WO2020261872A1 - Hydrogen production apparatus and hydrogen production method - Google Patents

Hydrogen production apparatus and hydrogen production method Download PDF

Info

Publication number
WO2020261872A1
WO2020261872A1 PCT/JP2020/021266 JP2020021266W WO2020261872A1 WO 2020261872 A1 WO2020261872 A1 WO 2020261872A1 JP 2020021266 W JP2020021266 W JP 2020021266W WO 2020261872 A1 WO2020261872 A1 WO 2020261872A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
separation membrane
hydrogen separation
raw material
material gas
Prior art date
Application number
PCT/JP2020/021266
Other languages
French (fr)
Japanese (ja)
Inventor
神原 信志
友規 三浦
裕弥 田中
池田 達也
Original Assignee
国立大学法人東海国立大学機構
澤藤電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構, 澤藤電機株式会社 filed Critical 国立大学法人東海国立大学機構
Publication of WO2020261872A1 publication Critical patent/WO2020261872A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen production apparatus and a hydrogen production method.
  • the present invention relates to a hydrogen production apparatus and a hydrogen production method for efficiently producing hydrogen from ammonia at room temperature.
  • Patent Document 1 discloses a hydrogen production apparatus that separates hydrogen by using the raw material gas as plasma in a plasma reaction vessel.
  • the hydrogen production apparatus of Patent Document 1 includes a plasma reactor, a substantially tubular hydrogen separation and transporting unit that separates and carries out hydrogen in the plasma reactor, and a high-voltage power supply that applies a high voltage to the plasma reactor. I have.
  • the plasma reaction vessel is filled with ferroelectric pellets. Since the hydrogen production apparatus of Patent Document 1 applies a high voltage to the plasma reactor, safety measures such as insulation are required when incorporating the hydrogen production apparatus into another apparatus.
  • Patent Document 2 discloses a hydrogen production apparatus including a plasma reactor, a high voltage electrode, and a ground electrode.
  • the hydrogen separation film functions as a high voltage electrode to discharge a dielectric barrier with the ground electrode, and the ammonia contained in the supplied gas is used as plasma. Since the hydrogen separation membrane allows only hydrogen to permeate from the plasma of ammonia, high-purity hydrogen can be produced and separated.
  • the hydrogen production apparatus of Patent Document 2 can produce hydrogen at normal temperature and pressure.
  • a pump for sucking and supplying hydrogen may be arranged at the hydrogen outlet during mass production of hydrogen.
  • the present invention has been made in view of the present situation, and is a hydrogen production apparatus and hydrogen capable of easily controlling the amount of hydrogen produced and supplying hydrogen without providing a suction means such as a pump on the hydrogen flow path.
  • the provision of a manufacturing method was made as an issue to be solved.
  • the present invention relates to a hydrogen production apparatus.
  • the hydrogen production apparatus of the present invention includes a hydrogen separation membrane and a support that supports the hydrogen separation membrane, and has a hydrogen separation membrane assembly that defines a raw material gas flow path inside, and a raw material gas flow that is covered with a dielectric. It includes a high voltage electrode located in the center of the path and a container that houses the hydrogen separation membrane assembly and defines a hydrogen flow path between the hydrogen separation membrane assembly.
  • the hydrogen production apparatus of the present invention is characterized in that the hydrogen separation membrane assembly is grounded, and when power is supplied to the high voltage electrode, an electric discharge is generated between the high voltage electrode and the hydrogen separation membrane. And.
  • the support that supports the hydrogen separation membrane of the hydrogen production apparatus of the present invention preferably includes an outer peripheral support portion that supports the outer circumference of the hydrogen separation membrane.
  • an adsorbent is arranged in at least a part of the raw material gas flow path of the hydrogen separation membrane assembly.
  • the raw material gas is ammonia and the ammonia is supplied to the raw material gas flow path at a pressure such that the gauge pressure is larger than 0 kPa and lower than 300 kPa.
  • the gauge pressure referred to here being larger than 0 kPa is a pressure at which the raw material gas flow path becomes a positive pressure (positive pressure) with respect to the outside.
  • the hydrogen production apparatus of the present invention can accommodate a plurality of hydrogen separation membrane assemblies in a container. High voltage electrodes are located within each hydrogen separation membrane assembly.
  • a raw material gas introduction portion may be provided at one end of the container and a gas discharge portion may be provided at the other end of the container. ..
  • One end of the raw material gas flow path of the plurality of hydrogen separation membrane assemblies is connected to the raw material gas introduction part, and the other end part is connected to the gas discharge part.
  • the present invention also provides a hydrogen production method.
  • the hydrogen production method of the present invention contains the hydrogen separation membrane assembly that defines the raw material gas flow path, the high voltage electrode arranged in the center of the raw material gas flow path, and the hydrogen separation membrane assembly.
  • This is a method for producing hydrogen using a hydrogen production apparatus provided with a container that defines a hydrogen flow path between the separation membrane assembly and the hydrogen flow path.
  • the hydrogen production method of the present invention comprises a step of supplying a pressurized raw material gas to the hydrogen separation membrane assembly, a discharge step of supplying power to a high voltage electrode to discharge the hydrogen separation membrane assembly, and a raw material by discharge.
  • the gas is used as a plasma, and a hydrogen separation step of permeating the hydrogen atom contained in the raw material gas through the hydrogen separation membrane is provided.
  • a high voltage electrode is arranged inside the hydrogen separation membrane assembly.
  • the hydrogen separation membrane assembly is grounded and the hydrogen separation membrane assembly is housed in a container to ensure electrical safety and facilitate integration into other devices.
  • the hydrogen production apparatus of the present invention supplies the raw material gas to the raw material gas flow path inside the hydrogen separation membrane assembly at a predetermined pressure of atmospheric pressure or higher.
  • a predetermined pressure of atmospheric pressure or higher In particular, when ammonia is used as the raw material gas and the gauge pressure, which is a suitable pressure condition, is greater than 0 kPa and less than 300 kPa, hydrogen is produced in proportion to the pressure and supplied to the hydrogen flow path. can do. As a result, hydrogen can be supplied to the outside without using a special suction means.
  • the hydrogen production apparatus of the present invention can accommodate a plurality of hydrogen separation membrane assemblies in a container.
  • the hydrogen produced by each hydrogen separation membrane assembly is introduced into a common hydrogen flow path that communicates and is supplied to the outside.
  • the entire device can be miniaturized and the hydrogen supply path can be simplified.
  • a hydrogen production device equipped with a plurality of hydrogen separation membrane assemblies determines the supply amount of the raw material gas for each hydrogen separation membrane assembly, the on / off of the power supply to each high voltage electrode, and the pressurization amount of the raw material gas. By controlling, the amount of hydrogen produced can be flexibly changed from mass production to small quantity production.
  • FIG. 1 is an end view of the hydrogen production apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the hydrogen production apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing a vertical cross section of the hydrogen production apparatus according to the second embodiment of the present invention.
  • 4 (a) is a top view of the hydrogen production apparatus of Example 3
  • FIG. 4 (b) is a side view of the hydrogen production apparatus of Example 3
  • FIG. 4 (c) is a view of Example 3.
  • It is a front view of the hydrogen production apparatus of.
  • FIG. 5 is an end view of the hydrogen production apparatus according to the third embodiment of the present invention.
  • FIG. 6 is a schematic view of a vertical cross section of the hydrogen production apparatus according to the fourth embodiment of the present invention, omitting the central portion.
  • FIG. 7 is a cross-sectional view of the hydrogen production apparatus according to the fifth embodiment of the present invention.
  • FIG. 8 is a graph showing the relationship between the pressure of the raw material gas supplied to the hydrogen production apparatus of Example 1 and the amount of hydrogen produced.
  • the raw material gas that can be used in the hydrogen production apparatus can be a hydrocarbon gas such as ammonia, urea, or methane, or a mixed gas of ammonia and an inert gas instead of ammonia alone. Further, it can be a simple substance of ammonia generated from liquefied ammonia or urea, or a mixed gas of the ammonia and an inert gas.
  • the raw material gas most preferably used in the hydrogen production apparatus is ammonia.
  • the dielectric covering the high-voltage electrode is composed of ceramics such as alumina, barium titanate, polycarbonate, highly insulating resin such as acrylic, and glass such as quartz glass.
  • the hydrogen separation membrane a palladium alloy thin film or a vanadium alloy thin film can be preferably used.
  • the hydrogen separation film includes a zirconium-nickel (Zr-Ni) -based alloy thin film, a niobium-nickel (Nb-Ni) -based alloy thin film, and niobium (Nb), nickel (Ni), and cobalt (Co).
  • Zr-Ni zirconium-nickel
  • Nb-Ni niobium-nickel
  • Ni nickel
  • Co cobalt
  • Mo molybdenum
  • Ti titanium
  • Ti zirconium
  • Zr zirconium
  • Ta tantalum
  • the support of the hydrogen separation membrane assembly includes an outer peripheral support portion that supports the outer circumference of the hydrogen separation membrane and prevents the hydrogen separation membrane from being damaged or deformed.
  • the outer peripheral support portion is formed of a punching metal or mesh material, and allows hydrogen permeated by the hydrogen separation membrane to pass through as it is.
  • the support of the hydrogen separation membrane assembly may further include an inner circumference support portion that supports the inner circumference of the hydrogen separation membrane.
  • the inner peripheral support may be added for the purpose of preventing breakage or deformation of the hydrogen separation membrane and ensuring the strength of the entire hydrogen separation membrane assembly.
  • the inner peripheral support portion can be formed of a punching metal, a mesh material, or the like, similarly to the outer peripheral support portion.
  • the raw material gas inlet is connected to the raw material gas source.
  • a regulator which is a pressure controller, is provided between the raw material gas source and the raw material gas inlet, and the raw material gas is adjusted to a pressure at which the gauge pressure is equal to or higher than atmospheric pressure (that is, gauge pressure is 0 MPa or higher) and 1 MPa or lower. It is preferable to do so.
  • a large amount of hydrogen can be obtained in high yield by supplying ammonia to the hydrogen separation membrane assembly at a gauge pressure of more than 0 kPa and less than 300 kPa.
  • the amount of hydrogen produced can be increased by filling at least a part of the raw material gas flow path with an adsorbent.
  • the adsorbent either one or both of zeolite and activated alumina can be used.
  • zeolite having a pore diameter of 0.2 to 0.8 nm (2 to 8 ⁇ ).
  • the support of the hydrogen separation membrane assembly includes a first support portion and a second support portion that support both ends of the hydrogen separation membrane in addition to the outer peripheral support portion. It is composed of parts.
  • the first support portion and the second support portion position and support the hydrogen separation membrane and the high voltage electrode.
  • a raw material gas inlet is opened in the first support portion, and the raw material gas is introduced into the raw material gas flow path.
  • the hydrogen separation membrane is formed in a cylindrical shape, and the outer peripheral support portion is formed in a cylindrical shape in contact with the outer periphery of the hydrogen separation membrane to support the hydrogen separation membrane. .. Then, the container is formed into a cylindrical shape larger than the hydrogen separation membrane assembly to accommodate the hydrogen separation membrane assembly, the first support portion and one end portion of the container are joined, and the second support portion and the other end portion of the container are joined.
  • the hydrogen separation membrane assembly is concentrically aligned and fixed in the container by joining.
  • the first support portion and the second support portion are positioned and fixed so that the high voltage electrode is located along the central axis of the hydrogen production apparatus.
  • (11) In a hydrogen production apparatus in which a plurality of hydrogen separation membrane assemblies are housed in a container, an opening of an inner wall of a raw material gas introduction portion provided at one end of the container is provided with an outer peripheral support portion of the hydrogen separation membrane assembly.
  • the hydrogen separation membranes are connected by welding, bonding, or joining via a sealing member.
  • the outer peripheral support portion of the hydrogen separation membrane assembly and the hydrogen separation membrane are connected to the opening of the inner wall of the gas discharge portion provided at the other end of the container.
  • the hydrogen separation membrane assembly is fixed in the container at equal intervals in a state where the raw material gas flow path communicates with the raw material gas introduction part and the gas discharge part of the container.
  • the high-voltage electrode in the hydrogen production apparatus in which a plurality of hydrogen separation membrane assemblies are housed in the container penetrates the raw material gas introduction portion and is arranged at the center of the hydrogen separation membrane assembly.
  • all the hydrogen flow paths are in communication in the container and are supplied to the outside from one hydrogen outlet.
  • opening and closing of a raw material gas inlet can be controlled for each hydrogen separation membrane assembly. Further, it is possible to control the on / off of the power supply to each of the high voltage electrodes in conjunction with the opening / closing of the raw material gas inlet.
  • FIG. 1 is an end view schematically showing the hydrogen production apparatus 1 of this embodiment.
  • FIG. 2 is a cross-sectional view of the hydrogen production apparatus 1.
  • the hydrogen production apparatus 1 includes a hydrogen separation membrane assembly 2 having a cylindrical outer shape, a rod-shaped high-voltage electrode 3, and a cylindrical container 4.
  • the container 4 is formed in a cylindrical shape larger than the hydrogen separation membrane assembly 2.
