JP2018188378A - Method for producing fluorine-containing alkyne compound - Google Patents

Method for producing fluorine-containing alkyne compound Download PDF

Info

Publication number
JP2018188378A
JP2018188378A JP2017090431A JP2017090431A JP2018188378A JP 2018188378 A JP2018188378 A JP 2018188378A JP 2017090431 A JP2017090431 A JP 2017090431A JP 2017090431 A JP2017090431 A JP 2017090431A JP 2018188378 A JP2018188378 A JP 2018188378A
Authority
JP
Japan
Prior art keywords
general formula
compound represented
fluorine
reaction
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017090431A
Other languages
Japanese (ja)
Inventor
翼 仲上
Tsubasa Nakagami
翼 仲上
大輔 加留部
Daisuke Karube
大輔 加留部
雄三 小松
Yuzo Komatsu
雄三 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2017090431A priority Critical patent/JP2018188378A/en
Publication of JP2018188378A publication Critical patent/JP2018188378A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fluorine-containing alkyne compound in a manner that is convenient and easy to scale up.SOLUTION: The present invention provides a method for producing a fluorine-containing alkyne compound represented by general formula (1): RC≡CH (1) [where Ris a fluorine-containing alkyl group], the method including the steps of causing a compound represented by general formula (2): RCH=CXCROH (2) [where Ris the same as above. Xis a halogen atom. R's are the same or different to represent a hydrogen atom or an alkyl group] to react with a base at 50°C or more.SELECTED DRAWING: None

Description

本発明は、含フッ素アルキン化合物の製造方法に関する。   The present invention relates to a method for producing a fluorine-containing alkyne compound.

C2F5C≡CH等の含フッ素アルキン化合物は、冷媒(空調用冷媒、冷凍用冷媒、二次冷媒、ヒートパイプ等の潜熱熱移送媒体、ランキンサイクル用等の作動媒体等)、エッチング剤、エアロゾール、発泡剤等の材料として期待される化合物であり、さらに、各種材料の中間体や高分子化合物のモノマー成分としても利用される有用性の高い化合物である。 Fluorine-containing alkyne compounds such as C 2 F 5 C≡CH are refrigerants (air-conditioning refrigerants, refrigeration refrigerants, secondary refrigerants, latent heat transfer media such as heat pipes, working media for Rankine cycles, etc.), etching agents It is a compound expected as a material such as aerosol and foaming agent, and is also a highly useful compound that is also used as an intermediate of various materials and a monomer component of a polymer compound.

この含フッ素アルキン化合物の合成方法としては、例えば、CnF2n+1I(n=1, 2)とアセチレンとを反応させてCnF2n+1CH=CHIを得た後、水酸化カリウム(固体)と高温(110℃)で反応させる方法が知られている(例えば、非特許文献1参照)。しかしながら、この方法では、取扱いに難のあるアセチレンを使用するため簡便な方法とは言えないうえに、不均一系の反応でありスケールアップが困難である。 As a method for synthesizing this fluorine-containing alkyne compound, for example, C n F 2n + 1 I (n = 1, 2) and acetylene are reacted to obtain C n F 2n + 1 CH═CHI, and then hydroxylated. A method of reacting with potassium (solid) at a high temperature (110 ° C.) is known (for example, see Non-Patent Document 1). However, this method is not a simple method because it uses acetylene which is difficult to handle, and it is a heterogeneous reaction and difficult to scale up.

一方、含フッ素アルキン化合物の合成方法としては、例えば、CnF2n+1I(n=3, 4, 6, 8)とHC≡CC(CH3)2OHとを亜鉛の存在下で反応させてCnF2n+1CH=CIC(CH3)2OHを得た後、水酸化カリウム水溶液を用いて脱ヨウ化水素反応によりCnF2n+1C≡CC(CH3)2OHを得、さらに、水酸化ナトリウム(固体)で脱ケトン反応によりCnF2n+1C≡CHを得る方法も知られている(例えば、非特許文献2参照)。しかしながら、この方法では、一旦CnF2n+1C≡CC(CH3)2OH を単離する必要があり、CnF2n+1CH=CIC(CH3)2OHから1工程のみでCnF2n+1C≡CHを得ることはできず簡便な方法ではないとともに、不均一系の反応でありスケールアップが困難である。しかも、この方法では収率が低く効率的な方法とは言えない。また、この方法では、末端のパーフルオロアルキル基の炭素数が大きい化合物しか合成されていない。 On the other hand, as a method for synthesizing a fluorine-containing alkyne compound, for example, C n F 2n + 1 I (n = 3, 4, 6, 8) and HC≡CC (CH 3 ) 2 OH are reacted in the presence of zinc. by C n F 2n + 1 CH = after obtaining a CIC (CH 3) 2 OH, C n F 2n + 1 C≡CC (CH 3) by dehydroiodination reaction with aqueous potassium hydroxide solution 2 OH In addition, a method of obtaining C n F 2n + 1 C≡CH by deketone reaction with sodium hydroxide (solid) is also known (see, for example, Non-Patent Document 2). However, in this method, it is necessary to once isolate C n F 2n + 1 C≡CC (CH 3 ) 2 OH, and only one step from C n F 2n + 1 CH = CIC (CH 3 ) 2 OH C n F 2n + 1 C≡CH cannot be obtained, and it is not a simple method, and it is a heterogeneous reaction and is difficult to scale up. Moreover, this method is not an efficient method with a low yield. In this method, only compounds having a large number of carbon atoms in the terminal perfluoroalkyl group are synthesized.

J.C.S., 1952, 3483J.C.S., 1952, 3483 Organometallics, 2005, 24, 5311-5317Organometallics, 2005, 24, 5311-5317

本発明は、上記のような課題を解決するためになされたものであり、含フッ素アルキン化合物を簡便且つスケールアップ容易な方法で得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a fluorine-containing alkyne compound by a simple and easy-to-scale-up method.

