JP2018187539A - Membrane separation active sludge treatment device, and membrane separation active sludge treatment method - Google Patents

Membrane separation active sludge treatment device, and membrane separation active sludge treatment method Download PDF

Info

Publication number
JP2018187539A
JP2018187539A JP2017089621A JP2017089621A JP2018187539A JP 2018187539 A JP2018187539 A JP 2018187539A JP 2017089621 A JP2017089621 A JP 2017089621A JP 2017089621 A JP2017089621 A JP 2017089621A JP 2018187539 A JP2018187539 A JP 2018187539A
Authority
JP
Japan
Prior art keywords
membrane separation
dissolved oxygen
sludge treatment
activated sludge
separation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017089621A
Other languages
Japanese (ja)
Other versions
JP7016622B2 (en
Inventor
克輝 木村
Katsuteru Kimura
克輝 木村
進 石田
Susumu Ishida
進 石田
亮 張
Liang Zhang
亮 張
輝美 円谷
Terumi Tsuburaya
輝美 円谷
太郎 三好
Taro Miyoshi
太郎 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Maezawa Industries Inc
Original Assignee
Hokkaido University NUC
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Maezawa Industries Inc filed Critical Hokkaido University NUC
Priority to JP2017089621A priority Critical patent/JP7016622B2/en
Priority to PCT/JP2017/045050 priority patent/WO2018198422A1/en
Publication of JP2018187539A publication Critical patent/JP2018187539A/en
Application granted granted Critical
Publication of JP7016622B2 publication Critical patent/JP7016622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a membrane separation active sludge treatment device and method, enhancing nitrogen removal efficiency further, exhibiting high applicability even to load change of inflow sewage amount, and further capable of largely shortening processing time (HRT) in a reaction tank, and capable of being adopted even in middle or large scale sewage disposal plant or the like.SOLUTION: There are provided a partition plate insertion type membrane separation active sludge treatment device having a single reaction tank 1 for conducting an aerobic treatment and an oxygen-free treatment, an impregnation membrane separation unit 2a arranged inside of the reaction tank 1, and aeration means 4a, in which the reaction tank 1 is divided into a plurality of sections by a partition plate 7, at least one section of the plurality of sections is set as an aerobic section in which the impregnation membrane separation unit and the aeration means, and the oxygen-free treatment is conducted in other sections, a circulation water amount adjustment device is arranged, and a first dissolved oxygen meter 10a is arranged in the aerobic section and a second dissolved oxygen meter 10b is arranged in other sections, and a membrane separation active sludge treatment method using the device.SELECTED DRAWING: Figure 3

Description

本発明は、膜分離とともに窒素除去を効率的に行うことができ、流入下水量の負荷変動に対し適用性の高い膜分離活性汚泥処理装置及び方法に関する。   TECHNICAL FIELD The present invention relates to a membrane separation activated sludge treatment apparatus and method that can efficiently perform nitrogen removal together with membrane separation and have high applicability to load fluctuations in inflow sewage.

従来から、窒素やリンといった栄養塩を含む下廃水を処理するにあたっては、汚水を反応槽に導入し活性汚泥と共に曝気・攪拌して生物処理を行う活性汚泥法が用いられている。特に近年は、この活性汚泥法によって処理された処理水から固形物を含まない清澄な処理水を得るため、反応槽内に膜分離装置を浸漬させ、処理水を膜分離して排出する膜分離活性汚泥法(Membrane Bioreactor(MBR)法)が多用されている。   Conventionally, when treating sewage wastewater containing nutrient salts such as nitrogen and phosphorus, an activated sludge method is used in which sewage is introduced into a reaction tank and aerated and agitated together with activated sludge for biological treatment. Especially in recent years, in order to obtain clear treated water that does not contain solid matter from the treated water treated by this activated sludge method, membrane separation is performed by immersing the membrane separation device in the reaction tank and separating the treated water into a membrane. The activated sludge method (Membrane Bioreactor (MBR) method) is frequently used.

このような浸漬型の膜分離装置では、膜表面に汚泥が付着してファウリング(膜の目詰まり)が発生するのを防止するために、下部の散気管から空気を吹き込む必要があり、通常はほぼ連続的に散気を行っている。活性汚泥法においては、このような好気状態下では硝化細菌の作用により硝化が進行するが、一方で脱窒細菌による脱窒処理を行うためには槽内を無酸素状態にする必要がある。したがって、膜分離活性汚泥法においては、膜ろ過時の膜面洗浄と硝化処理のための散気の確保と、脱窒処理のための無酸素状態の確保の両立が必要であるが、これを実現する技術として、単一の反応槽内で好気処理(硝化処理)と無酸素処理(脱窒処理)を進行させる膜分離活性汚泥装置および方法が提案されている(特許文献1)。   In such a submerged membrane separator, it is necessary to blow air from the lower air diffuser in order to prevent fouling (membrane clogging) from occurring on the membrane surface. Has a continuous aeration. In the activated sludge method, nitrification proceeds by the action of nitrifying bacteria under such an aerobic condition. On the other hand, in order to perform denitrification treatment with denitrifying bacteria, it is necessary to make the inside of the tank oxygen-free. . Therefore, in the membrane separation activated sludge method, it is necessary to ensure both membrane surface cleaning during membrane filtration and aeration for nitrification and oxygen-free conditions for denitrification treatment. As a technology to be realized, a membrane separation activated sludge apparatus and method for aerobic treatment (nitrification treatment) and oxygen-free treatment (denitrification treatment) in a single reaction tank have been proposed (Patent Document 1).

この特許文献1で提案された装置は、本願の図1に示すように、好気性処理および無酸素処理を行う単一の反応槽1と、その反応槽の内部に配置された浸漬膜分離ユニット2と、曝気手段4とを有する装置であって、反応槽1は、底部が反応槽の底面から離間して設けられた仕切板7によって複数個の区画に分割され、その複数個の区画のうちの少なくとも一つの区画を、浸漬膜分離ユニット2および曝気手段4が配置された好気区画とし、残りの区画を、好気状態から無酸素状態に、また、無酸素状態から好気状態に切り換えるための区画とし、かつ、反応槽内の液位が仕切板上端よりも高い状態と低い状態とに切り換えるための液位制御手段又は仕切板の高さ制御手段が設けられた、仕切板挿入型の膜分離活性汚泥処理装置(Baffled Membrane Bioreactor(B−MBR法))である。   As shown in FIG. 1 of the present application, the apparatus proposed in Patent Document 1 includes a single reaction tank 1 that performs aerobic treatment and oxygen-free treatment, and a submerged membrane separation unit disposed inside the reaction tank. 2 and the aeration means 4, the reaction tank 1 is divided into a plurality of compartments by a partition plate 7 provided with a bottom portion spaced apart from the bottom surface of the reaction tank. At least one of the compartments is an aerobic compartment in which the submerged membrane separation unit 2 and the aeration means 4 are arranged, and the remaining compartment is changed from an aerobic state to an anaerobic state, and from an anaerobic state to an aerobic state. Partition plate insertion that is provided with a liquid level control means or a partition plate height control means for switching between a state in which the liquid level in the reaction tank is higher and lower than the upper end of the partition plate. Type membrane separation activated sludge treatment equipment (Baffled Membrane Bioreactor (B-MBR method)).

特許文献1の方法では、反応槽1内の液位が低水位(LWL:Low Water Level)になると原水ポンプ8がONとなり、液位が高水位(HWL:High Water Level)になると原水ポンプ8がOFFとなるよう設定して液位を変化させることにより、液位が仕切板より高い状態と、液位が仕切板より低い状態とが交互に作り出される(図1)。ここで、液位が仕切板より高い状態では、散気管4からのエアで槽全体に及ぶ循環流(膜ユニット収容区画から、仕切板7の上を越えてその他の区画に入り、該その他の区画内を下降し、仕切板7よりも下の領域を介して膜ユニット収容区画に戻る循環流)が形成される(図2)。このような循環流の形成により、膜分離ユニット収容区画において硝化処理により得られた硝酸態窒素を多く含む汚泥がその他の区画に移行し、仕切板7の内外で好気処理(硝化処理)が進行する(この時間帯を「硝化促進運転時間帯」という)。一方、液位が仕切板より低い状態では、膜分離ユニット収容区画とその他の区画の間で液の流通が分断され、その結果、該その他の区画では無酸素状態となり、無酸素処理(脱窒処理)が進行する(この時間帯を「脱窒促進運転時間帯」という)。このように、特許文献1の方法は、液位が仕切板より高い状態と低い状態とを交互に作り出すことにより、硝化促進運転時間帯と脱窒促進運転時間帯とを繰り返す方法である。   In the method of Patent Document 1, the raw water pump 8 is turned on when the liquid level in the reaction tank 1 becomes a low water level (LWL: Low Water Level), and the raw water pump 8 when the liquid level becomes a high water level (HWL: High Water Level). By changing the liquid level so as to be OFF, a state where the liquid level is higher than that of the partition plate and a state where the liquid level is lower than that of the partition plate are alternately created (FIG. 1). Here, in a state where the liquid level is higher than that of the partition plate, the circulation flow that extends over the entire tank by the air from the diffuser pipe 4 (from the membrane unit storage section, enters the other section over the partition plate 7, and enters the other section. A circulating flow that descends in the compartment and returns to the membrane unit accommodation compartment through a region below the partition plate 7 is formed (FIG. 2). By forming such a circulating flow, sludge containing a large amount of nitrate nitrogen obtained by nitrification in the membrane separation unit accommodating section is transferred to other sections, and aerobic treatment (nitrification treatment) is performed inside and outside the partition plate 7. Proceeds (this time zone is called “nitrification promotion operation time zone”). On the other hand, when the liquid level is lower than that of the partition plate, the flow of the liquid is divided between the membrane separation unit accommodating section and the other sections, and as a result, the other sections become oxygen-free and oxygen-free treatment (denitrification). Treatment) (this time zone is referred to as “denitrification promotion operation time zone”) Thus, the method of patent document 1 is a method of repeating a nitrification promotion operation time zone and a denitrification promotion operation time zone by alternately creating a state where the liquid level is higher and lower than that of the partition plate.

また、特許文献2には、ディッチ(無終端水路)内に循環水流発生手段と酸素供給手段(曝気装置)を設置し、好気性水域と無酸素水域とを形成したオキシデーションディッチ法(以下、「OD法」ともいう)において、好気性水域の上流側と下流側にそれぞれ溶存酸素計(DO計)を設け、上流側溶存酸素計の測定値に基づいて酸素供給手段による酸素供給量を調節し、下流側溶存酸素計の測定値に基づいて循環水流発生手段による循環水の流速を調節する装置及び方法が開示されている。   Patent Document 2 discloses an oxidation ditch method (hereinafter referred to as an aerobic water area and an anoxic water area) in which a circulating water flow generating means and an oxygen supply means (aeration device) are installed in a ditch (endless water channel). In the “OD method”), dissolved oxygen meters (DO meters) are installed on the upstream and downstream sides of the aerobic water area, and the oxygen supply by the oxygen supply means is adjusted based on the measured values of the upstream dissolved oxygen meter. And the apparatus and method of adjusting the flow rate of the circulating water by a circulating water flow generation means based on the measured value of a downstream dissolved oxygen meter are disclosed.