  • the hydrogen separation membrane assembly 2 includes a hydrogen separation membrane 11 formed in a cylindrical shape and a support interposed between the container 4 and the hydrogen separation membrane 11 to support the hydrogen separation membrane 11.
  • the hydrogen separation membrane 11 is formed of a palladium alloy thin film or a vanadium alloy thin film.
  • the support is made of metal or resin.
  • the main component of the support is the outer peripheral support portion 12, the first support portion 13, and the second support portion 14.
  • the outer peripheral support portion 12 of the hydrogen separation membrane assembly 2 has a cylindrical shape in contact with the outer periphery of the hydrogen separation membrane 11, and surface-supports the hydrogen separation membrane 11.
  • the outer peripheral support portion is a punching metal or a metal or resin having a mesh-like opening, and hydrogen that has passed through the hydrogen separation membrane can pass through as it is.
  • the first support portion 13 of the hydrogen separation membrane assembly 2 supports one end portion of the hydrogen separation membrane.
  • the second support portion 14 supports the other end of the hydrogen separation membrane 11.
  • the first support portion 13 and the second support portion 14 are also joined to the container 4, and the hydrogen separation membrane assembly 2 is housed and fixed in the container 4 in a concentrically aligned state.
  • the hydrogen separation membrane 11 and the support portions 13 and 14 are joined by a method such as welding, caulking, or soldering, and the joint portion is ensured to be airtight.
  • the raw material gas inlet 15 is opened in the first support portion 13 of the hydrogen separation membrane assembly 2, and the exhaust gas outlet 17 is opened in the second support portion 14. From the above configuration, inside the hydrogen separation membrane 11 of the hydrogen separation membrane assembly 2, a raw material gas inlet 15 is arranged at one end, an exhaust gas outlet 17 is arranged at the other end, and all other parts are sealed.
  • the raw material gas flow path 16 is formed.
  • the hydrogen separation membrane assembly 2 is electrically connected to a ground terminal (not shown) and is grounded.
  • the hydrogen separation membrane 11 has a reference potential.
  • the rod-shaped high-voltage electrode 3 is entirely covered with the dielectric 6 except for one end 3a connected to the current introduction terminal. Both ends of the high voltage electrode 3 are supported by the first support portion 13 and the second support portion 14, and the high voltage electrode 3 is fixed along the central axis of the hydrogen separation membrane assembly 2. As a result, the distance between the hydrogen separation membrane 11 and the high voltage electrode 3 is substantially equidistant at any position.
  • a high voltage power supply (not shown) applies a high voltage to the high voltage electrode 3 via the current introduction terminal.
  • the high-voltage power supply generates a bipolar pulse waveform having an extremely short waveform holding time of 10 ⁇ s, and supplies electric power having a high electron energy density to the high-voltage electrode 3.
  • the container 4 has a cylindrical side surface and is made of metal or resin.
  • the hydrogen separation membrane assembly 2 is positioned and fixed in the container 4 by joining the first support portion 13 and one end of the container 4 and joining the second support portion 14 and the other end of the container 4.
  • the high voltage electrode 3 is arranged at substantially the same position as the central axis of the hydrogen production apparatus 1.
  • the raw material gas inlet 15 and the exhaust gas outlet 17 communicate with each other to the outside, but all the parts other than these are sealed in the container 4 and separated from other regions. ing.
  • a hydrogen flow path 21 which is a closed space is defined between the inner wall of the container 4 and the outer wall of the hydrogen separation membrane assembly 2.
  • a hydrogen outlet 22 is provided at one end of the container 4, and the produced hydrogen is supplied to the outside from the hydrogen outlet 22.
  • the raw material gas inlet 15 provided in the first support portion 13 is connected to a raw material gas source (not shown).
  • a regulator is provided between the raw material gas source and the raw material gas inlet 15, and the raw material gas is adjusted to a pressure exceeding 0 kPa to 300 kPa or less by a gauge pressure and supplied to the raw material gas flow path 16.
  • the outer peripheral support portion 12 supports the hydrogen separation film 11 to damage or deform the hydrogen separation film 11. To prevent.
  • Ammonia is most preferably used as a raw material in the hydrogen production apparatus 1 of this embodiment.
  • the reaction formula when hydrogen is produced from ammonia as a raw material is shown in the following formula 1. 2NH 3 + e ⁇ N 2 + 3H 2 + e (Equation 1)
  • Pressurized ammonia is introduced into the hydrogen separation membrane assembly 2 from the raw material gas inlet 15 and reaches the raw material gas flow path 16.
  • a dielectric barrier discharge is generated between the high-voltage electrode 3 and the hydrogen separation film 11. Due to the discharge, the ammonia in the raw material gas flow path 16 becomes atmospheric pressure non-equilibrium plasma.
  • the hydrogen separation membrane 11 is exposed to the plasma of ammonia. Hydrogen generated from the plasma is adsorbed on the hydrogen separation membrane 11 in the form of a hydrogen atom, passes through the hydrogen separation membrane 11 while diffusing, reaches the hydrogen flow path 21, and recombines to form a hydrogen molecule. Since the hydrogen separation membrane 11 allows only hydrogen to pass through, hydrogen is separated on the hydrogen flow path 21 side with high purity. After hydrogen is separated from ammonia, the remaining nitrogen is discharged from the exhaust gas outlet 17.
  • FIG. 8 is a graph showing the relationship between the pressure of ammonia supplied to the hydrogen production apparatus 1 of this embodiment and the amount of hydrogen produced.
  • the hydrogen production apparatus 1 of this embodiment can produce hydrogen by supplying ammonia at a gauge pressure of 1 MPa.
  • the pressure condition in which the pressure of the raw material gas is proportional to the amount of hydrogen produced and the yield of hydrogen obtained from the raw material gas is high is in the range where the gauge pressure exceeds 0 kPa and becomes 300 kPa or less.
  • ammonia is introduced into the raw material gas flow path 16 inside the hydrogen separation membrane assembly 2, and the hydrogen produced by the ammonia becoming plasma is released to the outside of the hydrogen production assembly 2. Will be done. Since the ammonia is pressurized, the flow of hydrogen released from the inside to the outside of the hydrogen separation membrane assembly 2 is naturally generated, and the hydrogen gas is introduced without providing a special suction means on the hydrogen outlet 22 side. Obtainable. Since the hydrogen gas obtained by the hydrogen production apparatus 1 has a high purity of 99.999% or more, it can be used as it is in the manufacturing process of a fuel cell or a semiconductor.
  • FIG. 3 is a diagram schematically showing a vertical cross section of the hydrogen production apparatus 31 of this embodiment. Elements having the same configuration as that of the first embodiment are designated by the same reference numerals, and duplicate description is omitted.
  • the adsorbent 5 is filled in the raw material gas flow path 16 of the hydrogen separation membrane assembly 2.
  • a hydrophobic zeolite having a pellet shape and an average pore diameter of 0.65 nm HSZ® molded product, HSZ-900, manufactured by Tosoh Corporation
  • the raw material gas introduced into the raw material gas flow path 16 is adsorbed by the adsorbent 5 and stays in the raw material gas flow path 16 until it becomes plasma. Therefore, hydrogen can be reliably produced from the raw material gas even when the supply amount of the raw material gas is increased. As a result, a larger amount of hydrogen can be produced.
  • Example 3 shows a top view of the hydrogen production apparatus 41 of this embodiment, FIG. 4 (b) shows a side view, and FIG. 4 (c) shows a front view.
  • FIG. 5 shows an end view of the hydrogen production apparatus 41 of this embodiment.
  • the hydrogen production apparatus 41 of the present invention houses seven hydrogen separation membrane assemblies 42 in a container 44.
  • a high-voltage electrode 3 coated with a dielectric 6 is arranged along the central axis of each hydrogen separation membrane assembly 42.
  • the container 44 has a cylindrical side surface and is made of metal or resin.
  • a raw material gas introduction unit 45 provided with a raw material gas introduction port 46 is provided on one end side of the container 44.
  • a gas discharge portion 47 provided with a gas discharge port 48 is provided.
  • the hydrogen separation membrane assembly 42 of this embodiment is composed of a hydrogen separation membrane 11 formed into a cylindrical shape and an outer peripheral support portion 12, and a raw material gas flow path 16 is formed inside.
  • the raw material gas introduction portion 45 provided at one end of the container 44 is separated from the other portion in the container by the inner wall 43a inside the container 44.
  • the inner wall 43a is provided with seven openings corresponding to the arrangement of the hydrogen separation membrane assembly 42.
  • the outer peripheral support portion 12 of the hydrogen separation membrane assembly 42 and the end portion of the hydrogen separation membrane 11 are connected to each of the openings by welding, adhesion, or joining via a sealing member.
  • the gas discharge portion 47 provided at the other end of the container 44 is separated from other parts in the container by the inner wall 43b.
  • the inner wall 43b is provided with seven openings corresponding to the arrangement of the hydrogen separation membrane assembly 42.
  • the outer peripheral support portion 12 of the hydrogen separation membrane assembly 42 and the end portion of the hydrogen separation membrane 11 are connected to each of the openings by welding, adhesion, or joining via a sealing member. In this way, both ends of the hydrogen separation membrane assembly 42 are joined to the inner walls 43a and 43b in the container 44, so that seven hydrogen separation membrane assemblies 42 are sealed and fixed in the container 44.
  • the raw material gas flow path 16 inside each hydrogen separation membrane assembly 42 communicates with the raw material gas introduction section 45 and the gas discharge section 47.
  • the pressurized raw material gas is evenly supplied to the raw material gas flow path 16 of each hydrogen separation membrane assembly 42 via the raw material gas introduction unit 45.
  • All hydrogen separation membrane assemblies 42 are electrically connected to a ground terminal (not shown) and are grounded.
  • the hydrogen separation membrane 11 has a reference potential.
  • the high-voltage electrode 3 coated with the dielectric 6 is fixed in a state of penetrating the raw material gas introduction portion 45 side of the container 44 via the sealing member 19, and is arranged at the center of the hydrogen separation membrane assembly 42. ing.
  • the hydrogen production apparatus 41 of this embodiment by supplying electric power to the high voltage electrode 3, a discharge is generated between the high voltage electrode 3 and the hydrogen separation membrane 11 for each of the plurality of hydrogen separation membrane assemblies 42.
  • a raw material gas such as ammonia
  • the raw material gas becomes plasma in the raw material gas flow path 16, and only hydrogen permeates through the hydrogen separation membrane 11 to the hydrogen flow path 21.
  • Hydrogen passes through the hydrogen flow path 21 and is supplied to the outside through a hydrogen outlet 49 that opens in the container 44.
  • a valve can be provided at the opening of the inner wall 43a to control the supply and stop of the raw material gas for each hydrogen separation membrane assembly 42. Further, it is possible to control the on / off of the power supply to each high voltage electrode in conjunction with the inflow and stop of the raw material gas. As a result, the amount of hydrogen produced can be adjusted as appropriate, and batch production can also be supported.
  • a plurality of hydrogen separation membrane assemblies 42 can be arranged in parallel and arranged in one container 44, and a large amount of hydrogen can be produced by a more simplified apparatus. it can. Further, since the supply of the raw material gas can be controlled for each hydrogen separation membrane assembly, the amount of hydrogen produced can be flexibly controlled.
  • FIG. 6 shows the hydrogen production apparatus 51 of this embodiment.
  • the hydrogen production apparatus 51 houses seven hydrogen separation membrane assemblies 42 in the same container 44 as in the third embodiment.
  • the raw material gas flow path 16 of the hydrogen separation membrane assembly 2 is filled with the adsorbent 5, and hydrogen can be produced from the raw material gas in a higher yield.
  • FIG. 7 shows a cross-sectional view of the hydrogen production apparatus 61 of this embodiment.
  • the outer diameter of the container 62 has a rectangular parallelepiped shape, and the hydrogen separation membrane assembly 2 is housed alone. By making the container 62 a rectangular parallelepiped, it becomes easier to stack and use it.
  • the configuration of the hydrogen production apparatus 1 described in the examples can be changed as appropriate.
  • the catalyst for example, when ammonia is used as a raw material gas, an ammonia decomposition catalyst in which a catalyst metal such as nickel or ruthenium is supported on magnesium oxide or alumina can be applied.
  • a hydrogen separation membrane assembly in which the first support portion and the second support portion are arranged at both ends of the hydrogen separation membrane is assembled in advance, the inner wall of the first support portion and the raw material gas introduction portion is joined, and the second support portion and the gas discharge are discharged.
  • a hydrogen production apparatus can be obtained by joining the inner wall of the portion. At this time, each high-voltage electrode is supported at both ends by the first support portion and the second support portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided is a hydrogen production apparatus that is capable of flexibly responding to changes in hydrogen feed rate, and in particular, capable of easily accommodating production of a large volume of hydrogen and that is capable of generating high-purity hydrogen in high yields. This hydrogen production apparatus 1 is provided with a hydrogen-separating membrane assembly 2, a high-voltage electrode 3, and a container. The hydrogen-separating membrane assembly 2 is equipped with a hydrogen-separating membrane 11 and a peripheral supporting part 12 which supports the periphery of the hydrogen-separating membrane, and further has defined therein a feedstock gas flow channel 16. The high-voltage electrode 3 is covered with a dielectric material 6, and is disposed in the central area of the feedstock gas flow channel 16. The container 4 houses the hydrogen-separating membrane assembly 2 therein, and also has defined therein a hydrogen flow channel 21 that is located between the container and the hydrogen-separating membrane assembly 2. As electricity is supplied to the high-voltage electrode 3, an electric discharge takes place between the high-voltage electrode 3 and the hydrogen-separating membrane assembly 2.

