is not necessary to move the drone 10 itself, the marker 2 can be quickly drawn at the planned marking point M *. Therefore, the flying drawing apparatus 1 according to the embodiment can draw the marker 2 from the air and draw a marking point on the drawing target unit 100 with high accuracy and speed.

また、地上側制御部22は、発射用マップ44内にある計画マーキング点M*が、マーカー2を描画済みの実績マーキング点Mである場合には、複数の区画12aのうち実績マーキング点Mに対応した区画12aからはマーカー2を発射させない(ステップS14からステップS16)。   Further, when the planned marking point M * in the firing map 44 is the actual marking point M on which the marker 2 has been drawn, the ground side control unit 22 sets the actual marking point M among the plurality of sections 12a. The marker 2 is not fired from the corresponding section 12a (step S14 to step S16).

この構成によれば、一度マーカー2を描画した箇所に重ねてマーカー2を描画することを防ぐことができるため、マーキング点の描画品質を向上させることができる。   According to this configuration, since it is possible to prevent the marker 2 from being drawn on the portion where the marker 2 has been drawn once, the drawing quality of the marking point can be improved.

また、情報取得部13は、ドローン10の空中での姿勢(回転角度θ(α,β,γ))をさらに取得し、地上側制御部22は、情報取得部13により取得されたドローン10の現在位置P(X,Y,Z)において、ドローン10が情報取得部13により取得された姿勢をとっている場合に、マーカー2を描画可能な範囲を規定した発射用マップ44(発射用マップ442)を作成する。   Further, the information acquisition unit 13 further acquires the attitude of the drone 10 in the air (the rotation angle θ (α, β, γ)), and the ground side control unit 22 acquires the drone 10 acquired by the information acquisition unit 13. When the drone 10 takes the posture acquired by the information acquisition unit 13 at the current position P (X, Y, Z), a firing map 44 (a firing map 442) that defines a range in which the marker 2 can be drawn. ).

この構成によれば、ドローン10の現在位置P(X,Y,Z)において、ドローン10の空中での姿勢に応じてマーカー2を描画可能な範囲を規定した発射用マップ44(発射用マップ442)を用いて、発射用マップ44(発射用マップ442)内に含まれる計画マーキング点M*に対応したマーカー発射装置12の区画12aからマーカー2を発射させることができる。それにより、ドローン10の空中での姿勢が本来想定する姿勢からずれている場合に、ドローン10の姿勢を修正させることなく、計画マーキング点M*と異なる位置にマーカー2を描画することを抑制することができる。また、ドローン10の姿勢自体を修正する必要がないため、速やかに計画マーキング点M*にマーカー2を描画することができる。   According to this configuration, at the current position P (X, Y, Z) of the drone 10, the launch map 44 (the launch map 442) that defines the range in which the marker 2 can be drawn according to the attitude of the drone 10 in the air. ) Can be used to fire the marker 2 from the section 12a of the marker firing device 12 corresponding to the planned marking point M * included in the firing map 44 (launching map 442). Thereby, when the posture of the drone 10 in the air is deviated from the originally assumed posture, the drawing of the marker 2 at a position different from the planned marking point M * is suppressed without correcting the posture of the drone 10. be able to. Further, since it is not necessary to correct the posture of the drone 10 itself, the marker 2 can be quickly drawn at the planned marking point M *.

また、情報取得部13は、ドローン10の飛行速度Vをさらに取得し、地上側制御部22は、情報取得部13により取得されたドローン10の現在位置P(X,Y,Z)において、ドローン10が情報取得部13により取得された飛行速度Vで飛行している場合に、マーカー2を描画可能な範囲を規定した発射用マップ44(発射用マップ441〜443)を作成する。   Further, the information acquisition unit 13 further acquires the flight speed V of the drone 10, and the ground side control unit 22 performs the drone at the current position P (X, Y, Z) of the drone 10 acquired by the information acquisition unit 13. When 10 is flying at the flight speed V acquired by the information acquisition unit 13, a launch map 44 (launch maps 441 to 443) that defines a range in which the marker 2 can be drawn is created.

この構成によれば、ドローン10の現在位置P(X,Y,Z)において、ドローン10の飛行速度Vに応じてマーカー2を描画可能な範囲を規定した発射用マップ44(発射用マップ441〜443)を用いて、発射用マップ44(発射用マップ441〜443)内に含まれる計画マーキング点M*に対応したマーカー発射装置12の区画12aからマーカー2を発射させることができる。それにより、ドローン10の飛行速度Vを原因として、計画マーキング点M*と異なる位置にマーカー2が描画されることを抑制することができる。   According to this configuration, at the current position P (X, Y, Z) of the drone 10, the launch map 44 (the launch maps 441 to 441) that defines the range in which the marker 2 can be drawn according to the flight speed V of the drone 10. 443), the marker 2 can be fired from the section 12a of the marker firing device 12 corresponding to the planned marking point M * included in the firing map 44 (launch maps 441 to 443). Thereby, it is possible to prevent the marker 2 from being drawn at a position different from the planned marking point M * due to the flight speed V of the drone 10.