特開2004−261711号公報JP 2004-261711 A 特開2005−52804号公報JP 2005-52804 A

しかしながら、特許文献1に記載された方法では、窒素除去効率を更に向上させることが望まれていた。また、特許文献1の方法では、液位が仕切板より高い状態と低い状態とを交互に作り出すことにより、硝化促進運転時間帯と脱窒促進運転時間帯を切り替えていたため、各運転時間帯の切り替えに長時間を要していた。   However, in the method described in Patent Document 1, it has been desired to further improve the nitrogen removal efficiency. Further, in the method of Patent Document 1, the nitrification promotion operation time zone and the denitrification promotion operation time zone are switched by alternately creating a state in which the liquid level is higher and lower than that of the partition plate. It took a long time to switch.

また、下水処理においては、流入下水量の日間変動(流入排水量や汚濁物質の濃度変動)が大きく、一般に、大規模処理装置では日間平均値の0.5〜1.5倍程度の変動があり、小規模処理装置では0.2〜3倍程度の変動がある。このような日間の負荷変動に対し、特許文献1の方法では、効率的な硝化及び脱窒反応を行うことは困難であった。また、流入下水量の日間変動を小さくするためには、大容量の流量調整槽を設ける必要があった。   In sewage treatment, daily fluctuations in inflow sewage volume (inflow wastewater volume and pollutant concentration fluctuations) are large. Generally, large-scale treatment equipment has fluctuations of about 0.5 to 1.5 times the daily average value. In small-scale processing apparatuses, there is a fluctuation of about 0.2 to 3 times. With respect to such daily load fluctuations, it has been difficult to perform efficient nitrification and denitrification by the method of Patent Document 1. Moreover, in order to reduce the daily fluctuation of the inflow sewage amount, it was necessary to provide a large capacity flow rate adjustment tank.

更に、特許文献2に開示されたOD法は、固液分離を最終沈殿池で行う重力式沈降分離法であり、固液分離を容易にするため、MLSS(Mixed Liquor Suspended Solid)濃度は2000〜4000mg/L程度と低い範囲に管理される。そのため、OD法では、ディッチ内での処理時間(HRT)が12時間程度と長くなり、最終沈殿池でも6時間程度が必要となる。また、OD法では、大きな施設容量が必要となり広大な設置スペースが必要となるため、小規模下水処理場向けには採用されてきたが、コンパクトな施設が求められる中大規模の下水処理場や工場排水処理では採用し難いという問題があった。   Furthermore, the OD method disclosed in Patent Document 2 is a gravity-type sedimentation separation method in which solid-liquid separation is performed in a final sedimentation basin. In order to facilitate solid-liquid separation, the MLSS (Mixed Liquor Suspended Solid) concentration is 2000 to 2000. It is managed in a low range of about 4000 mg / L. Therefore, in the OD method, the processing time (HRT) in the ditch is as long as about 12 hours, and about 6 hours are required even in the final sedimentation basin. The OD method has been adopted for small-scale sewage treatment plants because it requires a large facility capacity and requires a large installation space. There was a problem that it was difficult to adopt in factory wastewater treatment.

本発明は、上記従来の課題に鑑み、窒素除去効率を更に向上させ、流入下水量の日間の負荷変動に対しても高い適用性を示し、更には、反応槽内の処理時間(HRT)を大幅に短縮し、中大規模の下水処理場や工場排水処理でも採用可能な膜分離活性汚泥装置及び方法を提供することを目的とする。   In view of the above-described conventional problems, the present invention further improves the nitrogen removal efficiency, shows high applicability to daily load fluctuations of the inflow sewage amount, and further reduces the processing time (HRT) in the reaction tank. An object of the present invention is to provide a membrane separation activated sludge apparatus and method which can be greatly shortened and can be used in medium- and large-scale sewage treatment plants and industrial wastewater treatment.

本願発明者らは、従来の仕切板挿入型の膜分離活性汚泥処理法において窒素除去効率が十分でない原因について鋭意研究した。その結果、液位が仕切板より低い状態(脱窒促進運転時間帯)では、仕切板内外で液の流通が分断され、膜分離ユニットが配置されていない区画では循環流が発生しないために、脱窒反応に関与する、原水、硝化液(硝化処理後の硝酸性窒素を含む液)及び脱窒細菌の混合が十分に行われず、その結果として効率的な脱窒反応が進行しにくくなることを見出した。   The inventors of the present application have intensively studied the cause of the insufficient nitrogen removal efficiency in the conventional partition plate insertion type membrane separation activated sludge treatment method. As a result, in a state where the liquid level is lower than the partition plate (denitrification promotion operation time zone), the circulation of the liquid is divided inside and outside the partition plate, and no circulation flow is generated in the section where the membrane separation unit is not arranged. The raw water, nitrification liquid (liquid containing nitrate nitrogen after nitrification) and denitrifying bacteria that are involved in the denitrification reaction are not sufficiently mixed, and as a result, the efficient denitrification reaction is difficult to proceed. I found.

そして、反応槽内に循環水量調節装置を設けると共に、膜分離ユニット収容区画に第1の溶存酸素計を設け、その他の区画に第2の溶存酸素計を設けた膜分離活性汚泥処理装置を用いることにより、その他の区画において、脱窒反応に必要な上記の十分な混合を達成し、且つ、脱窒の障害となる溶存酸素(DO)を低いレベルに維持することができ、その結果、窒素除去効率が向上することに想到した。また、このような膜分離活性汚泥処理装置を用いることにより、流入下水量の負荷変動に対しても適応可能であり、OD法に比べて、反応槽内の処理時間(HRT)を大幅に短縮でき、コンパクトな活性汚泥処理装置となることに想到し、本発明を完成した。   Then, a circulating water amount adjusting device is provided in the reaction tank, and a membrane separation activated sludge treatment device in which a first dissolved oxygen meter is provided in the membrane separation unit accommodation section and a second dissolved oxygen meter is provided in the other compartment is used. Thus, in the other compartments, the above-mentioned sufficient mixing necessary for the denitrification reaction can be achieved, and the dissolved oxygen (DO) that interferes with the denitrification can be maintained at a low level. It was thought that the removal efficiency was improved. In addition, by using such a membrane separation activated sludge treatment device, it can be adapted to fluctuations in the load of the inflow sewage, and the treatment time (HRT) in the reaction tank is greatly reduced compared to the OD method. The present invention was completed by conceiving that it would be a compact activated sludge treatment apparatus.

すなわち本発明は、以下の(1)〜(6)に関する。
(1)好気性処理および無酸素処理を行う単一の反応槽と、その反応槽の内部に配置された浸漬膜分離ユニットと、曝気手段とを有する膜分離活性汚泥処理装置であって、反応槽は、底部が反応槽の底面から離間して設けられた仕切板によって複数個の区画に分割され、その複数個の区画のうちの少なくとも一つの区画を、浸漬膜分離ユニットおよび曝気手段が配置された好気区画とし、その他の区画内で無酸素処理を行う膜分離活性汚泥処理装置において、循環水量調節装置を設けると共に、前記好気区画に第1の溶存酸素計を設け、前記その他の区画に第2の溶存酸素計を設けたことを特徴とする膜分離活性汚泥処理装置。
That is, the present invention relates to the following (1) to (6).
(1) A membrane separation activated sludge treatment apparatus having a single reaction tank for performing an aerobic treatment and an oxygen-free treatment, a submerged membrane separation unit disposed in the reaction tank, and an aeration means. The tank is divided into a plurality of compartments by a partition plate provided with a bottom portion separated from the bottom surface of the reaction tank, and at least one of the plurality of compartments is arranged with a submerged membrane separation unit and an aeration means. In the membrane separation activated sludge treatment apparatus that performs oxygen-free treatment in the other aerobic compartments, a circulating water amount adjusting device is provided, a first dissolved oxygen meter is provided in the aerobic compartment, and the other A membrane separation activated sludge treatment apparatus, characterized in that a second dissolved oxygen meter is provided in the compartment.

(2)前記好気区画内に補助曝気手段を更に設け、前記循環水量調節装置が、仕切板上部において開度を調節することが可能な循環水量調節装置である、(1)に記載の膜分離活性汚泥処理装置。
(3)第1の溶存酸素計により測定した溶存酸素濃度が予め設定した目標値となるよう、補助曝気手段による曝気量を制御する手段と、第2の溶存酸素計により測定した溶存酸素濃度が予め設定した目標値となるよう、循環水量調節装置の開度を制御する手段を設けた、(2)に記載の膜分離活性汚泥処理装置。
(4)アンモニア計および/または硝酸計を更に設けて制御する手段を設けた、(1)〜(3)のいずれかに記載の膜分離活性汚泥処理装置。
(2) The membrane according to (1), wherein an auxiliary aeration means is further provided in the aerobic compartment, and the circulating water amount adjusting device is a circulating water amount adjusting device capable of adjusting an opening degree in an upper part of the partition plate. Separation activated sludge treatment equipment.
(3) Means for controlling the amount of aeration by the auxiliary aeration means so that the dissolved oxygen concentration measured by the first dissolved oxygen meter becomes a preset target value, and the dissolved oxygen concentration measured by the second dissolved oxygen meter are The membrane separation activated sludge treatment apparatus according to (2), provided with means for controlling the opening degree of the circulating water amount adjusting device so as to have a preset target value.
(4) The membrane separation activated sludge treatment apparatus according to any one of (1) to (3), further comprising an ammonia meter and / or a nitric acid meter for controlling.

