JP2018187615A - Gas accumulation removal, degasification, and reservoir release device - Google Patents

Gas accumulation removal, degasification, and reservoir release device Download PDF

Info

Publication number
JP2018187615A
JP2018187615A JP2017112055A JP2017112055A JP2018187615A JP 2018187615 A JP2018187615 A JP 2018187615A JP 2017112055 A JP2017112055 A JP 2017112055A JP 2017112055 A JP2017112055 A JP 2017112055A JP 2018187615 A JP2018187615 A JP 2018187615A
Authority
JP
Japan
Prior art keywords
gas
fluid
discharge
pressure
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017112055A
Other languages
Japanese (ja)
Inventor
咲矢香 射場
Sayaka Iba
咲矢香 射場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2018187615A publication Critical patent/JP2018187615A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device that, in removing gas accumulated in a pipeline or a tank and equipment coupled to the pipeline, and in discharging or separating removal gas, is capable of removing the accumulated gas, degasifying fluid and releasing a reservoir, without draining the fluid to the outside of a system, and without causing pressure loss of the force-feed fluid, by using the same device.SOLUTION: In means for discharging or separating gas and dissolved gas (removal gas) without draining fluid in a system, a ventilation layer is arranged inside a pipe body (a pressure wall), and further, a separation membrane is arranged therein. In the means, prevention of gas accumulation and simultaneous discharge or separation of removal gas, and reservoir release, are carried out according to means for vacuum drawing the ventilation layer.SELECTED DRAWING: Figure 5

Description

本発明は、流体搬送時の気体溜まり解消と流体中の脱気及び貯留放出に関する。  The present invention relates to elimination of gas accumulation during fluid conveyance, deaeration in a fluid, and storage discharge.

従来、配管や配管につながるタンクや機器の気体(空気)溜まりを防ぐ方法としてフロート式自動空気抜き弁や流速に応じて開く弁の差圧を利用した空気溜まり搬送装置を使用している。フロート式自動空気抜き弁は系統外に気体を排出するので、系統内が不圧状態の時、空気を吸入してしまう構造である。また、気体排出時に多少の液体が排出されてしまい、故障及びゴミ詰まり時の系統外への排液対策(排水管)が必要であった。流速に応じて開く弁の差圧を利用した空気溜まり解消装置は系統外の排出はしないが次の配管や機器に空気溜まりを送ってしまう。  Conventionally, as a method for preventing gas (air) accumulation in pipes and tanks connected to the pipes and equipment, a float type automatic air vent valve and an air reservoir conveyance device using a differential pressure of a valve that opens according to the flow velocity are used. Since the float type automatic air vent valve discharges gas to the outside of the system, it has a structure that sucks air when the system is in a non-pressure state. Moreover, some liquid was discharged at the time of gas discharge, and it was necessary to take measures against drainage (drainage pipe) outside the system at the time of failure and clogging of garbage. The air pool elimination device that uses the differential pressure of the valve that opens according to the flow rate does not discharge outside the system, but sends the air pool to the next piping or equipment.

また、脱気については個別の装置で液体をタンクや機器に入れ気層部分を作り、その気層部を負圧にして脱気している。  As for degassing, liquid is put into a tank or equipment with an individual device to create an air layer portion, and the air layer portion is degassed with a negative pressure.

配管や配管につながるタンクや機器の気体溜まりを気液分離し系統外への気体排出と脱気を同一装置で行う事が出来なかった。配管や配管につながるタンクや機器からの放出手段はポンプや空気封入圧にで取り出していた。  It was impossible to perform gas discharge and degassing to the outside of the system by gas-liquid separation of piping and the gas reservoirs of tanks and equipment connected to the piping. The discharge means from the tank and the equipment connected to the pipe and the pipe was taken out by the pump and the air filled pressure.

特開2008−215612号公報JP 2008-215612 A 特開2006−266553号公報JP 2006-266553 A 特開H8−210795号公報JP H8-210795 A

配管や配管につながるタンク及び機器の気体溜まりの解消と流体の脱気を排出又は分離において、流体を系統外に排出せず、圧送流体の圧力損失が無く気体溜まりの解消と脱気を行える装置において貯留と放出を同一装置で行う。  Equipment that can eliminate gas accumulation and degassing without pressure loss of pumping fluid without discharging the fluid out of the system in eliminating or separating gas degassing and fluid degassing in tanks and equipment connected to piping The storage and discharge are performed with the same apparatus.

本発明は、系統内の流体(液体)を排出せず、気体及び脱気(溶存気体)を排出又は分離する手段において、管体(圧力壁)の内側に加圧膜、通気層を設けさらに内側に分離膜を設け、通気層を真空引きする手段で、気体溜まり防止と脱気の同時排出又は分離を行う。なお、放出は加圧膜を加圧して流体を取り出す。  The present invention provides a means for discharging or separating gas and degassing (dissolved gas) without discharging the fluid (liquid) in the system, and providing a pressure film and a ventilation layer inside the tube (pressure wall). A separation membrane is provided on the inside, and the vent layer is evacuated to prevent gas accumulation and simultaneously discharge or separate deaeration. In addition, the release pressurizes the pressurized membrane to take out the fluid.