また、マーカー発射装置12は、マーカー2を鉛直方向下側に向けて自由落下により発射する。   In addition, the marker launching device 12 launches the marker 2 by free fall with the marker 2 facing downward in the vertical direction.

この構成によれば、マーカー2を加速して強制発射する場合に比べて、マーカー2の発射によりドローン10に働く反力を低減することができるため、ドローン10の空中での位置や姿勢の安定化を図ることができる。それにより、計画マーキング点M*に精度良くマーカー2を描画することができる。   According to this configuration, since the reaction force acting on the drone 10 can be reduced by firing the marker 2 as compared with the case where the marker 2 is accelerated and forcedly fired, the position and posture of the drone 10 in the air can be stabilized. Can be achieved. Thereby, the marker 2 can be accurately drawn at the planned marking point M *.

また、マーカー2は、描画対象部100に着弾して突き刺さる杭状の部材である。   The marker 2 is a pile-shaped member that lands and pierces the drawing target unit 100.

この構成によれば、描画対象部100に杭状のマーカー2を着弾させて固定することができるため、例えばマーカー2としてペイントボール等による塗料を用いた場合に、塗料が地表面といった描画対象部100に吸収されてしまうようなことがない。また、マーカー2としてペイントボール等による塗料を用いた場合、描画対象部100上に凹凸(例えば大型土木作業用車両による轍や、局所的な地形の起伏)があり、飛行型描画装置1から描画対象部100までの距離が一定でないことに起因して、ペイントボールが着弾点で破裂せずに塗料が印字されなかったり、塗料による印字状態が大きく変化したり変形したりすることがない。そのため、描画したマーカー2の視認性を向上させることができる。さらに、描画対象部100の起伏形状にかかわらず、ドローン10を一定の高さで飛行させながら、マーカー2を描画することができるため、ドローン10を安定に飛行させることができ、マーカー2の描画精度をより高めることが可能となる。   According to this configuration, since the pile-shaped marker 2 can be landed and fixed on the drawing target portion 100, for example, when a paint such as a paintball is used as the marker 2, the drawing target portion such as the ground surface is used. 100 is not absorbed. In addition, when paint using a paintball or the like is used as the marker 2, there are irregularities (for example, wrinkles by a large civil engineering vehicle or local topographic relief) on the drawing target portion 100, and drawing from the flying drawing apparatus 1. Due to the fact that the distance to the target portion 100 is not constant, the paintball does not rupture at the landing point, so that the paint is not printed, and the printing state by the paint does not change or deform significantly. Therefore, the visibility of the drawn marker 2 can be improved. Further, since the marker 2 can be drawn while the drone 10 is flying at a constant height regardless of the undulation shape of the drawing target portion 100, the drone 10 can be stably fly, and the drawing of the marker 2 can be performed. The accuracy can be further increased.

また、地上側制御部22は、複数の計画マーキング点M*に基づいて作成される複数の予定飛行ラインLnに沿ってドローン10を描画対象部100上で飛行させながら、複数の計画マーキング点M*にマーカー発射装置12からマーカー2を発射させる。   Further, the ground side control unit 22 causes the drone 10 to fly on the drawing target unit 100 along the plurality of planned flight lines Ln created based on the plurality of planned marking points M *, while the plurality of planned marking points M. The marker 2 is fired from the marker firing device 12 in *.

この構成によれば、複数の計画マーキング点M*の位置を反映して作成された複数の予定飛行ラインLnに沿ってドローン10を飛行させつつ、計画マーキング点M*にマーカー2を描画することができるため、効率的なマーカー2の描画が可能となる。   According to this configuration, the marker 2 is drawn at the planned marking point M * while flying the drone 10 along the plurality of planned flight lines Ln created by reflecting the positions of the plurality of planned marking points M *. Therefore, it is possible to draw the marker 2 efficiently.

また、地上側制御部22は、予定飛行ラインLnの一つに沿ってドローン10を一定の飛行速度Vで停止させることなく飛行させる。   Moreover, the ground side control part 22 is made to fly without stopping the drone 10 with the fixed flight speed V along one of the scheduled flight lines Ln.

この構成によれば、マーカー2の描画中にドローン10の飛行速度Vが変化しないため、ドローン10の姿勢を安定させ、マーカー2の描画精度を高めることができる。   According to this configuration, since the flying speed V of the drone 10 does not change during the drawing of the marker 2, the posture of the drone 10 can be stabilized and the drawing accuracy of the marker 2 can be improved.

なお、本実施形態では、ドローン10の現在位置P(X,Y,Z)、姿勢(回転角度(θ(α,β,γ))、及び、飛行速度Vのすべてに基づいて、発射用マップ44を作成するものとしたが、発射用マップ44は、少なくともドローン10の現在位置P(X,Y,Z)に基づいて作成されればよい。発射用マップ44は、ドローン10の現在位置P(X,Y,Z)及び姿勢(回転角度(θ(α,β,γ))に基づいて作成されるものであってもよいし、ドローン10の現在位置P(X,Y,Z)、及び、飛行速度Vに基づいて作成されるものであってもよい。   In the present embodiment, the launch map is based on all of the current position P (X, Y, Z), attitude (rotation angle (θ (α, β, γ)), and flight speed V of the drone 10. 44, the launch map 44 may be created based on at least the current position P (X, Y, Z) of the drone 10. The launch map 44 may be the current position P of the drone 10. (X, Y, Z) and posture (rotation angle (θ (α, β, γ)) may be created, or the current position P (X, Y, Z) of the drone 10, And it may be created based on the flight speed V.

