JP2018185383A - Imaging optical system and imaging device using the same - Google Patents

Imaging optical system and imaging device using the same Download PDF

Info

Publication number
JP2018185383A
JP2018185383A JP2017085943A JP2017085943A JP2018185383A JP 2018185383 A JP2018185383 A JP 2018185383A JP 2017085943 A JP2017085943 A JP 2017085943A JP 2017085943 A JP2017085943 A JP 2017085943A JP 2018185383 A JP2018185383 A JP 2018185383A
Authority
JP
Japan
Prior art keywords
lens
optical system
imaging optical
aperture stop
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017085943A
Other languages
Japanese (ja)
Other versions
JP6995492B2 (en
Inventor
健志 篠原
Kenji Shinohara
健志 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017085943A priority Critical patent/JP6995492B2/en
Publication of JP2018185383A publication Critical patent/JP2018185383A/en
Application granted granted Critical
Publication of JP6995492B2 publication Critical patent/JP6995492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an imaging optical system that can satisfactorily correct sagittal flare with a large aperture ratio, and easily provide a high-quality image with good bokeh.SOLUTION: An imaging optical system includes a lens that is arranged adjacent to an object side of an aperture stop and has a concave surface directed to an image side, the aperture stop, and a lens that is arranged adjacent to the image side of the aperture stop and has a concave surface directed to the object side, which are arranged in order from the object side to the image side. In the imaging optical system, a negative lens G11 is arranged on the most object side, and a lens element GR having a positive refractive power is arranged on the most image side. The radii of curvature Rn1, Rn2 of lens surfaces on the object side and image side of the negative lens G11, the focal distance fR of the lens element GR, and the focal distance f of the entire system are appropriately set.SELECTED DRAWING: Figure 1

Description

本発明は撮像光学系に関し、特に一眼レフカメラ、デジタルスチルカメラ、フィルム用カメラ、ビデオカメラ、監視用カメラ等の撮像装置に好適なものである。   The present invention relates to an imaging optical system, and is particularly suitable for an imaging apparatus such as a single-lens reflex camera, a digital still camera, a film camera, a video camera, and a surveillance camera.

近年、撮像素子を用いた撮像装置は小型化されるとともに、画質の高画質化が進んでいる。特に一眼レフカメラにおいては、撮像時の画質の高画質化に加え、画像のボケ味が良いことが要求されている。これらの要求を満足するために、近年はFno(Fナンバー)を明るくし、ボケ量のコントロールが出来るようにした大口径比の撮像光学系が提案されている。この大口径化を満足する撮像光学系のレンズタイプとしては、例えばダブルガウスタイプが知られている。   In recent years, an image pickup apparatus using an image pickup element has been miniaturized and image quality has been improved. In particular, in a single-lens reflex camera, in addition to an increase in image quality at the time of imaging, it is required that the image has good blurring. In order to satisfy these requirements, in recent years, an imaging optical system with a large aperture ratio has been proposed in which Fno (F number) is brightened and the amount of blur can be controlled. As a lens type of an imaging optical system that satisfies this large aperture, for example, a double Gauss type is known.

高画質化を図りつつ、ボケ味をきれいにするためには、サジタルフレアを軽減することが必要になってくる。ダブルガウスタイプの撮像光学系は、大口径比化が容易であるが、サジタルフレアが多く、このサジタルフレアを良好に補正することが難しい。このため、ダブルガウスタイプを変形させてサジタルフレアを良好に補正するようにした撮像光学系が提案されている(特許文献1、2)。   It is necessary to reduce sagittal flare in order to improve the image quality and clean the bokeh. A double Gauss type imaging optical system can easily achieve a large aperture ratio, but there are many sagittal flares, and it is difficult to satisfactorily correct the sagittal flares. For this reason, there has been proposed an imaging optical system in which a double Gauss type is deformed to satisfactorily correct sagittal flare (Patent Documents 1 and 2).