本発明者らは、上記の課題を解決するため鋭意研究を行った結果、RfCH=CX1CR2OHと塩基とを50〜100℃で反応させることにより、中間体を単離することなく1工程のみで含フッ素アルキン化合物が得られるとともに、この反応は水溶液中で行うことができ均一系の反応とすることが可能であることからスケールアップも容易であることを見出した。本発明者らは、このような知見に基づき更に研究を重ねた結果、本発明を完成するに至った。即ち、本発明は以下の構成を包含する。
項1.一般式(1):
RfC≡CH (1)
[式中、Rfは含フッ素アルキル基を示す。]
で表される含フッ素アルキン化合物の製造方法であって、
一般式(2):
RfCH=CX1CR2OH (2)
[式中、Rfは前記に同じである。X1はハロゲン原子を示す。Rは同一又は異なって、水素原子又はアルキル基を示す。]
で表される化合物と、塩基とを50℃以上で反応させる工程
を備える、製造方法。
項2.前記Rfがパーフルオロアルキル基である、項1に記載の製造方法。
項3.前記塩基がアルカリ金属水酸化物である、項1又は2に記載の製造方法。
項4.前記反応工程を水溶液中で行う、項1〜3のいずれかに記載の製造方法。
項5.前記反応工程を50〜100℃で行う、項1〜4のいずれかに記載の製造方法。
項6.前記反応工程の前に、一般式(3):
RfX2 (3)
[式中、Rfは前記に同じである。X2はハロゲン原子を示す。]
で表される化合物と、一般式(4):
CH≡CR2OH (4)
[式中、Rは前記に同じである。]
で表される化合物とを反応させて前記一般式(2)で表される化合物を得る工程
を備える、項1〜5のいずれかに記載の製造方法。
項7.前記一般式(3)で表される化合物と前記一般式(4)で表される化合物との反応を、一電子還元剤の存在下、光照射下又は電気化学的還元法により行う、項6に記載の製造方法。
項8.一般式(1):
RfC≡CH (1)
[式中、Rfは含フッ素アルキル基を示す。]
で表される含フッ素アルキン化合物の製造方法であって、
(a)一般式(3):
RfX2 (3)
[式中、Rfは含フッ素アルキル基を示す。X2はハロゲン原子を示す。]
で表される化合物と、一般式(4):
CH≡CR2OH (4)
[式中、Rは同一又は異なって、水素原子又はアルキル基を示す。]
で表される化合物とを反応させて、一般式(2):
RfCH=CX1CR2OH (2)
[式中、Rf及びRは前記に同じである。X1はハロゲン原子を示す。]
で表される化合物を得る工程、
(b)前記工程(a)で得られた一般式(2)で表される化合物を分離し取り出す工程、
(c)前記工程(b)で分離した一般式(2)で表される化合物と、塩基とを50〜100℃で反応させ、前記一般式(1)で表される含フッ素アルキン化合物を得る工程、及び
(d)前記工程(c)で得られた一般式(1)で表される含フッ素アルキン化合物を分離し取り出す工程
を備える、製造方法。
As a result of intensive studies to solve the above problems, the present inventors have isolated an intermediate by reacting R f CH═CX 1 CR 2 OH with a base at 50 to 100 ° C. In addition, the present inventors have found that a fluorine-containing alkyne compound can be obtained in only one step, and that this reaction can be performed in an aqueous solution and can be a homogeneous reaction, so that it is easy to scale up. As a result of further studies based on such knowledge, the present inventors have completed the present invention. That is, this invention includes the following structures.
Item 1. General formula (1):
R f C≡CH (1)
[Wherein R f represents a fluorine-containing alkyl group. ]
A process for producing a fluorine-containing alkyne compound represented by:
General formula (2):
R f CH = CX 1 CR 2 OH (2)
[Wherein R f is the same as defined above. X 1 represents a halogen atom. R is the same or different and represents a hydrogen atom or an alkyl group. ]
A production method comprising a step of reacting a compound represented by the formula with a base at 50 ° C or higher.
Item 2. Item 2. The production method according to Item 1, wherein R f is a perfluoroalkyl group.
Item 3. Item 3. The method according to Item 1 or 2, wherein the base is an alkali metal hydroxide.
Item 4. Item 4. The production method according to any one of Items 1 to 3, wherein the reaction step is performed in an aqueous solution.
Item 5. Item 5. The method according to any one of Items 1 to 4, wherein the reaction step is performed at 50 to 100 ° C.
Item 6. Prior to the reaction step, general formula (3):
R f X 2 (3)
[Wherein R f is the same as defined above. X 2 represents a halogen atom. ]
And a compound represented by the general formula (4):
CH≡CR 2 OH (4)
[Wherein, R is the same as defined above. ]
The manufacturing method in any one of claim | item 1-5 provided with the process of making the compound represented by general formula (2) react with the compound represented by these.
Item 7. Item 6. The reaction of the compound represented by the general formula (3) and the compound represented by the general formula (4) is performed in the presence of a one-electron reducing agent, under light irradiation, or by an electrochemical reduction method. The manufacturing method as described in.
Item 8. General formula (1):
R f C≡CH (1)
[Wherein R f represents a fluorine-containing alkyl group. ]
A process for producing a fluorine-containing alkyne compound represented by:
(A) General formula (3):
R f X 2 (3)
[Wherein R f represents a fluorine-containing alkyl group. X 2 represents a halogen atom. ]
And a compound represented by the general formula (4):
CH≡CR 2 OH (4)
[In formula, R is the same or different and shows a hydrogen atom or an alkyl group. ]
Is reacted with a compound represented by the general formula (2):
R f CH = CX 1 CR 2 OH (2)
[Wherein, R f and R are the same as defined above. X 1 represents a halogen atom. ]
Obtaining a compound represented by:
(B) a step of separating and taking out the compound represented by the general formula (2) obtained in the step (a),
(C) The compound represented by the general formula (2) separated in the step (b) is reacted with a base at 50 to 100 ° C. to obtain the fluorine-containing alkyne compound represented by the general formula (1). A process comprising the steps of: (d) separating and taking out the fluorine-containing alkyne compound represented by the general formula (1) obtained in the step (c).

本発明によれば、簡便且つスケールアップ容易な方法で含フッ素アルキン化合物を得ることができる。   According to the present invention, a fluorine-containing alkyne compound can be obtained by a simple and easy-to-scale-up method.

本発明の含フッ素アルキン化合物の製造方法は、一般式(1):
RfC≡CH (1)
[式中、Rfは含フッ素アルキル基を示す。]
で表される含フッ素アルキン化合物の製造方法であって、
一般式(2):
RfCH=CX1CR2OH (2)
[式中、Rfは前記に同じである。X1はハロゲン原子を示す。Rは同一又は異なって、水素原子又はアルキル基を示す。]
で表される化合物と、塩基とを50℃以上で反応させる工程
を備える。これにより、オイル状の中間体を単離することなく、1工程のみで目的とする含フッ素アルキン化合物を得ることができる。
The method for producing a fluorine-containing alkyne compound of the present invention has the general formula (1):
R f C≡CH (1)
[Wherein R f represents a fluorine-containing alkyl group. ]
A process for producing a fluorine-containing alkyne compound represented by:
General formula (2):
R f CH = CX 1 CR 2 OH (2)
[Wherein R f is the same as defined above. X 1 represents a halogen atom. R is the same or different and represents a hydrogen atom or an alkyl group. ]
A step of reacting the compound represented by the formula with a base at 50 ° C. or higher. Thus, the target fluorine-containing alkyne compound can be obtained in only one step without isolating the oily intermediate.

一般式(1)及び(2)において、Rfは含フッ素アルキル基であり、合成のしやすさ、収率等の観点から、炭素数は1〜10が好ましく、1〜4がより好ましい。また、合成のしやすさ、収率等の観点から、パーフルオロアルキル基であることが好ましい。このような含フッ素アルキル基としては、鎖状、分岐鎖状及び環状のいずれも採用し得る。このような含フッ素アルキル基としては、例えば、鎖状アルキル基及び分岐鎖状アルキル基としては−CF3、−C2F5、−C3F7、−C4F9、−C5F11、−C6F13、−C7F15、−C8F17、−C9F19、−C10F21等の−CnF2n+1等が挙げられ、環状アルキル基としては−C3F5、−C4F7、−C5F9、−C6F11、−C7F13、−C8F15、−C9F17、−C10F19等の−CnF2n-1等が挙げられる。特に、炭素数が1〜3等のように、炭素数の少ない含フッ素アルキル基であっても、反応を進行させることができる。 In the general formulas (1) and (2), R f is a fluorine-containing alkyl group, and the number of carbon atoms is preferably 1 to 10 and more preferably 1 to 4 from the viewpoint of ease of synthesis, yield, and the like. Further, from the viewpoint of ease of synthesis, yield, etc., a perfluoroalkyl group is preferable. As such a fluorine-containing alkyl group, any of a chain, a branched chain and a ring can be adopted. As such a fluorine-containing alkyl group, for example, as a chain alkyl group and a branched chain alkyl group, —CF 3 , —C 2 F 5 , —C 3 F 7 , —C 4 F 9 , —C 5 F 11, -C 6 F 13, -C 7 F 15, -C 8 F 17, -C 9 F 19, -C 10 F 21 -C n F 2n + 1 , etc., and examples of the cyclic alkyl group -C 3 F 5, -C 4 F 7, -C 5 F 9, -C 6 F 11, -C 7 F 13, -C 8 F 15, -C 9 F 17, -C 10 F 19 or the like - C n F 2n-1 and the like can be mentioned. In particular, the reaction can proceed even with a fluorine-containing alkyl group having a small number of carbon atoms such as 1 to 3 carbon atoms.

つまり、製造しようとする一般式(1)で表される化合物は、CF3C≡CH、C2F5C≡CH、C3F7C≡CH、C4F9C≡CH、C5F11C≡CH、C6F13C≡CH、C7F15C≡CH、C8F17C≡CH、C9F19C≡CH、C10F21C≡CH、C3F5C≡CH、C4F7C≡CH、C5F9C≡CH、C6F11C≡CH、C7F13C≡CH、C8F15C≡CH、C9F17C≡CH、C10F19C≡CH等が挙げられる。 That is, the compound represented by the general formula (1) to be produced is CF 3 C≡CH, C 2 F 5 C≡CH, C 3 F 7 C≡CH, C 4 F 9 C≡CH, C 5 F 11 C≡CH, C 6 F 13 C≡CH, C 7 F 15 C≡CH, C 8 F 17 C≡CH, C 9 F 19 C≡CH, C 10 F 21 C≡CH, C 3 F 5 C≡CH, C 4 F 7 C≡CH, C 5 F 9 C≡CH, C 6 F 11 C≡CH, C 7 F 13 C≡CH, C 8 F 15 C≡CH, C 9 F 17 C≡ CH, C 10 F 19 C≡CH and the like.