(5)反応槽に供給される原水の負荷状況に応じて予め設定した第1の溶存酸素計及び第2の溶存酸素計の目標値によって制御する手段を設けた、(1)〜(4)のいずれかに記載の膜分離活性汚泥処理装置。
(6)浸漬膜分離ユニットを配置した単一の反応槽内で好気性処理および無酸素処理を行う膜分離活性汚泥処理方法であって、浸漬膜分離ユニットの周囲を底部が反応槽の底面から離間して設けられた仕切板で区画し、浸漬膜分離ユニットの下方から曝気を行うことにより、浸漬膜分離ユニットが配置された区画内を好気状態に維持しつつ、その他の区画内で無酸素処理を行う膜分離活性汚泥処理方法において、前記好気区画の溶存酸素濃度と、前記その他の区画の溶存酸素濃度をそれぞれ測定し、各溶存酸素濃度の測定値が予め設定した目標値となるよう、曝気量および循環水の流速を制御することを特徴とする膜分離活性汚泥処理方法。
(5) (1) to (4) provided with means for controlling by the target values of the first dissolved oxygen meter and the second dissolved oxygen meter set in advance according to the load state of the raw water supplied to the reaction tank The membrane separation activated sludge treatment apparatus according to any one of the above.
(6) A membrane separation activated sludge treatment method for performing an aerobic treatment and an oxygen-free treatment in a single reaction tank in which an immersion membrane separation unit is arranged, wherein the bottom of the periphery of the immersion membrane separation unit is from the bottom of the reaction vessel By partitioning with a partition plate provided at a distance and performing aeration from below the immersion membrane separation unit, the inside of the partition where the immersion membrane separation unit is placed is maintained in an aerobic state, while there is no air in other compartments. In the membrane separation activated sludge treatment method for performing oxygen treatment, the dissolved oxygen concentration in the aerobic compartment and the dissolved oxygen concentration in the other compartments are measured, and the measured values of the dissolved oxygen concentrations become preset target values. A membrane separation activated sludge treatment method characterized by controlling the amount of aeration and the flow rate of circulating water.

なお、本明細書において「無酸素状態」とは、完全な無酸素状態のみを意味するものではなく、脱窒菌の作用により硝酸態窒素を窒素分子に還元できる程度に酸素濃度が低い状態をも包含する意味で用いる。   In the present specification, the “anoxic state” does not mean only a complete anoxic state but also a state where the oxygen concentration is low enough to reduce nitrate nitrogen to nitrogen molecules by the action of denitrifying bacteria. Used in the meaning of inclusion.

本発明によれば、膜分離ユニットが配置されていない区画において、効率的に脱窒反応を進行させることができるため、有機性汚水からの窒素除去効率を向上させることができる。また、流入下水量の負荷変動に対しても適用でき、効率的な硝化及び脱窒反応を行うことができる。更には、反応槽内の処理時間(HRT)を大幅に短縮することができ、コンパクトで効率的な膜分離活性汚泥処理が可能となる。   According to the present invention, since the denitrification reaction can be efficiently advanced in the section where the membrane separation unit is not arranged, the efficiency of removing nitrogen from the organic wastewater can be improved. Further, it can be applied to load fluctuations of the inflow sewage amount, and efficient nitrification and denitrification reactions can be performed. Furthermore, the processing time (HRT) in the reaction vessel can be greatly shortened, and a compact and efficient membrane separation activated sludge treatment can be performed.

従来法(特許文献1)の膜分離活性汚泥処理装置を模式的に示す図である。It is a figure which shows typically the membrane separation activated sludge processing apparatus of the conventional method (patent document 1). 仕切板挿入型の膜分離活性汚泥処理装置における循環水の流れを模式的に示す図である。It is a figure which shows typically the flow of the circulating water in a partition plate insertion type membrane separation activated sludge processing apparatus. 本発明の膜分離活性汚泥処理装置の一実施態様を模式的に示す図である。It is a figure which shows typically one embodiment of the membrane separation activated sludge processing apparatus of this invention. 本発明の循環水量調節装置の一態様を模式的に示す側面図及び上面図である。It is the side view and top view which show typically the one aspect | mode of the circulating water amount adjusting device of this invention. 本発明の循環水量調節装置の別の態様を模式的に示す図である。It is a figure which shows typically another aspect of the circulating water amount adjusting device of this invention. 本発明の循環水量調節装置の更に別の態様を模式的に示す図である。It is a figure which shows typically another aspect of the circulating water amount adjusting device of this invention. 本発明の膜分離活性汚泥処理装置の別の一実施態様を模式的に示す図である。It is a figure which shows typically another one embodiment of the membrane separation activated sludge processing apparatus of this invention.

以下、図面に基づいて、本発明に係る膜分離活性汚泥処理装置及び方法の実施態様を説明する。なお、図1〜図7において、同一機能を有する部材には、同一符号を付すものとする。
本発明の特徴は、後述する通り、仕切板挿入型の膜分離活性汚泥処理装置において、循環水量調節装置と第1及び第2の溶存酸素計を設けた点にあるが、まず本発明に係る装置および方法の一実施態様の全体構成について、図3に基づき説明する。
Hereinafter, embodiments of a membrane separation activated sludge treatment apparatus and method according to the present invention will be described based on the drawings. 1 to 7, members having the same function are denoted by the same reference numerals.
The feature of the present invention is that, as will be described later, in the membrane separation activated sludge treatment apparatus of the partition plate insertion type, the circulating water amount adjusting device and the first and second dissolved oxygen meters are provided. The overall configuration of one embodiment of the apparatus and method will be described with reference to FIG.

図3の膜分離活性汚泥装置においては、単槽式の反応槽1に、浸漬型の膜分離ユニット2aが設けられており、この膜分離ユニット2aには反応槽1の外で吸引ポンプ3が接続されている。
膜分離ユニット2aは、膜そのものとして汚れにくい素材を用いたものや、膜表面に汚れがつきにくくなるように、膜間に適当な隙間を有するものを用いることが好ましい。膜分離ユニット2aには、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などを用いて形成されたモジュールを用いることができる。経済性の観点からは、ろ過速度が高くコンパクト化が可能で、メンテナンスが容易である精密ろ過膜、限外ろ過膜を用いたモジュールが好ましい。膜の形状は平膜、中空糸膜等のものが用いられる。ここで用いられる浸漬型膜分離ユニット自体はこの分野において広く用いられており、市販もされている。
In the membrane separation activated sludge apparatus of FIG. 3, an immersion type membrane separation unit 2 a is provided in a single tank type reaction tank 1, and a suction pump 3 is provided outside the reaction tank 1 in this membrane separation unit 2 a. It is connected.
As the membrane separation unit 2a, it is preferable to use a material using a material that does not easily become dirty as the membrane itself, or a device having an appropriate gap between the membranes so that the surface of the membrane is less likely to get dirty. As the membrane separation unit 2a, a module formed using a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, a reverse osmosis membrane or the like can be used. From the economical point of view, a module using a microfiltration membrane or an ultrafiltration membrane that has a high filtration rate and can be made compact and is easy to maintain is preferable. The membrane may be a flat membrane, a hollow fiber membrane or the like. The submerged membrane separation unit itself used here is widely used in this field and is also commercially available.

膜分離ユニット2aの下方には、膜洗浄用の曝気手段4a(散気装置)が設けられ、膜分離ユニット2aの下部の側方には、補助曝気手段4b(散気装置)が設けられている。曝気手段4a及び4bは、それぞれブロワ5a及び5bに接続され、ブロワ5a及び5bからエア(空気)が供給される。   A membrane cleaning aeration means 4a (aeration device) is provided below the membrane separation unit 2a, and an auxiliary aeration means 4b (aeration device) is provided below the membrane separation unit 2a. Yes. The aeration means 4a and 4b are connected to the blowers 5a and 5b, respectively, and air (air) is supplied from the blowers 5a and 5b.

膜洗浄用の曝気手段4aは、粗大な気泡を発生させ膜分離ユニット2aの膜表面でのスクラビング効果を高めている。消費電力量を抑えるために、間欠的に粗大気泡を発生させる装置を組み込むこともできる。膜洗浄用の曝気手段4aが発生させる気泡は、粗大気泡であることから上昇速度が大きく、循環流速を高める効果は大きいが、一方で酸素移動効率は小さくなる。
補助曝気手段4bは、膜洗浄用の曝気手段4aによる酸素供給では不足する酸素量を補う目的で設置する。補助曝気手段4bとしては、通常は微細気泡を発生するメンブレン式散気装置が用いられ、一般に、膜洗浄用曝気手段と比較して酸素移動効率が2〜5倍高い。
The aeration means 4a for membrane cleaning generates coarse bubbles to enhance the scrubbing effect on the membrane surface of the membrane separation unit 2a. In order to reduce power consumption, a device that generates coarse bubbles intermittently can be incorporated. The bubbles generated by the membrane cleaning aeration means 4a are coarse bubbles, so that the rising speed is large and the effect of increasing the circulation flow rate is large, but the oxygen transfer efficiency is small.
The auxiliary aeration means 4b is installed for the purpose of supplementing the amount of oxygen that is insufficient with the oxygen supply by the film cleaning aeration means 4a. As the auxiliary aeration means 4b, a membrane-type air diffuser that normally generates fine bubbles is used, and the oxygen transfer efficiency is generally 2 to 5 times higher than that of the membrane cleaning aeration means.

反応槽1には、微生物を含有する汚泥が収容されており、この微生物が、有機物の分解菌、さらにはそれら微生物の分解菌として作用し、生物処理を行う。したがって、反応槽1は、汚泥が部分的に偏在することがないように、また、酸素が均一に供給されるように、内表面に角がないものや凹凸がないものが好ましい。この結果、反応槽1内では処理液の温度やpHが均一になり、安定に分解処理を進めることができる。また、汚泥に含有される微生物は、細菌類、酵母およびカビを含む真菌類など、溶解性有機物などの分解に寄与するもので、土壌、堆肥、汚泥など、自然界から集積培養および馴養によって取得される。またこの馴養液から分解に関与する主要な微生物群を単離して用いることも可能である。なお、これらの微生物を含有する汚泥自体はこの分野において周知である。   The reaction tank 1 contains sludge containing microorganisms, and these microorganisms act as organic matter-degrading bacteria and further as microorganisms-degrading bacteria for biological treatment. Therefore, it is preferable that the reaction tank 1 has no corners or irregularities on the inner surface so that sludge is not partially unevenly distributed and oxygen is supplied uniformly. As a result, the temperature and pH of the treatment liquid become uniform in the reaction tank 1, and the decomposition treatment can proceed stably. Microorganisms contained in sludge contribute to the degradation of soluble organic matter such as bacteria, yeasts and fungi including fungi, and are obtained from nature, such as soil, compost, and sludge, by accumulating culture and acclimatization. The It is also possible to isolate and use the main microbial group involved in the degradation from this conditioned solution. In addition, the sludge itself containing these microorganisms is well known in this field.

反応槽1内の活性汚泥処理条件は、膜分離活性汚泥法で通常使用する周知の条件であればよいが、MLSS濃度は、通常3000〜20000mg/L、好ましくは5000〜15000mg/Lであり、OD法に比べ高いMLSS濃度を維持することができる。また、反応槽1内のHRT(水理学的滞留時間)は、通常2〜24時間、好ましくは4〜8時間であり、OD法に比べ短縮されたHRTを達成可能である。   The activated sludge treatment conditions in the reaction tank 1 may be known conditions that are usually used in the membrane separation activated sludge method, but the MLSS concentration is usually 3000 to 20000 mg / L, preferably 5000 to 15000 mg / L. A higher MLSS concentration can be maintained compared to the OD method. Moreover, HRT (hydraulic residence time) in the reaction tank 1 is usually 2 to 24 hours, preferably 4 to 8 hours, and it is possible to achieve a shortened HRT compared to the OD method.