Description

水素製造装置及び水素製造方法Hydrogen production equipment and hydrogen production method
 本発明は、水素製造装置と水素製造方法に関する。特に、常温で効率よくアンモニアから水素を製造する水素製造装置および水素製造方法に関する。 The present invention relates to a hydrogen production apparatus and a hydrogen production method. In particular, the present invention relates to a hydrogen production apparatus and a hydrogen production method for efficiently producing hydrogen from ammonia at room temperature.
 近年、燃料電池の燃料や、半導体製造装置のキャリアガスとして、高純度の水素の需要が高まっている。水素を製造する方法として、たとえば炭化水素ガスを水蒸気改質する方法が知られている。しかし炭化水素の水蒸気改質では、原料に対して水蒸気のモル比が低くなったときに炭素が析出して触媒が失活するため、水素の製造量に対応して製造条件を厳しく管理する必要がある。また、触媒を利用するには、反応温度を高温に維持する必要がある。 In recent years, there has been an increasing demand for high-purity hydrogen as a fuel for fuel cells and as a carrier gas for semiconductor manufacturing equipment. As a method for producing hydrogen, for example, a method of steam reforming a hydrocarbon gas is known. However, in steam reforming of hydrocarbons, when the molar ratio of steam to the raw material becomes low, carbon precipitates and the catalyst is deactivated, so it is necessary to strictly control the production conditions according to the amount of hydrogen produced. There is. Moreover, in order to utilize the catalyst, it is necessary to maintain the reaction temperature at a high temperature.
 特許文献1には、原料ガスをプラズマ反応容器内でプラズマとして、水素を分離する水素製造装置が開示されている。特許文献1の水素製造装置は、プラズマ反応器と、プラズマ反応器内で水素を分離して搬出する略筒状の水素分離搬送部と、プラズマ反応器へ高電圧を印加する高電圧電源とを備えている。プラズマ反応容器内には、強誘電体ペレットが充填されている。特許文献1の水素製造装置は、プラズマ反応器に高電圧を印加するため、他の装置への組み込む場合には、絶縁等の安全対策が必要となる。 Patent Document 1 discloses a hydrogen production apparatus that separates hydrogen by using the raw material gas as plasma in a plasma reaction vessel. The hydrogen production apparatus of Patent Document 1 includes a plasma reactor, a substantially tubular hydrogen separation and transporting unit that separates and carries out hydrogen in the plasma reactor, and a high-voltage power supply that applies a high voltage to the plasma reactor. I have. The plasma reaction vessel is filled with ferroelectric pellets. Since the hydrogen production apparatus of Patent Document 1 applies a high voltage to the plasma reactor, safety measures such as insulation are required when incorporating the hydrogen production apparatus into another apparatus.
 発明者らは、アンモニアを放電によりプラズマとして水素を生成する方法および装置を発明し、特許文献2に開示した。特許文献2には、プラズマ反応器と、高電圧電極と、接地電極とを備えている水素製造装置を開示している。特許文献2の水素製造装置は、水素分離膜が高電圧電極として機能して接地電極との間で誘電体バリア放電し、供給されたガスに含まれるアンモニアをプラズマとする。水素分離膜が、アンモニアのプラズマの中から水素のみを透過させるので、高純度の水素を製造して分離することができる。特許文献2の水素製造装置は、水素の製造を、常温常圧で行うことができる。 The inventors invented a method and an apparatus for generating hydrogen by discharging ammonia into plasma, and disclosed it in Patent Document 2. Patent Document 2 discloses a hydrogen production apparatus including a plasma reactor, a high voltage electrode, and a ground electrode. In the hydrogen production apparatus of Patent Document 2, the hydrogen separation film functions as a high voltage electrode to discharge a dielectric barrier with the ground electrode, and the ammonia contained in the supplied gas is used as plasma. Since the hydrogen separation membrane allows only hydrogen to permeate from the plasma of ammonia, high-purity hydrogen can be produced and separated. The hydrogen production apparatus of Patent Document 2 can produce hydrogen at normal temperature and pressure.
 特許文献2の水素製造装置では、水素の大量生産時に、水素を吸引して供給するためのポンプを水素出口に配置する場合がある。しかし、水素流路上に配置するポンプには、防爆仕様のポンプを適用することが好ましく、装置全体が高価なものとなっていた。 In the hydrogen production apparatus of Patent Document 2, a pump for sucking and supplying hydrogen may be arranged at the hydrogen outlet during mass production of hydrogen. However, it is preferable to apply an explosion-proof pump to the pump arranged on the hydrogen flow path, and the entire device is expensive.
特開2004-359508号公報Japanese Unexamined Patent Publication No. 2004-359508 特開2014-70012号公報Japanese Unexamined Patent Publication No. 2014-70012
 本発明はかかる現状に鑑みてなされものであって、水素の製造量を容易に制御することができ、しかも水素流路上にポンプ等の吸引手段を設けることなく水素を供給できる水素製造装置および水素製造方法の提供を、解決すべき課題としてなされたものである。 The present invention has been made in view of the present situation, and is a hydrogen production apparatus and hydrogen capable of easily controlling the amount of hydrogen produced and supplying hydrogen without providing a suction means such as a pump on the hydrogen flow path. The provision of a manufacturing method was made as an issue to be solved.
 本発明は水素製造装置に関する。本発明の水素製造装置は、水素分離膜と水素分離膜を支持する支持体とを備えており内部に原料ガス流路を規定する水素分離膜アセンブリと、誘電体によって被覆されており原料ガス流路の中心部に配置された高電圧電極と、水素分離膜アセンブリを収容しており、水素分離膜アセンブリとの間に水素流路を規定する容器とを備えている。本発明の水素製造装置は、水素分離膜アセンブリが接地されており、前記高電圧電極に電力が供給されるとき、前記高電圧電極と前記水素分離膜との間で放電が発生することを特徴とする。 The present invention relates to a hydrogen production apparatus. The hydrogen production apparatus of the present invention includes a hydrogen separation membrane and a support that supports the hydrogen separation membrane, and has a hydrogen separation membrane assembly that defines a raw material gas flow path inside, and a raw material gas flow that is covered with a dielectric. It includes a high voltage electrode located in the center of the path and a container that houses the hydrogen separation membrane assembly and defines a hydrogen flow path between the hydrogen separation membrane assembly. The hydrogen production apparatus of the present invention is characterized in that the hydrogen separation membrane assembly is grounded, and when power is supplied to the high voltage electrode, an electric discharge is generated between the high voltage electrode and the hydrogen separation membrane. And.
 本発明の水素製造装置の水素分離膜を支持する支持体は、水素分離膜の外周を支持する外周支持部を備えていることが好ましい。 The support that supports the hydrogen separation membrane of the hydrogen production apparatus of the present invention preferably includes an outer peripheral support portion that supports the outer circumference of the hydrogen separation membrane.
 本発明の水素製造装置は、水素分離膜アセンブリの原料ガス流路の少なくとも一部に、吸着剤が配置されていることが好ましい。 In the hydrogen production apparatus of the present invention, it is preferable that an adsorbent is arranged in at least a part of the raw material gas flow path of the hydrogen separation membrane assembly.
 本発明の水素製造装置は、原料ガスがアンモニアであり、アンモニアを原料ガス流路に、ゲージ圧力が0kPaより大で且つ300kPa以下となる圧力で供給することが好ましい。ここでいうゲージ圧力が0kPaより大であるとは、原料ガス流路が外部に対して正圧(陽圧)となる圧力である。 In the hydrogen production apparatus of the present invention, it is preferable that the raw material gas is ammonia and the ammonia is supplied to the raw material gas flow path at a pressure such that the gauge pressure is larger than 0 kPa and lower than 300 kPa. The gauge pressure referred to here being larger than 0 kPa is a pressure at which the raw material gas flow path becomes a positive pressure (positive pressure) with respect to the outside.
 本発明の水素製造装置は、容器の中に複数の水素分離膜アセンブリを収容することができる。それぞれの水素分離膜アセンブリの中に高電圧電極が配置されている。 The hydrogen production apparatus of the present invention can accommodate a plurality of hydrogen separation membrane assemblies in a container. High voltage electrodes are located within each hydrogen separation membrane assembly.
 本発明の水素製造装置は、容器の中に複数の水素分離膜アセンブリを収容する場合に、容器の一端部に原料ガス導入部を設け、容器の他端部にガス排出部を設けることができる。複数の水素分離膜アセンブリの原料ガス流路は、一端部が原料ガス導入部に連結され、且つ他端部がガス排出部に連結される。 In the hydrogen production apparatus of the present invention, when a plurality of hydrogen separation membrane assemblies are housed in a container, a raw material gas introduction portion may be provided at one end of the container and a gas discharge portion may be provided at the other end of the container. .. One end of the raw material gas flow path of the plurality of hydrogen separation membrane assemblies is connected to the raw material gas introduction part, and the other end part is connected to the gas discharge part.
 本発明はまた、水素製造方法を提供する。本発明の水素製造方法は、原料ガス流路を規定する水素分離膜アセンブリと、原料ガス流路の中心部に配置されている高電圧電極と、前記水素分離膜アセンブリを収容しており前記水素分離膜アセンブリとの間に水素流路を規定する容器とを備えている水素製造装置を用いて、水素を製造する方法である。本発明の水素製造方法は、水素分離膜アセンブリに加圧した原料ガスを供給する工程と、高電圧電極に給電して、前記水素分離膜アセンブリとの間で放電させる放電工程と、放電により原料ガスをプラズマとし、原料ガスに含まれる水素原子に、前記水素分離膜を透過させる水素分離工程と、を備えている。 The present invention also provides a hydrogen production method. The hydrogen production method of the present invention contains the hydrogen separation membrane assembly that defines the raw material gas flow path, the high voltage electrode arranged in the center of the raw material gas flow path, and the hydrogen separation membrane assembly. This is a method for producing hydrogen using a hydrogen production apparatus provided with a container that defines a hydrogen flow path between the separation membrane assembly and the hydrogen flow path. The hydrogen production method of the present invention comprises a step of supplying a pressurized raw material gas to the hydrogen separation membrane assembly, a discharge step of supplying power to a high voltage electrode to discharge the hydrogen separation membrane assembly, and a raw material by discharge. The gas is used as a plasma, and a hydrogen separation step of permeating the hydrogen atom contained in the raw material gas through the hydrogen separation membrane is provided.
 本発明の水素製造装置は、水素分離膜アセンブリの内部に高電圧電極が配置される。水素分離膜アセンブリは接地されており、さらに水素分離膜アセンブリが容器に収容されるので、電気的な安全性が確保されており、他の装置への組み込みが容易になる。 In the hydrogen production apparatus of the present invention, a high voltage electrode is arranged inside the hydrogen separation membrane assembly. The hydrogen separation membrane assembly is grounded and the hydrogen separation membrane assembly is housed in a container to ensure electrical safety and facilitate integration into other devices.
 本発明の水素製造装置は、原料ガスを、大気圧以上の所定の圧力で水素分離膜アセンブリ内部の原料ガス流路に供給する。特に、原料ガスにアンモニアを用い、アンモニアを好適な圧力条件であるゲージ圧力が0kPaより大で且つ300kPa以下となる圧力で供給するとき、圧力に比例して水素を製造して水素流路に供給することができる。この結果、特別な吸引手段を用いることなく外部に水素を供給することができる。 The hydrogen production apparatus of the present invention supplies the raw material gas to the raw material gas flow path inside the hydrogen separation membrane assembly at a predetermined pressure of atmospheric pressure or higher. In particular, when ammonia is used as the raw material gas and the gauge pressure, which is a suitable pressure condition, is greater than 0 kPa and less than 300 kPa, hydrogen is produced in proportion to the pressure and supplied to the hydrogen flow path. can do. As a result, hydrogen can be supplied to the outside without using a special suction means.
 本発明の水素製造装置は、容器の中に、複数の水素分離膜アセンブリを収容することができる。それぞれの水素分離膜アセンブリが製造した水素は、連通している共通の水素流路に導入されて、外部に供給される。複数の水素分離膜アセンブリが水素流路を共有することで、装置全体を小型化し、また水素の供給路を単純化することができる。 The hydrogen production apparatus of the present invention can accommodate a plurality of hydrogen separation membrane assemblies in a container. The hydrogen produced by each hydrogen separation membrane assembly is introduced into a common hydrogen flow path that communicates and is supplied to the outside. By sharing the hydrogen flow path between the plurality of hydrogen separation membrane assemblies, the entire device can be miniaturized and the hydrogen supply path can be simplified.
 複数の水素分離膜アセンブリを備えた水素製造装置は、水素分離膜アセンブリ毎の原料ガスの供給量と、それぞれの高電圧電極に対する電力の供給のオンとオフと、原料ガスの加圧量とを制御することにより、大量生産から少量生産まで、水素の製造量を柔軟に変更することができる。 A hydrogen production device equipped with a plurality of hydrogen separation membrane assemblies determines the supply amount of the raw material gas for each hydrogen separation membrane assembly, the on / off of the power supply to each high voltage electrode, and the pressurization amount of the raw material gas. By controlling, the amount of hydrogen produced can be flexibly changed from mass production to small quantity production.