なお、先行文献J.C.S. 1952. 3483によれば、生成物である一般式(1)で表される化合物は水と反応して分解することも想定され得るが、本発明においては後述のように水溶液中で反応を行った場合にも生成物が反応中及び反応後に分解されることはない。   According to the prior document JCS 1952.3483, the product represented by the general formula (1) can be assumed to be decomposed by reacting with water, but in the present invention, as described later, an aqueous solution The product is not decomposed during and after the reaction even when the reaction is carried out in the medium.

一般式(2)において、X1はハロゲン原子であり、塩素原子、臭素原子、ヨウ素原子等が挙げられる。なかでも、合成のしやすさと、含フッ素アルキン化合物をより高収率に得ることができる観点から、ヨウ素原子が好ましい。 In the general formula (2), X 1 is a halogen atom, and examples thereof include a chlorine atom, a bromine atom, and an iodine atom. Of these, an iodine atom is preferable from the viewpoint of ease of synthesis and the ability to obtain a fluorine-containing alkyne compound in a higher yield.

一般式(2)において、Rで示されるアルキル基としては、合成のしやすさ、収率等の観点から、炭素数は1〜4が好ましく、1〜2がより好ましい。このようなアルキル基としては、鎖状、分岐鎖状及び環状のいずれも採用し得る。鎖状アルキル基及び分岐鎖状アルキル基としては−CnH2n+1(n: 1〜4の整数)等が挙げられ、環状アルキル基としては−CnH2n-1(n: 3〜4の整数)等が挙げられる。このようなアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロプロピル基、シクロブチル基等が挙げられる。 In general formula (2), the alkyl group represented by R preferably has 1 to 4 carbon atoms, and more preferably 1 to 2 carbon atoms from the viewpoint of ease of synthesis, yield, and the like. As such an alkyl group, any of a chain, a branched chain and a ring can be adopted. Examples of the chain alkyl group and the branched chain alkyl group include -C n H 2n + 1 (n: an integer of 1 to 4), and the cyclic alkyl group includes -C n H 2n-1 (n: 3 to An integer of 4). Examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a cyclopropyl group, and a cyclobutyl group. Can be mentioned.

Rとしては、合成のしやすさ、収率等の観点から、アルキル基が好ましく、鎖状アルキル基がより好ましく、メチル基がさらに好ましい。なお、Rは同一でも異なっていてもよいが、合成のしやすさ、収率等の観点から、同一であることが好ましい。   R is preferably an alkyl group, more preferably a chain alkyl group, and still more preferably a methyl group from the viewpoints of ease of synthesis, yield, and the like. Rs may be the same or different, but are preferably the same from the viewpoint of ease of synthesis, yield, and the like.

このような条件を満たす一般式(2)で表される化合物としては、例えば、CF3CH=CIC(CH3)2OH、CF3CH=CIC(C2H5)2OH、CF3CH=CClC(CH3)2OH、CF3CH=CClC(C2H5)2OH、CF3CH=CBrC(CH3)2OH、CF3CH=CBrC(C2H5)2OH、C2F5CH=CIC(CH3)2OH、C2F5CH=CIC(C2H5)2OH、C2F5CH=CClC(CH3)2OH、C2F5CH=CClC(C2H5)2OH、C2F5CH=CBrC(CH3)2OH、C2F5CH=CBrC(C2H5)2OH等が挙げられ、合成のしやすさ、収率等の観点から、CF3CH=CIC(CH3)2OH、CF3CH=CClC(CH3)2OH、CF3CH=CBrC(CH3)2OH、C2F5CH=CIC(CH3)2OH、C2F5CH=CClC(CH3)2OH、C2F5CH=CBrC(CH3)2OH等が好ましく、CF3CH=CIC(CH3)2OH、CF3CH=CClC(CH3)2OH、CF3CH=CBrC(CH3)2OH等がより好ましい。 Examples of the compound represented by the general formula (2) satisfying such conditions include CF 3 CH═CIC (CH 3 ) 2 OH, CF 3 CH═CIC (C 2 H 5 ) 2 OH, CF 3 CH = CClC (CH 3) 2 OH , CF 3 CH = CClC (C 2 H 5) 2 OH, CF 3 CH = CBrC (CH 3) 2 OH, CF 3 CH = CBrC (C 2 H 5) 2 OH, C 2 F 5 CH = CIC (CH 3 ) 2 OH, C 2 F 5 CH = CIC (C 2 H 5 ) 2 OH, C 2 F 5 CH = CClC (CH 3 ) 2 OH, C 2 F 5 CH = CClC (C 2 H 5 ) 2 OH, C 2 F 5 CH═CBrC (CH 3 ) 2 OH, C 2 F 5 CH═CBrC (C 2 H 5 ) 2 OH, etc. in terms of rate, etc., CF 3 CH = CIC (CH 3) 2 OH, CF 3 CH = CClC (CH 3) 2 OH, CF 3 CH = CBrC (CH 3) 2 OH, C 2 F 5 CH = CIC ( CH 3 ) 2 OH, C 2 F 5 CH═CClC (CH 3 ) 2 OH, C 2 F 5 CH═CBrC (CH 3 ) 2 OH, etc. are preferred, CF 3 CH═CIC (CH 3 ) 2 OH, CF 3 CH═CClC (CH 3 ) 2 OH, CF 3 CH═CBrC (CH 3 ) 2 OH, and the like are more preferable.

このような一般式(2)で表される化合物は、公知又は市販品を使用することもできるし、合成することもできる。合成する場合の合成方法は後述する。   As the compound represented by the general formula (2), a known or commercially available product can be used, or it can be synthesized. A synthesis method in the case of synthesis will be described later.

本発明においては、一般式(2)で表される化合物と塩基を反応させ、一般式(2)で表される化合物から脱ハロゲン化水素反応及び脱カルボニル反応を経て、生成物である一般式(1)で表される化合物を得る。塩基としては、特に制限はなく、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;カリウムtert-ブトキシド、ナトリウムメトキシド等のアルカリ金属アルコキシド;トリエチルアミン、ピリジン等の三級アミン;炭酸ナトリウム、炭酸カリウム等のアルカリ金属の炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属の炭酸水素塩等が挙げられる。これら塩基は、単独で用いることもでき、2種以上を組合せて用いることもできる。なかでも、反応の効率といった合成のしやすさ、収率等の観点から、アルカリ金属水酸化物が好ましく、水酸化ナトリウムがより好ましい。   In the present invention, the compound represented by the general formula (2) is reacted with a base, and the compound represented by the general formula (2) is subjected to a dehydrohalogenation reaction and a decarbonylation reaction, thereby being a product. The compound represented by (1) is obtained. The base is not particularly limited, alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; alkali metal alkoxides such as potassium tert-butoxide and sodium methoxide; tertiary amines such as triethylamine and pyridine An alkali metal carbonate such as sodium carbonate or potassium carbonate; an alkali metal hydrogen carbonate such as sodium bicarbonate or potassium bicarbonate; These bases can be used alone or in combination of two or more. Among these, alkali metal hydroxides are preferable and sodium hydroxide is more preferable from the viewpoints of easiness of synthesis such as reaction efficiency and yield.

塩基の使用量は、合成のしやすさ、収率等の観点から、通常、一般式(2)で表される化合物1モルに対して、2.0〜8.0モルが好ましく、2.0〜4.0モルがより好ましい。   The amount of the base used is usually preferably 2.0 to 8.0 mol, more preferably 2.0 to 4.0 mol with respect to 1 mol of the compound represented by the general formula (2), from the viewpoint of ease of synthesis, yield and the like. preferable.

本発明において、上記の一般式(2)で表される化合物と塩基との反応は、均一系の反応とすることが可能である。特に、上記塩基を水溶液として使用することにより、反応溶媒としても使用することができ水溶液中で反応を行うことが可能である。つまり、本発明の製造方法は、オイル状物を経由することなく一般式(1)で表される化合物を得ることが可能である。このため、本発明の製造方法は容易にスケールアップ可能な方法である。   In the present invention, the reaction between the compound represented by the general formula (2) and the base can be a homogeneous reaction. In particular, by using the above-mentioned base as an aqueous solution, it can be used as a reaction solvent and can be reacted in an aqueous solution. That is, the production method of the present invention can obtain the compound represented by the general formula (1) without going through an oily substance. For this reason, the manufacturing method of the present invention can be easily scaled up.

