JP2018188316A - Hydrogen generator - Google Patents

Hydrogen generator Download PDF

Info

Publication number
JP2018188316A
JP2018188316A JP2017089366A JP2017089366A JP2018188316A JP 2018188316 A JP2018188316 A JP 2018188316A JP 2017089366 A JP2017089366 A JP 2017089366A JP 2017089366 A JP2017089366 A JP 2017089366A JP 2018188316 A JP2018188316 A JP 2018188316A
Authority
JP
Japan
Prior art keywords
hydrogen
separation membrane
electrode
dielectric
hydrogen separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017089366A
Other languages
Japanese (ja)
Other versions
JP6900004B2 (en
Inventor
神原 信志
Nobushi Kanbara
信志 神原
友規 三浦
Tomonori Miura
友規 三浦
池田 達也
Tatsuya Ikeda
達也 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu University NUC
Sawafuji Electric Co Ltd
Original Assignee
Gifu University NUC
Sawafuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University NUC, Sawafuji Electric Co Ltd filed Critical Gifu University NUC
Priority to JP2017089366A priority Critical patent/JP6900004B2/en
Priority to PCT/JP2018/012296 priority patent/WO2018198636A1/en
Publication of JP2018188316A publication Critical patent/JP2018188316A/en
Application granted granted Critical
Publication of JP6900004B2 publication Critical patent/JP6900004B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen generator capable of easily suppressing generation amount of hydrogen and producing high purity hydrogen at high yield.SOLUTION: A hydrogen generator 1 has a dielectric body 2, an electrode 3, a hydrogen separation membrane 5 and a high voltage power source 6. The dielectric body 2 is a planar dielectric body having a first surface 11 with a raw material gas flow passage 13 formed as a continuous groove, and a second surface 12 in almost parallel to the first surface 11. The electrode 3 is arranged, facing the second surface 12 of the dielectric body 2, and the hydrogen separation membrane 5 is arranged in a first surface 11 side of the dielectric body 2. The hydrogen separation membrane 5 coats an aperture of the raw material gas flow passage 13. The high voltage electrode 6 supplies electric power to the electrode 3 or the hydrogen separation membrane 5 and generates electric discharge. The electrode 3 and the hydrogen separation membrane 5 are arranged at an asymmetric position to the dielectric body 2.SELECTED DRAWING: Figure 2

Description

本発明は、水素生成装置に関する。特に、水素の収率が高く、水素の生成量を容易に制御することができる水素生成装置に関する。   The present invention relates to a hydrogen generator. In particular, the present invention relates to a hydrogen generator that has a high hydrogen yield and can easily control the amount of hydrogen generated.

高純度の水素を生成し、燃料電池等に安定供給する技術が求められている。水素を生成する方法としては、たとえば炭化水素ガスを水蒸気改質する方法が知られている。しかし炭化水素の水蒸気改質では、原料に対して水蒸気のモル比が低くなったときに炭素が析出して触媒が失活するという問題がある。このため、水素の生成量に対応して工程条件を厳しく管理する必要がある。   There is a need for a technology that generates high-purity hydrogen and stably supplies it to fuel cells and the like. As a method of generating hydrogen, for example, a method of steam reforming a hydrocarbon gas is known. However, the steam reforming of hydrocarbons has a problem that when the molar ratio of steam to the raw material is low, carbon is precipitated and the catalyst is deactivated. For this reason, it is necessary to strictly manage the process conditions corresponding to the amount of hydrogen produced.

発明者らは、アンモニアを放電によりプラズマとして水素を生成する方法および装置を発明し、特許文献1として開示した。特許文献1には、プラズマ反応器と、高電圧電極と、接地電極とを備えている水素生成装置を開示している。特許文献1の水素生成装置は、水素分離膜が高電圧電極として機能しており、常温大気圧の条件下で、水素分離膜が接地電極との間で誘電体バリア放電し、供給されたガスに含まれるアンモニアをプラズマとすることによって高純度の水素を生成する。特許文献1の水素生成装置は、対向している高電圧電極と接地電極との間で放電して原料ガスがプラズマ状態になるため、プラズマ化している原料ガスの体積は、電極同士が対向している部分の体積と実質的に同じとなる。   The inventors have invented a method and apparatus for generating hydrogen using ammonia as a plasma by discharging, and disclosed it as Patent Document 1. Patent Document 1 discloses a hydrogen generation apparatus including a plasma reactor, a high voltage electrode, and a ground electrode. In the hydrogen generation apparatus of Patent Document 1, the hydrogen separation membrane functions as a high-voltage electrode, and under a condition of room temperature and atmospheric pressure, the hydrogen separation membrane discharges a dielectric barrier between the ground electrode and the supplied gas. High-purity hydrogen is generated by using ammonia contained in the plasma as plasma. In the hydrogen generation apparatus of Patent Document 1, since the raw material gas is in a plasma state by discharging between the high voltage electrode and the ground electrode facing each other, the volume of the raw material gas converted into plasma is such that the electrodes face each other. It becomes substantially the same as the volume of the portion.

特許文献1のプラズマ放電を利用した水素生成装置では、円筒形の反応容器内の原料を均一にプラズマ化するための電力を、反応容器の容量に従って増加させる必要があった。大型の反応容器では、小型の反応容器よりもむしろエネルギー効率が悪くなることがあり、水素の大量生産が必要となったときに、水素の収率が低くなるおそれがあった。   In the hydrogen generator using plasma discharge disclosed in Patent Document 1, it is necessary to increase the electric power for uniformly converting the raw material in the cylindrical reaction vessel into a plasma according to the capacity of the reaction vessel. A large reaction vessel may be less energy efficient than a small reaction vessel, and the hydrogen yield may be reduced when mass production of hydrogen is required.