特許文献1は最も物体側と、最も像側に各々負レンズを配置して諸収差を良好に補正したFナンバー2.0程度の撮影レンズを開示している。特許文献2は最も物体側と、最も像側に各々負レンズを配置し、諸収差を良好に補正したFナンバー1.4程度の撮影レンズを開示している。   Patent Document 1 discloses a photographing lens having an F number of about 2.0 in which negative lenses are arranged on the most object side and the most image side, respectively, and various aberrations are favorably corrected. Patent Document 2 discloses a photographing lens having an F number of about 1.4, in which negative lenses are arranged on the most object side and the most image side, and various aberrations are corrected favorably.

特開平5−323184号公報JP-A-5-323184 特開2016−118770号公報Japanese Patent Laid-Open No. 2006-118770

ダブルガウスタイプの撮像光学系は大口径比化が容易で、しかも物体距離の変動に対する収差変動が比較的少ないという特徴がある。しかしながら大口径比化を図りつつ、サジタルフレアを低減し、高画質でしかも全系の小型化を図るには、撮像光学系を構成する各レンズのレンズ形状や屈折力等を適切に設定することが重要になってくる。   The double Gauss type imaging optical system is characterized in that it is easy to make a large aperture ratio, and the aberration variation with respect to the object distance variation is relatively small. However, in order to reduce sagittal flare, achieve high image quality, and reduce the size of the entire system while achieving a large aperture ratio, the lens shape and refractive power of each lens constituting the imaging optical system must be set appropriately. Becomes important.

例えばサジタルフレアを良好に補正し、高画質でボケ味の良い画像を得るには、最も物体側に配置されたレンズの屈折力や開口絞りに隣接した物体側のレンズ面と像側のレンズ面の曲率半径を適切に設定することが重要になってくる。更に最も像側に配置されたレンズ要素等を適切に設定することが重要になってくる。   For example, to correct sagittal flare satisfactorily and obtain an image with high image quality and good blur, the lens surface on the object side and the lens surface on the image side adjacent to the refractive power of the lens arranged closest to the object side or the aperture stop It is important to set the radius of curvature appropriately. Furthermore, it is important to appropriately set the lens elements and the like arranged on the most image side.

この他、撮像素子に入射する軸外光束の入射角度が大きくなると、受光感度が低下してくる。このときの受光感度の低下を防止するには、軸外光束の撮像素子の入射角を小さくする必要があり、このためには最も像側に配置されたレンズの屈折力を適切に設定することが重要になってくる。   In addition, when the incident angle of the off-axis light beam incident on the image sensor increases, the light receiving sensitivity decreases. In order to prevent a decrease in light receiving sensitivity at this time, it is necessary to reduce the incident angle of the off-axis light beam on the imaging device. For this purpose, the refractive power of the lens disposed closest to the image side should be set appropriately. Becomes important.

本発明は、大口径比でサジタルフレアを良好に補正し、高画質でしかもボケ味の良い画像が容易に得られる撮像光学系の提供を目的とする。   An object of the present invention is to provide an imaging optical system that can satisfactorily correct sagittal flare with a large aperture ratio and easily obtain an image with high image quality and good blur.

本発明の撮像光学系は、開口絞りと、該開口絞りの物体側に隣接して配置され、像側に凹面を向けたレンズと、前記開口絞りの像側に隣接して配置され、物体側に凹面を向けたレンズを有する撮像光学系であって、
前記撮像光学系に含まれるレンズの中で最も物体側に配置された負レンズG11の物体側のレンズ面の曲率半径をRn1、前記負レンズG11の像側のレンズ面の曲率半径をRn2、前記撮像光学系に含まれるレンズ要素の中で最も像側に配置された正の屈折力のレンズ要素GRの焦点距離をfR、前記撮像光学系の焦点距離をfとするとき、
−0.9<(Rn1+Rn2)/(Rn1−Rn2)<0.1
1.0<fR/f<5.0
なる条件式を満足することを特徴としている。
The imaging optical system of the present invention is disposed adjacent to an aperture stop, an object side of the aperture stop, a lens having a concave surface facing the image side, and disposed adjacent to the image side of the aperture stop, An imaging optical system having a lens with a concave surface facing
Among the lenses included in the imaging optical system, the radius of curvature of the lens surface on the object side of the negative lens G11 disposed closest to the object side is Rn1, the radius of curvature of the lens surface on the image side of the negative lens G11 is Rn2, and When the focal length of the lens element GR having the positive refractive power disposed on the most image side among the lens elements included in the imaging optical system is fR, and the focal length of the imaging optical system is f,
−0.9 <(Rn1 + Rn2) / (Rn1−Rn2) <0.1
1.0 <fR / f <5.0
It satisfies the following conditional expression.