上記の一般式(2)で表される化合物と塩基との反応は、加熱下に行うことにより、1工程のみで一般式(1)で表される化合物を簡便に得ることができる。この際、加熱温度は、従来よりもやや低温とすることが可能であり経済的である。合成の容易さ、収率等の観点から、加熱温度は50℃以上、好ましくは60℃以上である。反応温度がこれより低すぎると反応が進行せず不利益である。一方、反応温度は高いほど一般式(2)で表される化合物と塩基との反応自体は進行するが、経済性及び副生成物の生成をより抑制する観点からは、加熱温度は100℃以下が好ましく、90℃以下がより好ましい。なお、加熱のタイミングは、一般式(2)で表される化合物と塩基(特に塩基の水溶液)とを混合した後が好ましい。   The reaction between the compound represented by the general formula (2) and the base is carried out under heating, whereby the compound represented by the general formula (1) can be easily obtained in only one step. At this time, the heating temperature can be made slightly lower than before, which is economical. From the viewpoint of ease of synthesis, yield, etc., the heating temperature is 50 ° C. or higher, preferably 60 ° C. or higher. If the reaction temperature is too low, the reaction does not proceed, which is disadvantageous. On the other hand, the higher the reaction temperature, the more the reaction between the compound represented by the general formula (2) and the base progresses. However, from the viewpoint of economy and suppression of by-products, the heating temperature is 100 ° C. Is preferable, and 90 ° C. or lower is more preferable. The heating timing is preferably after mixing the compound represented by the general formula (2) and a base (particularly an aqueous solution of a base).

加熱温度以外の反応条件は特に制限はなく、例えば、反応雰囲気は不活性ガス雰囲気(窒素ガス雰囲気、アルゴンガス雰囲気等)、空気雰囲気等が好ましく、反応時間は反応が十分に進行する程度とすることができる。反応終了後は、必要に応じて常法にしたがって精製処理を行い、含フッ素アルキン化合物を得ることができる。   The reaction conditions other than the heating temperature are not particularly limited. For example, the reaction atmosphere is preferably an inert gas atmosphere (nitrogen gas atmosphere, argon gas atmosphere, etc.), an air atmosphere, etc. be able to. After completion of the reaction, a fluorine-containing alkyne compound can be obtained by performing purification treatment according to a conventional method as necessary.

なお、上記した一般式(2)で表される化合物を合成して得る場合、その合成方法は特に制限されないが、一般式(3):
RfX2 (3)
[式中、Rfは前記に同じである。X2はハロゲン原子を示す。]
で表される化合物と、一般式(4):
CH≡CR2OH (4)
[式中、Rは前記に同じである。]
で表される化合物とを反応させて得ることが好ましい。
In addition, when the compound represented by the general formula (2) is obtained by synthesis, the synthesis method is not particularly limited, but the general formula (3):
R f X 2 (3)
[Wherein R f is the same as defined above. X 2 represents a halogen atom. ]
And a compound represented by the general formula (4):
CH≡CR 2 OH (4)
[Wherein, R is the same as defined above. ]
It is preferable to obtain by reacting with the compound represented by these.

一般式(3)において、X2はハロゲン原子であり、塩素原子、臭素原子、ヨウ素原子等が挙げられる。なかでも、合成のしやすさと、一般式(2)で表される化合物をより高収率に得ることができる観点から、ヨウ素原子が好ましい。 In the general formula (3), X 2 is a halogen atom, and examples thereof include a chlorine atom, a bromine atom, and an iodine atom. Among these, an iodine atom is preferable from the viewpoint of easy synthesis and the ability to obtain the compound represented by the general formula (2) in a higher yield.

このような条件を満たす一般式(3)で表される化合物としては、例えば、CF3I、CF3Cl、CF3Br、C2F5I、C2F5Cl、C2F5Br等が挙げられる。 Examples of the compound represented by the general formula (3) satisfying such conditions include CF 3 I, CF 3 Cl, CF 3 Br, C 2 F 5 I, C 2 F 5 Cl, and C 2 F 5 Br. Etc.

また、一般式(4)で表される化合物としては、例えば、CH≡C(CH3)2OH、CH≡C(C2H5)2OH、等が挙げられ、合成のしやすさ、収率等の観点から、CH≡C(CH3)2OHが好ましい。 Examples of the compound represented by the general formula (4) include CH≡C (CH 3 ) 2 OH, CH≡C (C 2 H 5 ) 2 OH, and the like. From the viewpoint of yield and the like, CH≡C (CH 3 ) 2 OH is preferable.

一般式(4)で表される化合物の使用量は、合成のしやすさ、収率等の観点から、通常、一般式(3)で表される化合物1モルに対して、1.0〜2.0モルが好ましく、1.0〜1.5モルがより好ましい。   The amount of the compound represented by the general formula (4) is usually 1.0 to 2.0 mol with respect to 1 mol of the compound represented by the general formula (3) from the viewpoint of ease of synthesis, yield, and the like. Is preferable, and 1.0-1.5 mol is more preferable.

一般式(3)で表される化合物と一般式(4)で表される化合物との反応は、一電子還元剤の存在下、光照射下又は電気化学的還元法によりに行うことが好ましい。これにより、反応をより確実に進行させ、一般式(2)で表される化合物をより高収率に得ることができる。   The reaction between the compound represented by the general formula (3) and the compound represented by the general formula (4) is preferably performed in the presence of a one-electron reducing agent, under light irradiation, or by an electrochemical reduction method. Thereby, reaction can be advanced more reliably and the compound represented by General formula (2) can be obtained in a higher yield.

一電子還元剤としては、亜鉛又は亜鉛合金の他、亜ジチオン酸リチウム、亜ジチオン酸ナトリウム、亜ジチオン酸カリウム、亜ジチオン酸セシウム、ヨウ化銅(I)、臭化銅(I)、塩化銅(I)、ヨウ化サマリウム(II)、トリエチルアミン、トリブチルアミン、テトラブチルアンモニウムヨージド、テトラブチルホスホニウムヨージド、アスコルビン酸、テトラキス(ジメチルアミノ)エチレン、アゾビスイソブチロニトリル等も挙げられる。   One-electron reducing agents include zinc or zinc alloys, lithium dithionite, sodium dithionite, potassium dithionite, cesium dithionite, copper (I) iodide, copper bromide (I), copper chloride (I), samarium (II) iodide, triethylamine, tributylamine, tetrabutylammonium iodide, tetrabutylphosphonium iodide, ascorbic acid, tetrakis (dimethylamino) ethylene, azobisisobutyronitrile and the like can also be mentioned.

亜鉛合金を使用する場合に含まれ得る元素としては、例えば、鉛、カドミウム、鉄等が挙げられる。なお、市販の亜鉛には、鉛、カドミウム、鉄等の不純物が含まれていることもある。本発明ではこれらの不純物を含むものも包含される。   Examples of elements that can be included when using a zinc alloy include lead, cadmium, and iron. Commercially available zinc may contain impurities such as lead, cadmium, and iron. In the present invention, those containing these impurities are also included.

この一電子還元剤を使用する場合の使用量は、一般式(2)で表される化合物をより高収率に得られる観点から、一般式(3)で表される化合物1モルに対して、0.2〜5.0モルが好ましく、0.5〜2.0モルがより好ましい。   The amount used when using this one-electron reducing agent is based on 1 mol of the compound represented by the general formula (3) from the viewpoint of obtaining the compound represented by the general formula (2) in a higher yield. 0.2 to 5.0 mol is preferable, and 0.5 to 2.0 mol is more preferable.

また、一般式(3)で表される化合物と一般式(4)で表される化合物との反応を光照射下又は電気化学的還元法により行う場合は、各種条件は常法にしたがうことができる。   In addition, when the reaction of the compound represented by the general formula (3) and the compound represented by the general formula (4) is performed under light irradiation or by an electrochemical reduction method, various conditions may be in accordance with ordinary methods. it can.