搬送流体を系統外に排出せず、弁等の可動部品が系統内に無いので故障が無く、流体中の気体(溶存を含む)を分離又は排出できる。また、中空糸膜の様な圧力損失も無い事から大型化及び長距離連結化が可能である。  The carrier fluid is not discharged out of the system, and no moving parts such as valves are present in the system, so that there is no failure and gas (including dissolved) in the fluid can be separated or discharged. Further, since there is no pressure loss as in the case of a hollow fiber membrane, it is possible to increase the size and to make a long distance connection.

図1は、上下に迂回した配管の気体溜まり部に排出口を配置した図面である。(実施例1)FIG. 1 is a drawing in which a discharge port is arranged in a gas reservoir of a pipe detoured up and down. (Example 1) 図2は、配管又はタンク又は機器の外周部に排出口と内側に通気層と分離膜を配置した図面である。(実施例1)FIG. 2 is a drawing in which a gas outlet layer and a separation membrane are arranged on the outer periphery of a pipe or tank or equipment and on the inner side. (Example 1) 図3は、配管又はタンクの連結をし、外周部に排出口と内側に通気層と分離膜を配置した図面である。(実施例2)FIG. 3 is a drawing in which a pipe or a tank is connected, and a discharge port is provided on the outer peripheral portion, and a ventilation layer and a separation membrane are disposed on the inner side. (Example 2) 図4は、配管又はタンク又は機器を水中配置し循環手段を配置した図面である。(実施例3)FIG. 4 is a drawing in which pipes, tanks or equipment are arranged in water and circulation means are arranged. Example 3 図5は、配管又はタンク又は機器にキャッチタンクと真空ポンプと流体水位センサーと検出回路を配置した図面である。(実施例2)FIG. 5 is a drawing in which a catch tank, a vacuum pump, a fluid water level sensor, and a detection circuit are arranged in a pipe, a tank, or a device. (Example 2) 図6は、加圧手段を設けた4層構造の球形タンクの断面図である。(実施例4)FIG. 6 is a cross-sectional view of a four-layer spherical tank provided with pressurizing means. (Example 4) 図7は、加圧手段を設けた4層構造の球形タンクの加圧中の断面図である。(実施例4)FIG. 7 is a cross-sectional view of a four-layered spherical tank provided with pressurizing means during pressurization. (Example 4)

流体中の気体を分離膜を使用し分離幕越しに気体を負圧吸引して抜き取り、気体の排出又は分離をすることで、気体溜まりを防止する。時間経過により、より多くの溶存気体も排出又は分離を行う。気液分離又は気体排出及び流体貯留及び流体放出装置による。  Gas separation is prevented by using a separation membrane to draw out the gas in the fluid by suctioning the gas at a negative pressure through the separation screen, and discharging or separating the gas. As time passes, more dissolved gas is also discharged or separated. By gas-liquid separation or gas discharge and fluid storage and fluid discharge device.

図1は横断面図である。空気溜まりを表現するために上下に迂回した配管を表している。迂回部の4落差があり、上部には6気体が溜まりがあり、1流れ方向による7流体の流路が狭まり損出抵抗に成っている。図1には分離膜が無いので8排出口から気体だけを抜き取る場合、空気抜き弁やセンサー電磁弁などの気体排出手段が必要になる。弁類には躍動部があり故障を想定しなければならない。  FIG. 1 is a cross-sectional view. It represents piping that has been detoured up and down to represent an air pocket. There are 4 heads in the detour, 6 gas is accumulated in the upper part, and the flow path of 7 fluids in one flow direction is narrowed, resulting in loss resistance. Since there is no separation membrane in FIG. 1, when only gas is extracted from the 8 outlets, gas exhaust means such as an air vent valve or a sensor solenoid valve is required. Valves have a dynamic part and must assume a failure.

図2は横断面図である。4面体以上の多面体容器や球形や楕円体や円錐体や筒状が容器としては考えられるが図2は円筒状のタンクの断面において実施説明する。  FIG. 2 is a cross-sectional view. Although tetrahedral or more polyhedral containers, spheres, ellipsoids, cones, and cylinders are conceivable as containers, FIG. 2 will be described with reference to a cross section of a cylindrical tank.

2供給側(入口)から流体が5管体(圧力壁)と9接続フランジで区切られた部分に流れた場合、4落差部分に気体溜まりが発生し3消費側(出口)に流れる。5管体(圧力壁)内側に10通気層とさらに内側に11分離膜を設ける。5管体(圧力壁)には12吸引口があり10通気層とつながっている。  When the fluid flows from the 2 supply side (inlet) to the part divided by the 5 pipes (pressure wall) and 9 connecting flanges, a gas pool is generated at the 4 head part and flows to the 3 consumption side (outlet). Five vents (pressure wall) are provided with 10 ventilation layers on the inner side and 11 separation membranes on the inner side. Five pipe bodies (pressure walls) have 12 suction ports and are connected to 10 vent layers.