図3の反応槽1には、仕切板7が更に設けられている。仕切板7は、底部が反応槽の底面から離間して設けられており、膜分離ユニット2aの横方向の周囲を囲包(上下は開放)しているが、膜分離ユニット2aの周囲を実質的に取り囲むものであれば良い。仕切板7は槽壁と組合せて膜分離ユニット2aの周囲を取り囲むものでもよく、反応槽1の槽壁と共働して矩形の領域を規定する2枚の平板状のものが好ましい。図3に示すように、膜分離ユニット2aの周囲4面のうち、1面を仕切板7が囲包し、他の3面を槽壁で囲包するものや、仕切板7が膜分離ユニット2の全周囲を囲包するものでもよい。膜分離ユニット2aの収容区画とその他の区画の容量比は、通常1:0.5〜5であり、好ましくは1:1〜3の範囲内となるよう設定することができる。   In the reaction tank 1 of FIG. 3, a partition plate 7 is further provided. The partition plate 7 is provided with a bottom portion spaced apart from the bottom surface of the reaction tank, and surrounds the lateral periphery of the membrane separation unit 2a (upper and lower sides), but substantially surrounds the periphery of the membrane separation unit 2a. As long as it surrounds. The partition plate 7 may be combined with the tank wall and surround the periphery of the membrane separation unit 2a, and preferably has two flat plates that cooperate with the tank wall of the reaction tank 1 to define a rectangular region. As shown in FIG. 3, among the four surfaces around the membrane separation unit 2a, one surface is surrounded by the partition plate 7 and the other three surfaces are surrounded by the tank wall, or the partition plate 7 is the membrane separation unit. It may be one that surrounds the entire circumference of 2. The capacity ratio between the storage compartment of the membrane separation unit 2a and other compartments is usually 1: 0.5 to 5, and can be preferably set within the range of 1: 1 to 3.

なお、図3の具体例では、浸漬膜分離ユニットの収容区画(以下、「膜分離ユニット収容区画」とも言う)が1つだけであるが、大型の下水処理等の場合には、単位時間当たりの処理量を大きくするために、所望により、膜分離ユニット収容区画(好気区画)を複数設け、これらの各区画にそれぞれ膜分離ユニットを浸漬してもよい。この場合、膜分離ユニット収容区画以外の区画(以下、「その他の区画」とも言う)を複数設けることも可能であるが、1つの方が構造が単純で反応液の均一性も確保しやすいので好ましい。   In the specific example of FIG. 3, there is only one submerged membrane separation unit accommodation section (hereinafter also referred to as “membrane separation unit accommodation section”). In order to increase the processing amount, a plurality of membrane separation unit accommodating sections (aerobic sections) may be provided if desired, and the membrane separation units may be immersed in each of these sections. In this case, it is possible to provide a plurality of compartments other than the membrane separation unit accommodation compartment (hereinafter also referred to as “other compartments”). However, since one is simpler and the reaction liquid is more uniform. preferable.

下水処理場等の汚水処理施設に流入した汚水は、前処理設備において砂やごみ等の分離・除去を行った後、原水として原水槽から原水ポンプ8により反応槽1へと導入される。本発明において、原水は、膜分離ユニット収容区画以外の区画に供給するのが好ましい。これにより脱窒反応に必要な水素供与体が供給され、脱窒促進時間帯において脱窒反応が効率的に進行する。   The sewage that has flowed into the sewage treatment facility such as a sewage treatment plant is introduced into the reaction tank 1 from the raw water tank by the raw water pump 8 as raw water after separating and removing sand and garbage in the pretreatment equipment. In this invention, it is preferable to supply raw | natural water to divisions other than a membrane separation unit accommodation division. As a result, a hydrogen donor necessary for the denitrification reaction is supplied, and the denitrification reaction proceeds efficiently during the denitrification promotion time zone.

本発明の膜分離活性汚泥処理装置は、反応槽1内の液位を調節するための液位制御手段を有していてもよい。液位制御手段としては、例えば、反応槽内の液位、すなわち、液表面の位置を調べるレベルセンサーを設け、このレベルセンサーにより検出した液位に応じて、原水ポンプにより反応槽に供給する原水の流量を制御する手段が挙げられる。   The membrane separation activated sludge treatment apparatus of the present invention may have a liquid level control means for adjusting the liquid level in the reaction tank 1. As the liquid level control means, for example, a level sensor for checking the liquid level in the reaction tank, that is, the position of the liquid surface is provided, and the raw water supplied to the reaction tank by the raw water pump according to the liquid level detected by the level sensor. Means for controlling the flow rate of the gas.

このような図3に示す構成により、反応槽1内で汚水が生物学的に処理され、曝気手段4aからのエアによって、膜分離ユニット2aの膜面に汚泥物質等が付着するのを防止しながら、膜分離ユニット2aによって反応槽1内の処理液をろ過し、そのろ過水を吸引ポンプ3により吸引して槽外に取り出すことができる。図3の具体例においては、吸引ポンプ3でろ過圧を得ているが、反応槽内の水位と濾過水取り出し口との水位との差、すなわち自然水頭のみによって濾過圧を得てもよく、さらに原液側から加圧することによって濾過圧を得てもよい。   With such a configuration shown in FIG. 3, sewage is biologically treated in the reaction tank 1, and the air from the aeration means 4 a prevents sludge substances and the like from adhering to the membrane surface of the membrane separation unit 2 a. However, the treatment liquid in the reaction tank 1 can be filtered by the membrane separation unit 2a, and the filtered water can be sucked by the suction pump 3 and taken out of the tank. In the specific example of FIG. 3, the filtration pressure is obtained by the suction pump 3, but the filtration pressure may be obtained only by the difference between the water level in the reaction tank and the water level of the filtrate water outlet, that is, only by the natural water head, Further, the filtration pressure may be obtained by pressurization from the stock solution side.

本発明の特徴は、このような仕切板挿入型の膜分離活性汚泥処理装置において、循環水量調節装置と第1及び第2の溶存酸素計を設ける点にある。   The feature of the present invention resides in that in such a partition plate insertion type membrane separation activated sludge treatment apparatus, a circulating water amount adjusting device and first and second dissolved oxygen meters are provided.

本発明における循環水量調節装置とは、反応槽内に水流を発生させる装置又は機器であれば特に限定されないが、曝気手段(散気装置)からのエアにより反応槽内に形成される循環流の流速を制御することができる装置であるのが好ましい。ここで「循環流」とは、図3に示すように、仕切板内外が越流状態である場合に、膜分離ユニット収容区画から、仕切板7の上を越えてその他の区画に入り、その他の区画内を下降し、仕切板7よりも下の領域を介して膜ユニット収容区画に戻る液の流れである。該循環水量調節装置は、仕切板の上部又は上端に設けるのが好ましく、膜分離ユニット収容区画からその他の区画へ移動する循環流の流速を調節する手段であることが好ましい。   The circulating water amount adjusting device in the present invention is not particularly limited as long as it is a device or a device that generates a water flow in the reaction vessel, but the circulating flow amount formed in the reaction vessel by the air from the aeration means (aeration device). An apparatus capable of controlling the flow rate is preferred. Here, as shown in FIG. 3, when the inside and outside of the partition plate is in an overflow state, the “circulation flow” is entered from the membrane separation unit housing section to the other section over the partition plate 7, This is a liquid flow that descends within the compartment and returns to the membrane unit accommodation compartment via a region below the partition plate 7. The circulating water amount adjusting device is preferably provided on the upper or upper end of the partition plate, and is preferably a means for adjusting the flow rate of the circulating flow moving from the membrane separation unit accommodating section to the other section.

以下に、本発明における循環水量調節装置を図4〜6を参照しつつ説明する。図4においては、循環水量調節装置の理解を容易にするために、溶存酸素計と補助曝気手段を省略した。
本発明における循環水量調節装置の第1の態様は、循環水量調節板と、該循環水量調節板をスイングさせる(振り動かす)ための調節板移動手段を備えたスイング式循環水量調節装置である。具体的には、図4に示すような、循環水量調節板(以下、「スイング板」ともいう)20aと、該スイング板の長手方向の一辺を固定する固定部材21aと、該スイング板20aをスイングさせるための調節板移動手段22を備えたスイング式循環水量調節装置である。また、図4の上図は、スイング板20a及び20bが仕切板上部を完全に覆い、循環流を遮断した場合における、本発明の膜分離活性汚泥処理装置の上面図である(図4の側面図において、右側の循環水量調節装置は省略し、上面図において、調節板移動手段22は省略した)。
Below, the circulating water amount adjusting device in this invention is demonstrated, referring FIGS. In FIG. 4, the dissolved oxygen meter and the auxiliary aeration means are omitted in order to facilitate understanding of the circulating water amount adjusting device.
A first aspect of the circulating water amount adjusting device according to the present invention is a swing type circulating water amount adjusting device including a circulating water amount adjusting plate and an adjusting plate moving means for swinging (swinging) the circulating water amount adjusting plate. Specifically, as shown in FIG. 4, a circulating water amount adjusting plate (hereinafter also referred to as “swing plate”) 20a, a fixing member 21a for fixing one side in the longitudinal direction of the swing plate, and the swing plate 20a are provided. This is a swing type circulating water amount adjusting device provided with adjusting plate moving means 22 for swinging. 4 is a top view of the membrane separation activated sludge treatment apparatus of the present invention when the swing plates 20a and 20b completely cover the upper part of the partition plate and block the circulation flow (the side surface of FIG. 4). In the figure, the right circulating water amount adjusting device is omitted, and the adjusting plate moving means 22 is omitted in the top view).

図4に示すスイング板20aは、その長手方向の二つの辺のうちの一辺が棒状の固定部材21aに固定されている。また、スイング板20aは、調節板移動手段22と着脱可能なように連結しており、調節板移動手段22によりスイング板20aを上下に移動させスイングさせることにより、仕切板の上部において開度を調節することができる。   The swing plate 20a shown in FIG. 4 has one side of the two sides in the longitudinal direction fixed to a rod-like fixing member 21a. The swing plate 20a is detachably connected to the adjustment plate moving means 22, and the adjustment plate moving means 22 moves the swing plate 20a up and down to swing, thereby opening the opening above the partition plate. Can be adjusted.

ここで、スイング板の開度は、図4の側面図において、スイング板が仕切板上部を完全に覆い、循環流をほぼ完全に遮断した場合を開度0%とし、調節板移動手段22によりスイング板を上方向に移動させ、スイング板の下端部が反応槽内の液位よりも上位となった場合(全開の場合)を開度100%とし、固定部材を中心としたスイング板の移動角度に応じて0〜100%の間で設定される。   Here, the opening degree of the swing plate is set to 0% when the swing plate completely covers the upper part of the partition plate and almost completely interrupts the circulation flow in the side view of FIG. When the swing plate is moved upward and the lower end of the swing plate is higher than the liquid level in the reaction tank (when fully open), the opening is 100%, and the swing plate is moved around the fixed member. It is set between 0 and 100% depending on the angle.