一般式(3)で表される化合物と一般式(4)で表される化合物との反応は、反応溶媒中で行うことが好ましい。反応溶媒としては、例えば、ヘキサン、シクロヘキサン、ヘプタン等の脂肪族炭化水素;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン等の脂肪族ハロゲン化炭化水素;ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジメトキシエタン(DME)、シクロペンチルメチルエーテル(CPME)、tert-ブチルメチルエーテル、テトラヒドロフラン(THF)、ジオキサン等のエーテル;酢酸エチル、プロピオン酸エチル等のエステル;ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)、N-メチルピロリドン(NMP)等のアミド;アセトニトリル、プロピオニトリル等のニトリル;ジメチルスルホキシド(DMSO)等が挙げられる。なかでも、脂肪族ハロゲン化炭化水素が好ましく、ジクロロメタンがより好ましい。   The reaction between the compound represented by the general formula (3) and the compound represented by the general formula (4) is preferably performed in a reaction solvent. Examples of the reaction solvent include aliphatic hydrocarbons such as hexane, cyclohexane and heptane; aliphatic halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride and dichloroethane; aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene. Diethyl ether, diisopropyl ether, dibutyl ether, dimethoxyethane (DME), cyclopentyl methyl ether (CPME), tert-butyl methyl ether, tetrahydrofuran (THF), ethers such as dioxane; esters such as ethyl acetate and ethyl propionate; dimethyl Examples include amides such as formamide (DMF), N, N-dimethylacetamide (DMA) and N-methylpyrrolidone (NMP); nitriles such as acetonitrile and propionitrile; dimethyl sulfoxide (DMSO) and the like. Of these, aliphatic halogenated hydrocarbons are preferable, and dichloromethane is more preferable.

反応は、通常、不活性ガス(例えば、窒素、アルゴン等)雰囲気下で行うことが好ましい。   The reaction is usually preferably carried out in an inert gas (eg, nitrogen, argon, etc.) atmosphere.

反応温度は、加熱下、常温下及び冷却下のいずれも採用することができ、通常、20〜80℃が好ましい。反応時間は反応が十分に進行する程度とすることができる。   The reaction temperature may be any of heating, room temperature and cooling, and is usually preferably 20 to 80 ° C. The reaction time can be set so that the reaction proceeds sufficiently.

反応終了後は、必要に応じて常法にしたがって精製処理を行って一般式(2)で表される化合物を単離し、上記した塩基との反応に使用することができる。   After completion of the reaction, the compound represented by the general formula (2) can be isolated by purification according to a conventional method as necessary, and used for the reaction with the above-described base.

なお、上記では、一般式(3)で表される化合物と一般式(4)で表される化合物との反応と、一般式(2)で表される化合物と塩基との反応とを別個に説明したが、これら2つの反応とその間の分離操作(単離操作)を連続して行うことも可能である。   In the above, the reaction between the compound represented by the general formula (3) and the compound represented by the general formula (4) and the reaction between the compound represented by the general formula (2) and the base are separately performed. As described above, these two reactions and the separation operation (isolation operation) between them can be performed continuously.

具体的には、前記一般式(1)で表される含フッ素アルキン化合物は、下記工程(a)〜(d)の順のように連続的なプロセスでおこなうことが好ましい。
(a)一般式(3)で表される化合物と、一般式(4)で表される化合物とを反応させて、一般式(2)で表される化合物を得る工程、
(b)前記工程(a)で得られた一般式(2)で表される化合物を分離し取り出す工程、
(c)前記工程(b)で分離した一般式(2)で表される化合物と、塩基とを50〜100℃で反応させ、前記一般式(1)で表される含フッ素アルキン化合物を得る工程、及び
(d)前記工程(c)で得られた一般式(1)で表される含フッ素アルキン化合物を分離し取り出す工程
工程(a)及び(c)は上記説明したとおり行うことができる。
Specifically, the fluorine-containing alkyne compound represented by the general formula (1) is preferably performed in a continuous process as in the following steps (a) to (d).
(A) reacting the compound represented by the general formula (3) with the compound represented by the general formula (4) to obtain a compound represented by the general formula (2);
(B) a step of separating and taking out the compound represented by the general formula (2) obtained in the step (a),
(C) The compound represented by the general formula (2) separated in the step (b) is reacted with a base at 50 to 100 ° C. to obtain the fluorine-containing alkyne compound represented by the general formula (1). And (d) a step of separating and taking out the fluorine-containing alkyne compound represented by the general formula (1) obtained in the step (c). The steps (a) and (c) can be performed as described above. .

工程(b)では、工程(a)で得られた一般式(2)で表される化合物と、使用した溶媒、一電子還元剤、及び必要に応じて工程(a)の原料化合物である一般式(3)で表される化合物の混合物から、一般式(2)で表される化合物を分離することができる。分離方法は特に限定されないが、ろ過、蒸留、吸着材による吸着、分液等が好ましく用いられる。特に、ろ過及び蒸留を順に行うことが好ましい。ろ過により、一電子還元剤が除去され、蒸留により、溶媒と一般式(3)で表される化合物と、一般式(2)で表される化合物とが分離され得る。   In the step (b), the compound represented by the general formula (2) obtained in the step (a), the solvent used, the one-electron reducing agent, and, if necessary, the raw material compound of the step (a) The compound represented by the general formula (2) can be separated from the mixture of the compounds represented by the formula (3). The separation method is not particularly limited, but filtration, distillation, adsorption with an adsorbent, liquid separation, and the like are preferably used. In particular, it is preferable to perform filtration and distillation in order. The one-electron reducing agent is removed by filtration, and the solvent, the compound represented by the general formula (3), and the compound represented by the general formula (2) can be separated by distillation.

工程(d)では、工程(c)で得られた一般式(1)で表される含フッ素アルキン化合物と、塩基、使用した溶媒(特に水)、副生し得る一般式(5):
CR2=O (5)
[式中、Rは前記に同じである。]
で表される化合物、及び必要に応じて工程(c)の原料化合物である一般式(2)で表される化合物の混合物から、一般式(1)で表される含フッ素アルキン化合物を分離することができる。分離方法は特に限定されないが、ろ過、蒸留、吸着材による吸着、分液、水洗等が好ましく用いられる。特に、蒸留及び水洗を順に行うことが好ましい。蒸留により、塩基、溶媒、原料化合物、前記副生物が前記含フッ素アルキン化合物より除去され、水洗により前記副生物を前記含フッ素アルキン化合物からさらに効果的に除去され得る。
In the step (d), the fluorine-containing alkyne compound represented by the general formula (1) obtained in the step (c), the base, the solvent used (especially water), and the general formula (5) that can be by-produced:
CR 2 = O (5)
[Wherein, R is the same as defined above. ]
The fluorine-containing alkyne compound represented by the general formula (1) is separated from a mixture of the compound represented by the general formula (2) and the compound represented by the general formula (2), which is a raw material compound in the step (c), if necessary. be able to. The separation method is not particularly limited, but filtration, distillation, adsorption with an adsorbent, liquid separation, water washing and the like are preferably used. In particular, it is preferable to sequentially perform distillation and water washing. The base, the solvent, the raw material compound, and the by-product can be removed from the fluorine-containing alkyne compound by distillation, and the by-product can be more effectively removed from the fluorine-containing alkyne compound by washing with water.

工程(b)及び(d)中の各分離操作はそれぞれ、バッチ式、連続式のいずれで行うこともできるが、連続式で行うことが好ましい。ろ過については、例えばろ過器を複数並列で備えておき、うち一方のろ過器を用いて連続的にろ過操作を行い、使用ろ材にろ過物が堆積してきたら、もう一方のろ過器に切り替えて、その間に堆積したろ過物を除去する、といったように切り替えながら連続的にろ過することもできる。蒸留については、蒸留塔の中段より分離したい混合物を連続的に仕込み、留出液、缶出液等を連続的に抜き出すことで連続的に蒸留することも可能である。   Each separation operation in the steps (b) and (d) can be carried out either batchwise or continuously, but is preferably carried out continuously. For filtration, for example, a plurality of filters are provided in parallel, and one of the filters is used for continuous filtration. It is also possible to continuously filter while switching, such as removing the filtrate that has accumulated in the meantime. Regarding distillation, it is also possible to continuously distill by continuously charging a mixture to be separated from the middle stage of the distillation column and continuously extracting distillate, bottoms, and the like.