また、マーカー発射装置12は、マーカー2を鉛直方向に沿って加速して強制発射するものであってもよい。この場合、情報取得部13は、マーカー発射装置12によるマーカー2の発射速度Vmを取得し、地上側制御部22は、ドローン10の現在位置P(X,Y,Z)において、ドローン10が情報取得部13により取得された姿勢(回転角度θ(α,β,γ)をとっており、発射速度Vmでマーカー2が発射された場合に、マーカー2を描画可能な範囲を規定した発射用マップ44を作成するものであってもよい。   Further, the marker launching device 12 may be one that accelerates the marker 2 along the vertical direction and forcibly launches it. In this case, the information acquisition unit 13 acquires the firing speed Vm of the marker 2 by the marker launching device 12, and the ground side control unit 22 detects that the drone 10 is informed at the current position P (X, Y, Z) of the drone 10. A shooting map that defines the range in which the marker 2 can be drawn when the posture (rotation angle θ (α, β, γ) is acquired by the acquisition unit 13 and the marker 2 is fired at the firing speed Vm. 44 may be created.

図10において、一点鎖線矢印により挟まれた範囲は、ドローン10が空中で傾斜しており、かつ、マーカー発射装置12の区画12aからマーカー2を発射速度Vmで加速して発射させた場合における、マーカー2の最大の描画幅W3を示す。図示するように、ドローン10が空中で傾斜している場合に、マーカー2を発射速度Vmで加速して発射させたときのマーカー2の描画幅W3は、マーカー2を自由落下させたときのマーカー2の描画幅W1,W2よりも広くなることがある。つまり、ドローン10の空中における姿勢が傾斜している場合、マーカー発射装置12から発射されたマーカー2は、発射速度Vmに応じて、想定した描画位置からのずれ量が大きくなる可能性がある。   In FIG. 10, the range between the dashed-dotted arrows is when the drone 10 is inclined in the air and the marker 2 is accelerated and fired from the section 12a of the marker launcher 12 at the firing speed Vm. The maximum drawing width W3 of the marker 2 is shown. As shown in the figure, when the drone 10 is inclined in the air, the drawing width W3 of the marker 2 when the marker 2 is accelerated and launched at the firing speed Vm is the marker when the marker 2 is freely dropped. 2 may be wider than the drawing width W1, W2. That is, when the attitude of the drone 10 in the air is inclined, the marker 2 fired from the marker launching device 12 may have a large amount of deviation from the assumed drawing position depending on the firing speed Vm.

そのため、地上側制御部22は、ドローン10の回転角度θ(α,β,γ)と、ドローン10の飛行速度Vと、マーカー2の発射速度Vmとに基づいて、現在位置P(X,Y,Z)において、各区画12aから発射されたマーカー2が描画対象部100に着弾する予測位置を算出する。地上側制御部22は、算出した予測位置を現時点でマーカー2を描画可能な範囲であると判断して、発射用マップ44を作成する(ステップS12)。   Therefore, the ground side control unit 22 determines the current position P (X, Y) based on the rotation angle θ (α, β, γ) of the drone 10, the flight speed V of the drone 10, and the firing speed Vm of the marker 2. , Z), the predicted position where the marker 2 fired from each section 12a lands on the drawing target portion 100 is calculated. The ground side control unit 22 determines that the calculated predicted position is within a range in which the marker 2 can be drawn at the present time, and creates the launch map 44 (step S12).

この構成によれば、ドローン10の現在位置P(X,Y,Z)において、ドローン10の空中における姿勢及びマーカー2の発射速度Vmに応じてマーカー2を描画可能な範囲を規定した発射用マップ44を用いて、発射用マップ44内に含まれる計画マーキング点M*に対応したマーカー発射装置12の区画12aからマーカー2を発射させることができる。それにより、ドローン10の空中での姿勢が本来想定する姿勢からずれ、かつ、マーカー2の発射速度Vmに応じてマーカー2の着弾位置が本来想定する姿勢からずれ得る場合にも、ドローン10の姿勢を修正させることなく、計画マーキング点M*と異なる位置にマーカー2を描画することを抑制することができる。また、ドローン10の姿勢自体を修正する必要がないため、速やかに計画マーキング点M*にマーカー2を描画することができる。   According to this configuration, at the current position P (X, Y, Z) of the drone 10, a firing map that defines a range in which the marker 2 can be drawn according to the attitude of the drone 10 in the air and the firing speed Vm of the marker 2. 44, the marker 2 can be fired from the section 12a of the marker firing device 12 corresponding to the planned marking point M * included in the firing map 44. As a result, even when the drone 10's posture in the air deviates from the originally assumed posture and the landing position of the marker 2 can deviate from the originally assumed posture in accordance with the firing speed Vm of the marker 2, It is possible to prevent the marker 2 from being drawn at a position different from the planned marking point M * without correcting. Further, since it is not necessary to correct the posture of the drone 10 itself, the marker 2 can be quickly drawn at the planned marking point M *.