図1は、本発明の実施例1の水素製造装置の端面図である。FIG. 1 is an end view of the hydrogen production apparatus according to the first embodiment of the present invention. 図2は、本発明の実施例1の水素製造装置の横断面図である。FIG. 2 is a cross-sectional view of the hydrogen production apparatus according to the first embodiment of the present invention. 図3は、本発明の実施例2の水素製造装置の縦断面を模式的に示す図である。FIG. 3 is a diagram schematically showing a vertical cross section of the hydrogen production apparatus according to the second embodiment of the present invention. 図4(a)は、実施例3の水素製造装置の上面図であり、図4(b)は、実施例3の水素製造装置の側面図であり、図4(c)は、実施例3の水素製造装置の正面図である。4 (a) is a top view of the hydrogen production apparatus of Example 3, FIG. 4 (b) is a side view of the hydrogen production apparatus of Example 3, and FIG. 4 (c) is a view of Example 3. It is a front view of the hydrogen production apparatus of. 図5は、本発明の実施例3の水素製造装置の端面図である。FIG. 5 is an end view of the hydrogen production apparatus according to the third embodiment of the present invention. 図6は、本発明の実施例4の水素製造装置の中央部分を省略した縦断面の模式図である。FIG. 6 is a schematic view of a vertical cross section of the hydrogen production apparatus according to the fourth embodiment of the present invention, omitting the central portion. 図7は、本発明の実施例5の水素製造装置の横断面図である。FIG. 7 is a cross-sectional view of the hydrogen production apparatus according to the fifth embodiment of the present invention. 図8は、実施例1の水素製造装置に供給する原料ガスの圧力と水素製造量との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the pressure of the raw material gas supplied to the hydrogen production apparatus of Example 1 and the amount of hydrogen produced.
 以下に、本発明の水素製造装置の実施形態を列記する。
(1)水素製造装置で使用可能な原料ガスは、アンモニア、尿素、またはメタン等の炭化水素系ガス、アンモニア単体ではなくアンモニアと不活性ガスの混合ガスとすることができる。また、液化アンモニアや尿素から発生したアンモニア単体またはそのアンモニアと不活性ガスの混合ガスとすることができる。
(2)水素製造装置で、最も好適に用いられる原料ガスは、アンモニアである。
(3)高電圧電極を被覆する誘電体は、アルミナなどのセラミックス、チタン酸バリウム、ポリカーボネート、アクリルなどの絶縁性の高い樹脂、石英ガラスなどのガラスで構成されている。
(4)水素分離膜は、パラジウム合金薄膜またはバナジウム合金薄膜を好適に使用することができる。それ以外にも、水素分離膜は、ジルコニウム-ニッケル(Zr-Ni)系合金薄膜、ニオブ-ニッケル(Nb-Ni)系合金薄膜、および、ニオブ(Nb)と、ニッケル(Ni)、コバルト(Co)およびモリブデン(Mo)よりなる群から選ばれる1種以上の金属と、チタン(Ti)、ジルコニウム(Zr)、タンタル(Ta)およびハフニウム(Hf)よりなる群から選ばれる1種以上の金属との合金よりなる薄膜、またはシリカ系分離膜や、ゼオライト系分離膜、ポリイミド分離膜、ポリスルホン分離膜などの非金属薄膜などで形成することができる。
(5)水素分離膜アセンブリの支持体は、水素分離膜の外周を支持して水素分離膜の破損や変形を防止する外周支持部を備えている。外周支持部は、パンチングメタルやメッシュ素材で形成されており、水素分離膜が透過した水素をそのまま通過させる。
(6)水素分離膜アセンブリの支持体は、さらに、水素分離膜の内周を支持する内周支持部を備えることができる。内周支持部は、水素分離膜の破損や変形を防止し、水素分離膜アセンブリ全体の強度を確保する目的で、追加される場合がある。内周支持部は、外周支持部と同様に、パンチングメタルやメッシュ素材等で形成することができる。
(7)原料ガス入口は、原料ガス源に接続されている。原料ガス源と原料ガス入口の間に圧力制御器であるレギュレータが設けられており、原料ガスを、ゲージ圧力が大気圧以上(すなわち、ゲージ圧0MPa以上)1MPa以下となる圧力に調整して供給することが好ましい。最適な条件として、アンモニアをゲージ圧力で0kPaより大で且つ300kPa以下の圧力で、水素分離膜アセンブリに供給することで、多量の水素を高収率で得ることができる。
(8)原料ガス流路の少なくとも一部に、吸着剤を充填することで、水素の製造量を増加させることができる。吸着剤として、ゼオライト及び活性アルミナのいずれか一方または両方を用いることができる。原料ガスとして、水素分子またはアンモニアを主成分とするガスを用いた場合は、細孔径が0.2~0.8nm(2~8Å)であるゼオライトを用いることが好ましい。また、原料ガスとして、炭化水素系ガスを主成分とするガスを用いた場合は、細孔径が0.5~1.0nm(5~10Å)であるゼオライトを用いることが好ましい。
(9)単体の水素分離膜アセンブリを備える水素製造装置においては、水素分離膜アセンブリの支持体は、外周支持部に加えて、水素分離膜の両端部を支持する第一支持部と第二支持部で構成されている。第一支持部と第二支持部は、水素分離膜と高電圧電極とを位置決めして支持している。第一支持部には原料ガス入口が開口しており、原料ガス流路に原料ガスを導入する。第二支持部には、排出ガス出口が開口しており、水素製造後の残渣であるガスを原料ガス流路から排出する。
(10)単体の水素分離膜アセンブリを備える水素製造装置においては、水素分離膜を円筒状に形成し、外周支持部を水素分離膜の外周に接する円筒状に形成して水素分離膜を支持させる。そして、容器を水素分離膜アセンブリよりも大きな円筒状に形成して水素分離膜アセンブリを収容し、第一支持部と容器の一端部とを接合し、第二支持部と容器の他端部とを接合することにより水素分離膜アセンブリを容器内に同心円状に位置合わせして固定している。このとき、第一支持部と第二支持部とは、高電圧電極を、水素製造装置の中心軸に沿って位置するように、位置決め固定している。
(11)容器内に複数の水素分離膜アセンブリを収容している水素製造装置では、容器の一端部に設けられた原料ガス導入部の内壁の開口部に、水素分離膜アセンブリの外周支持部と水素分離膜を溶接、接着、またはシール部材を介した接合によって連結している。同様に、容器の他端部に設けられたガス排出部の内壁の開口部に、水素分離膜アセンブリの外周支持部と水素分離膜を連結している。水素分離膜アセンブリは、その原料ガス流路が容器の原料ガス導入部とガス排出部とに連通した状態で、容器内に等間隔で固定されている。
(12)容器内に複数の水素分離膜アセンブリを収容した水素製造装置における高電圧電極は、原料ガス導入部を貫通して、水素分離膜アセンブリの中心部に配置されている。
(13)容器内に複数の水素分離膜アセンブリを収容した水素製造装置では、容器内で水素流路は全て連通しており、1箇所の水素導出口から外部に供給される。
(14)容器内に複数の水素分離膜アセンブリを収容した水素製造装置では、水素分離膜アセンブリ毎に、原料ガス入口の開閉を制御することができる。また、原料ガス入口の開閉と連動して、それぞれの前記高電圧電極に対する電力の供給のオンとオフを制御することができる。
The embodiments of the hydrogen production apparatus of the present invention are listed below.
(1) The raw material gas that can be used in the hydrogen production apparatus can be a hydrocarbon gas such as ammonia, urea, or methane, or a mixed gas of ammonia and an inert gas instead of ammonia alone. Further, it can be a simple substance of ammonia generated from liquefied ammonia or urea, or a mixed gas of the ammonia and an inert gas.
(2) The raw material gas most preferably used in the hydrogen production apparatus is ammonia.
(3) The dielectric covering the high-voltage electrode is composed of ceramics such as alumina, barium titanate, polycarbonate, highly insulating resin such as acrylic, and glass such as quartz glass.
(4) As the hydrogen separation membrane, a palladium alloy thin film or a vanadium alloy thin film can be preferably used. In addition, the hydrogen separation film includes a zirconium-nickel (Zr-Ni) -based alloy thin film, a niobium-nickel (Nb-Ni) -based alloy thin film, and niobium (Nb), nickel (Ni), and cobalt (Co). ) And one or more metals selected from the group consisting of molybdenum (Mo), and one or more metals selected from the group consisting of titanium (Ti), zirconium (Zr), tantalum (Ta) and hafnium (Hf). It can be formed of a thin film made of the above alloy, a silica-based separation film, a non-metal thin film such as a zeolite-based separation film, a polyimide separation film, or a polysulfone separation film.
(5) The support of the hydrogen separation membrane assembly includes an outer peripheral support portion that supports the outer circumference of the hydrogen separation membrane and prevents the hydrogen separation membrane from being damaged or deformed. The outer peripheral support portion is formed of a punching metal or mesh material, and allows hydrogen permeated by the hydrogen separation membrane to pass through as it is.
(6) The support of the hydrogen separation membrane assembly may further include an inner circumference support portion that supports the inner circumference of the hydrogen separation membrane. The inner peripheral support may be added for the purpose of preventing breakage or deformation of the hydrogen separation membrane and ensuring the strength of the entire hydrogen separation membrane assembly. The inner peripheral support portion can be formed of a punching metal, a mesh material, or the like, similarly to the outer peripheral support portion.
(7) The raw material gas inlet is connected to the raw material gas source. A regulator, which is a pressure controller, is provided between the raw material gas source and the raw material gas inlet, and the raw material gas is adjusted to a pressure at which the gauge pressure is equal to or higher than atmospheric pressure (that is, gauge pressure is 0 MPa or higher) and 1 MPa or lower. It is preferable to do so. As an optimum condition, a large amount of hydrogen can be obtained in high yield by supplying ammonia to the hydrogen separation membrane assembly at a gauge pressure of more than 0 kPa and less than 300 kPa.
(8) The amount of hydrogen produced can be increased by filling at least a part of the raw material gas flow path with an adsorbent. As the adsorbent, either one or both of zeolite and activated alumina can be used. When a gas containing hydrogen molecules or ammonia as a main component is used as the raw material gas, it is preferable to use zeolite having a pore diameter of 0.2 to 0.8 nm (2 to 8 Å). When a gas containing a hydrocarbon-based gas as a main component is used as the raw material gas, it is preferable to use zeolite having a pore diameter of 0.5 to 1.0 nm (5 to 10 Å).
(9) In a hydrogen production apparatus including a single hydrogen separation membrane assembly, the support of the hydrogen separation membrane assembly includes a first support portion and a second support portion that support both ends of the hydrogen separation membrane in addition to the outer peripheral support portion. It is composed of parts. The first support portion and the second support portion position and support the hydrogen separation membrane and the high voltage electrode. A raw material gas inlet is opened in the first support portion, and the raw material gas is introduced into the raw material gas flow path. An exhaust gas outlet is opened in the second support portion, and the gas which is a residue after hydrogen production is discharged from the raw material gas flow path.
(10) In a hydrogen production apparatus provided with a single hydrogen separation membrane assembly, the hydrogen separation membrane is formed in a cylindrical shape, and the outer peripheral support portion is formed in a cylindrical shape in contact with the outer periphery of the hydrogen separation membrane to support the hydrogen separation membrane. .. Then, the container is formed into a cylindrical shape larger than the hydrogen separation membrane assembly to accommodate the hydrogen separation membrane assembly, the first support portion and one end portion of the container are joined, and the second support portion and the other end portion of the container are joined. The hydrogen separation membrane assembly is concentrically aligned and fixed in the container by joining. At this time, the first support portion and the second support portion are positioned and fixed so that the high voltage electrode is located along the central axis of the hydrogen production apparatus.
(11) In a hydrogen production apparatus in which a plurality of hydrogen separation membrane assemblies are housed in a container, an opening of an inner wall of a raw material gas introduction portion provided at one end of the container is provided with an outer peripheral support portion of the hydrogen separation membrane assembly. The hydrogen separation membranes are connected by welding, bonding, or joining via a sealing member. Similarly, the outer peripheral support portion of the hydrogen separation membrane assembly and the hydrogen separation membrane are connected to the opening of the inner wall of the gas discharge portion provided at the other end of the container. The hydrogen separation membrane assembly is fixed in the container at equal intervals in a state where the raw material gas flow path communicates with the raw material gas introduction part and the gas discharge part of the container.
(12) The high-voltage electrode in the hydrogen production apparatus in which a plurality of hydrogen separation membrane assemblies are housed in the container penetrates the raw material gas introduction portion and is arranged at the center of the hydrogen separation membrane assembly.
(13) In the hydrogen production apparatus in which a plurality of hydrogen separation membrane assemblies are housed in the container, all the hydrogen flow paths are in communication in the container and are supplied to the outside from one hydrogen outlet.
(14) In a hydrogen production apparatus in which a plurality of hydrogen separation membrane assemblies are housed in a container, opening and closing of a raw material gas inlet can be controlled for each hydrogen separation membrane assembly. Further, it is possible to control the on / off of the power supply to each of the high voltage electrodes in conjunction with the opening / closing of the raw material gas inlet.
(実施例1)
 以下、本発明にかかる水素製造装置の好適な実施例について、図面を参照しつつ説明する。図1は、本実施例の水素製造装置1を模式的に示す端面図である。図2は、水素製造装置1の横断面図である。水素製造装置1は、外形が円筒状に形成された水素分離膜アセンブリ2と、棒状の高電圧電極3と、円筒状の容器4とを備えている。容器4は、水素分離膜アセンブリ2よりも大きな円筒状に形成されている。
(Example 1)