工程(a)及び(c)において反応が完結せず原料化合物が残存した場合は、各工程の次の分離工程で回収し再び反応に供することで再利用することが好ましい。すなわち工程(a)において、例えば一般式(3)で表される化合物及び/又は一般式(4)で表される化合物が完全に消費されず残存した場合、工程(b)において回収し工程(a)で再び反応に供し、工程(c)において残存した一般式(2)で表される化合物が完全に消費されず残存した場合は、工程(d)において回収し工程(c)で再び反応に供することが好ましい。   When the reaction is not completed in steps (a) and (c) and the raw material compound remains, it is preferably reused by collecting it in the subsequent separation step of each step and subjecting it to the reaction again. That is, in the step (a), for example, when the compound represented by the general formula (3) and / or the compound represented by the general formula (4) remain without being completely consumed, the step (b) When the compound represented by the general formula (2) remaining in step (c) is not completely consumed and remains in step (c), it is recovered in step (d) and reacted again in step (c). It is preferable to use for.

以下に実施例を示し、本発明の特徴を明確にする。本発明はこれら実施例に限定されるものではない。   Examples are given below to clarify the features of the present invention. The present invention is not limited to these examples.

合成例1:C 2 F 5 I + CH≡C(CH 3 ) 2 OH → C 2 F 5 CH=CIC(CH 3 ) 2 OH
既報(Organometallics, 2005, 24, 5311-5317)にしたがい、ジクロロメタン中で、C2F5IとCH≡C(CH3)2OHとを、Zn(1.0当量)の存在下に45℃で2時間反応させることにより、C2F5CH=CIC(CH3)2OHを得た。具体的には、以下のとおり反応を行った。
Synthesis Example 1: C 2 F 5 I + CH≡C (CH 3 ) 2 OH → C 2 F 5 CH = CIC (CH 3 ) 2 OH
According to previous reports (Organometallics, 2005, 24, 5311-5317), C 2 F 5 I and CH≡C (CH 3 ) 2 OH in dichloromethane in the presence of Zn (1.0 eq) at 45 ° C. C 2 F 5 CH═CIC (CH 3 ) 2 OH was obtained by reacting for a period of time. Specifically, the reaction was performed as follows.

4口3000mLフラスコにスターラーチップ、冷却管及び内温系を装着し、その中にZn粉末(473g, 7.4mol)、CH2Cl2(400mL)、2-メチル-3-ブチン-2-オール(CH≡C(CH3)2OH; 412g, 4.9mol)を入れた。冷却管を-20℃にセットし、冷却管の先には3方コックを装着し、その一端からN2を0.1L/minで流した。C2F5Iが充填されたボンベを計りに載せて、重量を測定しながらバルブをゆっくりと開けてフラスコ内に吹き込んだ。反応は発熱的であるため、C2F5Iを100g(0.41mol)仕込むごとにバルブを閉めて、内温が20℃以下になるのを確認してからバルブを開けてC2F5Iを追加し、最終的に1210g, 4.9molのC2F5Iを仕込んだ。2時間後、サンプリングしGC分析により原料の消失を確認した後、亜鉛をろ過し、反応液をエバポレーションし、C2F5CH=CIC(CH3)2OHを1324g, 3.7mol得た。収率は76%であった。 A 4-neck 3000 mL flask was equipped with a stirrer chip, a condenser tube and an internal temperature system, and Zn powder (473 g, 7.4 mol), CH 2 Cl 2 (400 mL), 2-methyl-3-butyn-2-ol ( CH≡C (CH 3 ) 2 OH; 412 g, 4.9 mol) was added. The cooling pipe was set at -20 ° C., a three-way cock was attached to the tip of the cooling pipe, and N 2 was allowed to flow at 0.1 L / min from one end thereof. A cylinder filled with C 2 F 5 I was placed on the scale, and the valve was slowly opened while the weight was measured and blown into the flask. Since the reaction is exothermic, every time 100 g (0.41 mol) of C 2 F 5 I is charged, the valve is closed, and after confirming that the internal temperature is below 20 ° C, the valve is opened and C 2 F 5 I Finally, 1210 g, 4.9 mol of C 2 F 5 I was charged. After 2 hours, sampling and confirming the disappearance of the raw material by GC analysis, the zinc was filtered, and the reaction solution was evaporated to obtain 1324 g, 3.7 mol of C 2 F 5 CH═CIC (CH 3 ) 2 OH. The yield was 76%.

実施例1:C 2 F 5 CH=CIC(CH 3 ) 2 OH + NaOH + H 2 O → C 2 F 5 C≡CH(小スケール)
500mLのオートクレーブに、合成例1で得たC2F5CH=CIC(CH3)2OH 169g(0.51mol)と、33%NaOH水溶液190mL(2.18mol、4.2当量)とを入れた。その後、内温が70℃に達するまで加熱した。反応は2時間で完結した。GC/MS及びNMRより、純度は98%であり、C2F5C≡CHが得られていることを確認した(収率95%)。
Example 1: C 2 F 5 CH = CIC (CH 3 ) 2 OH + NaOH + H 2 O → C 2 F 5 C≡CH (small scale)
A 500 mL autoclave was charged with 169 g (0.51 mol) of C 2 F 5 CH═CIC (CH 3 ) 2 OH obtained in Synthesis Example 1 and 190 mL (2.18 mol, 4.2 equivalents) of 33% NaOH aqueous solution. Then, it heated until internal temperature reached 70 degreeC. The reaction was complete in 2 hours. From GC / MS and NMR, it was confirmed that the purity was 98% and C 2 F 5 C≡CH was obtained (yield 95%).

実施例2:C 2 F 5 CH=CIC(CH 3 ) 2 OH + NaOH + H 2 O → C 2 F 5 C≡CH(大スケール)
1000mLのオートクレーブに、34%NaOH水溶液500mL(5.82mol、4.0当量)と、合成例1で得たC2F5CH=CIC(CH3)2OH 60g(0.18mol)とを入れ、内温が70℃に達するまで加熱した。10分後、合成例1で得たC2F5CH=CIC(CH3)2OHを60g(0.18mol)追加し、同様の操作を繰り返すことで、C2F5CH=CIC(CH3)2OHをトータルで480g(1.46mol)入れた。反応は4時間で終了した。GC/MS及びNMRより、純度は98%であり、C2F5C≡CHが得られていることを確認した。収率は90%であった。
Example 2: C 2 F 5 CH═CIC (CH 3 ) 2 OH + NaOH + H 2 O → C 2 F 5 C≡CH (large scale)
In a 1000 mL autoclave, 500 mL (5.82 mol, 4.0 equivalents) of a 34% NaOH aqueous solution and 60 g (0.18 mol) of C 2 F 5 CH═CIC (CH 3 ) 2 OH obtained in Synthesis Example 1 were added. Heated to reach 70 ° C. Ten minutes later, 60 g (0.18 mol) of C 2 F 5 CH═CIC (CH 3 ) 2 OH obtained in Synthesis Example 1 was added, and the same operation was repeated to obtain C 2 F 5 CH═CIC (CH 3 ) A total of 480 g (1.46 mol) of 2 OH was added. The reaction was completed in 4 hours. From GC / MS and NMR, it was confirmed that the purity was 98% and C 2 F 5 C≡CH was obtained. The yield was 90%.

実施例3:C 6 F 13 CH=CIC(CH 3 ) 2 OH + NaOH + H 2 O → C 6 F 13 C≡CH
C2F5Iの代わりにC6F13Iを用いたこと以外は合成例1と同様の処理を行い、C6F13CH=CIC(CH3)2OHを得た(収率88%)。
Example 3: C 6 F 13 CH═CIC (CH 3 ) 2 OH + NaOH + H 2 O → C 6 F 13 C≡CH
The same treatment as in Synthesis Example 1 was performed except that C 6 F 13 I was used instead of C 2 F 5 I to obtain C 6 F 13 CH═CIC (CH 3 ) 2 OH (yield 88% ).

C2F5CH=CIC(CH3)2OHの代わりにC6F13CH=CIC(CH3)2OHを用いたこと以外は実施例1と同様の処理を行い、C6F13C≡CHを得た(収率93%、純度90%以上)。 The same treatment as in Example 1 was carried out except that C 6 F 13 CH═CIC (CH 3 ) 2 OH was used instead of C 2 F 5 CH═CIC (CH 3 ) 2 OH, and C 6 F 13 C ≡CH was obtained (yield 93%, purity 90% or more).