特開2014−70012号公報JP 2014-70012 A

本発明はかかる現状に鑑みてなされものであって、水素の生成量を容易に制御することができ、しかも高純度の水素を常時高収率で生成可能な水素生成装置を提供することを解決すべき課題としてなされたものである。   The present invention has been made in view of the current situation, and solves the problem of providing a hydrogen generator capable of easily controlling the amount of hydrogen produced and capable of constantly producing high-purity hydrogen in a high yield. It was made as an issue to be done.

本発明の水素生成装置は、誘電体と、電極と、水素分離膜と、高電圧電源とを備えている。誘電体は、原料ガス流路が連続する溝として形成されている第一の面とこの第一の面に対して略平行な第二の面とを有する平板状の誘電体である。電極は誘電体の第二の面に対向して配置され、水素分離膜は誘電体の第一の面側に配置されて原料ガス流路の溝の開口部を被覆する。高電圧電源は、水素分離膜または電極に電力を供給して放電を発生させる。本発明の水素生成装置は、電極と水素分離膜とが前記誘電体に対して非対称な位置に配置されていることを特徴とする。   The hydrogen generator of the present invention includes a dielectric, an electrode, a hydrogen separation membrane, and a high voltage power source. The dielectric is a flat dielectric having a first surface formed as a groove in which the source gas flow paths are continuous and a second surface substantially parallel to the first surface. The electrode is disposed to face the second surface of the dielectric, and the hydrogen separation film is disposed on the first surface side of the dielectric to cover the opening of the groove of the source gas flow path. The high voltage power supply supplies electric power to the hydrogen separation membrane or electrode to generate discharge. The hydrogen generator of the present invention is characterized in that the electrode and the hydrogen separation membrane are disposed at positions asymmetric with respect to the dielectric.

本発明の水素生成装置は、誘電体上に原料ガス流路が溝として形成されており、溝の開口部を覆うように水素分離膜が配置されている。水素分離膜と、この水素分離膜に対して誘電体を挟んで対向する電極のどちらかに電力が供給されることで原料ガス流路内で放電が発生し、原料ガスがプラズマとなり、水素が生成する。   In the hydrogen generator of the present invention, the source gas flow path is formed as a groove on the dielectric, and the hydrogen separation membrane is disposed so as to cover the opening of the groove. Electric power is supplied to either the hydrogen separation membrane or an electrode facing the hydrogen separation membrane with a dielectric interposed therebetween, whereby a discharge occurs in the source gas flow path, the source gas becomes plasma, and hydrogen is Generate.

本発明の水素生成装置は、水素分離膜が誘電体の前記第一の面全体を被覆していることが好ましい。さらに、電極の第二の面に対向する部分の面積は、水素分離膜の面積の1%以上60%以下であることが好ましい。   In the hydrogen generator of the present invention, the hydrogen separation membrane preferably covers the entire first surface of the dielectric. Furthermore, the area of the portion facing the second surface of the electrode is preferably 1% or more and 60% or less of the area of the hydrogen separation membrane.

水素分離膜と電極との間の放電による原料ガスのプラズマ化によって、原料ガス流路で生成した水素は、原料ガス流路の開口部を覆う水素分離膜を透過して原料ガスから分離される。原料ガスの水素への分解と、生成した水素の原料ガスからの分離を効率よく行うことができ、高収率で水素ガスを生成することができる。   Hydrogen produced in the raw material gas flow path by the gasification of the raw material gas by discharge between the hydrogen separation membrane and the electrode permeates the hydrogen separation membrane covering the opening of the raw material gas flow path and is separated from the raw material gas. . The decomposition of the raw material gas into hydrogen and the separation of the generated hydrogen from the raw material gas can be efficiently performed, and the hydrogen gas can be generated with a high yield.

本発明の水素生成装置は、水素分離膜と電極とが誘電体に対して非対称に配置されている。これにより、放電によるプラズマが、電極を起点にして電極の対向していない原料ガス流路の上流から下流に広がり、プラズマの発生する領域が拡大する。   In the hydrogen generator of the present invention, the hydrogen separation membrane and the electrode are disposed asymmetrically with respect to the dielectric. As a result, the plasma due to the discharge spreads from the upstream to the downstream of the source gas flow channel that is not opposed to the electrode starting from the electrode, and the region where the plasma is generated is expanded.

本発明の水素生成装置の誘電体は、原料ガスの流路である溝の断面形状、原料ガス流路の全長、水素分離膜との接触面積、原料ガスの供給速度、印加電圧に加えて、電極の配置を適宜変更することで、水素の生成量を制御することができる。   In addition to the cross-sectional shape of the groove that is the flow path of the raw material gas, the total length of the raw material gas flow path, the contact area with the hydrogen separation membrane, the supply speed of the raw material gas, and the applied voltage, The amount of hydrogen generated can be controlled by appropriately changing the arrangement of the electrodes.

本発明の水素生成装置は、原料ガスの流れがある状態で、原料ガスのプラズマを効率的に発生させて水素生成量を制御することができる。   The hydrogen generation apparatus of the present invention can control the amount of hydrogen generation by efficiently generating the plasma of the source gas in a state where there is a flow of the source gas.

本発明の水素生成装置は、水素分離膜と対向している電極を水素分離膜よりも小さくし、電極が誘電体に対向している面積を水素分離膜の面積の1%〜60%とすることで、水素分離膜と電極間の静電容量を小さくし、少ない電力でプラズマを生成することができ、高電圧電源の省電力化を図ることができる。   In the hydrogen generator of the present invention, the electrode facing the hydrogen separation membrane is made smaller than the hydrogen separation membrane, and the area where the electrode faces the dielectric is 1% to 60% of the area of the hydrogen separation membrane. Thus, the capacitance between the hydrogen separation membrane and the electrode can be reduced, plasma can be generated with a small amount of power, and power saving of the high voltage power source can be achieved.