なお、マーカー発射装置12は、マーカー2を鉛直方向に対して所定角度で加速して強制発射するものであってもよい。この場合、情報取得部13は、マーカー発射装置12によるマーカー2の発射速度Vmに加えて、マーカー2の発射の所定角度を取得し、地上側制御部22は、ドローン10の現在位置P(X,Y,Z)において、ドローン10が情報取得部13により取得された姿勢(回転角度θ(α,β,γ)をとっており、発射速度Vm及び所定角度でマーカー2が発射された場合に、マーカー2を描画可能な範囲を規定した発射用マップ44を作成するものであってもよい。   The marker launching device 12 may be a device that forcibly launches the marker 2 by accelerating the marker 2 at a predetermined angle with respect to the vertical direction. In this case, the information acquisition unit 13 acquires a predetermined angle of the marker 2 firing in addition to the firing speed Vm of the marker 2 by the marker launching device 12, and the ground side control unit 22 determines the current position P (X , Y, Z) when the drone 10 takes the posture (rotation angle θ (α, β, γ) acquired by the information acquisition unit 13 and the marker 2 is fired at the firing speed Vm and a predetermined angle. Alternatively, a firing map 44 that defines a range in which the marker 2 can be drawn may be created.

また、本実施形態では、1回目の予定飛行ラインLnの飛行時には、マーカー発射装置12の中心側に位置する区画12aから優先的にマーカー2を発射させ、2回目以降の予定飛行ラインLnの飛行時には、マーカー発射装置12の外側に位置する区画12aからもマーカー2を発射させるように、発射用マップ44を作成するものとした。マーカー発射装置12の中心側に位置する区画12aと、外側に位置する区画12aとの区分は、いずれの位置で区分されてもよいし、2つ以上に区分されてもよい。また、1回目の予定飛行ラインLnの飛行時においても、マーカー発射装置12の外側に位置する区画12aからもマーカー2を発射させるように発射用マップ44を作成してもよい。また、2回目以降ではなく、3回目以降の予定飛行ラインLnの飛行時に、マーカー発射装置12の外側に位置する区画12aからもマーカー2を発射させるように発射用マップ44を作成してもよい。   Further, in the present embodiment, at the time of the flight of the first scheduled flight line Ln, the marker 2 is preferentially fired from the section 12a located on the center side of the marker launching device 12, and the flight of the scheduled flight line Ln for the second and subsequent times. In some cases, the firing map 44 is created so that the marker 2 is also fired from the section 12 a located outside the marker launching device 12. The section 12a located on the center side of the marker firing device 12 and the section 12a located outside may be divided at any position, or may be divided into two or more. Further, the firing map 44 may be created so that the marker 2 is fired from the section 12 a located outside the marker launching device 12 even during the first flight of the scheduled flight line Ln. Also, the firing map 44 may be created so that the marker 2 is also fired from the section 12a located outside the marker launching device 12 at the time of the flight of the scheduled flight line Ln after the third time instead of the second time or later. .

また、情報取得部13は、描画対象部100の起伏形状を取得可能なものであってもよい。例えば、ドローン10に描画対象部100の起伏形状を取得可能なスキャン装置を搭載しておき、マーカー2を描画する制御を実行する前に、一旦ドローン10を描画対象部100上で飛行させ、起伏形状を取得する。そして、発射用マップ44を作成する際に、情報取得部13により取得した描画対象部100の起伏形状と、ドローン10の現在位置P(X,Y,Z)とに基づいて、ドローン10から描画対象部100までの鉛直方向の距離を算出する。その上で、算出したドローン10から描画対象部100までの鉛直方向の距離と、ドローン10の回転角度θ(α,β,γ)と、ドローン10の飛行速度Vとに基づいて(さらに、マーカー2の発射速度Vmやマーカー2の発射の所定角度にも基づいて)、現在位置P(X,Y,Z)において、各区画12aから発射されたマーカー2が描画対象部100に着弾する予測位置を算出する。これにより、マーカー2が描画対象部100に着弾する予測位置をより精度良く算出して発射用マップ44を作成することができる。その結果、ドローン10を一定の高さで飛行させる場合にも、計画マーキング点M*へのマーカー2の描画精度をさらに高めることができる。   Further, the information acquisition unit 13 may be capable of acquiring the undulating shape of the drawing target unit 100. For example, a scanning device capable of acquiring the undulation shape of the drawing target unit 100 is mounted on the drone 10 and before the control for drawing the marker 2 is executed, the drone 10 is once caused to fly on the drawing target unit 100 to be undulated. Get the shape. Then, when creating the firing map 44, the drawing is performed from the drone 10 based on the undulation shape of the drawing target unit 100 acquired by the information acquisition unit 13 and the current position P (X, Y, Z) of the drone 10. A vertical distance to the target unit 100 is calculated. Then, based on the calculated vertical distance from the drone 10 to the drawing target part 100, the rotation angle θ (α, β, γ) of the drone 10, and the flight speed V of the drone 10 (and the marker 2 based on a firing speed Vm of 2 and a predetermined angle of firing of the marker 2), and a predicted position where the marker 2 fired from each section 12 a lands on the drawing target unit 100 at the current position P (X, Y, Z). Is calculated. Thereby, the projected map 44 can be created by calculating the predicted position where the marker 2 lands on the drawing target part 100 with higher accuracy. As a result, even when the drone 10 is caused to fly at a constant height, the drawing accuracy of the marker 2 at the planned marking point M * can be further increased.