実施例4:CF 3 CH=CIC(CH 3 ) 2 OH + NaOH + H 2 O → CF 3 C≡CH
C2F5Iの代わりにCF3Iを用いたこと以外は合成例1と同様の処理を行い、CF3CH=CIC(CH3)2OHを得た(収率80%)。
Example 4: CF 3 CH═CIC (CH 3 ) 2 OH + NaOH + H 2 O → CF 3 C≡CH
The same treatment as in Synthesis Example 1 was performed except that CF 3 I was used instead of C 2 F 5 I to obtain CF 3 CH═CIC (CH 3 ) 2 OH (yield 80%).

C2F5CH=CIC(CH3)2OHの代わりにCF3CH=CIC(CH3)2OHを用いたこと以外は実施例1と同様の処理を行い、CF3C≡CHを得た(収率90%、純度90%以上)。 C 2 F 5 CH = performs CIC (CH 3) CF 3 CH = CIC instead of 2 OH (CH 3) same treatment as in Example 1 except for using 2 OH, to give the CF 3 C≡CH (Yield 90%, purity 90% or more).

比較例1:C 6 F 13 C≡CC(CH 3 ) 2 OH + NaOH → C 6 F 13 C≡CH
フレームドライした50mLフラスコに還流管を装着し、アルゴン雰囲気下で上記実施例3で得られたC6F13CH=CIC(CH3)2OH(35.3g, 88mmol)、NaOH 2.5g(固体;61mmol)を加えた。フラスコ内を400mmHgに減圧し、100℃まで加熱した。一時間以上反応させて、食塩入りの氷水中のフラスコに生成物を回収した。生成物は蒸留水で3回洗い、硫酸マグネシウムで脱水した。ろ過して乾燥した後、C6F13C≡CHが13.4g得られた。収率は46%であった。
Comparative Example 1: C 6 F 13 C≡CC (CH 3 ) 2 OH + NaOH → C 6 F 13 C≡CH
A 50 mL flask dried with a flame was fitted with a reflux tube, and C 6 F 13 CH═CIC (CH 3 ) 2 OH (35.3 g, 88 mmol) obtained in Example 3 above under an argon atmosphere, 2.5 g of NaOH (solid; 61 mmol) was added. The inside of the flask was depressurized to 400 mmHg and heated to 100 ° C. The reaction was continued for 1 hour or longer, and the product was collected in a flask in ice water containing salt. The product was washed 3 times with distilled water and dehydrated with magnesium sulfate. After filtration and drying, 13.4 g of C 6 F 13 C≡CH was obtained. The yield was 46%.

比較例2:C 2 F 5 CH=CIC(CH 3 ) 2 OH + NaOH + H 2 O → C 2 F 5 C≡CH(低温)
100mL 3口フラスコに還流管を取り付け、5℃の冷却水を流した。還流管の先端に3方コックを設け、その一端にテドラーバックを取り付け、反応により発生したガスはテドラーバック内に回収されるようにした。その後、フラスコ内に、36%NaOH水溶液26mL(0.33mol, 4.0当量)、合成例1で得たC2F5CH=CIC(CH3)2OH 27g(0.08mol)を入れ、内温が40℃になるまで加熱した。1時間後、テドラーバック内をGC分析した結果、C2F5C≡CHは生成していなかった。
Comparative Example 2: C 2 F 5 CH = CIC (CH 3 ) 2 OH + NaOH + H 2 O → C 2 F 5 C≡CH (low temperature)
A reflux tube was attached to a 100 mL three-necked flask, and 5 ° C. cooling water was allowed to flow. A three-way cock was provided at the tip of the reflux tube, and a Tedlar back was attached to one end thereof, so that the gas generated by the reaction was collected in the Tedlar back. Thereafter, 26 mL of 36% NaOH aqueous solution (0.33 mol, 4.0 equivalents) and C 2 F 5 CH═CIC (CH 3 ) 2 OH 27 g (0.08 mol) obtained in Synthesis Example 1 were placed in the flask, and the internal temperature was 40 Heated to ° C. After 1 hour, GC analysis of the Tedlar bag revealed that C2F5C≡CH was not generated.

比較例3:C 3 F 7 C≡CC(CH 3 ) 2 OH及びC 3 F 7 C≡CHの合成(Organometallics (2005).24(22). 5311-5317)
3口100mLフラスコにスターラーチップ、冷却管、セプタムを装着し、その中にZn粉末(3.3g, 50mmol)、CH2Cl2(50mL)、2-メチル-3-ブチン-2-オール(CH≡C(CH3)2OH; 4.2g, 50mmol)、C3F7I(14.8g, 50mmol)を入れた。CF3CO2H(1.16g, 10mmol)を滴下すると、ゆっくりと還流させた。10分後、発熱が起き、さらに2時間室温で反応させた。亜鉛をろ過し、CH2Cl2(20mL)で洗った。反応液をエバポレーションし、黄色のオイル状化合物(C3F7CH=CIC(CH3)2OH)が得られた。
Comparative Example 3: Synthesis of C 3 F 7 C≡CC (CH 3 ) 2 OH and C 3 F 7 C≡CH (Organometallics (2005) .24 (22). 5311-5317)
A three-necked 100 mL flask is equipped with a stirrer tip, a condenser, and a septum, and Zn powder (3.3 g, 50 mmol), CH 2 Cl 2 (50 mL), 2-methyl-3-butyn-2-ol (CH≡ C (CH 3 ) 2 OH; 4.2 g, 50 mmol) and C 3 F 7 I (14.8 g, 50 mmol) were added. When CF 3 CO 2 H (1.16 g, 10 mmol) was added dropwise, the mixture was slowly refluxed. After 10 minutes, an exotherm occurred and the reaction was allowed to proceed for another 2 hours at room temperature. The zinc was filtered and washed with CH 2 Cl 2 (20 mL). The reaction solution was evaporated to obtain a yellow oily compound (C 3 F 7 CH═CIC (CH 3 ) 2 OH).

3口100mLフラスコにスターラーチップ、冷却管、滴下漏斗を装着し、KOH(2.9g, 50mmol)、蒸留水(4mL)、及びエタノール(10mL)を入れた。上記で得られたC3F7CH=CIC(CH3)2OHにエタノール(2mL)を入れて反応容器に滴下した。室温で1時間撹拌した後、水で薄めて、HClを加えて酸性にした。エーテルで抽出し、MgSO4で脱水し溶媒をエバポレーションすると、黄色の液体が10g得られた。1H及び19F NMRから液体にはエーテルが2g、シス-C3F7CH=CIC(CH3)2OHが3mmol、C3F7C≡CC(CH3)2OHが27mmol含まれていた。即ち、収率は54%であった。 A three-necked 100 mL flask was equipped with a stirrer chip, a condenser, and a dropping funnel, and KOH (2.9 g, 50 mmol), distilled water (4 mL), and ethanol (10 mL) were added. Ethanol (2 mL) was added to the C 3 F 7 CH═CIC (CH 3 ) 2 OH obtained above and added dropwise to the reaction vessel. After stirring at room temperature for 1 hour, it was diluted with water and acidified with HCl. Extraction with ether, dehydration with MgSO 4 and evaporation of the solvent yielded 10 g of a yellow liquid. 1 H and 19 F NMR ether in liquid from is 2g, cis -C 3 F 7 CH = CIC ( CH 3) 2 OH is 3mmol, C 3 F 7 C≡CC ( CH 3) 2 OH is not included 27mmol It was. That is, the yield was 54%.

得られた黄色の液体(C3F7C≡CC(CH3)2OHが27mmol含まれている)にNaOHペレット(1.8g, 45mmol)を加えて、バス温100〜105℃で40分間加熱した。-40℃のコールドレシーバーに無水エーテルを4mL加え、C3F7C≡CH 15mmolを回収した。即ち、収率は56%であった。 Add NaOH pellets (1.8 g, 45 mmol) to the resulting yellow liquid (contains 27 mmol of C 3 F 7 C≡CC (CH 3 ) 2 OH) and heat at a bath temperature of 100 to 105 ° C. for 40 minutes did. 4 mL of anhydrous ether was added to a -40 ° C. cold receiver to recover 15 mmol of C 3 F 7 C≡CH. That is, the yield was 56%.