スイング板は、膜分離ユニット収容区画から仕切板7の上を越えてその他の区画に入る循環流の水量を調節できるものであれば、矩形状、台形状、平板状等、どのような形状のものでもよい。図4に示すスイング板20aは、短手方向に湾曲した矩形状の調節板であり、調節板移動手段22方向(上方向)に湾曲した状態(凸状態)となるよう設置すると、仕切板上部において循環流の流れに沿った調節が可能となるため好ましい。   The swing plate can have any shape such as a rectangular shape, a trapezoidal shape, a flat plate shape, etc., as long as it can adjust the amount of water in the circulating flow from the membrane separation unit accommodating compartment to the other compartment beyond the partition plate 7. It may be a thing. The swing plate 20a shown in FIG. 4 is a rectangular adjustment plate that is curved in the short direction, and when installed so as to be curved (convex) in the direction of the adjustment plate moving means 22 (upward), Is preferable because adjustment along the flow of the circulating flow is possible.

スイング板の長手方向長さは、仕切板の上部全体を覆うよう仕切板上端とほぼ同じ長さものを使用できるが、仕切板上端の一部、例えば、仕切板上端の長さの1/5〜1/2を覆う長さであってもよい。また、仕切板が反応槽内に複数個設置されている場合であっても、スイング板は全ての仕切板の上部を覆うよう設置する必要はなく、全ての仕切板の上端長さの一部、例えば、仕切板全体の上端長さの1/5〜1/2に設置してもよい。スイング板の短手方向長さは、スイング板を調節板移動手段22により仕切板方向(下方向)に移動させた場合に、スイング板が仕切板上部を完全に覆い、循環流をほぼ完全に遮断可能となるような長さとするのが好ましい。また、スイング板の厚みは、循環流の制御に耐える強度を有する厚みであればよい。   The length of the swing plate in the longitudinal direction can be approximately the same as the upper end of the partition plate so as to cover the entire upper portion of the partition plate, but a part of the upper end of the partition plate, for example, 1/5 of the length of the upper end of the partition plate It may be a length covering ½. Moreover, even when a plurality of partition plates are installed in the reaction vessel, the swing plate does not need to be installed so as to cover the upper part of all the partition plates, and a part of the upper end length of all the partition plates. For example, you may install in 1/5-1/2 of the upper end length of the whole partition plate. The length of the swing plate in the short direction is such that when the swing plate is moved in the direction of the partition plate (downward) by the adjusting plate moving means 22, the swing plate completely covers the upper part of the partition plate and the circulation flow is almost completely completed. The length is preferably such that it can be blocked. The thickness of the swing plate may be any thickness that can withstand the control of the circulation flow.

固定部材21aとしては、スイング板をスイング可能なように固定するものであれば特に限定されない。固定部材21aとしては、例えば、棒状の固定部材の側面にスイング板20aの長手方向の一辺を固定すると共に、棒状部材の両端を軸受を用いて回転可能なように反応槽の槽壁に連結させる構成とすることができる。あるいは、中空管と、その中空管の中を貫通する棒状部材を組み合わせた部材を使用し、スイング板20aの長手方向の一辺が該中空管の側面に固定されると共に、該中空管の中を貫通する棒状部材の両端が反応槽の槽壁に固定される構成とすることができる。このような構成とすることにより、スイング板20aの長手方向の一辺が固定部材に固定されたまま、調節板移動手段22によりスイング板20aを上下にスイングさせ、仕切板の上部を開閉することができる。   The fixing member 21a is not particularly limited as long as it fixes the swing plate so that it can swing. As the fixing member 21a, for example, one side in the longitudinal direction of the swing plate 20a is fixed to the side surface of the rod-shaped fixing member, and both ends of the rod-shaped member are connected to the tank wall of the reaction tank so as to be rotatable using bearings. It can be configured. Alternatively, a member in which a hollow tube and a rod-like member penetrating through the hollow tube are used, and one side in the longitudinal direction of the swing plate 20a is fixed to the side surface of the hollow tube, and the hollow tube It can be set as the structure by which the both ends of the rod-shaped member which penetrates the inside of a pipe | tube are fixed to the tank wall of a reaction tank. With this configuration, the swing plate 20a can be swung up and down by the adjustment plate moving means 22 while the one side in the longitudinal direction of the swing plate 20a is fixed to the fixing member, and the upper portion of the partition plate can be opened and closed. it can.

固定部材21aの両端を反応槽の槽壁に固定する位置は、循環水量の調節を効率的に行い、処理液による固定部材21の腐食を低減するという観点から、反応槽内の最高液位よりも上位とするのが好ましい。また、固定部材21の両端は、循環水量の調節を効率的に行うという観点から、仕切板7の真上よりも前記その他の区画方向にずらした位置に固定するのが好ましい。   The position where both ends of the fixing member 21a are fixed to the tank wall of the reaction tank is more efficient than the maximum liquid level in the reaction tank from the viewpoint of efficiently adjusting the amount of circulating water and reducing the corrosion of the fixing member 21 by the processing liquid. Is also preferred to be higher. Moreover, it is preferable to fix the both ends of the fixing member 21 in the position shifted in the said other division direction rather than just above the partition plate 7 from a viewpoint of adjusting the amount of circulating water efficiently.

また、調節板移動手段22としては、スイング板を上下に移動可能なものであれば特に限定されないが、電動シリンダーや空気圧式又は油圧式シリンダー等の公知の駆動装置を使用することができる。   The adjusting plate moving means 22 is not particularly limited as long as it can move the swing plate up and down, but a known driving device such as an electric cylinder, a pneumatic or a hydraulic cylinder can be used.

図4に示す循環水量調節手段以外にも、様々な機構及び形状のものを使用することができる。例えば、図5に示すように、短手方向に曲折した矩形状のスイング板20cを使用することもできる。このようなスイング板を、調節板移動手段22方向(上方向)に曲折した状態(凸状態)となるように設置すると、仕切板上部において循環流の流れに沿った調節が可能となるため好ましい。なお、図5に示す循環水量調節手段は、スイング板が短手方向に曲折した形状であること以外は、図4に示す循環水量調節手段と同様の構成とし、同様の機能を達成することができる。   In addition to the circulating water amount adjusting means shown in FIG. 4, various mechanisms and shapes can be used. For example, as shown in FIG. 5, a rectangular swing plate 20c bent in the short direction can also be used. It is preferable to install such a swing plate so as to be bent (convex) in the direction of the adjustment plate moving means 22 (upward) because adjustment along the flow of the circulation flow is possible at the upper part of the partition plate. . The circulating water amount adjusting means shown in FIG. 5 has the same configuration as the circulating water amount adjusting means shown in FIG. 4 except that the swing plate is bent in the short direction, and can achieve the same function. it can.

図4及び図5に示すスイング式の構成以外にも、スイング板(循環水量調節板)をヒンジ部材等を介して仕切板上端部に固定し、該スイング板を調節板移動手段に着脱可能なように連結させ、該調節板移動手段によりスイング板を転倒させることにより、仕切板の上部を開閉させる転倒式ダム構造の循環水量調節手段も使用できる。   In addition to the swing type configuration shown in FIGS. 4 and 5, the swing plate (circulating water amount adjusting plate) is fixed to the upper end of the partition plate via a hinge member or the like, and the swing plate can be attached to and detached from the adjusting plate moving means. In this way, the circulating water amount adjusting means having an overturning dam structure that opens and closes the upper part of the partition plate by turning over the swing plate by the adjusting plate moving means can also be used.

また、スイング板の代わりに、風船や中空シートのように、内部に空気を導入することにより膨張又は拡張させることのできる部材を仕切板の上端や上部に設置し、循環流を堰き止めることにより循環水量を調節する堰き止め方式の循環水量調節手段も使用できる。   Also, instead of the swing plate, a member that can be expanded or expanded by introducing air into the interior, such as a balloon or a hollow sheet, is installed at the upper end or upper part of the partition plate, and the circulation flow is blocked A damping-type circulating water amount adjusting means for adjusting the circulating water amount can also be used.

本発明における循環水量調節装置の第2の態様は、図6に示すような開口部31を有するスライド板30を備えた循環水量調節装置である。スライド板30は、同じく開口部32を有する仕切板7の上端付近に設置され、スライド板30を水平方向にスライドさせた場合に、スライド板30の開口部31と仕切板の開口部32の重なり具合を調節することにより、仕切板の開度(開口率)を調節することができる。   A second aspect of the circulating water amount adjusting device according to the present invention is a circulating water amount adjusting device including a slide plate 30 having an opening 31 as shown in FIG. The slide plate 30 is installed in the vicinity of the upper end of the partition plate 7 that also has the opening portion 32. When the slide plate 30 is slid in the horizontal direction, the opening portion 31 of the slide plate 30 and the opening portion 32 of the partition plate overlap. By adjusting the condition, the opening degree (opening ratio) of the partition plate can be adjusted.

ここで、スライド板の開度(開口率)は、図6において、仕切板の開口部とスライド板の開口部が重ならず、循環流をほぼ完全に遮断した場合を開度0%とし、開口部同士が完全に重なり全開となった場合を開度100%とし、全開した場合の開口総面積に対する開口部の総面積の割合として規定される。   Here, the opening degree of the slide plate (opening ratio) is the opening degree 0% when the opening of the partition plate and the opening of the slide plate do not overlap in FIG. 6 and the circulation flow is almost completely blocked, The opening is 100% when the openings are completely overlapped with each other, and is defined as the ratio of the total area of the openings to the total opening area when the openings are fully opened.

スライド板と仕切板の開口部の形状は矩形状、円状、楕円状等から適宜選択できる。また、スライド板全体の面積に占める全開口部の合計面積は、1/3〜2/3程度とするのがよい。スライド板全体の形状は特に限定されないが、通常は、水平方向にスライドしやすい矩形状の板が使用できる。スライド板30は、複数のスライド板固定部材33を用いることにより、水平方向にスライド可能なように仕切板上端付近に固定することができる。スライド板の水平方向への移動はスライド板移動手段34を用いて行うことができ、スライド板移動手段34としては、例えば、電動シリンダーや空気圧式又は油圧式シリンダー等の公知の駆動装置を使用することができる。   The shapes of the opening portions of the slide plate and the partition plate can be appropriately selected from a rectangular shape, a circular shape, an elliptical shape, and the like. Further, the total area of all the openings in the area of the entire slide plate is preferably about 1/3 to 2/3. The shape of the entire slide plate is not particularly limited, but normally, a rectangular plate that can easily slide in the horizontal direction can be used. By using the plurality of slide plate fixing members 33, the slide plate 30 can be fixed near the upper end of the partition plate so as to be slidable in the horizontal direction. The slide plate can be moved in the horizontal direction by using a slide plate moving means 34. As the slide plate moving means 34, for example, a known drive device such as an electric cylinder, a pneumatic or a hydraulic cylinder is used. be able to.