本発明の水素生成装置は、水素分離膜と対向している電極の面積が水素分離膜の面積よりも小さいにもかかわらず、原料ガス流路全体に対して、原料ガスがプラズマ化している部分の割合は大きくなる。プラズマ化している面積が大きいことで、アンモニアの分解が進み、アンモニアが分解して生成した水素分子が水素原子になっている割合が多くなる。この結果、水素生成量の制御および大容量化が可能となる。   The hydrogen generation apparatus of the present invention is a portion in which the source gas is turned into plasma with respect to the entire source gas flow path even though the area of the electrode facing the hydrogen separation membrane is smaller than the area of the hydrogen separation membrane. The proportion of increases. Since the area converted into plasma is large, the decomposition of ammonia proceeds, and the proportion of hydrogen molecules generated by the decomposition of ammonia becoming hydrogen atoms increases. As a result, the amount of hydrogen produced can be controlled and the capacity can be increased.

図1は、本発明の実施例に従った水素生成装置を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing a hydrogen generator according to an embodiment of the present invention. 図2は、本発明の実施例に従った水素生成装置の分解斜視図である。FIG. 2 is an exploded perspective view of the hydrogen generator according to the embodiment of the present invention. 図3は、本発明の実施例に従った水素生成装置の分解斜視図である。FIG. 3 is an exploded perspective view of the hydrogen generator according to the embodiment of the present invention. 図4は、本発明の水素生成装置によってプラズマ化した原料ガスの状態を示す図面代用写真である。FIG. 4 is a drawing-substituting photograph showing the state of the raw material gas converted into plasma by the hydrogen generator of the present invention.

本発明の水素生成装置は、電極と水素分離膜が誘電体に対して非対称な位置に配置されていることを特徴とする。ここで言う非対称な配置とは、以下の2通りの配置を含む。
すなわち、誘電体に対向する電極の面積が誘電体に対向する水素分離膜の面積と異なっている配置と、電極と水素分離膜の誘電体に対する位置が、誘電体の任意の位置に対して、面対称、線対称、点対称のいずれでもない配置である。
The hydrogen generator of the present invention is characterized in that the electrode and the hydrogen separation membrane are disposed at positions asymmetric with respect to the dielectric. The asymmetric arrangement mentioned here includes the following two arrangements.
That is, an arrangement in which the area of the electrode facing the dielectric is different from the area of the hydrogen separation membrane facing the dielectric, and the position of the electrode and the hydrogen separation film with respect to the dielectric is relative to an arbitrary position of the dielectric, It is an arrangement that is neither plane-symmetric, line-symmetric, or point-symmetric.

本発明の水素生成装置は、水素分離膜と対向している電極の面積が、水素分離膜の面積よりも小さいにもかかわらず、原料ガス流路内で原料ガスがプラズマとなる領域はより大きくなり、原料ガス流路全体でプラズマが発生することを特徴とする。プラズマ化している領域が広いことで、アンモニアの分解およびアンモニアから分解して生成した水素分子が水素原子になっている割合が多くなり、水素生成量の制御および大容量化が可能となる。従来技術では、対向している接地電極と高電圧電極との間で放電しプラズマ状態になるため、プラズマ化する領域は、対向している電極間の体積と実質的に同一となっていた。これに対して本発明では、水素分離膜と対向している電極を起点にしてプラズマが電極が対向していない流路方向、すなわち原料ガスの上流から下流に広がり、プラズマの面積が拡大される。ここで、水素生成装置において、原料ガスの流量を少なくしていくと、プラズマの原料ガス流路方向への広がりは減少していく。そして原料ガス流量がゼロの状態では、プラズマの流路方向への広がりがなく、電極から水素分離膜に対して垂直な方向でのみプラズマが発生する。つまり本発明の水素生成装置は、原料ガスの流れがある中で、プラズマを効率的に発生させ、水素生成量を制御するために好適な装置である。特に、水素分離膜と対向している電極を水素分離膜よりも小さく、水素分離膜の面積の1%〜60%とすることが特に効果的である。電極が水素分離膜に対向する面積が小さくなると、水素分離膜と電極間の静電容量が小さくなり、少ない電力でプラズマを生成することができ、高電圧電源の省電力化を図ることができる。   The hydrogen generation apparatus of the present invention has a larger region in which the source gas becomes plasma in the source gas flow path even though the area of the electrode facing the hydrogen separation membrane is smaller than the area of the hydrogen separation membrane. Thus, plasma is generated in the entire source gas flow path. Since the plasma-generated region is wide, the proportion of hydrogen molecules generated by decomposition of ammonia and the decomposition of ammonia into hydrogen atoms increases, and the amount of hydrogen generated can be controlled and the capacity can be increased. In the prior art, the plasma is generated between the ground electrode and the high-voltage electrode facing each other, so that the plasma region is substantially the same as the volume between the facing electrodes. On the other hand, in the present invention, plasma spreads from the electrode facing the hydrogen separation membrane in the direction of the flow path where the electrode is not opposed, that is, from upstream to downstream of the source gas, and the plasma area is expanded. . Here, in the hydrogen generator, when the flow rate of the source gas is decreased, the spread of the plasma in the direction of the source gas channel decreases. When the raw material gas flow rate is zero, plasma does not spread in the direction of the flow path of the plasma, and plasma is generated only in the direction perpendicular to the hydrogen separation membrane from the electrode. That is, the hydrogen generation apparatus of the present invention is a suitable apparatus for efficiently generating plasma and controlling the amount of hydrogen generation in the presence of a raw material gas flow. In particular, it is particularly effective that the electrode facing the hydrogen separation membrane is smaller than the hydrogen separation membrane and is 1% to 60% of the area of the hydrogen separation membrane. When the area where the electrode faces the hydrogen separation membrane is reduced, the capacitance between the hydrogen separation membrane and the electrode is reduced, plasma can be generated with a small amount of power, and power saving of the high voltage power supply can be achieved. .