また、本実施形態では、ドローン10を停止させる(ホバリング状態とする)ことなく、予定飛行ラインLnに沿って一定の飛行速度Vで飛行させるものとしたが、ドローン10は、予定飛行ラインLnのいずれかの位置で停止してもよい(ホバリング状態となってもよい)し、飛行速度Vは、一定でなくてもよい。例えば、ドローン10が予定飛行ラインLnに沿って飛行している際に、計画マップ41において計画マーキング点M*が存在しない範囲が所定距離以上続く場合、飛行速度Vを大きくするものとしてもよい。また、予定飛行ラインLnは、鉛直方向における高さが一定とされるものでなくともよい。すなわち、予定飛行ラインLnに沿って飛行するドローン10は、常に同じ高さを飛行するものでなくともよい。   In the present embodiment, the drone 10 is allowed to fly at a constant flight speed V along the planned flight line Ln without stopping (hovering), but the drone 10 is connected to the planned flight line Ln. It may stop at any position (it may be in a hovering state), and the flight speed V may not be constant. For example, when the drone 10 is flying along the planned flight line Ln, the flight speed V may be increased if a range where the planned marking point M * does not exist in the planned map 41 continues for a predetermined distance or more. Further, the planned flight line Ln may not have a constant height in the vertical direction. That is, the drone 10 flying along the scheduled flight line Ln does not always have to fly at the same height.

また、飛行体は、ドローン10に限られず、無線ヘリコプターや無人航空機(UAV)、または、航空機等の有人の飛行体であってオートパイロット機能付きのもの、地上側制御部24からの飛行指示に従ってパイロットが操作する飛行体等であってもよい。   In addition, the flying object is not limited to the drone 10, and is a manned flying object such as a radio helicopter, an unmanned aircraft (UAV), or an aircraft having an autopilot function, according to a flight instruction from the ground side control unit 24. It may be a flying object operated by a pilot.

また、マーカー2は、描画対象部100に着弾して突き刺さる杭状の部材に限られず、塗料を含んだペイントボール等であってもよい。   Further, the marker 2 is not limited to a pile-shaped member that lands and pierces the drawing target unit 100, and may be a paint ball containing paint.

また、本実施形態では、地上側記憶部21が計画マップ41、実績マップ42及び予定飛行ラインデータ43を記憶するものとし、地上側制御部22がドローン10の自動飛行制御及びマーカー装置12の自動発射制御を実行するものとした。それにより、ドローン側制御部14及びドローン側記憶部15の機能を簡易化し、大型化を抑制することができる。その結果、ドローン10の小型化や軽量化を図ることが可能となる。   In the present embodiment, the ground side storage unit 21 stores the plan map 41, the result map 42, and the scheduled flight line data 43, and the ground side control unit 22 controls the automatic flight control of the drone 10 and the automatic operation of the marker device 12. The launch control is to be executed. Thereby, the function of the drone side control part 14 and the drone side memory | storage part 15 can be simplified, and an enlargement can be suppressed. As a result, the drone 10 can be reduced in size and weight.

なお、地上側記憶部21及び地上側制御部22が備える機能の一部は、ドローン10側に持たせるものとしてもよい。例えば、ドローン10の自動飛行制御をドローン側制御部14が実行し、自動飛行制御において作成された(または、予め作成された)予定飛行ラインデータ43をドローン側記憶部15に記憶させてもよい。この場合、ドローン側制御部14は、地上側記憶部21から計画マップ41や実績マップ42を通信により取得し、取得した計画マップ41や実績マップ42に基づいて、自動飛行制御において予定飛行ラインデータ43を作成すると共に、予定飛行ラインLnに沿ったドローン10のnライン飛行制御を実行すればよい。   Note that some of the functions of the ground side storage unit 21 and the ground side control unit 22 may be provided on the drone 10 side. For example, the drone side control unit 14 may execute the automatic flight control of the drone 10, and the planned flight line data 43 created (or previously created) in the automatic flight control may be stored in the drone side storage unit 15. . In this case, the drone side control unit 14 acquires the planned map 41 and the actual result map 42 from the ground side storage unit 21 by communication, and based on the acquired planned map 41 and the actual result map 42, the planned flight line data in the automatic flight control. 43 and the n-line flight control of the drone 10 along the scheduled flight line Ln may be executed.