本発明によれば、大口径比でサジタルフレアを良好に補正し、高画質でしかもボケ味の良い画像が容易に得られる撮像光学系が得られる。   According to the present invention, it is possible to obtain an imaging optical system that can satisfactorily correct sagittal flare with a large aperture ratio and easily obtain an image with high image quality and good blur.

実施例1の撮像光学系のレンズ断面図Lens sectional view of the imaging optical system of Example 1 (A)、(B) 実施例1の撮像光学系の無限遠と至近での収差図(A), (B) Aberration diagrams at infinity and close to the imaging optical system of Example 1 実施例2の撮像光学系のレンズ断面図Lens sectional view of the imaging optical system of Example 2 (A)、(B) 実施例2の撮像光学系の無限遠と至近での収差図(A), (B) Aberration diagrams at infinity and close to the imaging optical system of Example 2 実施例3の撮像光学系のレンズ断面図Lens sectional view of the imaging optical system of Example 3 (A)、(B) 実施例3の撮像光学系の無限遠と至近での収差図(A), (B) Aberration diagrams at infinity and close to the imaging optical system of Example 3 実施例4の撮像光学系のレンズ断面図Lens sectional view of the imaging optical system of Example 4 (A)、(B) 実施例4の撮像光学系の無限遠と至近での収差図(A), (B) Aberration diagrams at infinity and close to the imaging optical system of Example 4 実施例5の撮像光学系のレンズ断面図Lens cross section of the imaging optical system of Example 5 (A)、(B) 実施例5の撮像光学系の無限遠と至近での収差図(A), (B) Aberration diagrams at infinity and close to the imaging optical system of Example 5 撮像光学系を搭載する光学機器(デジタルカメラ)の装置図Device diagram of optical equipment (digital camera) equipped with imaging optical system

以下、図面を用いて本発明の撮像光学系及びそれを有する撮像装置の実施例について説明する。本発明の撮像光学系は、開口絞りと、開口絞りの物体側に隣接して配置され、像側に凹面を向けたレンズと、開口絞りの像側に隣接して配置され、物体側に凹面を向けたレンズを有する。最も物体側には負レンズG11が配置され、最も像側には正の屈折力のレンズ要素GRが配置されている。ここでレンズ要素とは1枚のレンズ又は複数のレンズを接合した接合レンズをいう。   Embodiments of an image pickup optical system and an image pickup apparatus having the same according to the present invention will be described below with reference to the drawings. The imaging optical system of the present invention is disposed adjacent to the aperture stop, the object side of the aperture stop, the lens having a concave surface facing the image side, and disposed adjacent to the image side of the aperture stop, and concave on the object side. With a lens facing. A negative lens G11 is disposed closest to the object side, and a lens element GR having a positive refractive power is disposed closest to the image side. Here, the lens element refers to a cemented lens obtained by cementing one lens or a plurality of lenses.

図1は本発明の実施例1の無限遠に合焦(フォーカス)しているときのレンズ断面図である。図2(A)、(B)は本発明の実施例1の無限遠と至近(撮像倍率−0.187)に合焦しているときの縦収差図である。実施例1はFナンバー1.45、撮像画角45.7度の撮像光学系である。   FIG. 1 is a lens cross-sectional view when focusing on infinity according to Embodiment 1 of the present invention. FIGS. 2A and 2B are longitudinal aberration diagrams when focusing on infinity and close distance (imaging magnification −0.187) in Example 1 of the present invention. Example 1 is an imaging optical system having an F number of 1.45 and an imaging field angle of 45.7 degrees.