以下に、本発明の好適な実施形態を列記する。
(1)水素生成装置で好適に用いられる原料ガスは、アンモニア、またはメタン等の炭化水素系ガス、アンモニア単体ではなくアンモニアと不活性ガスの混合ガスとすることができる。また、液化アンモニアや尿素から発生したアンモニア単体またはそのアンモニアと不活性ガスの混合ガスとすることができる。
(2)生成した水素を導出するための水素流路板が、水素分離膜に隣接して配置される。水素流路板には水素分離膜を通過した水素を受け入れる水素流路と水素導出口が設けられる。
(3)水素分離膜は、高電圧電源に接続された場合、高電圧電極として機能する。水素分離膜が高電圧電極として機能しているとき、誘電体の第二の面に対向するように配置された電極は接地電極として機能する。このとき、絶縁スペーサが水素分離膜と水素流路板との間に配置される。
(4)水素分離膜は、アースされている場合、接地電極として機能する。水素分離膜が接地電極として機能しているとき、誘電体の第二の面に対向するように配置された電極が高電圧電極として機能する。このとき、絶縁スペーサが、高電圧電極の外側に配置される。
(5)高電圧電極と接地電極とは誘電体を隔てて対向しており、誘電体バリア放電によって、原料ガス流路の中の原料ガスを大気圧非平衡プラズマとする。高電圧電源は、高電圧電極に対して、両極性パルス波形を印加する。
(6)誘電体は、石英ガラスなどのガラス、アルミナなどのセラミックス、チタン酸バリウム、ポリカーボネート、アクリルなどの絶縁性の高い樹脂で形成される。
(7)電極は平板状または棒状に形成されており、誘電体に対向する部分の面積は、誘電体の第二の面の面積よりも小さい。
Hereinafter, preferred embodiments of the present invention will be listed.
(1) The raw material gas suitably used in the hydrogen generator can be ammonia or a hydrocarbon-based gas such as methane, or a mixed gas of ammonia and an inert gas instead of ammonia alone. Further, ammonia alone generated from liquefied ammonia or urea, or a mixed gas of the ammonia and an inert gas can be used.
(2) A hydrogen channel plate for deriving the generated hydrogen is disposed adjacent to the hydrogen separation membrane. The hydrogen channel plate is provided with a hydrogen channel and a hydrogen outlet for receiving hydrogen that has passed through the hydrogen separation membrane.
(3) The hydrogen separation membrane functions as a high voltage electrode when connected to a high voltage power source. When the hydrogen separation membrane functions as a high voltage electrode, the electrode disposed so as to face the second surface of the dielectric functions as a ground electrode. At this time, the insulating spacer is disposed between the hydrogen separation membrane and the hydrogen flow path plate.
(4) When the hydrogen separation membrane is grounded, it functions as a ground electrode. When the hydrogen separation membrane functions as a ground electrode, the electrode arranged to face the second surface of the dielectric functions as a high voltage electrode. At this time, the insulating spacer is disposed outside the high voltage electrode.
(5) The high voltage electrode and the ground electrode are opposed to each other with a dielectric therebetween, and the source gas in the source gas channel is changed to atmospheric pressure non-equilibrium plasma by dielectric barrier discharge. The high voltage power supply applies a bipolar pulse waveform to the high voltage electrode.
(6) The dielectric is formed of a highly insulating resin such as glass such as quartz glass, ceramics such as alumina, barium titanate, polycarbonate, and acrylic.
(7) The electrode is formed in a flat plate shape or a rod shape, and the area of the portion facing the dielectric is smaller than the area of the second surface of the dielectric.

(実施例1)
以下、本発明にかかる水素生成装置の好適な実施例について、図面を参照しつつ説明する。図1は、本発明の実施例に従った水素生成装置1を模式的に示す斜視図である。図2は、水素生成装置1の各構成要素の正面と上面と右側面とを示した分解斜視図である。尚、以下の説明において、相対的な位置関係を示す上下左右の用語は、図面に示した上下左右の方向に対応している。
(Example 1)
Preferred embodiments of the hydrogen generator according to the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view schematically showing a hydrogen generator 1 according to an embodiment of the present invention. FIG. 2 is an exploded perspective view showing the front, top, and right side of each component of the hydrogen generator 1. In the following description, the terms “upper”, “left”, “right” and “left” indicating the relative positional relationship correspond to the upper, lower, left and right directions shown in the drawings.

水素生成装置1は、誘電体2と、電極3と、水素流路板4と、水素分離膜5と、高電圧電源6と、絶縁スペーサ7とを備えている。誘電体2、水素流路板4、及び絶縁スペーサ7は、側面の縦横比がほぼ同一の矩形形状に形成されている。水素分離膜5の縦横比もまた、誘電体2と実質的に同一となっている。   The hydrogen generator 1 includes a dielectric 2, an electrode 3, a hydrogen flow path plate 4, a hydrogen separation membrane 5, a high voltage power supply 6, and an insulating spacer 7. The dielectric 2, the hydrogen flow path plate 4, and the insulating spacer 7 are formed in a rectangular shape having substantially the same side-to-side aspect ratio. The aspect ratio of the hydrogen separation membrane 5 is also substantially the same as that of the dielectric 2.