また、マーカー発射装置12の自動発射制御をドローン側制御部14が実行してもよい。この場合も、ドローン側制御部14は、地上側記憶部21から計画マップ41や実績マップ42を通信により取得し、取得した計画マップ41や実績マップ42に基づいて、自動発射制御において発射用マップ44を作成すると共に、作成した発射用マップ44に基づいてマーカー発射装置12の自動発射制御を実行すればよい。また、自動発射制御により実績マップ42を更新し、更新した実績マップ42を地上側記憶部21へと送信すればよい。このように、自動飛行制御や自動発射制御をドローン側制御部14において実行することで、制御応答性を高めることが可能となる。   Further, the drone side control unit 14 may execute the automatic firing control of the marker launching device 12. Also in this case, the drone side control unit 14 acquires the plan map 41 and the result map 42 from the ground side storage unit 21 by communication, and based on the acquired plan map 41 and the result map 42, the map for launch in the automatic launch control. 44 and the automatic firing control of the marker launching device 12 may be executed based on the created firing map 44. Moreover, what is necessary is just to update the performance map 42 by automatic launch control, and to transmit the updated performance map 42 to the ground side memory | storage part 21. FIG. As described above, by executing the automatic flight control and the automatic launch control in the drone side control unit 14, it becomes possible to improve the control responsiveness.

また、位置検出支援部30は、レーザートラッカーであってもよい。この場合、ドローン10にレーザートラッカーからのレーザー光を反射させる反射ターゲットを取り付け、レーザートラッカーからドローン10の反射ターゲットに向けてレーザー光を照射すると共に、反射ターゲットから反射されたレーザー光を入力することで、ドローン10の現在位置P(X,Y,Z)および回転角度θ(α,β,γ)を計測することができる。また、位置検出支援部30は、複数の撮影機器により描画対象部100上を飛行するドローン10を周辺映像も含めて撮影し、撮影した映像を合成処理することで、ドローン10の現在位置P(X,Y,Z)を計測する機能をもった画像処理による位置検出装置であってもよい。   Further, the position detection support unit 30 may be a laser tracker. In this case, a reflective target for reflecting the laser light from the laser tracker is attached to the drone 10, and the laser light is irradiated from the laser tracker toward the reflective target of the drone 10, and the laser light reflected from the reflective target is input. Thus, the current position P (X, Y, Z) and the rotation angle θ (α, β, γ) of the drone 10 can be measured. Further, the position detection support unit 30 shoots the drone 10 flying over the drawing target unit 100 using a plurality of photographic devices, including the peripheral video, and synthesizes the shot video, so that the current position P ( It may be a position detection device by image processing having a function of measuring (X, Y, Z).

また、位置検出支援部30は、図5に示すnライン飛行制御において、ステップS305のドローン10の姿勢の修正や、ステップS307のドローン10の飛行方向の修正に際して、GPSにより取得またはレーザートラッカーや画像処理による位置算出装置により計測したドローン10の現在位置P(X,Y,Z)、回転角度θ(α,β,γ)に基づいて、現在位置P(X,Y,Z)、回転角度θ(α,β,γ)の補正量を算出し、地上側制御部22へと送信する補正量算出部を備えてもよい。地上側制御部22は、補正量算出部から受信した現在位置P(X,Y,Z)、回転角度θ(α,β,γ)の補正量に基づいて、ドローン10の姿勢の修正または飛行方向の修正を行う。   Further, in the n-line flight control shown in FIG. 5, the position detection support unit 30 acquires or uses a laser tracker or an image by GPS when correcting the attitude of the drone 10 in step S305 or correcting the flight direction of the drone 10 in step S307. Based on the current position P (X, Y, Z) and the rotation angle θ (α, β, γ) of the drone 10 measured by the position calculation device by processing, the current position P (X, Y, Z), the rotation angle θ You may provide the correction amount calculation part which calculates the correction amount of ((alpha), (beta), (gamma)), and transmits to the ground side control part 22. FIG. The ground side control unit 22 corrects the attitude of the drone 10 or flies based on the correction amount of the current position P (X, Y, Z) and the rotation angle θ (α, β, γ) received from the correction amount calculation unit. Correct the direction.

1 飛行型描画装置
2 マーカー
10 ドローン
11 飛行装置
11a ロータ
11b プロペラ
12 マーカー発射装置
12a 区画
13 情報取得部
14 ドローン側制御部
15 ドローン側記憶部
16 ドローン側通信部
20 地上操作装置
21 地上側記憶部
22 地上側制御部
23 操縦部
23a 飛行操縦装置
23b 発射操作装置
24 地上側通信部
30 位置検出支援部
41 計画マップ
42 実績マップ
43 予定飛行ラインデータ
44,441,442,443 発射用マップ
100 描画対象部
Ln 予定飛行ライン
M* 計画マーキング点
M 実績マーキング点
DESCRIPTION OF SYMBOLS 1 Flight type | mold drawing apparatus 2 Marker 10 Drone 11 Flight apparatus 11a Rotor 11b Propeller 12 Marker launching apparatus 12a Section 13 Information acquisition part 14 Drone side control part 15 Drone side memory | storage part 16 Drone side communication part 20 Ground operation apparatus 21 Ground side memory | storage part DESCRIPTION OF SYMBOLS 22 Ground side control part 23 Control part 23a Flight control apparatus 23b Launching operation apparatus 24 Ground side communication part 30 Position detection assistance part 41 Plan map 42 Result map 43 Plan flight line data 44,441,442,443 Launch map 100 Drawing object Part Ln Planned flight line M * Planned marking point M Actual marking point