Claims (8)

一般式(1):
RfC≡CH (1)
[式中、Rfは含フッ素アルキル基を示す。]
で表される含フッ素アルキン化合物の製造方法であって、
一般式(2):
RfCH=CX1CR2OH (2)
[式中、Rfは前記に同じである。X1はハロゲン原子を示す。Rは同一又は異なって、水素原子又はアルキル基を示す。]
で表される化合物と、塩基とを50℃以上で反応させる工程
を備える、製造方法。
General formula (1):
R f C≡CH (1)
[Wherein R f represents a fluorine-containing alkyl group. ]
A process for producing a fluorine-containing alkyne compound represented by:
General formula (2):
R f CH = CX 1 CR 2 OH (2)
[Wherein R f is the same as defined above. X 1 represents a halogen atom. R is the same or different and represents a hydrogen atom or an alkyl group. ]
A production method comprising a step of reacting a compound represented by the formula with a base at 50 ° C or higher.
前記Rfがパーフルオロアルキル基である、請求項1に記載の製造方法。 The production method according to claim 1, wherein R f is a perfluoroalkyl group. 前記塩基がアルカリ金属水酸化物である、請求項1又は2に記載の製造方法。 The production method according to claim 1, wherein the base is an alkali metal hydroxide. 前記反応工程を水溶液中で行う、請求項1〜3のいずれかに記載の製造方法。 The manufacturing method in any one of Claims 1-3 which perform the said reaction process in aqueous solution. 前記反応工程を50〜100℃で行う、請求項1〜4のいずれかに記載の製造方法。 The manufacturing method in any one of Claims 1-4 which perform the said reaction process at 50-100 degreeC. 前記反応工程の前に、一般式(3):
RfX2 (3)
[式中、Rfは前記に同じである。X2はハロゲン原子を示す。]
で表される化合物と、一般式(4):
CH≡CR2OH (4)
[式中、Rは前記に同じである。]
で表される化合物とを反応させて前記一般式(2)で表される化合物を得る工程
を備える、請求項1〜5のいずれかに記載の製造方法。
Prior to the reaction step, general formula (3):
R f X 2 (3)
[Wherein R f is the same as defined above. X 2 represents a halogen atom. ]
And a compound represented by the general formula (4):
CH≡CR 2 OH (4)
[Wherein, R is the same as defined above. ]
The manufacturing method in any one of Claims 1-5 provided with the process of obtaining the compound represented by the said General formula (2) by making the compound represented by these react.
前記一般式(3)で表される化合物と前記一般式(4)で表される化合物との反応を、一電子還元剤の存在下、光照射下又は電気化学的還元法により行う、請求項6に記載の製造方法。 The reaction between the compound represented by the general formula (3) and the compound represented by the general formula (4) is performed in the presence of a one-electron reducing agent, under light irradiation, or by an electrochemical reduction method. 6. The production method according to 6. 一般式(1):
RfC≡CH (1)
[式中、Rfは含フッ素アルキル基を示す。]
で表される含フッ素アルキン化合物の製造方法であって、
(a)一般式(3):
RfX2 (3)
[式中、Rfは含フッ素アルキル基を示す。X2はハロゲン原子を示す。]
で表される化合物と、一般式(4):
CH≡CR2OH (4)
[式中、Rは同一又は異なって、水素原子又はアルキル基を示す。]
で表される化合物とを反応させて、一般式(2):
RfCH=CX1CR2OH (2)
[式中、Rf及びRは前記に同じである。X1はハロゲン原子を示す。]
で表される化合物を得る工程、
(b)前記工程(a)で得られた一般式(2)で表される化合物を分離し取り出す工程、
(c)前記工程(b)で分離した一般式(2)で表される化合物と、塩基とを50℃以上で反応させ、前記一般式(1)で表される含フッ素アルキン化合物を得る工程、及び
(d)前記工程(c)で得られた一般式(1)で表される含フッ素アルキン化合物を分離し取り出す工程
を備える、製造方法。
General formula (1):
R f C≡CH (1)
[Wherein R f represents a fluorine-containing alkyl group. ]
A process for producing a fluorine-containing alkyne compound represented by:
(A) General formula (3):
R f X 2 (3)
[Wherein R f represents a fluorine-containing alkyl group. X 2 represents a halogen atom. ]
And a compound represented by the general formula (4):
CH≡CR 2 OH (4)
[In formula, R is the same or different and shows a hydrogen atom or an alkyl group. ]
Is reacted with a compound represented by the general formula (2):
R f CH = CX 1 CR 2 OH (2)
[Wherein, R f and R are the same as defined above. X 1 represents a halogen atom. ]
Obtaining a compound represented by:
(B) a step of separating and taking out the compound represented by the general formula (2) obtained in the step (a),
(C) A step of obtaining a fluorine-containing alkyne compound represented by the general formula (1) by reacting the compound represented by the general formula (2) separated in the step (b) with a base at 50 ° C. or higher. And (d) a production method comprising a step of separating and taking out the fluorine-containing alkyne compound represented by the general formula (1) obtained in the step (c).
JP2017090431A 2017-04-28 2017-04-28 Method for producing fluorine-containing alkyne compound Pending JP2018188378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017090431A JP2018188378A (en) 2017-04-28 2017-04-28 Method for producing fluorine-containing alkyne compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017090431A JP2018188378A (en) 2017-04-28 2017-04-28 Method for producing fluorine-containing alkyne compound

Publications (1)

Publication Number Publication Date
JP2018188378A true JP2018188378A (en) 2018-11-29

Family

ID=64478148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017090431A Pending JP2018188378A (en) 2017-04-28 2017-04-28 Method for producing fluorine-containing alkyne compound

Country Status (1)

Country Link
JP (1) JP2018188378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116063148A (en) * 2023-04-06 2023-05-05 北京宇极科技发展有限公司 Method for preparing fluorine-containing alkyne through gas phase reaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116063148A (en) * 2023-04-06 2023-05-05 北京宇极科技发展有限公司 Method for preparing fluorine-containing alkyne through gas phase reaction

Similar Documents

Publication Publication Date Title
KR20070057155A (en) Chemical production processes and systems
EP1247791B1 (en) Process for production of perfluoroalkadienes
JP5345357B2 (en) 1,3-adamantane dimethanol monovinyl ether, 1,3-adamantane dimethanol divinyl ether and process for producing the same
JP7023166B2 (en) (9E, 11Z) -9,11-Hexadecadienal manufacturing method
JP2018188378A (en) Method for producing fluorine-containing alkyne compound
KR101913484B1 (en) Method for producing compound having oxydifluoromethylene skeleton
JP2022048291A (en) Methods for producing iodofluoroalkane and fluoroolefin
JP2013067583A (en) Method for producing 3,3,3-trifluoropropanol
JP2021107346A (en) Production process for 1,3-dichloro-2,3,3-trifluoropropene
CN104987302B (en) N, N diethyl formic acid 4 halogenated methyl 3,5 xylenol ester compounds and preparation method thereof
JP7353295B2 (en) Method for producing 2,6-dialkylphenylacetic acid
JP4884982B2 (en) Method for producing vinyl silane
JP4948030B2 (en) Method for producing fluorine-containing alcohol derivative
JPWO2004054997A1 (en) Method for producing 1-acetoxy-3- (substituted phenyl) propene compound
JP4258658B2 (en) Method for producing acetylene compound
JP6572484B2 (en) Method for producing compound having butadiene skeleton containing hydrogen and fluorine and / or chlorine
JP5803420B2 (en) Process for producing β, β-difluoro-α, β-unsaturated carbonyl compound
JPS6223729B2 (en)
JP4797449B2 (en) Iodine-containing fluoropolyether and process for producing the same
WO2006051723A1 (en) Method for producing 1-halo-3-aryl-2-propanone
JP2023077768A (en) Method for producing 3,7-dimethyl alkane compound
EP0088383B1 (en) Process for preparing the compound 1-methoxy-6-chloro-hexyne-2
EP4079717A1 (en) (6z,9z)-6,9-dodecadien-1-yne and a process for preparing the same
JP2020075876A (en) 9-silafluorene compound having nitro group and production method thereof
JP2006001925A (en) Method for producing 3,4,5-trifluorobenzyl alcohol