誘電体2は、原料ガス流路13が形成された第一の面11と、この第一の面11に対して略平行な第二の面12とを有した、石英ガラス製の平板状の部材である。図2に示すように、誘電体2の第一の面11に、開口部を有する溝として、原料ガス流路13が形成されている。原料ガス流路13の形成されるパターンは、原料ガスの流量と原料ガスに印加する電圧とを考慮して適宜設定することができる。図2には、一例として、原料ガス入口14に連通して、誘電体2の上面と平行な直線状に延びる往路部分16と、往路部分16から折り返して往路部分16と平行に延びる復路部分17と、が交互に均一な間隔で複数回接続した原料ガス流路13を示している。   The dielectric 2 is a quartz glass flat plate having a first surface 11 on which a source gas flow path 13 is formed and a second surface 12 substantially parallel to the first surface 11. It is a member. As shown in FIG. 2, a source gas flow path 13 is formed in the first surface 11 of the dielectric 2 as a groove having an opening. The pattern in which the source gas channel 13 is formed can be appropriately set in consideration of the flow rate of the source gas and the voltage applied to the source gas. In FIG. 2, as an example, an outward path portion 16 that communicates with the source gas inlet 14 and extends in a straight line parallel to the upper surface of the dielectric 2, and a return path portion 17 that is folded back from the forward path portion 16 and extends in parallel with the forward path portion 16. And the source gas flow path 13 connected alternately at a uniform interval a plurality of times.

本実施例において、電極3は、上下方向の長さが誘電体2と実質的に同一であり、奥行き方向において誘電体2のほぼ1/3の長さを有する平板状の電極であり。電極3の一つの面が誘電体2の第二の面12に対向している。電極3は接地されており、接地電極として機能する。   In this embodiment, the electrode 3 is a flat electrode having a length in the vertical direction substantially the same as that of the dielectric 2 and having a length of about 1/3 of the dielectric 2 in the depth direction. One surface of the electrode 3 faces the second surface 12 of the dielectric 2. The electrode 3 is grounded and functions as a ground electrode.

水素分離膜5は、誘電体2の第一の面11に接するように配置されて、原料ガス流路13の開口部全体を覆っている。誘電体2と水素分離膜5とによって原料ガス流路13の閉断面を有する壁面が規定される。水素分離膜5は、原料ガス流路13の原料ガスは透過させず、原料ガスから生成された水素のみを透過して分離する。   The hydrogen separation membrane 5 is disposed so as to be in contact with the first surface 11 of the dielectric 2 and covers the entire opening of the source gas flow path 13. The dielectric 2 and the hydrogen separation membrane 5 define a wall surface having a closed cross section of the source gas flow path 13. The hydrogen separation membrane 5 does not permeate the source gas in the source gas flow path 13 but permeates and separates only hydrogen generated from the source gas.

水素分離膜5は、パラジウム合金薄膜、ジルコニウム−ニッケル(Zr−Ni)系合金薄膜、バナジウム−ニッケル(V−Ni)系合金薄膜、ニオブ−ニッケル(Nb−Ni)系合金薄膜、および、ニオブ(Nb)と、ニッケル(Ni)、コバルト(Co)およびモリブデン(Mo)よりなる群から選ばれる1種以上の金属と、バナジウム(V)、チタン(Ti)、ジルコニウム(Zr)、タンタル(Ta)およびハフニウム(Hf)よりなる群から選ばれる1種以上の金属との合金よりなる薄膜などで形成することができる。本実施例の水素分離膜5は、パラジウム合金薄膜を特に好適に使用することができる。水素分離膜5は、これらの金属からなる単層の膜、またはこれらの金属から選択される2以上の金属の積層によって形成することができる。また、シリカ系分離膜や、ゼオライト系分離膜、ポリイミド分離膜、ポリスルホン分離膜などの非金属を水素分離膜として用いることも可能であるが、その場合は、形状を維持するために、より強度の高い支持体を水素分離膜5と接合する必要がある。   The hydrogen separation membrane 5 includes a palladium alloy thin film, a zirconium-nickel (Zr—Ni) alloy thin film, a vanadium-nickel (V—Ni) alloy thin film, a niobium-nickel (Nb—Ni) alloy thin film, and a niobium ( Nb), one or more metals selected from the group consisting of nickel (Ni), cobalt (Co) and molybdenum (Mo), vanadium (V), titanium (Ti), zirconium (Zr), tantalum (Ta) And a thin film made of an alloy with one or more metals selected from the group consisting of hafnium (Hf). As the hydrogen separation membrane 5 of the present embodiment, a palladium alloy thin film can be used particularly preferably. The hydrogen separation membrane 5 can be formed by a single layer film made of these metals or a laminate of two or more metals selected from these metals. In addition, non-metals such as silica-based separation membranes, zeolite-based separation membranes, polyimide separation membranes, and polysulfone separation membranes can also be used as hydrogen separation membranes. It is necessary to join a high support to the hydrogen separation membrane 5.