10通気層は、気体を通気させる隙間のある材料であるが、布状(織物)、発砲樹脂、ダンボール状の紙や樹脂、軽石状の固体、不織布、樹脂やゴムに溝加工や逆の山型加工や凸凹状の梨地加工を施したシートがある。この10通気層の材料は11分離膜内の流体の圧力で加圧され、5管体(圧力壁)が内圧を受け持ち、挟まれた形で圧力を受け、厚さの収縮方向に圧力が加わっても、通気性がある事が条件になる。また、11分離膜の10通気層側表面に溝加工や凸凹状の梨地状の加工を施した11分離膜でも通気層を確保できるが、しかし11分離膜に市販のシリコーンゴムシートを使用し10通気層側表面が梨地状の物で、流体に圧力を掛けると通気層が収縮して5管体(圧力壁)に密着し通気効率が極端に悪くなる。凸凹状の梨地の荒さを大きくする必要があるがシリコーンゴムシートの硬度や厚みを考慮する必要がある事や10通気層に湿度を持った場合はさらに通気性能が低下することを考慮しなければならない。よって、11分離膜の強度や破損率を考え、10通気層は別材料が効率的であるが、いずれにしても5管体(圧力壁)、10通気層、11分離膜の三層構造が必要であり、5管体(圧力壁)の内周全面を三層構造とする。(9接続フランジ部を除く)10 The air-permeable layer is a material with a gap to allow gas to pass through, but it is made of cloth (woven fabric), foamed resin, cardboard-like paper or resin, pumice-like solid, non-woven fabric, resin or rubber, and grooved or reversed piles. There are sheets that have been subjected to mold processing and uneven satin processing. The material of this 10 vent layer is pressurized by the pressure of the fluid in the 11 separation membrane, and the five pipe bodies (pressure walls) receive the internal pressure, receive the pressure in the form of being sandwiched, and the pressure is applied in the contraction direction of the thickness. However, it must be breathable. In addition, a gas permeable layer can be secured even with an 11 separation membrane in which grooves or uneven textured surface processing is performed on the surface of the 11 separation membrane on the 10 ventilation layer side. However, a commercially available silicone rubber sheet is used for the 11 separation membrane. The surface of the ventilation layer is a satin-like object, and when pressure is applied to the fluid, the ventilation layer contracts and adheres to the five pipes (pressure walls), resulting in extremely poor ventilation efficiency. It is necessary to increase the roughness of the textured surface of the uneven surface, but it is necessary to consider the hardness and thickness of the silicone rubber sheet, and if the humidity of the 10 ventilation layer is increased, the ventilation performance will be further reduced. Don't be. Therefore, considering the strength and breakage rate of the 11 separation membrane, a separate material is efficient for the 10 vent layer, but in any case, the three-layer structure of 5 pipes (pressure wall), 10 vent layer, and 11 separation membrane Necessary, and the inner peripheral surface of the five pipe bodies (pressure walls) has a three-layer structure. (Excluding 9 connection flanges)

11分離膜は、内側に流体が流れ圧力にかかわらず10通気層側に気体を透過できる材料である。似たような用途に中空糸膜があるが気体から気体を分離したり、液体から液体を分離している事が多く、分離圧力に高い圧力を必要としている。11分離膜の材料としては、樹脂系、ゴム系、樹脂とゴムの複合材やフィルム状、シート状、メッシュ補強、表面コーティングの材料であるが気体透過性が高く吸水率の低い材料の他に、金、白金、銀、のナノ粒子など触媒効果のある微粒子を混合した機能材料がある。  The 11 separation membrane is a material that allows gas to permeate the 10 vent layer side regardless of the pressure of the fluid flowing inside. There is a hollow fiber membrane in a similar application, but it often separates a gas from a gas or a liquid from a liquid, and requires a high pressure for the separation pressure. 11 The material of the separation membrane is resin, rubber, composite of resin and rubber, film, sheet, mesh reinforcement, and surface coating, but it has high gas permeability and low water absorption. There are functional materials in which fine particles having a catalytic effect such as nanoparticles of gold, platinum and silver are mixed.

11分離膜の選定は流体材料と混入気体の種類や温度により変わってくる。また、流体混入物を触媒機能によりガス化気体として排出分離する場合や触媒機能に加え電磁波(光を含む)、振動波、音波を流体に照射して触媒機能を強化する事から使用条件によりパラメータとして11分離膜の選定を特定して説明する事を省く。  11 The selection of the separation membrane varies depending on the type of fluid material and mixed gas and temperature. In addition, when fluid contaminants are discharged and separated as a gasified gas by the catalytic function, and in addition to the catalytic function, electromagnetic waves (including light), vibration waves, and acoustic waves are applied to the fluid to enhance the catalytic function, parameters can be set according to the operating conditions. Thus, the description of specifying and selecting the 11 separation membrane is omitted.