Hereinafter, preferred examples of the hydrogen production apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is an end view schematically showing the hydrogen production apparatus 1 of this embodiment. FIG. 2 is a cross-sectional view of the hydrogen production apparatus 1. The hydrogen production apparatus 1 includes a hydrogen separation membrane assembly 2 having a cylindrical outer shape, a rod-shaped high-voltage electrode 3, and a cylindrical container 4. The container 4 is formed in a cylindrical shape larger than the hydrogen separation membrane assembly 2.
 本実施例において、水素分離膜アセンブリ2は、円筒状に成形された水素分離膜11と、容器4と水素分離膜11との間に介在して水素分離膜11を支持する支持体を備えている。水素分離膜11は、パラジウム合金薄膜またはバナジウム合金薄膜で形成されている。支持体は金属または樹脂で形成されている。支持体は、外周支持部12、第一支持部13、および第二支持部14を主な構成要素としている。 In this embodiment, the hydrogen separation membrane assembly 2 includes a hydrogen separation membrane 11 formed in a cylindrical shape and a support interposed between the container 4 and the hydrogen separation membrane 11 to support the hydrogen separation membrane 11. There is. The hydrogen separation membrane 11 is formed of a palladium alloy thin film or a vanadium alloy thin film. The support is made of metal or resin. The main component of the support is the outer peripheral support portion 12, the first support portion 13, and the second support portion 14.
 水素分離膜アセンブリ2の外周支持部12は、水素分離膜11の外周に接する円筒形状を有しており、水素分離膜11を面支持する。外周支持部は、パンチングメタルか、または網状の開口を有する金属又は樹脂であり、水素分離膜を透過した水素をそのまま通過させることができる。 The outer peripheral support portion 12 of the hydrogen separation membrane assembly 2 has a cylindrical shape in contact with the outer periphery of the hydrogen separation membrane 11, and surface-supports the hydrogen separation membrane 11. The outer peripheral support portion is a punching metal or a metal or resin having a mesh-like opening, and hydrogen that has passed through the hydrogen separation membrane can pass through as it is.
 水素分離膜アセンブリ2の第一支持部13は、水素分離膜の一端部を支持している。第二支持部14は、水素分離膜11の他端部を支持している。第一支持部13と第二支持部14とは、容器4とも接合しており、水素分離膜アセンブリ2は、容器内4に同心円状に位置合わせされた状態で収容され、固定されている。水素分離膜11と支持部13、14とは、溶接、かしめ、ハンダ付けなどの方法で接合されており、接合部分は気密性が確保されている。水素分離膜アセンブリ2の第一支持部13には原料ガス入口15が開口しており、第二支持部14には排出ガス出口17が開口している。以上の構成から、水素分離膜アセンブリ2の水素分離膜11の内側には、一端部に原料ガス入口15が配置され、他端部に排出ガス出口17が配置され、他の部分は全て封止されている原料ガス流路16が形成されている。 The first support portion 13 of the hydrogen separation membrane assembly 2 supports one end portion of the hydrogen separation membrane. The second support portion 14 supports the other end of the hydrogen separation membrane 11. The first support portion 13 and the second support portion 14 are also joined to the container 4, and the hydrogen separation membrane assembly 2 is housed and fixed in the container 4 in a concentrically aligned state. The hydrogen separation membrane 11 and the support portions 13 and 14 are joined by a method such as welding, caulking, or soldering, and the joint portion is ensured to be airtight. The raw material gas inlet 15 is opened in the first support portion 13 of the hydrogen separation membrane assembly 2, and the exhaust gas outlet 17 is opened in the second support portion 14. From the above configuration, inside the hydrogen separation membrane 11 of the hydrogen separation membrane assembly 2, a raw material gas inlet 15 is arranged at one end, an exhaust gas outlet 17 is arranged at the other end, and all other parts are sealed. The raw material gas flow path 16 is formed.
 水素分離膜アセンブリ2は図示されない接地端子に電気的に接続されており、接地されている。水素分離膜11は、基準電位となっている。 The hydrogen separation membrane assembly 2 is electrically connected to a ground terminal (not shown) and is grounded. The hydrogen separation membrane 11 has a reference potential.
 棒状の高電圧電極3は、電流導入端子に接続される一端部3aを除いて、全体が誘電体6によって被覆されている。高電圧電極3は、第一支持部13と第二支持部14によって両端部が支持されており、水素分離膜アセンブリ2の中心軸に沿って固定される。その結果、水素分離膜11と高電圧電極3との間の距離は、どの位置においても概ね等距離となる。図示されない高電圧電源が電流導入端子を経由して高電圧電極3に高電圧を印加する。高電圧電源は、波形保持時間が10μsと極めて短い両極性パルス波形を発生させて、電子エネルギー密度の高い電力を高電圧電極3に供給する。 The rod-shaped high-voltage electrode 3 is entirely covered with the dielectric 6 except for one end 3a connected to the current introduction terminal. Both ends of the high voltage electrode 3 are supported by the first support portion 13 and the second support portion 14, and the high voltage electrode 3 is fixed along the central axis of the hydrogen separation membrane assembly 2. As a result, the distance between the hydrogen separation membrane 11 and the high voltage electrode 3 is substantially equidistant at any position. A high voltage power supply (not shown) applies a high voltage to the high voltage electrode 3 via the current introduction terminal. The high-voltage power supply generates a bipolar pulse waveform having an extremely short waveform holding time of 10 μs, and supplies electric power having a high electron energy density to the high-voltage electrode 3.
 容器4は円筒状の側面を有しており、金属又は樹脂で形成されている。第一支持部13と容器4の一端部とが接合し、第二支持部14と容器4の他端部とが接合することにより、水素分離膜アセンブリ2が容器4内に位置決め固定される。このとき、高電圧電極3が、水素製造装置1の中心軸とほぼ同一箇所に配置される。水素分離膜アセンブリ2は、原料ガス入口15と排出ガス出口17が外部に連通しているが、それらを除く部分は全て容器4の中に封止されて他の領域から分離された状態となっている。容器4の内壁と水素分離膜アセンブリ2の外壁との間に、閉空間である水素流路21が規定されている。容器4の一端部には水素導出口22が設けられており、製造した水素は水素導出口22から外部に供給される。 The container 4 has a cylindrical side surface and is made of metal or resin. The hydrogen separation membrane assembly 2 is positioned and fixed in the container 4 by joining the first support portion 13 and one end of the container 4 and joining the second support portion 14 and the other end of the container 4. At this time, the high voltage electrode 3 is arranged at substantially the same position as the central axis of the hydrogen production apparatus 1. In the hydrogen separation membrane assembly 2, the raw material gas inlet 15 and the exhaust gas outlet 17 communicate with each other to the outside, but all the parts other than these are sealed in the container 4 and separated from other regions. ing. A hydrogen flow path 21 which is a closed space is defined between the inner wall of the container 4 and the outer wall of the hydrogen separation membrane assembly 2. A hydrogen outlet 22 is provided at one end of the container 4, and the produced hydrogen is supplied to the outside from the hydrogen outlet 22.
 水素分離膜11と支持部13,14の接合箇所、支持部13,14と高電圧電極3の接合箇所、及び支持部13,14と容器4の接合箇所をより確実に封止するために、ガスケットの配置若しくは、シール材の塗布が追加的に行われる。原料ガス流路16と水素流路21は、それぞれが確実に封止されて、気密性を確保される。 In order to more reliably seal the joints between the hydrogen separation membrane 11 and the support portions 13 and 14, the joints between the support portions 13 and 14 and the high voltage electrode 3, and the joints between the support portions 13 and 14 and the container 4. The gasket is placed or the sealing material is additionally applied. The raw material gas flow path 16 and the hydrogen flow path 21 are each securely sealed to ensure airtightness.
 第一支持部13に設けられた原料ガス入口15は、図示されない原料ガス源に接続されている。原料ガス源と原料ガス入口15との間にレギュレータが設けられており、原料ガスをゲージ圧力で0kPaを超えて300kPa以下となる圧力に調整して、原料ガス流路16に供給する。加圧された原料ガスが薄い膜状の水素分離膜11の内部の原料ガス流路16に導入されると、外周支持部12が水素分離膜11を支持して水素分離膜11破損や変形を防止する。 The raw material gas inlet 15 provided in the first support portion 13 is connected to a raw material gas source (not shown). A regulator is provided between the raw material gas source and the raw material gas inlet 15, and the raw material gas is adjusted to a pressure exceeding 0 kPa to 300 kPa or less by a gauge pressure and supplied to the raw material gas flow path 16. When the pressurized raw material gas is introduced into the raw material gas flow path 16 inside the thin membrane-shaped hydrogen separation film 11, the outer peripheral support portion 12 supports the hydrogen separation film 11 to damage or deform the hydrogen separation film 11. To prevent.
 本実施例の水素製造装置1は、原料としてアンモニアが最も好適に使用される。アンモニアを原料として水素を生成する場合の反応式を、以下の式1に示す。
  2NH+e→N+3H+e  (式1)
Ammonia is most preferably used as a raw material in the hydrogen production apparatus 1 of this embodiment. The reaction formula when hydrogen is produced from ammonia as a raw material is shown in the following formula 1.
2NH 3 + e → N 2 + 3H 2 + e (Equation 1)
 水素製造装置1でアンモニアを原料ガスとして水素を製造する方法を説明する。 A method of producing hydrogen using ammonia as a raw material gas with the hydrogen production apparatus 1 will be described.
 加圧されたアンモニアが、原料ガス入口15から水素分離膜アセンブリ2の中に導入されて、原料ガス流路16に到達する。高電圧電源が高電圧電極3に電圧を印加することで、高電圧電極3と水素分離膜11との間で誘電体バリア放電が発生する。放電によって、原料ガス流路16内のアンモニアが、大気圧非平衡プラズマとなる。水素分離膜11は、アンモニアのプラズマに曝される。プラズマから発生した水素は、水素原子の形態で水素分離膜11に吸着し、水素分離膜11の中を拡散しながら通過して水素流路21に到達し、再結合して水素分子となる。水素分離膜11は水素のみを通過させるので、水素流路21側に水素が高純度で分離される。アンモニアから水素が分離された後、残った窒素は、排出ガス出口17から排出される。 Pressurized ammonia is introduced into the hydrogen separation membrane assembly 2 from the raw material gas inlet 15 and reaches the raw material gas flow path 16. When the high-voltage power supply applies a voltage to the high-voltage electrode 3, a dielectric barrier discharge is generated between the high-voltage electrode 3 and the hydrogen separation film 11. Due to the discharge, the ammonia in the raw material gas flow path 16 becomes atmospheric pressure non-equilibrium plasma. The hydrogen separation membrane 11 is exposed to the plasma of ammonia. Hydrogen generated from the plasma is adsorbed on the hydrogen separation membrane 11 in the form of a hydrogen atom, passes through the hydrogen separation membrane 11 while diffusing, reaches the hydrogen flow path 21, and recombines to form a hydrogen molecule. Since the hydrogen separation membrane 11 allows only hydrogen to pass through, hydrogen is separated on the hydrogen flow path 21 side with high purity. After hydrogen is separated from ammonia, the remaining nitrogen is discharged from the exhaust gas outlet 17.
 図8に、本実施例の水素製造装置1に供給するアンモニアの圧力と、水素製造量との関係をグラフで示す。本実施例の水素製造装置1は、1MPaのゲージ圧力でアンモニアを供給して水素を製造することが可能である。しかしながら、原料ガスの圧力と水素製造量とが比例しており、且つ原料ガスから得られる水素の収率が高い圧力条件は、ゲージ圧力が0kPaを超えて300kPa以下となる範囲である。 FIG. 8 is a graph showing the relationship between the pressure of ammonia supplied to the hydrogen production apparatus 1 of this embodiment and the amount of hydrogen produced. The hydrogen production apparatus 1 of this embodiment can produce hydrogen by supplying ammonia at a gauge pressure of 1 MPa. However, the pressure condition in which the pressure of the raw material gas is proportional to the amount of hydrogen produced and the yield of hydrogen obtained from the raw material gas is high is in the range where the gauge pressure exceeds 0 kPa and becomes 300 kPa or less.
 本実施例の水素製造装置1は、水素分離膜アセンブリ2の内側の原料ガス流路16にアンモニアが導入され、そこでアンモニアがプラズマとなることで製造された水素が水素製造アセンブリ2の外側に放出される。アンモニアが加圧されているために、水素分離膜アセンブリ2の内側から外側に放出される水素の流れが自然に発生し、水素導出口22側に特別な吸引手段を設けることなく、水素ガスを得ることができる。水素製造装置1によって得られる水素ガスは99.999%以上の高純度であるので、そのまま燃料電池や半導体の製造工程に使用することができる。 In the hydrogen production apparatus 1 of this embodiment, ammonia is introduced into the raw material gas flow path 16 inside the hydrogen separation membrane assembly 2, and the hydrogen produced by the ammonia becoming plasma is released to the outside of the hydrogen production assembly 2. Will be done. Since the ammonia is pressurized, the flow of hydrogen released from the inside to the outside of the hydrogen separation membrane assembly 2 is naturally generated, and the hydrogen gas is introduced without providing a special suction means on the hydrogen outlet 22 side. Obtainable. Since the hydrogen gas obtained by the hydrogen production apparatus 1 has a high purity of 99.999% or more, it can be used as it is in the manufacturing process of a fuel cell or a semiconductor.
(実施例2)
 図3は、本実施例の水素製造装置31の縦断面を模式的に示す図である。実施例1と同一の構成を有する要素については、同一符号を付して重複説明を割愛する。本実施例の水素製造装置31は、水素分離膜アセンブリ2の原料ガス流路16内に、吸着剤5が充填されている。
(Example 2)