Claims (9)

描画対象部上において空中を飛行する飛行体と、
前記飛行体に搭載され、複数の区画ごとにマーカーを発射可能なマーカー発射装置と、
前記飛行体の空中での現在位置を含む情報を取得する情報取得部と、
前記飛行体の飛行を制御すると共に、前記マーカー発射装置によるマーカーの発射を制御する制御部と、
を備え、
前記制御部は、
前記飛行体が前記描画対象部上を飛行している間、前記情報取得部により取得された前記飛行体の前記現在位置の変化に応じて、前記現在位置ごとに前記マーカーを描画可能な範囲を規定した発射用マップを作成し、
前記発射用マップ内に、前記描画対象部上に前記マーカーを描画するべき位置である複数の計画マーキング点があるとき、前記複数の区画のうち前記計画マーキング点に対応した区画から前記マーカーを発射させる、
ことを特徴とする飛行型描画装置。
A flying object flying in the air on the drawing target part;
A marker launcher mounted on the flying body and capable of firing a marker for each of a plurality of sections;
An information acquisition unit for acquiring information including a current position of the flying object in the air;
A control unit for controlling the flight of the flying object and controlling the firing of the marker by the marker launching device;
With
The controller is
While the flying object is flying over the drawing target part, a range in which the marker can be drawn for each current position according to a change in the current position of the flying object acquired by the information acquisition part. Create a prescribed launch map,
When there are a plurality of planned marking points that are positions where the marker should be drawn on the drawing target portion in the firing map, the marker is fired from a section corresponding to the planned marking point among the plurality of sections. Let
A flying drawing apparatus characterized by that.
前記制御部は、前記発射用マップ内にある前記計画マーキング点が、前記マーカーを描画済みの実績マーキング点である場合には、前記複数の区画のうち前記実績マーキング点に対応した区画からは前記マーカーを発射させないことを特徴とする請求項1に記載の飛行型描画装置。   When the planned marking point in the map for launch is an actual marking point on which the marker has been drawn, the control unit starts from the section corresponding to the actual marking point among the plurality of sections. The flying drawing apparatus according to claim 1, wherein the marker is not fired. 前記情報取得部は、前記飛行体の空中での姿勢をさらに取得し、
前記制御部は、前記情報取得部により取得された前記飛行体の前記現在位置において、前記飛行体が前記情報取得部により取得された前記姿勢をとっている場合に、前記マーカーを描画可能な範囲を規定した前記発射用マップを作成する、
ことを特徴とする請求項1または請求項2に記載の飛行型描画装置。
The information acquisition unit further acquires the attitude of the flying object in the air,
The control unit is a range in which the marker can be drawn when the flying object is in the posture acquired by the information acquiring unit at the current position of the flying object acquired by the information acquiring unit. Create the launch map that defines
The flight drawing apparatus according to claim 1 or 2, wherein
前記情報取得部は、前記飛行体の飛行速度をさらに取得し、
前記制御部は、前記情報取得部により取得された前記飛行体の前記現在位置において、前記飛行体が前記情報取得部により取得された前記飛行速度で飛行している場合に、前記マーカーを描画可能な範囲を規定した前記発射用マップを作成する、
ことを特徴とする請求項1または請求項2に記載の飛行型描画装置。
The information acquisition unit further acquires the flight speed of the aircraft,
The control unit can draw the marker when the flying object is flying at the flight speed acquired by the information acquiring unit at the current position of the flying object acquired by the information acquiring unit. Creating a map for launching that defines a specific range,
The flight drawing apparatus according to claim 1 or 2, wherein
前記マーカー発射装置は、前記マーカーを加速して発射し、
前記情報取得部は、前記マーカーの発射速度をさらに取得し、
前記制御部は、前記情報取得部により取得された前記飛行体の前記現在位置において、前記飛行体が前記情報取得部により取得された前記姿勢をとっており、前記情報取得部により取得された前記発射速度で前記マーカーが発射された場合に、前記マーカーを描画可能な範囲を規定した前記発射用マップを作成する、
ことを特徴とする請求項3に記載の飛行型描画装置。
The marker firing device accelerates and fires the marker,
The information acquisition unit further acquires the firing speed of the marker,
The control unit takes the posture acquired by the information acquisition unit at the current position of the aircraft acquired by the information acquisition unit, and is acquired by the information acquisition unit. When the marker is fired at a firing speed, the firing map that defines a range in which the marker can be drawn is created.
The flying drawing apparatus according to claim 3.
前記マーカー発射装置は、前記マーカーを鉛直方向下側に向けて自由落下により発射することを特徴とする請求項1から請求項4のいずれか一項に記載の飛行型描画装置。   The flight type drawing apparatus according to any one of claims 1 to 4, wherein the marker launching apparatus launches the marker by free-falling downward in the vertical direction. 前記マーカーは、前記描画対象部に着弾して突き刺さる杭状の部材であることを特徴とする請求項1から請求項6のいずれか一項に記載の飛行型描画装置。   The flight type drawing apparatus according to any one of claims 1 to 6, wherein the marker is a pile-shaped member that lands and pierces the drawing target portion. 前記制御部は、前記複数の計画マーキング点に基づいて作成される複数の予定飛行ラインに沿って前記飛行体を前記描画対象部上で飛行させながら、前記複数の計画マーキング点に前記マーカー発射装置から前記マーカーを発射させることを特徴とする請求項1から請求項7のいずれか一項に記載の飛行型描画装置。   The control unit is configured to cause the marker projecting device to move to the plurality of planned marking points while flying the flying object on the drawing target unit along a plurality of planned flight lines created based on the plurality of planned marking points. The flight type drawing apparatus according to any one of claims 1 to 7, wherein the marker is fired. 前記制御部は、前記予定飛行ラインの一つに沿って前記飛行体を一定の前記飛行速度で停止させることなく飛行させることを特徴とする請求項8に記載の飛行型描画装置。   The flight type drawing apparatus according to claim 8, wherein the control unit causes the flying object to fly along one of the scheduled flight lines without stopping at the constant flight speed.
JP2017090293A 2017-04-28 2017-04-28 Flying type drawing device Active JP6896501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017090293A JP6896501B2 (en) 2017-04-28 2017-04-28 Flying type drawing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017090293A JP6896501B2 (en) 2017-04-28 2017-04-28 Flying type drawing device