流体を水道水と仮定して動作説明をするが冷水から温水まで動作できる事から水温はさまざまあるので温度については説明を省く。11分離膜の中に水道水が2供給側(入口)から流れ、水道圧が10通気層と5管体(圧力壁)にかかっている。4落差部分に空気が溜まる構造である。23真空ポンプを使い12吸引口から10通気層内の空気を吸引すると、11分離膜(シリコーンゴムコーティングシートと仮定)を水道圧にかかわらず空気が透過する。この空気の成分の内、炭酸ガス、酸素、窒素、が大半である。透過率の違いはあるがすべて透過する。次第に11分離膜内の空気溜まりは減少し、無くなる。同時に溶存空気も減少しているが、その後も負圧状態を継続すると水道水圧がある場合でも時間経過とともに水道水中の溶存空気が減少して行く。ミネラルは残った状態である。実験結果から総合塩素濃度の低下が負圧吸引しない場合よりも早く、臭気も減少している。減少速度はシリコーンゴムコーティングシートの面積と流体体積による。また、脱気水は溶存酸素が少ないなど効能は多々あるが説明を省く。また、原理の説明にとどめるが脱気水の製造装置は多々ある中で構造が簡単で部品点数や消耗部品も少なく、メンテナンス周期の長いものは無い。The operation will be described assuming that the fluid is tap water, but since it can operate from cold water to hot water, there are various water temperatures, so the description of temperature will be omitted. 11 Tap water flows from the 2 supply side (inlet) into the separation membrane, and the water pressure is applied to 10 vent layers and 5 pipes (pressure wall). 4 It is a structure where air accumulates in the head part. When air in the 10 vent layer is sucked from the 12 suction ports using the 23 vacuum pump, the air permeates through the 11 separation membrane (assumed to be a silicone rubber coating sheet) regardless of the water pressure. Of these air components, carbon dioxide, oxygen, and nitrogen are the majority. All are transmitted though there is a difference in transmittance. Gradually, air pockets in the 11 separation membrane decrease and disappear. At the same time, the dissolved air also decreases, but if the negative pressure state is continued thereafter, the dissolved air in the tap water decreases over time even when there is tap water pressure. Mineral remains. From the experimental results, the decrease in the total chlorine concentration is faster than when the negative pressure is not sucked, and the odor is reduced. The rate of decrease depends on the area and fluid volume of the silicone rubber coating sheet. Degassed water has many effects such as low dissolved oxygen, but will not be explained. Although only the principle is explained, there are many apparatuses for producing deaerated water, the structure is simple, the number of parts and the number of consumable parts are small, and there is no one with a long maintenance cycle.

11分離膜をシリコーンゴムコーティングシートとした場合の透過率は厚さ、密度、材質、添加物、製法によっても違いがあるので目的効能によって材質を選定して行く。  11 When the separation membrane is made of a silicone rubber coating sheet, the transmittance varies depending on the thickness, density, material, additive, and production method, so the material is selected according to the intended effect.

図3は配管又はタンクの連結の断面図である。4落差はないが図2と部材の配置は同じであり、連結の部分の説明を行う。9接続フランジにより配管又はタンクを連結するが13通気層分離接続部は11分離膜と10通気層が9接続フランジのパッキンあたり面で分割されている接続を表している。14通気層連結接続は11分離膜と10通気層が9接続フランジのパッキンあたり面には関係無く内部連結している。13通気層分離接続を区画ごとに設ける事で11分離膜の破損による10通気層への流体の混入を区画で防ぐことができる。  FIG. 3 is a cross-sectional view of a pipe or tank connection. 4 Although there is no drop, the arrangement of members is the same as in FIG. 2, and the connection portion will be described. Pipes or tanks are connected by 9 connection flanges, but 13 vent layer separation connection parts represent connections in which 11 separation membranes and 10 vent layers are divided on the surface of the 9 connection flange per packing. In the 14 vent layer connection, the 11 separation membrane and the 10 vent layer are internally connected regardless of the packing contact surface of the 9 connection flange. By providing 13 vent layer separation connections for each compartment, it is possible to prevent the fluid from being mixed into the 10 vent layers due to breakage of the 11 separation membrane.

図5は、5管体(圧力壁)に18キャッチタンクと23真空ポンプと19、電極又はフロートスイッチと21検出回路を配置した図面である。17接続配管1と25接続配管2は前項の13通気層分離接続で説明した区画ごとに設けてあることで18キャッチタンクにより23真空ポンプを1台にしている。また、18キャッチタンクの役目としては、23真空ポンプが一定負圧に達したら停止する構造の場合、自動発停を繰り返すが10通気層の体積が少ないと頻繁に自動発停を繰り返すところを、キャッチタンクの体積を増やす事で自動発停の繰り返しサイクルを下げる効果がある。動作は23真空ポンプが18キャッチタンクを真空引きし、7接続配管1と25接続配管2を通じ12吸引口から10通気層を負圧状態にして、流体内の空気及び溶存空気を透過排出または、分離しているが水道水は11分離膜を透過できないので排出されない。また、系統内に弁を配置していなく躍動部が無いシンプルな構造である事から故障率が低いことも特徴である。FIG. 5 is a drawing in which 18 catch tanks, 23 vacuum pumps and 19, electrodes or float switches and 21 detection circuits are arranged on 5 pipes (pressure walls). The 17 connection pipe 1 and the 25 connection pipe 2 are provided for each of the sections described in the 13 vent layer separation connection in the previous section, so that one 23 vacuum pump is made up of 18 catch tanks. Also, as the role of the 18 catch tank, in the case of a structure that stops when the 23 vacuum pump reaches a certain negative pressure, the automatic start / stop is repeated, but when the volume of the 10 vent layer is small, the automatic start / stop is frequently repeated. Increasing the volume of the catch tank has the effect of reducing the automatic start / stop cycle. As for the operation, the 23 vacuum pump evacuates the 18 catch tank, and through the 7 connection pipe 1 and the 25 connection pipe 2, 10 vent layers are brought into a negative pressure state from the 12 suction ports, and the air in the fluid and the dissolved air are permeated and discharged. Although separated, tap water is not discharged because it cannot permeate 11 separation membranes. Another feature is that the failure rate is low because the valve is not arranged in the system and has a simple structure with no dynamic parts.