FIG. 3 is a diagram schematically showing a vertical cross section of the hydrogen production apparatus 31 of this embodiment. Elements having the same configuration as that of the first embodiment are designated by the same reference numerals, and duplicate description is omitted. In the hydrogen production apparatus 31 of this embodiment, the adsorbent 5 is filled in the raw material gas flow path 16 of the hydrogen separation membrane assembly 2.
 本実施例では、吸着剤5として、ペレット形状を有しており、平均細孔径が0.65nmである疎水性ゼオライト(HSZ(登録商標)成形体、HSZ-900、東ソー株式会社製)を使用した。 In this example, as the adsorbent 5, a hydrophobic zeolite having a pellet shape and an average pore diameter of 0.65 nm (HSZ® molded product, HSZ-900, manufactured by Tosoh Corporation) is used. did.
 原料ガス流路16に導入された原料ガスは、吸着剤5に吸着されて、プラズマとなるまで原料ガス流路16に滞留する。このため、原料ガスの供給量がより多くした場合であっても、確実に原料ガスから水素を製造することができる。この結果、より大量の水素の製造を行うことができる。 The raw material gas introduced into the raw material gas flow path 16 is adsorbed by the adsorbent 5 and stays in the raw material gas flow path 16 until it becomes plasma. Therefore, hydrogen can be reliably produced from the raw material gas even when the supply amount of the raw material gas is increased. As a result, a larger amount of hydrogen can be produced.
(実施例3)
 図4(a)に、本実施例の水素製造装置41の上面図を示し、図4(b)に側面図を示し、図4(c)に正面図を示す。図5に、本実施例の水素製造装置41の端面図を示す。
(Example 3)
4 (a) shows a top view of the hydrogen production apparatus 41 of this embodiment, FIG. 4 (b) shows a side view, and FIG. 4 (c) shows a front view. FIG. 5 shows an end view of the hydrogen production apparatus 41 of this embodiment.
  本発明の水素製造装置41は、容器44の中に7個の水素分離膜アセンブリ42を収容している。それぞれの水素分離膜アセンブリ42の中心軸に沿って、誘電体6に被覆された高電圧電極3が配置されている。 The hydrogen production apparatus 41 of the present invention houses seven hydrogen separation membrane assemblies 42 in a container 44. A high-voltage electrode 3 coated with a dielectric 6 is arranged along the central axis of each hydrogen separation membrane assembly 42.
 容器44は円筒状の側面を有しており、金属又は樹脂で形成されている。容器44の一端側には、原料ガス導入口46を備えた原料ガス導入部45が設けられている。容器44の他端部には、ガス排出口48を備えたガス排出部47が設けられている。 The container 44 has a cylindrical side surface and is made of metal or resin. A raw material gas introduction unit 45 provided with a raw material gas introduction port 46 is provided on one end side of the container 44. At the other end of the container 44, a gas discharge portion 47 provided with a gas discharge port 48 is provided.
 本実施例の水素分離膜アセンブリ42は、円筒状に成形された水素分離膜11と、外周支持部12とで構成されており、内部に原料ガス流路16が形成されている。 The hydrogen separation membrane assembly 42 of this embodiment is composed of a hydrogen separation membrane 11 formed into a cylindrical shape and an outer peripheral support portion 12, and a raw material gas flow path 16 is formed inside.
 容器44の一端部に設けられた原料ガス導入部45は、容器44内部の内壁43aによって、容器内の他の部分と仕切られている。内壁43aには、水素分離膜アセンブリ42の配置に対応した7箇所の開口が設けられている。このそれぞれの開口に、水素分離膜アセンブリ42の外周支持部12と水素分離膜11の端部が、溶接、接着、またはシール部材を介した接合によって連結されている。 The raw material gas introduction portion 45 provided at one end of the container 44 is separated from the other portion in the container by the inner wall 43a inside the container 44. The inner wall 43a is provided with seven openings corresponding to the arrangement of the hydrogen separation membrane assembly 42. The outer peripheral support portion 12 of the hydrogen separation membrane assembly 42 and the end portion of the hydrogen separation membrane 11 are connected to each of the openings by welding, adhesion, or joining via a sealing member.
 同様に、容器44の他端部に設けられたガス排出部47は、内壁43bによって、容器内の他の部分と仕切られている。内壁43bには、水素分離膜アセンブリ42の配置に対応した7箇所の開口が設けられている。このそれぞれの開口に、水素分離膜アセンブリ42の外周支持部12と水素分離膜11の端部が、溶接、接着、またはシール部材を介した接合によって連結されている。このように、容器44内の内壁43a、43bに水素分離膜アセンブリ42の両端部が接合されていることで、容器44内に7本の水素分離膜アセンブリ42が封止固定されている。それぞれの水素分離膜アセンブリ42の内部の原料ガス流路16は、原料ガス導入部45およびガス排出部47と連通している。加圧された原料ガスが、原料ガス導入部45を経由して、それぞれの水素分離膜アセンブリ42の原料ガス流路16に均等に供給される。 Similarly, the gas discharge portion 47 provided at the other end of the container 44 is separated from other parts in the container by the inner wall 43b. The inner wall 43b is provided with seven openings corresponding to the arrangement of the hydrogen separation membrane assembly 42. The outer peripheral support portion 12 of the hydrogen separation membrane assembly 42 and the end portion of the hydrogen separation membrane 11 are connected to each of the openings by welding, adhesion, or joining via a sealing member. In this way, both ends of the hydrogen separation membrane assembly 42 are joined to the inner walls 43a and 43b in the container 44, so that seven hydrogen separation membrane assemblies 42 are sealed and fixed in the container 44. The raw material gas flow path 16 inside each hydrogen separation membrane assembly 42 communicates with the raw material gas introduction section 45 and the gas discharge section 47. The pressurized raw material gas is evenly supplied to the raw material gas flow path 16 of each hydrogen separation membrane assembly 42 via the raw material gas introduction unit 45.
 全ての水素分離膜アセンブリ42は図示されない接地端子に電気的に接続されており、接地されている。水素分離膜11は、基準電位となっている。 All hydrogen separation membrane assemblies 42 are electrically connected to a ground terminal (not shown) and are grounded. The hydrogen separation membrane 11 has a reference potential.
 誘電体6で被覆された高電圧電極3は、封止部材19を介して容器44の原料ガス導入部45側を貫通した状態で固定されており、水素分離膜アセンブリ42の中心部に配置されている。 The high-voltage electrode 3 coated with the dielectric 6 is fixed in a state of penetrating the raw material gas introduction portion 45 side of the container 44 via the sealing member 19, and is arranged at the center of the hydrogen separation membrane assembly 42. ing.
 容器44と水素分離膜アセンブリ42との間に形成された水素流路21は全て連通している。 All the hydrogen flow paths 21 formed between the container 44 and the hydrogen separation membrane assembly 42 communicate with each other.
 本実施例の水素製造装置41は、高電圧電極3に電力を供給することで複数の水素分離膜アセンブリ42毎に、高電圧電極3と水素分離膜11との間で放電が発生する。ゲージ圧力が0kPaより大で且つ300kPa以下となる圧力でアンモニア等の原料ガスを供給すると、原料ガスが原料ガス流路16でプラズマとなり、水素のみが水素分離膜11を透過して水素流路21に到達する。水素は、水素流路21を通過し、容器44に開口する水素導出口49から外部に供給される。 In the hydrogen production apparatus 41 of this embodiment, by supplying electric power to the high voltage electrode 3, a discharge is generated between the high voltage electrode 3 and the hydrogen separation membrane 11 for each of the plurality of hydrogen separation membrane assemblies 42. When a raw material gas such as ammonia is supplied at a gauge pressure higher than 0 kPa and lower than 300 kPa, the raw material gas becomes plasma in the raw material gas flow path 16, and only hydrogen permeates through the hydrogen separation membrane 11 to the hydrogen flow path 21. To reach. Hydrogen passes through the hydrogen flow path 21 and is supplied to the outside through a hydrogen outlet 49 that opens in the container 44.
 必須ではないが、本実施例の水素製造装置41では、内壁43aの開口にバルブを設けて、水素分離膜アセンブリ42毎に、原料ガスの供給と停止を制御することができる。さらに、原料ガスの流入および停止と連動させて、それぞれの高電圧電極に対する電力の供給のオンとオフを制御することができる。これにより、水素の製造量を適宜調節することができ、また、バッチ生産にも対応することができる。 Although not essential, in the hydrogen production apparatus 41 of this embodiment, a valve can be provided at the opening of the inner wall 43a to control the supply and stop of the raw material gas for each hydrogen separation membrane assembly 42. Further, it is possible to control the on / off of the power supply to each high voltage electrode in conjunction with the inflow and stop of the raw material gas. As a result, the amount of hydrogen produced can be adjusted as appropriate, and batch production can also be supported.
 本実施例の水素製造装置41は、複数の水素分離膜アセンブリ42を並列に配置して一つの容器44の中に配置することができ、より簡略化した装置によって大量の水素を製造することができる。また、水素分離膜アセンブリ毎に原料ガスの供給を制御することができるので、水素の製造量を柔軟に制御することができる。 In the hydrogen production apparatus 41 of the present embodiment, a plurality of hydrogen separation membrane assemblies 42 can be arranged in parallel and arranged in one container 44, and a large amount of hydrogen can be produced by a more simplified apparatus. it can. Further, since the supply of the raw material gas can be controlled for each hydrogen separation membrane assembly, the amount of hydrogen produced can be flexibly controlled.
 (実施例4)
 図6に、本実施例の水素製造装置51を示す。水素製造装置51は、実施例3と同一の容器44の中に7個の水素分離膜アセンブリ42を収容している。本実施例の水素製造装置51は、水素分離膜アセンブリ2の原料ガス流路16内に、吸着剤5が充填されており、原料ガスからより高収率で水素を製造することができる。
(Example 4)
FIG. 6 shows the hydrogen production apparatus 51 of this embodiment. The hydrogen production apparatus 51 houses seven hydrogen separation membrane assemblies 42 in the same container 44 as in the third embodiment. In the hydrogen production apparatus 51 of this embodiment, the raw material gas flow path 16 of the hydrogen separation membrane assembly 2 is filled with the adsorbent 5, and hydrogen can be produced from the raw material gas in a higher yield.
 (実施例5)
 図7に、本実施例の水素製造装置61の横断面図を示す。本実施例の水素製造装置61は、容器62の外径が直方体形状を有しており、水素分離膜アセンブリ2を単体で収容している。容器62を直方体とすることで、積み重ねた使用が一層容易となる。
(Example 5)
FIG. 7 shows a cross-sectional view of the hydrogen production apparatus 61 of this embodiment. In the hydrogen production apparatus 61 of this embodiment, the outer diameter of the container 62 has a rectangular parallelepiped shape, and the hydrogen separation membrane assembly 2 is housed alone. By making the container 62 a rectangular parallelepiped, it becomes easier to stack and use it.
 実施例で説明した水素製造装置1の構成は、適宜変更が可能である。たとえば、水素分離膜アセンブリの原料ガス流路の上流に触媒を配置して、原料ガスの一部を予め分解しておくことが可能である。触媒の例として、たとえばアンモニアを原料ガスに用いる場合には、ニッケルやルテニウムなどの触媒金属を酸化マグネシウムまたはアルミナに担持したアンモニア分解触媒を適用することができる。  The configuration of the hydrogen production apparatus 1 described in the examples can be changed as appropriate. For example, it is possible to dispose a catalyst upstream of the raw material gas flow path of the hydrogen separation membrane assembly to decompose a part of the raw material gas in advance. As an example of the catalyst, for example, when ammonia is used as a raw material gas, an ammonia decomposition catalyst in which a catalyst metal such as nickel or ruthenium is supported on magnesium oxide or alumina can be applied.
 また、容器の中に複数の水素分離膜アセンブリを配置した水素製造装置において、実施例1と同じ構造の水素分離膜アセンブリを容器に組み込むことも可能である。すなわち、第一支持部と第二支持部を水素分離膜の両端に配置した水素分離膜アセンブリを予め組み立て、第一支持部と原料ガス導入部の内壁を接合し、第二支持部とガス排出部の内壁とを接合して、水素製造装置を得ることができる。このとき、それぞれの高電圧電極は第一支持部と第二支持部とで両端を支持される。 Further, in a hydrogen production apparatus in which a plurality of hydrogen separation membrane assemblies are arranged in a container, it is also possible to incorporate the hydrogen separation membrane assembly having the same structure as in Example 1 into the container. That is, a hydrogen separation membrane assembly in which the first support portion and the second support portion are arranged at both ends of the hydrogen separation membrane is assembled in advance, the inner wall of the first support portion and the raw material gas introduction portion is joined, and the second support portion and the gas discharge are discharged. A hydrogen production apparatus can be obtained by joining the inner wall of the portion. At this time, each high-voltage electrode is supported at both ends by the first support portion and the second support portion.
 1、31、41、51、61 水素製造装置
 2、42  水素分離膜アセンブリ
 3  高電圧電極
 4、44  容器
 5  吸着剤
 6  誘電体
 11 水素分離膜
 12 外周支持部
 13 第一支持部
 14 第二支持部
 15 原料ガス入口
 16 原料ガス流路
 17 排出ガス出口
 21 水素流路
 22、49 水素導出口
 43a、43b  内壁
 45 原料ガス導入部
 46 原料ガス導入口
 47 ガス排出部
 48 ガス排出口
1, 31, 41, 51, 61 Hydrogen production equipment 2, 42 Hydrogen separation membrane assembly 3 High voltage electrode 4, 44 Container 5 Adsorbent 6 Dioxide 11 Hydrogen separation membrane 12 Outer peripheral support 13 First support 14 Second support Part 15 Raw material gas inlet 16 Raw material gas flow path 17 Discharge gas outlet 21 Hydrogen flow path 22, 49 Hydrogen outlet 43a, 43b Inner wall 45 Raw material gas introduction part 46 Raw material gas introduction port 47 Gas discharge part 48 Gas discharge port