水素流路板4は、縦横比が誘電体2及び水素分離膜5とほぼ同一の板状の部材である。水素流路板4は、左側面側に開口している水素流路18と、この水素流路18に連通している水素導出口19とを備えている、水素流路板4は、誘電体2との間に絶縁スペーサ7と水素分離膜5とを挟んで保持するように、原料ガス流路13の外側となる水素分離膜5の右側に配置される。水素流路18は、誘電体2の原料ガス流路13と対向する位置に開口が設けられており、水素分離膜5によってこの開口が覆われる。   The hydrogen flow path plate 4 is a plate-like member whose aspect ratio is substantially the same as that of the dielectric 2 and the hydrogen separation membrane 5. The hydrogen flow path plate 4 includes a hydrogen flow path 18 that opens to the left side surface and a hydrogen outlet port 19 that communicates with the hydrogen flow path 18. 2 is disposed on the right side of the hydrogen separation membrane 5 on the outside of the source gas flow path 13 so as to hold the insulating spacer 7 and the hydrogen separation membrane 5 between them. The hydrogen channel 18 is provided with an opening at a position facing the source gas channel 13 of the dielectric 2, and this opening is covered with the hydrogen separation membrane 5.

高電圧電源6は、水素分離膜5と電極3との間の原料ガス流路13内で放電を発生させるための電源である。本実施例では、高電圧電源6は水素分離膜5に接続されており、水素分離膜5に高電圧を印加して、水素分離膜5を高電圧電極として機能させる。絶縁スペーサ7は、水素分離膜5と水素流路板4との間に配置される。高電圧電源6は、波形保持時間が10μsと極めて短い両極性パルス波形を印加することで、電子エネルギー密度を高くすることができる。   The high voltage power supply 6 is a power supply for generating discharge in the source gas flow path 13 between the hydrogen separation membrane 5 and the electrode 3. In the present embodiment, the high voltage power source 6 is connected to the hydrogen separation membrane 5, and a high voltage is applied to the hydrogen separation membrane 5 so that the hydrogen separation membrane 5 functions as a high voltage electrode. The insulating spacer 7 is disposed between the hydrogen separation membrane 5 and the hydrogen flow path plate 4. The high voltage power supply 6 can increase the electron energy density by applying a bipolar pulse waveform having an extremely short waveform holding time of 10 μs.

本実施例では、誘電体2と、電極3と、水素流路板4と、水素分離膜5と、絶縁スペーサ7とを、重ね合わせてボルトとナットにより結合している。その上で、電極3を、誘電体2の第二の面の中央部に、高さ方向の位置を整合させた状態で結合している。原料ガス流路13と水素流路18を確実に封止するために、ガスケットの配置もしくは、シール材の塗布が追加的に行われる。   In the present embodiment, the dielectric 2, the electrode 3, the hydrogen flow path plate 4, the hydrogen separation membrane 5, and the insulating spacer 7 are overlapped and coupled by bolts and nuts. In addition, the electrode 3 is coupled to the central portion of the second surface of the dielectric 2 in a state where the position in the height direction is aligned. In order to securely seal the source gas channel 13 and the hydrogen channel 18, a gasket is additionally disposed or a sealing material is applied.

本実施例の水素生成装置1は、原料としてアンモニアが最も好適に使用される。アンモニアを原料として水素を生成する場合の反応式を、以下の式1に示す。

2NH+e→N+3H+e (式1)
In the hydrogen generator 1 of this embodiment, ammonia is most preferably used as a raw material. The reaction formula in the case of producing hydrogen using ammonia as a raw material is shown in the following formula 1.

2NH 3 + e → N 2 + 3H 2 + e (Formula 1)

水素生成装置1でアンモニアを原料ガスとして水素を生成する方法を説明する。図示しない原料供給手段は、原料ガスの流速を制御する流速制御手段を備えており、誘電体2の原料ガス流路入口14を経て、所定の速度で原料ガス流路13に供給される。高電圧電源6が水素分離膜5に電圧を印加することで、水素分離膜5と電極3との間で誘電体バリア放電が発生する。放電によって、原料ガス流路13内のアンモニアが、大気圧非平衡プラズマとなる。   A method for generating hydrogen using ammonia as a source gas in the hydrogen generator 1 will be described. The raw material supply means (not shown) includes flow rate control means for controlling the flow speed of the raw material gas, and is supplied to the raw material gas flow path 13 at a predetermined speed via the raw material gas flow path inlet 14 of the dielectric 2. When the high voltage power supply 6 applies a voltage to the hydrogen separation membrane 5, a dielectric barrier discharge is generated between the hydrogen separation membrane 5 and the electrode 3. Due to the discharge, the ammonia in the source gas flow path 13 becomes atmospheric pressure non-equilibrium plasma.

図4に、本実施例の水素生成装置1によって大気圧非平衡プラズマとなったアンモニアが発光している状態を撮影した図面代用写真を示す。この図からも明らかであるとおり、原料ガス流路13全体でプラズマが発生している。プラズマの領域の拡大は、水素分離膜5と対向している電極3を起点にして、プラズマが電極3が対向していない流路方向、すなわち原料ガスの上流から下流に広がることによって生じる。   FIG. 4 shows a drawing-substituting photograph in which the ammonia that has become atmospheric pressure non-equilibrium plasma is emitted by the hydrogen generator 1 of this embodiment. As is clear from this figure, plasma is generated in the entire source gas flow path 13. The expansion of the plasma region occurs when the plasma spreads from the upstream of the source gas in the direction of the flow path where the electrode 3 does not face, starting from the electrode 3 facing the hydrogen separation membrane 5.

本実施例において、電極3の誘電体2に対向する部分の面積は、水素分離膜5の面積の1/3となっている。しかしながら、アンモニアのプラズマが発生する面積は、誘電体2に対向する電極の面積が水素分離膜5と同一である場合よりも大きくなっている。   In the present embodiment, the area of the portion of the electrode 3 facing the dielectric 2 is 1/3 of the area of the hydrogen separation membrane 5. However, the area where ammonia plasma is generated is larger than when the area of the electrode facing the dielectric 2 is the same as that of the hydrogen separation membrane 5.