11分離膜の破損故障時の動作を説明する。11分離膜内の水道水が漏洩し10通気層を満たし12吸引口から17接続配管1又は25接続配管2を通じ18キャッチタンク内に流れ、24漏れ液面が19電極又はフロートスイッチの水位まで溜まると19電極又はフロートスイッチが反応し20通信線を通じ21検出回路が動作する。よって23真空ポンプを停止し警報を出す動作を行う。11 Operation at the time of failure of the separation membrane will be described. 11 Tap water in the separation membrane leaks, fills 10 ventilation layers, flows from 12 suction ports through 18 connection pipe 1 or 25 connection pipe 2 and into 18 catch tank, and 24 leak liquid level accumulates to 19 electrodes or water level of float switch 19 electrodes or float switches react, and 21 detection circuits operate through 20 communication lines. Therefore, the 23 vacuum pump is stopped and an alarm is issued.

図4は、配管又はタンク又は機器を水中配置し循環手段を配置した図面である。11分離膜と10通気層の説明は省略する。図3の連結にも関連するが、フィールドを大きくして説明する。例えば連結を1,000mとした場合送水抵抗を考慮しなければならないが本発明はなんら抵抗に成るものが無い。また、図5の23真空ポンプと18キャッチタンクを陸上又は船上に配置していれば連結部を水中に配置することも容易に考えられる。図4を海中に配置したとして説明する。たとえば、海中に天然ガスが存在し泡状のガスが海底から噴出している場合、26ホッパーなどで噴出ガスをキャッチし連結配管に循環させる。ガスを海水中から分離し透過ガスとし、さらに別の分離手段で天然ガスを分離して陸上に運ぶなど使用用途は広い。爆発など危険を伴う工程を海中で行えば安全である。図4の15ポンプ又はインペラーを端末に配置し海水を循環させるが海水の高低差が無いので15ポンプ又はインペラーの能力を小さく出来る。これが陸上や船上に海水ごと汲み上げれば落差(損出水頭)になり15ポンプ又はインペラーの能力を大きくしなくてはならない。また、11分離膜の破損故障時は23真空ポンプの負圧力(大気圧)では海面から最大でも10m以上には吸引できないので18キャッチタンクを7mから11mの間に配置しておけば海水が真空圧に応じた高さまで戻り確認もしやすい。至ってシンプルな故障の少ない分離装置として機能する。FIG. 4 is a drawing in which pipes, tanks or equipment are arranged in water and circulation means are arranged. The description of the 11 separation membrane and the 10 ventilation layer is omitted. Although related to the connection in FIG. 3, the field will be enlarged and described. For example, when the connection is 1,000 m, water supply resistance must be taken into consideration, but the present invention has no resistance. In addition, if the 23 vacuum pump and the 18 catch tank of FIG. 5 are arranged on land or on a ship, it is easily conceivable to arrange the connecting part in water. A description will be given assuming that FIG. 4 is placed in the sea. For example, when natural gas exists in the sea and foamy gas is ejected from the seabed, the ejected gas is caught by a 26 hopper or the like and circulated to the connecting pipe. It has a wide range of uses such as separating gas from seawater into permeated gas, and separating natural gas with another separation means and transporting it to land. It is safe to perform dangerous processes such as explosions in the sea. The 15 pump or impeller of FIG. 4 is arranged at the terminal to circulate the seawater. However, since there is no difference in seawater level, the capacity of the 15 pump or impeller can be reduced. If this is pumped together with seawater on land or on the ship, it will become a drop (loss head) and the capacity of 15 pumps or impellers must be increased. In addition, when the 11 separation membrane breaks down, the negative pressure (atmospheric pressure) of the 23 vacuum pump cannot suck up to 10m or more from the sea surface. If the 18 catch tank is placed between 7m and 11m, the seawater will be vacuumed. Easy to check back to the height corresponding to the pressure. It functions as a simple separation device with few failures.

たとえば、噴出ガスをホッパーで集め大形のタンク内で自然分離したとして、分離膜は必要無いがタンクを大型化する事と耐圧に耐える強度が必要になる事や潮流などの影響を受けやすいので大形のシンカーが必要になり移設を想定した場合などコストが増大する懸念がある。その点配管型の連結は敷設も簡単で潮流の影響を受けにくい。また、18キャッチタンクを配管型にすることで管路を形成し輸送が可能になる。  For example, if the ejected gas is collected by a hopper and naturally separated in a large tank, a separation membrane is not required, but it is easily affected by the size of the tank and the need for strength that can withstand pressure, as well as tidal currents. There is a concern that the cost will increase if a large sinker is required and relocation is assumed. On that point, the pipe-type connection is easy to install and is not easily affected by tidal currents. Moreover, a pipe line can be formed and transported by making the 18 catch tank into a pipe type.