Claims (7)

  1.  水素分離膜と、前記水素分離膜を支持する支持体とを備え、内部に原料ガス流路を規定する水素分離膜アセンブリと、
     誘電体によって被覆されており、前記原料ガス流路の中心部に配置された高電圧電極と、
     前記水素分離膜アセンブリを収容しており、前記水素分離膜アセンブリとの間に水素流路を規定する容器と、
    を備えている水素製造装置であって、
     前記水素分離膜アセンブリが接地されており、前記高電圧電極に電力が供給されるとき、前記高電圧電極と前記水素分離膜との間で放電が発生することを特徴とする水素製造装置。
    A hydrogen separation membrane assembly comprising a hydrogen separation membrane and a support supporting the hydrogen separation membrane and defining a raw material gas flow path inside.
    A high-voltage electrode coated with a dielectric and arranged in the center of the raw material gas flow path,
    A container that houses the hydrogen separation membrane assembly and defines a hydrogen flow path between the hydrogen separation membrane assembly and
    It is a hydrogen production device equipped with
    A hydrogen production apparatus characterized in that when the hydrogen separation membrane assembly is grounded and power is supplied to the high voltage electrode, a discharge is generated between the high voltage electrode and the hydrogen separation membrane.
  2.  前記水素分離膜を支持する前記支持体が、前記水素分離膜の外周を支持する外周支持部を備えていることを特徴とする請求項1記載の水素製造装置。 The hydrogen production apparatus according to claim 1, wherein the support that supports the hydrogen separation membrane includes an outer peripheral support portion that supports the outer periphery of the hydrogen separation membrane.
  3.  前記水素分離膜アセンブリの前記原料ガス流路の少なくとも一部に、吸着剤が充填されていることを特徴とする請求項1記載の水素製造装置。 The hydrogen production apparatus according to claim 1, wherein at least a part of the raw material gas flow path of the hydrogen separation membrane assembly is filled with an adsorbent.
  4.  前記原料ガスがアンモニアであり、
     アンモニアを、前記原料ガス流路に、ゲージ圧力が0kPaより大で且つ300kPa以下となる圧力で供給することを特徴とする請求項1記載の水素製造装置。
    The raw material gas is ammonia,
    The hydrogen production apparatus according to claim 1, wherein ammonia is supplied to the raw material gas flow path at a pressure such that the gauge pressure is greater than 0 kPa and less than or equal to 300 kPa.
  5.  前記容器の中に複数の水素分離膜アセンブリが収容されており、
     それぞれの前記水素分離膜アセンブリの中に高電圧電極が配置されていることを特徴とする請求項1記載の水素製造装置。
    A plurality of hydrogen separation membrane assemblies are housed in the container.
    The hydrogen production apparatus according to claim 1, wherein a high voltage electrode is arranged in each of the hydrogen separation membrane assemblies.
  6.  前記容器の一端部に原料ガス導入部が設けられており、
     前記容器の他端部にガス排出部が設けられており、
     複数の前記水素分離膜アセンブリの一端部が前記原料ガス導入部に連結されており且つ前記水素分離膜アセンブリの他端部が前記ガス導出部に連結されていることを特徴とする請求項5記載の水素製造装置。
    A raw material gas introduction section is provided at one end of the container.
    A gas discharge part is provided at the other end of the container.
    5. The fifth aspect of claim 5, wherein one end of the plurality of hydrogen separation membrane assemblies is connected to the raw material gas introduction portion, and the other end of the hydrogen separation membrane assembly is connected to the gas outlet portion. Hydrogen production equipment.
  7.  原料ガス流路を規定する水素分離膜アセンブリと、前記原料ガス流路の中心部に配置されている高電圧電極と、前記水素分離膜アセンブリを収容しており前記水素分離膜アセンブリとの間で水素流路を規定する容器とを備えている水素製造装置を用いて、水素を製造する方法であって、
     前記水素分離膜アセンブリに加圧した原料ガスを供給する工程と、
     前記高電圧電極に給電して、前記水素分離膜アセンブリとの間で放電させる放電工程と、
     放電により原料ガスをプラズマとし、原料ガスに含まれる水素原子に、前記水素分離膜を透過させる水素分離工程と、
    を備えていることを特徴とする水素製造方法。
    Between the hydrogen separation membrane assembly that defines the raw material gas flow path, the high voltage electrode arranged in the center of the raw material gas flow path, and the hydrogen separation membrane assembly that houses the hydrogen separation membrane assembly. A method of producing hydrogen using a hydrogen production apparatus equipped with a container that defines a hydrogen flow path.
    A step of supplying a pressurized raw material gas to the hydrogen separation membrane assembly and
    A discharge step of feeding the high voltage electrode and discharging it from the hydrogen separation membrane assembly.
    A hydrogen separation step in which the raw material gas is converted into plasma by electric discharge and the hydrogen atoms contained in the raw material gas are permeated through the hydrogen separation membrane.
    A hydrogen production method characterized by being equipped with.
PCT/JP2020/021266 2019-06-27 2020-05-29 Hydrogen production apparatus and hydrogen production method WO2020261872A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019119235A JP2021004154A (en) 2019-06-27 2019-06-27 Apparatus and method for producing hydrogen
JP2019-119235 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020261872A1 true WO2020261872A1 (en) 2020-12-30