このようなスライド板を備えた循環水量調節装置を用いる場合には、反応槽内の液位運転水位を、図6に示すように、スライド板と仕切板の開口部上端よりも低く、スライド板と仕切板の開口部の下から約3分の1よりも高い範囲の運転水位とするのがよい。このような運転水位範囲に液位を維持すれば、スライド板30を用いて仕切板の開度(開口率)を調節することにより、効率的な脱窒反応を進行させることができる。   In the case of using a circulating water amount adjusting device equipped with such a slide plate, the liquid level operation water level in the reaction tank is lower than the upper ends of the openings of the slide plate and the partition plate, as shown in FIG. The operating water level is preferably higher than about one third from the bottom of the opening of the partition plate. If the liquid level is maintained in such an operating water level range, an efficient denitrification reaction can be advanced by adjusting the opening degree (opening ratio) of the partition plate using the slide plate 30.

本発明の膜分離活性汚泥処理装置は、上述した循環水量調節装置と共に、循環水中の溶存酸素濃度を測定するための第1及び第2の溶存酸素計(DO計)を設けることを特徴とする。
第1の溶存酸素計(DO1)は、膜分離ユニット収容区画に設けるが、効率的な制御を行うためには、膜分離ユニット収容区画の中央部付近であって、膜分離ユニットの上端よりも上部であり、反応槽内の液位が最低水位となっても、DO1が液に浸漬する位置に設置するのがよい。また、第2の溶存酸素計(DO2)は、膜分離ユニット収容区画以外の区画(その他の区画)に設けるが、効率的な制御を行うためには、反応槽内の液位深さの半分程度の位置に設置するのがよい。
The membrane-separated activated sludge treatment apparatus of the present invention is provided with first and second dissolved oxygen meters (DO meters) for measuring the dissolved oxygen concentration in the circulating water together with the circulating water amount adjusting device described above. .
The first dissolved oxygen meter (DO1) is provided in the membrane separation unit accommodation section. However, in order to perform efficient control, the first dissolved oxygen meter (DO1) is near the center of the membrane separation unit accommodation section and higher than the upper end of the membrane separation unit. Even if the liquid level in the reaction tank is the lowest water level, it is preferable that the DO1 be installed at a position where the DO1 is immersed in the liquid. In addition, the second dissolved oxygen meter (DO2) is provided in a section (other section) other than the membrane separation unit accommodation section, but in order to perform efficient control, it is half of the liquid level depth in the reaction tank. It is better to install at a certain position.

本発明においては、上記の循環水量調節装置と第1及び第2の溶存酸素計(DO計)を組み合わせて制御を行うことにより、窒素除去効率が高く、流入下水量の負荷変動に適用可能な処理を行うことができる。具体的には、第1の溶存酸素計(DO1)により測定した溶存酸素濃度が、予め設定したDO1の目標値となるよう補助曝気手段(ブロワー)による送風量を制御し、第2の溶存酸素計(DO2)により測定した溶存酸素濃度が、予め設定したDO2の目標値となるよう循環水量調節装置の開度を制御する。   In the present invention, by controlling by combining the above circulating water amount adjusting device and the first and second dissolved oxygen meters (DO meters), the nitrogen removal efficiency is high and can be applied to load fluctuations of the inflow sewage amount. Processing can be performed. Specifically, the amount of air blown by the auxiliary aeration means (blower) is controlled so that the dissolved oxygen concentration measured by the first dissolved oxygen meter (DO1) becomes a preset target value of DO1, and the second dissolved oxygen The opening degree of the circulating water amount adjusting device is controlled so that the dissolved oxygen concentration measured by the meter (DO2) becomes a preset target value of DO2.

予め設定するDO1の目標値は、0.5〜2.0mg/L程度であり、予め設定するDO2の目標値は、0.1〜0.5mg/L程度である。DO1とDO2の目標値は24時間一定とすることもできるが、下記表1に示すように、1日の中でも負荷状況に応じて時間帯により変更する方がより細やかな制御が可能となる。なお、下記表1において、負荷状況は、流入排水量や汚濁物質の濃度が高い順に高負荷、中負荷及び低負荷と分類したものである。   The preset target value of DO1 is about 0.5 to 2.0 mg / L, and the preset target value of DO2 is about 0.1 to 0.5 mg / L. Although the target values of DO1 and DO2 can be fixed for 24 hours, as shown in Table 1 below, finer control is possible by changing according to the time zone in accordance with the load situation as shown in Table 1 below. In Table 1 below, the load status is classified as high load, medium load, and low load in descending order of the amount of influent wastewater and the concentration of pollutants.

Figure 2018187539
Figure 2018187539

以下に、図3に基づき、本発明における具体的な制御方法について説明する。
反応槽1に原水を供給する原水ポンプ8は、インバータの周波数が20〜50Hzの範囲内で制御可能であり、原則として、ろ過ポンプの吸引流量と同じか少し多い流量にして、50Hz等の一定流量で運転を行う。反応槽の水位が最高水位(H)に達したら原水ポンプを停止し、最低水位(L)まで低下したら原水ポンプの運転を開始するようにレベル制御を行う。また、原水槽の水位が最低水位(L)レベル以下となった場合には、インターロックをして空運転を防止する。
Below, based on FIG. 3, the specific control method in this invention is demonstrated.
The raw water pump 8 for supplying the raw water to the reaction tank 1 can be controlled within a frequency range of 20 to 50 Hz for the inverter. In principle, the flow rate is the same as or slightly higher than the suction flow rate of the filtration pump, and is constant at 50 Hz or the like. Operate at flow rate. When the water level in the reaction tank reaches the highest water level (H), the raw water pump is stopped, and when the water level drops to the lowest water level (L), the level control is performed so that the operation of the raw water pump is started. Further, when the water level in the raw water tank becomes lower than the minimum water level (L) level, an interlock operation is performed to prevent idling.

ろ過ポンプ3は、インバータの周波数が20〜50Hzの範囲内で制御可能である。原則として、50Hz等の一定流量で運転を行う。浸漬膜分離ユニットの膜表面のファウリングを防止するために、9分間吸引したら1分間停止するサイクルを繰り返す。あるいは、流入原水量の変動に合わせてろ過水量を変化させる様にしても良い。反応槽内の液位が浸漬膜分離ユニットの上端まで低下した場合(LLレベル)には、ろ過ポンプ3はインターロックされ空運転が防止される。   The filtration pump 3 can be controlled within a frequency range of the inverter of 20 to 50 Hz. In principle, operation is performed at a constant flow rate of 50 Hz or the like. In order to prevent fouling of the membrane surface of the submerged membrane separation unit, a cycle of stopping for 1 minute after repeating suction for 9 minutes is repeated. Or you may make it change the amount of filtrate water according to the fluctuation | variation of the inflow raw | natural water amount. When the liquid level in the reaction tank drops to the upper end of the submerged membrane separation unit (LL level), the filtration pump 3 is interlocked to prevent idling.

膜洗浄用ブロワ(B1)は、インバータの周波数が20〜50Hzの範囲内で制御可能であり、膜面積当たりの曝気量SADmが0.1〜0.15の範囲で、原則として一定風量で連続運転を行う(SADm(Specific-Air-Demand per membrane surface area)は必要な曝気量を意味し、通常はNm/m/hの単位で表される)。 The membrane cleaning blower (B1) can be controlled within a frequency range of 20 to 50 Hz for the inverter, and the aeration amount SADm per membrane area is in the range of 0.1 to 0.15. Operation (SADm (Specific-Air-Demand per membrane surface area) means a necessary amount of aeration and is usually expressed in units of Nm 3 / m 2 / h).

なお、流入原水量の変動に合わせてろ過水量を変化させる場合には、膜フラックスに合わせて、膜洗浄用ブロワ(B1)の送風量をSADmとして0.05〜0.2の範囲で調整することも有効である。ここで、膜フラックスとは、単位膜面積・単位時間当たりの膜ろ過水量(m/m/d)を表す。
下記表2に、1日の負荷時間帯に合わせて設定された膜フラックスの目標値の例と、この膜フラックスの値に対応させて調整可能な膜洗浄用ブロワ(B1)のSADmを示す。
In addition, when changing the amount of filtrate water according to the fluctuation | variation of inflow raw | natural water amount, according to a membrane flux, the ventilation volume of the film | membrane washing blower (B1) is adjusted in the range of 0.05-0.2 as SADm. It is also effective. Here, the membrane flux represents the amount of membrane filtrate (m 3 / m 2 / d) per unit membrane area / unit time.
Table 2 below shows an example of the target value of the membrane flux set in accordance with the daily load time zone, and the SADm of the membrane cleaning blower (B1) that can be adjusted according to the value of this membrane flux.

Figure 2018187539
Figure 2018187539

補助曝気ブロワ(B2)は、インバータの周波数が20〜50Hzの範囲内で制御可能であり、DO1により測定した溶存酸素濃度の値が目標値となる様に送風量を自動制御(PID制御)することにより、補助曝気手段の曝気量を調節する。具体的には、DO1の測定値が目標値よりも小さい場合には、補助曝気ブロワ(B2)の送風量を大きくするよう制御し、DO1の測定値が目標値よりも大きい場合には、補助曝気ブロワ(B2)の送風量を小さくするよう制御する。インバータの周波数が制御可能範囲の下限値においても、DO1が目標値以上である場合には、一定時間(例えば、30分間)補助曝気ブロワ(B2)を停止する。   The auxiliary aeration blower (B2) can be controlled within a frequency range of 20 to 50 Hz of the inverter, and automatically controls the blast volume (PID control) so that the dissolved oxygen concentration value measured by DO1 becomes a target value. Thus, the aeration amount of the auxiliary aeration means is adjusted. Specifically, when the measured value of DO1 is smaller than the target value, control is performed so as to increase the amount of air blown from the auxiliary aeration blower (B2), and when the measured value of DO1 is larger than the target value, auxiliary Control is performed to reduce the amount of air blown from the aeration blower (B2). Even when the frequency of the inverter is the lower limit value of the controllable range, if DO1 is equal to or higher than the target value, the auxiliary aeration blower (B2) is stopped for a certain time (for example, 30 minutes).