Publications (2)

Publication Number Publication Date
JP2018189434A true JP2018189434A (en) 2018-11-29
JP6896501B2 JP6896501B2 (en) 2021-06-30

Family

ID=64479499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017090293A Active JP6896501B2 (en) 2017-04-28 2017-04-28 Flying type drawing device

Country Status (1)

Country Link
JP (1) JP6896501B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110008582A (en) * 2019-04-02 2019-07-12 董妍欣 A kind of marking method based on unmanned plane
JP2021001775A (en) * 2019-06-20 2021-01-07 三菱電機株式会社 Shape measurement system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076371A (en) * 2002-08-16 2004-03-11 Seiichi Ozawa Disruption preventing method for mt. fuji
JP2010120593A (en) * 2008-11-21 2010-06-03 Akebono Brake Ind Co Ltd Installation apparatus and installation method for landslide detection apparatus
JP2011122385A (en) * 2009-12-14 2011-06-23 Sadayuki Amiya Pile driving method
JP2015212621A (en) * 2014-04-17 2015-11-26 善郎 水野 System including marker device, and method utilizing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076371A (en) * 2002-08-16 2004-03-11 Seiichi Ozawa Disruption preventing method for mt. fuji
JP2010120593A (en) * 2008-11-21 2010-06-03 Akebono Brake Ind Co Ltd Installation apparatus and installation method for landslide detection apparatus
JP2011122385A (en) * 2009-12-14 2011-06-23 Sadayuki Amiya Pile driving method
JP2015212621A (en) * 2014-04-17 2015-11-26 善郎 水野 System including marker device, and method utilizing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110008582A (en) * 2019-04-02 2019-07-12 董妍欣 A kind of marking method based on unmanned plane
JP2021001775A (en) * 2019-06-20 2021-01-07 三菱電機株式会社 Shape measurement system

Also Published As

Publication number Publication date
JP6896501B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
US11029684B2 (en) Safety system for operation of an unmanned aerial vehicle
JP5775354B2 (en) Takeoff and landing target device and automatic takeoff and landing system
ES2913173T3 (en) Control computer for an unmanned vehicle
CN102582826B (en) A kind of drive manner of four rotor unmanned aircrafts and system
Sanders et al. Hierarchical control of small autonomous helicopters
US20230027342A1 (en) Automatic landing system for vertical takeoff/landing aircraft, vertical takeoff/landing aircraft, and control method for landing of vertical takeoff/landing aircraft
EP2056059A1 (en) Guided delivery of small munitions from an unmanned aerial vehicle
EP3518068B1 (en) Trajectory control for a swarm of vehicles
JP2009515771A (en) A control system for automatic overturning flight.
US20220106039A1 (en) Aerial vehicle
JP2020023283A (en) Flight control device, method, and program
JP2019064280A (en) Flight device
WO2018020659A1 (en) Moving body, method for controlling moving body, system for controlling moving body, and program for controlling moving body
JP2018189434A (en) Flying type drawing device
CN111587409A (en) Unmanned aerial vehicle launching method and system
CN115981355A (en) Unmanned aerial vehicle automatic cruise method and system capable of landing quickly and accurately
Kostin Models and methods for implementing the automous performance of transportation tasks using a drone
JP2022010965A (en) Flight device
JP2019182089A (en) Flying device and flying device guidance system
CN109885102B (en) Automatic task route planning method suitable for photoelectric load unmanned aerial vehicle system
JP7096022B2 (en) Marking point marking system using UAV
JP2015129687A (en) Operation support device and operation support program
JP7160742B2 (en) How to measure the three-dimensional shape of an object
KR101912641B1 (en) Flight Control Method for Precision Induction Parachute System with Automatic Mission Planning Algorithm
US20190352005A1 (en) Fiducial gates for drone racing

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210609

R150 Certificate of patent or registration of utility model

Ref document number: 6896501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150