図6は、球形タンクの横断面図である。5管体(圧力壁)が球形であり、内に沿って28加圧膜、10通気層、11分離膜が配置され4層構造となっている。内部に流体(液体)が充満してあり流れは2供給側(入口)から1流れ方向に7流体が充満し、29流れ方向から3消費側(出口)に流れている。7流体の圧力はゼロ以上の圧力と仮定し説明する。微負圧でも機能するが説明が複雑化するため省くものとする。FIG. 6 is a cross-sectional view of a spherical tank. The five pipe bodies (pressure walls) are spherical, and 28 pressure membranes, 10 vent layers, and 11 separation membranes are arranged along the inside to form a four-layer structure. The inside is filled with fluid (liquid), and the flow is filled with 7 fluids in the flow direction from the 2 supply side (inlet) and flows from the 29 flow direction to the 3 consumption side (outlet). The explanation will be made assuming that the pressure of the seven fluid is zero or more. Although it works even with slight negative pressure, it will be omitted because it complicates the explanation.

球形タンクの内圧は5管体(圧力壁)が受け持っている。内側の28加圧膜は流体の圧力により5管体(圧力壁)との31加圧部分は密着している。さらに内側の10通気層は内圧、外圧により圧縮されるが通気性を失わない材料である。さらに内側の11分離膜が7流体と接し、7流体中の溶存気体や混入気泡を透過させ10通気層の負圧吸引により分離している。負圧吸引は5管体(圧力壁)を通過し10通気層に接続されている12吸引口より排出又は分離されている。負圧は真空ポンプで保持されているものとする。Five pipe bodies (pressure walls) are responsible for the internal pressure of the spherical tank. The inner 28 pressurizing membrane is in close contact with the 31 pressurizing part with the 5 pipes (pressure wall) by the pressure of the fluid. Further, the inner 10 air-permeable layers are materials that are compressed by internal pressure and external pressure but do not lose air permeability. Further, the inner 11 separation membrane is in contact with the seven fluids, and the dissolved gas and mixed bubbles in the seven fluids are permeated so as to be separated by the negative pressure suction of the ten vent layers. Negative pressure suction is discharged or separated from 12 suction ports that pass through 5 tubes (pressure walls) and are connected to 10 vent layers. The negative pressure is assumed to be held by a vacuum pump.

28加圧膜、10通気層、11分離膜は30伸縮部で構成され、5管体(圧力壁)に設けられた27加圧口から31加圧部分に液体又は気体を挿入し加圧する構造である。30伸縮部は一体構造又は個別の配置でも機能するので形態は特定しないが柔軟性のある材料とする。28 pressure membranes, 10 ventilation layers, 11 separation membranes are composed of 30 expansion / contraction parts, and a structure in which a liquid or gas is inserted into a pressure-applying portion from 27 pressure ports provided in 5 pipes (pressure walls) and pressurized. It is. Since the 30 stretchable part functions even in an integral structure or an individual arrangement, the form is not specified, but a flexible material is used.

図7は、横断面図である。7流体を31加圧部分の加圧で30伸縮部が圧縮され取り出し中の姿を現している。加圧動作は27加圧口より液体又は気体を31加圧部分に送り込んで加圧するが、2供給側(入口)に逆止弁を配置し、7流体の圧力より高い圧力で31加圧部分を加圧する必要がある。7流体は29流れ方向に流れ、球形タンク内の7流体を3消費側(出口)から取り出している。FIG. 7 is a cross-sectional view. 30 fluids are compressed by 30 pressurizing parts of 7 fluids, and the figure of taking out is shown. Pressurization is performed by sending liquid or gas from the 27 pressurization port to the 31 pressurization part, and a check valve is arranged on the 2 supply side (inlet), and the 31 pressurization part is at a pressure higher than the pressure of 7 fluids. Need to be pressurized. Seven fluids flow in 29 flow directions, and seven fluids in the spherical tank are taken out from the three consumption side (exit).

3層構造と4層構造の違いについて説明する。28加圧膜の無い3層構造の場合10通気層を負圧吸引しているがスイッチして10通気層を加圧することで11分離膜を圧縮し7流体を取出す事ができる。しかし、時間経過が大きいと11分離膜を透過して気体が7流体に混入してしまう懸念がある。4層構造を説明する前に28加圧膜について不す、28加圧膜はガスバリア性の高い材料であって、ブチルゴム、金属の薄膜を塗布又は貼り合わせた樹脂シート(食品パックに使用されている)、EVOH樹脂などがあり、これらの材料を塗布又はコーティング又は複合又は貼り合せの柔軟性を持った材料である。The difference between the three-layer structure and the four-layer structure will be described. In the case of a three-layer structure without 28 pressurized membranes, 10 vent layers are sucked under negative pressure, but by switching and pressurizing 10 vent layers, 11 separation membranes can be compressed and 7 fluids can be taken out. However, if the passage of time is large, there is a concern that the gas permeates the seven fluids through the 11 separation membrane. Before explaining the four-layer structure, the 28 pressure film is a material with high gas barrier properties, and is a resin sheet (used in food packs) coated or bonded with a butyl rubber or metal thin film. EVOH resin, etc., and these materials are materials having the flexibility of application, coating, composite, or bonding.