補助曝気ブロワ(B2)は、必要酸素量に対して膜洗浄用ブロワ(B1)によって供給される酸素量を差引いた酸素量(補助酸素量)を供給するために用いる。前述の通り補助曝気手段は膜洗浄用曝気手段と比較して酸素移動効率が2〜5倍高いことから、膜洗浄用ブロワの風量を可能な限り少なくした上で(例えば、前述の通り1日の負荷時間帯に合わせてSADmを設定する)、補助曝気ブロワを効率よく制御することが、電力消費量削減に寄与できる。また、効率的に制御できる範囲が広いブロワ(例えば、スクリュー式ブロワ)を用いることも有効である。   The auxiliary aeration blower (B2) is used to supply an oxygen amount (auxiliary oxygen amount) obtained by subtracting the oxygen amount supplied by the membrane cleaning blower (B1) from the required oxygen amount. As described above, the auxiliary aeration means has an oxygen transfer efficiency 2 to 5 times higher than that of the membrane cleaning aeration means. Therefore, after reducing the air volume of the membrane cleaning blower as much as possible (for example, as described above SADm is set in accordance with the load time zone), and efficient control of the auxiliary aeration blower can contribute to power consumption reduction. It is also effective to use a blower (for example, a screw type blower) having a wide range that can be efficiently controlled.

循環水量調節装置は、DO2により測定した溶存酸素濃度が目標値となるように、開度を10〜100%の範囲内で自動制御(PID制御)する。すなわち、DO2が目標値よりも大きい場合には、DO1からDO2に達するまでの時間に消費する酸素量が少ないことを意味するので、循環流速を遅くするために、循環水量調節装置の開度を小さくするよう制御する。逆に、DO2が目標値よりも小さい場合には酸素消費量が大きいので、循環流速を早くするために、循環水量調節装置の開度を大きくするよう制御する。循環水量調節装置の開度が制御下限値である10%の場合においても、DO2の測定値が目標値よりも大きい場合には、一定時間(30分間等)循環水量調節装置を全閉する。   The circulating water amount adjusting device automatically controls the opening degree (PID control) within a range of 10 to 100% so that the dissolved oxygen concentration measured by DO2 becomes a target value. That is, when DO2 is larger than the target value, it means that the amount of oxygen consumed in the time from DO1 to DO2 is small, so the opening degree of the circulating water amount adjusting device is set to slow down the circulation flow rate. Control to make it smaller. On the contrary, since oxygen consumption is large when DO2 is smaller than the target value, control is performed to increase the degree of opening of the circulating water amount adjusting device in order to increase the circulation flow rate. Even when the opening degree of the circulating water amount adjusting device is 10%, which is the control lower limit value, when the measured value of DO2 is larger than the target value, the circulating water amount adjusting device is fully closed for a certain period of time (such as 30 minutes).

図7に、本発明の膜分離活性汚泥処理装置の別の実施態様を示す。本実施形態では、循環流速を高く維持できるように、複数の膜分離ユニット2bを仕切板7の近くに設け、膜分離ユニット2bの下方に膜洗浄用の曝気手段(散気装置)4cを設置した。補助曝気手段(散気装置)4dは膜分離ユニット収容区画下方の中心部に配置し、その上部にDO1を配置した。また、DO2は膜分離ユニット収容区画以外の区画に設置した。   FIG. 7 shows another embodiment of the membrane separation activated sludge treatment apparatus of the present invention. In the present embodiment, a plurality of membrane separation units 2b are provided near the partition plate 7 so that the circulation flow rate can be kept high, and an aeration means (aeration device) 4c for membrane cleaning is installed below the membrane separation unit 2b. did. The auxiliary aeration means (aeration device) 4d was arranged at the center below the membrane separation unit accommodation section, and DO1 was arranged above it. Moreover, DO2 was installed in divisions other than a membrane separation unit accommodation division.

図7に示す実施態様においては、循環水量調節装置を補完するために撹拌機15を設置している。スイング式の循環水量調節装置により十分な制御が可能であれば省エネ効果が大きいが、十分な水流が得られない場合には撹拌機を設置することが効果的である。撹拌機の撹拌翼としては、プロペラ型、スクリュー型、パドル型等各種のものを使用することができる。   In the embodiment shown in FIG. 7, a stirrer 15 is installed to complement the circulating water amount adjusting device. If sufficient control is possible with a swing-type circulating water amount adjusting device, the energy saving effect is great. However, if a sufficient water flow cannot be obtained, it is effective to install a stirrer. As the stirring blade of the stirrer, various types such as a propeller type, a screw type, and a paddle type can be used.

このような図7に示す装置によっても、上述したような制御、即ち、DO1及びDO2により測定した溶存酸素濃度が予め設定した目標値となるよう、補助曝気手段による曝気量と循環水量調節装置の開度を制御することにより、流入下水量の負荷変動に適応した効率的な窒素除去を行うことができる。   Even with such an apparatus shown in FIG. 7, the above-described control, that is, the amount of aeration by the auxiliary aeration means and the circulating water amount adjustment apparatus so that the dissolved oxygen concentration measured by DO1 and DO2 becomes a preset target value. By controlling the opening degree, it is possible to perform efficient nitrogen removal adapted to the load fluctuation of the inflow sewage amount.

図3及び図7の装置において、好気ゾーンとは、膜分離ユニット収容区画内の曝気手段よりも上部とその他の区画の上部のゾーンであり、無酸素ゾーンとは、その他の区画内のDO2よりも下部と膜分離ユニット収容区画内の曝気手段よりも下部のゾーンである。この好気ゾーンと無酸素ゾーンの容量比は1:1〜1:2となる様に設計することができる。一般に、BODや窒素の負荷が大きい場合には硝化速度がネックになり、負荷が小さい場合には脱窒速度がネックになる。従って、負荷が大きい場合には好気ゾーンと無酸素ゾーンの比率は1:1程度が好ましく、負荷が低い場合には1:2程度とするのが好ましい。負荷状況に応じた適切なゾーン比率となるよう、DO2の設置位置を上下させて調整するか、又は上記表1に示した様にDO2の目標値を負荷に応じて変化させることが好ましい。   3 and 7, the aerobic zone is a zone above the aeration means in the membrane separation unit accommodating section and the other section, and the anoxic zone is DO2 in the other section. The lower zone and the lower zone than the aeration means in the membrane separation unit accommodating section. The capacity ratio of the aerobic zone and the anaerobic zone can be designed to be 1: 1 to 1: 2. In general, the nitrification rate becomes a bottleneck when the load of BOD or nitrogen is large, and the denitrification rate becomes a bottleneck when the load is small. Accordingly, the ratio of the aerobic zone to the anaerobic zone is preferably about 1: 1 when the load is large, and about 1: 2 when the load is low. It is preferable to adjust the installation position of DO2 up and down so that the zone ratio is appropriate according to the load situation, or to change the target value of DO2 according to the load as shown in Table 1 above.

上記のように、循環水量調節装置と第1及び第2の溶存酸素計(DO計)を組み合わせて制御を行うことにより、従来法(特許文献1)のように、仕切板内外で液の越流状態と分断状態を作り出すために液位を大きく変動させる必要がないため、原水を一定流量で連続的に反応槽に供給することが可能となる。このため、特別な原水供給装置や原水流量制御装置を設置する必要がない。なお、本発明において「一定流量」とは、ある所定の時間において流量が一定であればよく、最適な流量とするために変更されることがあってもよい。   As described above, by controlling the circulating water amount adjusting device and the first and second dissolved oxygen meters (DO meters) in combination, the liquid is passed over and outside the partition plate as in the conventional method (Patent Document 1). Since it is not necessary to greatly change the liquid level in order to create a flow state and a divided state, raw water can be continuously supplied to the reaction tank at a constant flow rate. For this reason, it is not necessary to install a special raw water supply device or raw water flow rate control device. In the present invention, the “constant flow rate” is not limited as long as the flow rate is constant at a predetermined time, and may be changed to obtain an optimum flow rate.

本発明においては、DO計の代わりに、又はDO計を補完する目的で、アンモニア計及び/又は硝酸計を設けて制御することもできる。すなわち、アンモニアが多い場合には硝化ゾーンを大きくし、硝酸が多い場合には脱窒ゾーンを大きくする様に制御する。   In the present invention, an ammonia meter and / or a nitric acid meter can be provided and controlled instead of the DO meter or for the purpose of complementing the DO meter. That is, the control is performed so that the nitrification zone is enlarged when ammonia is large, and the denitrification zone is enlarged when nitric acid is large.

本発明の装置を用いた膜分離活性汚泥処理方法は、OD法に比べ高いMLSS濃度を維持できることから、硝化に必要なA−SRT(Aerobic Solid Retention Time:好気的固形物滞留時間)を確保して、低BOD−MLSS負荷の条件においても、微生物の内生呼吸による酸素消費速度が大きくなるために、好気ゾーンと無酸素ゾーンの制御がし易くなるという利点を有する。   Since the membrane separation activated sludge treatment method using the apparatus of the present invention can maintain a higher MLSS concentration than the OD method, A-SRT (Aerobic Solid Retention Time) required for nitrification is ensured. Even under a low BOD-MLSS load condition, the oxygen consumption rate due to the endogenous respiration of microorganisms is increased, so that it is easy to control the aerobic zone and the anaerobic zone.

本発明は、循環水量調節装置と第1及び第2の溶存酸素計を設けた膜分離活性汚泥処理装置、及びこの装置を用いた膜分離活性汚泥処理方法であれば、上記実施態様に限定されるものではなく、上記以外の処理条件および原水の前処理は、従来から周知の方法と同様の条件で行うことができる。   The present invention is limited to the above embodiment as long as it is a membrane separation activated sludge treatment apparatus provided with a circulating water amount control device and first and second dissolved oxygen meters, and a membrane separation activated sludge treatment method using this device. However, the treatment conditions other than the above and the pretreatment of the raw water can be performed under the same conditions as conventionally known methods.

本発明は、窒素除去効率を更に向上させ、流入下水量の日間の負荷変動に対しても高い適用性を示し、更には、反応槽内の処理時間(HRT)を大幅に短縮し、中大規模の下水処理場や工場排水処理でも採用可能な膜分離活性汚泥装置及び方法を提供することができる。   The present invention further improves the nitrogen removal efficiency, shows high applicability to daily load fluctuations of the inflow sewage amount, and further significantly shortens the processing time (HRT) in the reaction tank. It is possible to provide a membrane separation activated sludge apparatus and method that can be employed in a sewage treatment plant and a factory wastewater treatment.