図3は本発明の実施例2の無限遠に合焦しているときのレンズ断面図である。図4(A)、(B)は本発明の実施例2の無限遠と至近(撮像倍率−0.184)に合焦しているときの縦収差図である。実施例2はFナンバー1.45、撮像画角46.24度の撮像光学系である。   FIG. 3 is a lens cross-sectional view when focusing on infinity according to the second embodiment of the present invention. FIGS. 4A and 4B are longitudinal aberration diagrams when focusing on infinity and close distance (imaging magnification −0.184) in Example 2 of the present invention. The second embodiment is an imaging optical system having an F number of 1.45 and an imaging field angle of 46.24 degrees.

図5は本発明の実施例3の無限遠に合焦しているときのレンズ断面図である。図6(A)、(B)は本発明の実施例3の無限遠と至近(撮像倍率−0.188)に合焦しているときの縦収差図である。実施例3はFナンバー1.45、撮像画角45.8度の撮像光学系である。   FIG. 5 is a lens cross-sectional view of Example 3 of the present invention when focusing on infinity. FIGS. 6A and 6B are longitudinal aberration diagrams when focusing on infinity and close distance (imaging magnification −0.188) in Example 3 of the present invention. Example 3 is an imaging optical system having an F number of 1.45 and an imaging field angle of 45.8 degrees.

図7は本発明の実施例4の無限遠に合焦しているときのレンズ断面図である。図8(A)、(B)は本発明の実施例4の無限遠と至近(撮像倍率−0.176)に合焦しているときの縦収差図である。実施例4はFナンバー1.45、撮像画角45.14度の撮像光学系である。   FIG. 7 is a lens cross-sectional view of Example 4 of the present invention when focusing on infinity. FIGS. 8A and 8B are longitudinal aberration diagrams when focusing on infinity and close distance (imaging magnification: −0.176) in Example 4 of the present invention. Example 4 is an imaging optical system having an F number of 1.45 and an imaging field angle of 45.14 degrees.

図9は本発明の実施例5の無限遠に合焦しているときのレンズ断面図である。図10(A)、(B)は本発明の実施例5の無限遠と至近(撮像倍率−0.101)に合焦しているときの縦収差図である。実施例5はFナンバー1.45、撮像画角45.5度の撮像光学系である。図11は本発明の撮像装置の要部概略図である。   FIG. 9 is a lens cross-sectional view of Example 5 of the present invention when focusing on infinity. 10A and 10B are longitudinal aberration diagrams when focusing on infinity and close distance (imaging magnification: -0.101) in Example 5 of the present invention. Example 5 is an imaging optical system having an F number of 1.45 and an imaging field angle of 45.5 degrees. FIG. 11 is a schematic diagram of a main part of the imaging apparatus of the present invention.

本発明の撮像光学系はデジタルカメラやビデオカメラ、放送用カメラ、監視用カメラ、銀塩写真用カメラ等の撮像装置に用いられる。実施例1乃至4に対応する図1、図3、図5、図7のレンズ断面図において、左方が被写体側で、右方が像側である。レンズ断面図において、L0は撮像光学系である。L1は正の屈折力の第1レンズ群、L2は正の屈折力の第2レンズ群である。SPは開口絞りであり、第1レンズ群L1内に配置しており、フォーカシングに際して第1レンズ群L1と一体的に(同じ軌跡で)移動する。   The imaging optical system of the present invention is used in imaging devices such as digital cameras, video cameras, broadcast cameras, surveillance cameras, and silver halide photography cameras. In the lens cross-sectional views of FIGS. 1, 3, 5, and 7 corresponding to the first to fourth embodiments, the left side is the subject side and the right side is the image side. In the lens cross-sectional view, L0 is an imaging optical system. L1 is a first lens group having a positive refractive power, and L2 is a second lens group having a positive refractive power. SP is an aperture stop, which is disposed in the first lens unit L1 and moves integrally with the first lens unit L1 (with the same locus) during focusing.