4層構造の大きな利点は、10通気層を負圧吸引しながら(脱気しながら)31加圧部分を加圧し7流体を取り出せる点にある。よって溶存気体や混入気泡の極少ない状態を維持し取り出せる。(脱気状態のまま取り出しできる)The great advantage of the four-layer structure is that seven fluids can be taken out by pressurizing the 31 pressurizing portion while sucking (degassing) the ten air-permeable layers. Therefore, it is possible to maintain and take out a state with very few dissolved gases and mixed bubbles. (Can be taken out in deaerated state)

4層構造の実施説明をする。各配置については前項で述べているので省く。5管体(圧力壁)は金属、樹脂、木、セラミックなど内圧に耐えうる材料であるが塩ビ管を使用して実験を行った。28加圧膜はEVOHポリエチレンフィルムを使用した。10通気層は不織布の複合材を使用した。11分離膜は多種あるが通気性シートにシリコーンゴムをコーティングした物を使用し水道水を貯留し通気層を真空ポンプで負圧にして水道水の変化を測定した。まず残留塩素濃度の変化と溶存酸素の状態を負圧の有り無しで測定比較した場合、負圧吸引した方が明らかに低減速度が速い。分離膜の性能にも大きく関係するが膜の面積に比例して脱気時間は短くなる。特記すべきは3層構造、4層構造共に10通気層の負圧状態では熱の遮断性が高く(魔法瓶:他社商品名)の様に保温、結露に効果が大きい。An implementation of a four-layer structure will be described. Since each arrangement is described in the previous section, it is omitted. The five pipe bodies (pressure walls) are materials that can withstand internal pressure, such as metal, resin, wood, and ceramic, but experiments were conducted using PVC pipes. The 28 pressurized membrane was an EVOH polyethylene film. The nonwoven fabric composite material was used for 10 ventilation layers. 11 There are various types of separation membranes, but a breathable sheet coated with silicone rubber was used to store tap water, and the change in tap water was measured by setting the vent layer to a negative pressure with a vacuum pump. First, when the change in residual chlorine concentration and the state of dissolved oxygen are measured and compared with and without negative pressure, the reduction rate is clearly faster when suctioned with negative pressure. Although greatly related to the performance of the separation membrane, the deaeration time is shortened in proportion to the area of the membrane. It should be noted that both the three-layer structure and the four-layer structure have a high heat-blocking property in the negative pressure state of the 10 air-permeable layer (the thermos: product name of other company), and have a great effect on heat retention and condensation.

水道水などを長期保存する場合密閉容器が理想である。大型のタンクを設置しようとした場合、水道水の循環率が下がり、水道消費が少ない場合など、塩素保持が出来ない事から規定の循環率以上の容量の貯水層は設置できない。脱気水であれば塩素同様に雑菌の繁殖を控えられ長期に保存が可能になる。また、液体とガスの分離においても系外排出をせず安全に分離できる事や、食品分野に対する安全性が向上する。(脱気水は酸素が概ね無いことから、嫌気性雑菌以外の雑菌や微生物は死滅する傾向にある)また、保温性が高いので電気温水器などにも利用できる。安価に製造できれば使用用途は広く社会貢献度は大きい。  A sealed container is ideal for long-term storage of tap water. When trying to install a large tank, it is not possible to install a reservoir with a capacity higher than the specified circulation rate because the circulation rate of tap water decreases and water consumption is low. If it is deaerated water, it is possible to refrain from the propagation of bacteria as well as chlorine and to preserve it for a long time. Also, separation of liquid and gas can be performed safely without discharging outside the system, and safety in the food field is improved. (Because deaerated water is almost free of oxygen, bacteria and microorganisms other than anaerobic bacteria tend to die.) In addition, since the heat retention is high, it can also be used for an electric water heater or the like. If it can be manufactured at low cost, it can be used widely and contributes greatly to society.

1、流れ方向
2、供給側(入口)
3、消費側(出口)
4、落差
5、管体(圧力壁)
6、気体溜まり
7、流体
8、排出口
9、接続フランジ
10、通気層
11、分離膜
12、吸引口
13、通気層分離接続
14、通気層連結接続
15、ポンプ又はインペラー
16、液体水面
17、接続配管1
18、キャッチタンク
19、電極又はフロートスイッチ
20、通信線
21、検出回路
22、真空配管
23、真空ポンプ
24、漏れ液面
25、接続配管2
26、ホッパー
27、加圧口
28、加圧膜
29、流れ方向
30、伸縮部
31、加圧部分
1. Flow direction 2. Supply side (inlet)
3. Consumption side (exit)
4, head 5, pipe body (pressure wall)
6, gas reservoir 7, fluid 8, discharge port 9, connection flange 10, vent layer 11, separation membrane 12, suction port 13, vent layer separation connection 14, vent layer connection 15, pump or impeller 16, liquid water surface 17, Connection piping 1
18, catch tank 19, electrode or float switch 20, communication line 21, detection circuit 22, vacuum pipe 23, vacuum pump 24, leakage liquid level 25, connection pipe 2
26, hopper 27, pressure port 28, pressure film 29, flow direction 30, expansion / contraction part 31, pressure part