Family

ID=74061213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021266 WO2020261872A1 (en) 2019-06-27 2020-05-29 Hydrogen production apparatus and hydrogen production method

Country Status (2)

Country Link
JP (1) JP2021004154A (en)
WO (1) WO2020261872A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001506961A (en) * 1996-12-24 2001-05-29 アーシュ2−テク ソシエテ ア レスポンサビリテ リミテ Method and apparatus for hydrogen generation by plasma former
JP2007153635A (en) * 2005-12-01 2007-06-21 Ngk Insulators Ltd Hydrogen producing apparatus
JP2018125064A (en) * 2017-01-30 2018-08-09 国立大学法人岐阜大学 Fuel battery system equipped with hydrogen generation device
WO2019235169A1 (en) * 2018-06-05 2019-12-12 国立大学法人岐阜大学 Hydrogen recycle system and hydrogen recycle method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001506961A (en) * 1996-12-24 2001-05-29 アーシュ2−テク ソシエテ ア レスポンサビリテ リミテ Method and apparatus for hydrogen generation by plasma former
JP2007153635A (en) * 2005-12-01 2007-06-21 Ngk Insulators Ltd Hydrogen producing apparatus
JP2018125064A (en) * 2017-01-30 2018-08-09 国立大学法人岐阜大学 Fuel battery system equipped with hydrogen generation device
WO2019235169A1 (en) * 2018-06-05 2019-12-12 国立大学法人岐阜大学 Hydrogen recycle system and hydrogen recycle method

Also Published As

Publication number Publication date
JP2021004154A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
US10647571B2 (en) Hydrogen generator
US10065170B2 (en) Hydrogen generating apparatus and fuel cell system provided with hydrogen generating apparatus
KR101983656B1 (en) Hydrogen generating device
JP6789080B2 (en) Fuel cell system and how to operate the fuel cell system
JP2014070012A5 (en)
JP6929045B2 (en) Hydrogen production equipment and operation method of hydrogen production equipment
US20080138676A1 (en) Methods and systems of producing molecular hydrogen using a plasma system in combination with a membrane separation system
WO2008127379A2 (en) Methods and systems of producing molecular hydrogen using a plasma system
JP2014169222A (en) Hydrogen manufacturing apparatus
JP2009114498A (en) Hydrogen-producing apparatus, and cover for positive pole side
US20240217811A1 (en) Hydrogen recycle system and hydrogen recycle method
WO2020261872A1 (en) Hydrogen production apparatus and hydrogen production method
KR102102235B1 (en) Fuel cell system with hydrogen generator
CN111757846B (en) Hydrogen purification apparatus and hydrogen purification method
JP2012153561A (en) Hydrogen production-separation integrated type functional thin film, and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831873

Country of ref document: EP

Kind code of ref document: A1