1 反応槽
2、2a、2b 膜分離ユニット
3 吸引ポンプ
4、4a、4c 膜洗浄用曝気手段
4b、4d 補助曝気手段
5、5a、5b、5c ブロワ
6 レベルセンサー
7 仕切板
8 原水ポンプ
9 原水槽
10a 第1の溶存酸素計
10b 第2の溶存酸素計
15 撹拌機
20a、20b、20c 循環水量調節板(スイング板)
21a、21b、21c 固定部材
22 調節板移動手段
30 スライド板
31 スライド板開口部
32 仕切板開口部
33 スライド板固定部材
34 スライド板移動手段
DESCRIPTION OF SYMBOLS 1 Reaction tank 2, 2a, 2b Membrane separation unit 3 Suction pump 4, 4a, 4c Aeration means for membrane cleaning 4b, 4d Auxiliary aeration means 5, 5a, 5b, 5c Blower 6 Level sensor 7 Partition plate 8 Raw water pump 9 Raw water tank 10a First dissolved oxygen meter 10b Second dissolved oxygen meter 15 Stirrer 20a, 20b, 20c Circulating water amount adjusting plate (swing plate)
21a, 21b, 21c Fixing member 22 Adjustment plate moving means 30 Slide plate 31 Slide plate opening 32 Partition plate opening 33 Slide plate fixing member 34 Slide plate moving means

Claims (6)

好気性処理および無酸素処理を行う単一の反応槽と、その反応槽の内部に配置された浸漬膜分離ユニットと、曝気手段とを有する膜分離活性汚泥処理装置であって、反応槽は、底部が反応槽の底面から離間して設けられた仕切板によって複数個の区画に分割され、その複数個の区画のうちの少なくとも一つの区画を、浸漬膜分離ユニットおよび曝気手段が配置された好気区画とし、その他の区画内で無酸素処理を行う膜分離活性汚泥処理装置において、循環水量調節装置を設けると共に、前記好気区画に第1の溶存酸素計を設け、前記その他の区画に第2の溶存酸素計を設けたことを特徴とする膜分離活性汚泥処理装置。   A membrane separation activated sludge treatment apparatus having a single reaction tank for performing an aerobic treatment and an anaerobic treatment, an immersion membrane separation unit disposed inside the reaction tank, and an aeration means, The bottom is divided into a plurality of compartments by a partition plate provided apart from the bottom surface of the reaction vessel, and at least one of the compartments is preferably provided with an immersion membrane separation unit and aeration means. In the membrane-separated activated sludge treatment apparatus that performs oxygen-free treatment in the other compartments, a circulating water amount adjusting device is provided, a first dissolved oxygen meter is provided in the aerobic compartment, and a first in the other compartments. 2. A membrane separation activated sludge treatment apparatus provided with two dissolved oxygen meters. 前記好気区画内に補助曝気手段を更に設け、前記循環水量調節装置が、仕切板上部において開度を調節することが可能な循環水量調節装置である、請求項1記載の膜分離活性汚泥処理装置。   The membrane separation activated sludge treatment according to claim 1, wherein auxiliary aeration means is further provided in the aerobic section, and the circulating water amount adjusting device is a circulating water amount adjusting device capable of adjusting an opening degree in an upper part of the partition plate. apparatus. 第1の溶存酸素計により測定した溶存酸素濃度が予め設定した目標値となるよう、補助曝気手段による曝気量を制御する手段と、第2の溶存酸素計により測定した溶存酸素濃度が予め設定した目標値となるよう、循環水量調節装置の開度を制御する手段を設けた、請求項2記載の膜分離活性汚泥処理装置。   The means for controlling the amount of aeration by the auxiliary aeration means and the dissolved oxygen concentration measured by the second dissolved oxygen meter are preset so that the dissolved oxygen concentration measured by the first dissolved oxygen meter becomes a preset target value. The membrane separation activated sludge treatment apparatus according to claim 2, wherein means for controlling the opening degree of the circulating water amount adjusting device is provided so as to achieve a target value. アンモニア計および/または硝酸計を更に設けて制御する手段を設けた、請求項1〜3のいずれか一項に記載の膜分離活性汚泥処理装置。   The membrane separation activated sludge treatment apparatus according to any one of claims 1 to 3, further comprising an ammonia meter and / or a nitric acid meter for control. 反応槽に供給される原水の負荷状況に応じて予め設定した第1の溶存酸素計及び第2の溶存酸素計の目標値によって制御する手段を設けた、請求項1〜4のいずれか一項に記載の膜分離活性汚泥処理装置。   The means to control by the target value of the 1st dissolved oxygen meter and the 2nd dissolved oxygen meter which were preset according to the load condition of the raw | natural water supplied to a reaction tank was provided. The membrane separation activated sludge treatment apparatus as described in 1. 浸漬膜分離ユニットを配置した単一の反応槽内で好気性処理および無酸素処理を行う膜分離活性汚泥処理方法であって、浸漬膜分離ユニットの周囲を底部が反応槽の底面から離間して設けられた仕切板で区画し、浸漬膜分離ユニットの下方から曝気を行うことにより、浸漬膜分離ユニットが配置された区画内を好気状態に維持しつつ、その他の区画内で無酸素処理を行う膜分離活性汚泥処理方法において、前記浸漬膜分離ユニットが配置された区画の溶存酸素濃度と、前記その他の区画の溶存酸素濃度をそれぞれ測定し、各溶存酸素濃度の測定値が予め設定した目標値となるよう、曝気量および循環水の流速を制御することを特徴とする膜分離活性汚泥処理方法。   A membrane separation activated sludge treatment method that performs aerobic treatment and oxygen-free treatment in a single reaction vessel in which an immersion membrane separation unit is arranged, and the bottom of the immersion membrane separation unit is separated from the bottom surface of the reaction vessel. By partitioning with the partition plate provided and performing aeration from below the immersion membrane separation unit, anaerobic treatment is performed in the other compartments while maintaining the compartment in which the immersion membrane separation unit is placed in an aerobic state. In the membrane separation activated sludge treatment method to be performed, the dissolved oxygen concentration in the section in which the submerged membrane separation unit is disposed and the dissolved oxygen concentration in the other section are respectively measured, and the measured value of each dissolved oxygen concentration is set in advance. A membrane separation activated sludge treatment method characterized by controlling the amount of aeration and the flow rate of circulating water so as to obtain a value.
JP2017089621A 2017-04-28 2017-04-28 Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method Active JP7016622B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017089621A JP7016622B2 (en) 2017-04-28 2017-04-28 Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method
PCT/JP2017/045050 WO2018198422A1 (en) 2017-04-28 2017-12-15 Membrane-separation activated sludge treatment device and membrane-separation activated sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017089621A JP7016622B2 (en) 2017-04-28 2017-04-28 Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method

Publications (2)

Publication Number Publication Date
JP2018187539A true JP2018187539A (en) 2018-11-29
JP7016622B2 JP7016622B2 (en) 2022-02-07

Family

ID=64479304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017089621A Active JP7016622B2 (en) 2017-04-28 2017-04-28 Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method

Country Status (1)

Country Link
JP (1) JP7016622B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109467281A (en) * 2018-12-25 2019-03-15 湖南智水环境工程有限公司 Sewage disposal device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003136091A (en) * 2001-11-01 2003-05-13 Yanmar Co Ltd Sewage treatment method, sewage treatment apparatus and sewage treatment system equipped with sewage treatment apparatus
JP2004261711A (en) * 2003-02-28 2004-09-24 Yoshikimi Watanabe Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP2004305884A (en) * 2003-04-07 2004-11-04 Kubota Corp Circulation type treatment tank
JP2005052804A (en) * 2003-08-07 2005-03-03 Hiroshi Tsuno Waste water treatment equipment and operation method for the same
JP2008221160A (en) * 2007-03-14 2008-09-25 Kobelco Eco-Solutions Co Ltd Denitrifying treatment device and denitrifying treatment method
JP2010110706A (en) * 2008-11-07 2010-05-20 Obihiro Univ Of Agriculture & Veterinary Medicine System and method for treating organic waste
WO2014112640A1 (en) * 2013-01-21 2014-07-24 昭和電工株式会社 System for treating nitrogen-containing water, and method for treating nitrogen-containing water

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003136091A (en) * 2001-11-01 2003-05-13 Yanmar Co Ltd Sewage treatment method, sewage treatment apparatus and sewage treatment system equipped with sewage treatment apparatus
JP2004261711A (en) * 2003-02-28 2004-09-24 Yoshikimi Watanabe Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP2004305884A (en) * 2003-04-07 2004-11-04 Kubota Corp Circulation type treatment tank
JP2005052804A (en) * 2003-08-07 2005-03-03 Hiroshi Tsuno Waste water treatment equipment and operation method for the same
JP2008221160A (en) * 2007-03-14 2008-09-25 Kobelco Eco-Solutions Co Ltd Denitrifying treatment device and denitrifying treatment method
JP2010110706A (en) * 2008-11-07 2010-05-20 Obihiro Univ Of Agriculture & Veterinary Medicine System and method for treating organic waste
WO2014112640A1 (en) * 2013-01-21 2014-07-24 昭和電工株式会社 System for treating nitrogen-containing water, and method for treating nitrogen-containing water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109467281A (en) * 2018-12-25 2019-03-15 湖南智水环境工程有限公司 Sewage disposal device
CN109467281B (en) * 2018-12-25 2024-03-05 湖南智水环境科技有限公司 Sewage treatment equipment

Also Published As

Publication number Publication date
JP7016622B2 (en) 2022-02-07

Similar Documents

Publication Publication Date Title
WO2018198422A1 (en) Membrane-separation activated sludge treatment device and membrane-separation activated sludge treatment method
JP4059790B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
CN105693014A (en) Sewage treatment system and sewage treatment method
US20130264282A1 (en) Process, apparatus and membrane bioreactor for wastewater treatment
JP6071997B2 (en) Microbial reaction tank and waste water treatment method
JP7016623B2 (en) Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method
JP2011194330A (en) Apparatus and method for treating wastewater
KR20130118574A (en) A disposal facilities of sewage
JP6071998B2 (en) Microbial reactor
KR100527172B1 (en) A method and apparatus for nitrogenous waste water of nitrogen and sewage
WO2018123647A1 (en) Membrane-separation activated sludge treatment device, membrane-separation activated sludge treatment method, raw water supply device, and raw water supply method
EP2049443B1 (en) A method and apparatus for simultaneous clarification and endogenous post denitrification
WO2018096583A1 (en) Microorganism reaction vessel and method for treating wastewater
JP2006205155A (en) Anaerobic tank and waste water treatment system including the same
JP7016622B2 (en) Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method
JP4014581B2 (en) Biological filtration device
Rodríguez-Hernández et al. Evaluation of a hybrid vertical membrane bioreactor (HVMBR) for wastewater treatment
AU2018259114A1 (en) Bioreactor with moving carriers
CN205528260U (en) Sewage treatment system
KR20150016775A (en) Advanced water treatment system with improved treatment efficiency for concentrated sludge
JP7220740B2 (en) MEMBRANE ACTIVATED SLUDGE TREATMENT APPARATUS AND MEMBRANE ACTIVATED SLUDGE TREATMENT METHOD
CN203728687U (en) Integrated combined nitrogen and phosphorus removal device
JP4034074B2 (en) Wastewater treatment equipment
JP6941439B2 (en) Membrane separation activated sludge treatment equipment, membrane separation activated sludge treatment method and raw water supply equipment
KR101032068B1 (en) Sewage-wastewater treating system and method the same, using high-effciency sequencing batch reactor process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220126