アンモニアの大気圧非平衡プラズマから発生した水素は、水素原子の形態で水素分離膜5に吸着し、水素分離膜5の中を拡散しながら通過して水素流路板4の水素流路18に到達し、再結合して水素分子となる。このようにして、水素分離膜5は水素流路18側に水素のみを通過させ、水素が分離される。   Hydrogen generated from the atmospheric pressure non-equilibrium plasma of ammonia is adsorbed on the hydrogen separation membrane 5 in the form of hydrogen atoms, passes through the hydrogen separation membrane 5 while diffusing, and enters the hydrogen flow path 18 of the hydrogen flow path plate 4. Arrives and recombines into hydrogen molecules. In this way, the hydrogen separation membrane 5 allows only hydrogen to pass through the hydrogen flow path 18 side, and hydrogen is separated.

原料ガス流路13を通過するアンモニアは、流速を制御することで放電に曝される時間を確保することができ、アンモニアに含まれる水素のほぼ100%を水素として分離して水素流路18に導入することが可能である。また、原料ガス流路13のパターンと電極3の配置を最適化することにより、アンモニアの流量を増やした場合であっても、アンモニアから高収率で水素を生成することができる。   Ammonia passing through the source gas flow path 13 can secure time to be exposed to discharge by controlling the flow rate, and almost 100% of the hydrogen contained in the ammonia is separated as hydrogen and separated into the hydrogen flow path 18. It is possible to introduce. In addition, by optimizing the pattern of the source gas channel 13 and the arrangement of the electrodes 3, even when the flow rate of ammonia is increased, hydrogen can be generated from ammonia in a high yield.

(実施例2)
図3に、本実施例の水素生成装置21を示す。本実施例での電極3’は、上下方向の長さが誘電体2と実質的に同一であり、奥行き方向において誘電体2の1/4の長さを有する。電極3’は、誘電体2の第二の面12中央の上端部から下端部に亘って対向している。本実施例において、電極3’は高電圧電源6に接続されて、高電圧電極として機能する。絶縁スペーサ9は、電極3’の外側に配置される。
(Example 2)
FIG. 3 shows a hydrogen generator 21 of this embodiment. The electrode 3 ′ in this embodiment has a length in the vertical direction substantially the same as that of the dielectric 2, and has a length that is ¼ that of the dielectric 2 in the depth direction. The electrode 3 ′ is opposed from the upper end to the lower end of the center of the second surface 12 of the dielectric 2. In this embodiment, the electrode 3 ′ is connected to the high voltage power supply 6 and functions as a high voltage electrode. The insulating spacer 9 is disposed outside the electrode 3 ′.

本実施例において、水素分離膜5はアースされており、接地電極として機能する。高電圧電源6が電極3’に電圧を印加することで、水素分離膜5と電極3’との間の原料ガス流路13で、誘電体バリア放電が発生する。放電によって、原料ガス流路13内のアンモニアが大気圧非平衡プラズマとなり、高収率で水素を生成することができる。   In this embodiment, the hydrogen separation membrane 5 is grounded and functions as a ground electrode. When the high voltage power source 6 applies a voltage to the electrode 3 ′, a dielectric barrier discharge is generated in the source gas flow path 13 between the hydrogen separation membrane 5 and the electrode 3 ′. Due to the discharge, the ammonia in the source gas flow path 13 becomes atmospheric pressure non-equilibrium plasma, and hydrogen can be generated with a high yield.

本実施例の電極3’が誘電体2に対向する部分の面積は、水素分離膜5の面積の1/4となっている。しかしながら実施例1と同様に、アンモニアのプラズマが発生する面積は、誘電体2に対向する電極3’の面積が水素分離膜5と同一である場合よりも大きくなっていた。   The area of the portion where the electrode 3 ′ of the present embodiment faces the dielectric 2 is ¼ of the area of the hydrogen separation membrane 5. However, as in Example 1, the area where ammonia plasma was generated was larger than when the area of the electrode 3 ′ facing the dielectric 2 was the same as that of the hydrogen separation membrane 5.

実施例で説明した水素生成装置1、21において、誘電体2に対する電極の大きさおよび配置は、適宜変更が可能である。実施例では、水素分離膜が誘電体の前記第一の面全体を被覆している形態において、第二の面に対向している電極の面積が、水素分離膜の面積の1/3の場合と1/4の場合について説明したが、電極の面積が1%以上60%以下である場合に、プラズマの発生面積が大きくなることが確認されている。   In the hydrogen generators 1 and 21 described in the embodiments, the size and arrangement of the electrodes with respect to the dielectric 2 can be appropriately changed. In the embodiment, when the hydrogen separation membrane covers the entire first surface of the dielectric, the area of the electrode facing the second surface is 1/3 of the area of the hydrogen separation membrane. However, it has been confirmed that the plasma generation area increases when the area of the electrode is 1% or more and 60% or less.

実施例では、誘電体2の中央部に接するように配置した例について説明したが、いずれかの辺に沿うように、誘電体2の端部に配置することもできる。また、電極を複数配置することも可能であり、たとえば誘電体の四隅に、小型の電極を配置することもできる。電極の配置に会わせて、原料ガス流路の配置を変更することで、一層水素の収率を高めることができる。   In the embodiment, the example in which the dielectric 2 is disposed so as to be in contact with the central portion has been described. However, the dielectric 2 may be disposed at the end of the dielectric 2 along any one of the sides. It is also possible to arrange a plurality of electrodes. For example, small electrodes can be arranged at the four corners of the dielectric. The yield of hydrogen can be further increased by changing the arrangement of the source gas flow paths in accordance with the arrangement of the electrodes.