Claims (6)

配管又はタンク又は機器において管体又は圧力壁内周に通気層と分離膜を配置する三層構造を有し流体圧力及び温度にかかわらず通気層の負圧吸引による流体の気体溜まり解消及び流体の脱気及び流体の貯留放出を行える気液分離又は気体排出及び貯留放出構造  It has a three-layer structure in which a ventilation layer and a separation membrane are arranged on the inner periphery of a pipe body or pressure wall in a pipe, tank, or device, and eliminates gas accumulation in the fluid by negative pressure suction of the ventilation layer regardless of the fluid pressure and temperature. Gas-liquid separation or gas discharge and storage discharge structure that can degas and store and discharge fluid 請求項1であって圧力壁内周と通気層の間に加圧膜を配置する四層構造を有し流体圧力及び温度にかかわらず通気層の負圧吸引による流体の気体溜まり解消及び流体の脱気と貯留放出を行える気液分離又は気体排出及び流体貯留及び放出構造  2. A four-layer structure in which a pressurized membrane is disposed between the inner circumference of the pressure wall and the vent layer, and the fluid gas pool is eliminated by the negative pressure suction of the vent layer regardless of the fluid pressure and temperature, and the fluid Gas-liquid separation or gas discharge and fluid storage and discharge structure capable of deaeration and storage and discharge 請求項1又は請求項2であって接続配管でキャッチタンクと真空引き手段と漏水検出手段を配置した気液分離又は気体排出及び流体貯留及び放出装置  3. A gas-liquid separation or gas discharge and fluid storage and discharge device according to claim 1 or 2, wherein the catch tank, the vacuuming means and the water leakage detection means are arranged in the connecting pipe. 請求項3であって電磁波、振動波、音波を流体に照射して流体と気体の分離機能と触媒機能を強化してなる気液分離又は気体排出及び流体貯留及び放出装置  4. A gas-liquid separation or gas discharge and fluid storage and discharge device according to claim 3, wherein the fluid and gas separation function and the catalyst function are enhanced by irradiating the fluid with electromagnetic waves, vibration waves and sound waves. 請求項4であって配管又はタンク又は機器を連結してなる気液分離又は気体排出及び流体貯留及び放出装置  5. A gas-liquid separation or gas discharge and fluid storage and discharge device comprising pipes, tanks or devices connected to each other. 請求項5であって配管又はタンク又は機器の端末に流体循環手段を配置してなる気液分離又は気体排出及び流体放出装置  6. A gas-liquid separation or gas discharge and fluid discharge device according to claim 5, wherein a fluid circulation means is arranged at the end of a pipe or tank or equipment.
JP2017112055A 2017-05-08 2017-05-22 Gas accumulation removal, degasification, and reservoir release device Pending JP2018187615A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017102116 2017-05-08
JP2017102116 2017-05-08

Publications (1)

Publication Number Publication Date
JP2018187615A true JP2018187615A (en) 2018-11-29

Family

ID=64477935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017112055A Pending JP2018187615A (en) 2017-05-08 2017-05-22 Gas accumulation removal, degasification, and reservoir release device

Country Status (1)

Country Link
JP (1) JP2018187615A (en)

Similar Documents

Publication Publication Date Title
US5123937A (en) Deaerating film and deaerating method
US5914041A (en) Channel based reverse osmosis
RU2720197C2 (en) Controlled vacuum degassing of gas filter for fluid medium treatment system
JPWO2018034183A1 (en) Hollow fiber membrane module, deaeration air supply device, inkjet printer and carbonated spring manufacturing device
US11712640B2 (en) Degassing electrorheological fluid
JP2018187615A (en) Gas accumulation removal, degasification, and reservoir release device
JP2011104508A (en) Degassing system
CN108371846B (en) Gas-liquid separation device
TW202102292A (en) Degassers, degassing systems and the methods of using them
JPS6048104A (en) Defoaming process and apparatus
JP2006297200A (en) Degassing apparatus
JPH07303802A (en) Diaphragm deaeration device
JPH10296005A (en) Method for ultradeaeration of liquid and deaeration apparatus thereof
JP2022000302A (en) Degasification system, liquid degasification method, degasification module, method for manufacturing degasification system, and method for producing natural resource
JP3224409B2 (en) Hollow fiber membrane module for degassing
WO2020075482A1 (en) Hollow fiber membrane module
JP2003088738A (en) Carbonated warm water production apparatus
CN107614130A (en) High vacuum adsorption roller
CN219193278U (en) Closed energy dissipation water tank
TWI772080B (en) Air-supplied waste liquid conveying device
US20160107124A1 (en) Filtration device and filtration method using same
JPH0747236A (en) Membrane separation apparatus and membrane module
CN204147330U (en) A kind of de-airing device for purifying blood
CN213842968U (en) Special inspection groove for ceramic filter plate
JP2012000571A (en) Porous body for deaeration, and deaeration apparatus having the same