1、21 水素生成装置
2 誘電体
3、3’ 電極
4 水素流路板
5 水素分離膜
6 高電圧電源
7、9 絶縁スペーサ
11 第一の面
12 第二の面
13 原料ガス流路
14 原料ガス流路入口
15 原料ガス流路出口
16 原料ガス流路の往路部分
17 原料ガス流路の復路部分
18 水素流路
19 水素導出口
DESCRIPTION OF SYMBOLS 1,21 Hydrogen generator 2 Dielectric 3, 3 'electrode 4 Hydrogen flow-path board 5 Hydrogen separation membrane 6 High voltage power supply 7, 9 Insulation spacer 11 1st surface 12 2nd surface 13 Source gas flow path 14 Source gas Channel inlet 15 Source gas channel outlet 16 Outward portion of source gas channel 17 Return portion of source gas channel 18 Hydrogen channel 19 Hydrogen outlet

Claims (2)

原料ガス流路が連続する溝として形成されている第一の面と、前記第一の面に対して略平行な第二の面とを有する平板状の誘電体と、
前記誘電体の前記第二の面に対向して配置される電極と、
前記誘電体の前記第一の面側に配置されて、前記原料ガス流路の前記溝の開口部を被覆する水素分離膜と、
前記水素分離膜または前記電極に電力を供給して放電を発生させる高電圧電源と、
を備えており、
前記電極と前記水素分離膜とが前記誘電体に対して非対称な位置に配置されていることを特徴とする水素生成装置。
A flat dielectric having a first surface formed as a groove in which a source gas flow path is continuous, and a second surface substantially parallel to the first surface;
An electrode disposed opposite to the second surface of the dielectric;
A hydrogen separation membrane disposed on the first surface side of the dielectric and covering the opening of the groove of the source gas flow path;
A high-voltage power supply for generating electric discharge by supplying electric power to the hydrogen separation membrane or the electrode;
With
The hydrogen generating apparatus, wherein the electrode and the hydrogen separation membrane are disposed at positions asymmetric with respect to the dielectric.
前記水素分離膜が、前記誘電体の前記第一の面全体を被覆しており、
前記電極が前記第二の面に対向する部分の面積は、前記水素分離膜の面積の1%以上60%以下であることを特徴とする請求項1記載の水素生成装置。
The hydrogen separation membrane covers the entire first surface of the dielectric;
2. The hydrogen generation apparatus according to claim 1, wherein an area of a portion of the electrode facing the second surface is 1% or more and 60% or less of an area of the hydrogen separation membrane.
JP2017089366A 2017-04-28 2017-04-28 Hydrogen generator Active JP6900004B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017089366A JP6900004B2 (en) 2017-04-28 2017-04-28 Hydrogen generator
PCT/JP2018/012296 WO2018198636A1 (en) 2017-04-28 2018-03-27 Hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017089366A JP6900004B2 (en) 2017-04-28 2017-04-28 Hydrogen generator

Publications (2)

Publication Number Publication Date
JP2018188316A true JP2018188316A (en) 2018-11-29
JP6900004B2 JP6900004B2 (en) 2021-07-07

Family

ID=63918266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017089366A Active JP6900004B2 (en) 2017-04-28 2017-04-28 Hydrogen generator

Country Status (2)

Country Link
JP (1) JP6900004B2 (en)
WO (1) WO2018198636A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004359508A (en) * 2003-06-05 2004-12-24 Nissan Motor Co Ltd Hydrogen producing apparatus
JP2008536796A (en) * 2005-04-18 2008-09-11 インテリジェント エナジー インコーポレイテッド Compact device for pure hydrogen generation
JP2014070012A (en) * 2012-10-02 2014-04-21 Gifu Univ Hydrogen generator and fuel cell system equipped with hydrogen generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004359508A (en) * 2003-06-05 2004-12-24 Nissan Motor Co Ltd Hydrogen producing apparatus
JP2008536796A (en) * 2005-04-18 2008-09-11 インテリジェント エナジー インコーポレイテッド Compact device for pure hydrogen generation
JP2014070012A (en) * 2012-10-02 2014-04-21 Gifu Univ Hydrogen generator and fuel cell system equipped with hydrogen generator

Also Published As

Publication number Publication date
WO2018198636A1 (en) 2018-11-01
JP6900004B2 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
JP6241804B1 (en) Hydrogen generator
JP6241803B1 (en) Hydrogen generator
US10065170B2 (en) Hydrogen generating apparatus and fuel cell system provided with hydrogen generating apparatus
JP2014070012A5 (en)
JP5588581B2 (en) Hydrogen production equipment
EP1803922A1 (en) Fuel supply system
WO2018092478A1 (en) Fuel battery system and fuel battery system operation method
JP2009170267A (en) Ceramic plasma reactor and plasma reaction apparatus
JP2014169222A (en) Hydrogen manufacturing apparatus
WO2018198636A1 (en) Hydrogen generator
WO2018139363A1 (en) Fuel battery system provided with hydrogen generator
JP4304565B2 (en) Chemical reaction apparatus and control method thereof
JP2007161512A (en) Method of producing carbon nanotube
JP2006248847A (en) Fuel reformer and fuel reforming apparatus
WO2020261872A1 (en) Hydrogen production apparatus and hydrogen production method
US11987498B2 (en) Gas production system and gas production method
JP2007137721A (en) Fuel reforming apparatus
JP2007217229A (en) Apparatus and method for producing ozone
JP5592680B2 (en) Hydrogen production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200814

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R150 Certificate of patent or registration of utility model

Ref document number: 6900004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250