実施例5の図9のレンズ断面図において、左方が被写体側で、右方が像側である。レンズ断面図において、L0は撮像光学系である。L1は正の屈折力の第1レンズ群である。SPは開口絞りであり、第1レンズ群L1内に配置しており、フォーカシングに際して第1レンズ群L1と一体的に移動する。各レンズ断面図において、IPは像面であり、デジタルスチルカメラやビデオカメラの撮像光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子の撮像面が、銀塩フィルム用カメラのときはフィルム面に相当する。   In the lens cross-sectional view of FIG. 9 of Example 5, the left side is the subject side and the right side is the image side. In the lens cross-sectional view, L0 is an imaging optical system. L1 is a first lens unit having a positive refractive power. SP is an aperture stop which is disposed in the first lens unit L1 and moves integrally with the first lens unit L1 during focusing. In each lens cross-sectional view, IP is an image plane. When used as an imaging optical system for a digital still camera or a video camera, the imaging surface of a solid-state imaging device such as a CCD sensor or a CMOS sensor is used for a silver salt film camera. Sometimes it corresponds to the film surface.

収差図において、FnoはFナンバーである。ωは半画角(度)である。また球面収差図において実線のdはd線(波長587.6nm)、二点鎖線のgはg線(波長435.8nm)である。非点収差図で点線のΔMはd線におけるメリディオナル像面、実線のΔSはd線におけるサジタル像面である。歪曲収差図はd線について示している。倍率色収差図において二点鎖線のgはg線である。後述する数値データをmm単位で表したとき縦収差図において、球面収差は0.25mm、非点収差は0.25mm、歪曲は5%、倍率色収差は0.03mmのスケールで描かれている。   In the aberration diagrams, Fno is the F number. ω is a half angle of view (degree). In the spherical aberration diagram, the solid line d is the d line (wavelength 587.6 nm), and the two-dot chain line g is the g line (wavelength 435.8 nm). In the astigmatism diagram, the dotted line ΔM is the meridional image plane at the d line, and the solid line ΔS is the sagittal image plane at the d line. The distortion diagram shows the d-line. In the chromatic aberration diagram of magnification, g of the two-dot chain line is the g line. When numerical data to be described later is expressed in mm, in a longitudinal aberration diagram, spherical aberration is drawn on a scale of 0.25 mm, astigmatism is 0.25 mm, distortion is 5%, and lateral chromatic aberration is drawn on a scale of 0.03 mm.

本発明の撮像光学系L0は、F1.4(Fナンバー)程度の大口径でありながらサジタルフレアを軽減し高画質かつ全系が小型でボケ味のきれいな像が容易に得られる。撮像光学系L0を大口径化するためには、特にダブルガウスタイプを用いることが有効である。ダブルガウスタイプはレンズ構成を開口絞りに対して略対称配置としているため、コマ収差や歪曲収差等を良好に補正することが容易となる。   The imaging optical system L0 of the present invention has a large aperture of about F1.4 (F number), but it can reduce sagittal flare and can easily obtain a high-quality image with a small overall system and a clear blur. In order to increase the diameter of the imaging optical system L0, it is particularly effective to use a double Gauss type. The double gauss type has a lens configuration that is substantially symmetrical with respect to the aperture stop, so that it is easy to satisfactorily correct coma and distortion.

また、レンズの材料に高屈折率硝材を使用することで球面収差を良好に補正することが容易となる。しかしながらダブルガウスタイプはサジタルフレアの補正が難しく、これを補正するためにはレンズ構成をダブルガウスタイプから変形させ、適切な場所に適切なレンズ形状のレンズを使用することが必要となってくる。   Moreover, it becomes easy to correct spherical aberration satisfactorily by using a high refractive index glass material as a lens material. However, it is difficult to correct sagittal flare in the double gauss type, and in order to correct this, it is necessary to change the lens configuration from the double gauss type and use a lens having an appropriate lens shape at an appropriate location.

本発明では、最も物体側に、物体側に凹面を向けた負レンズG11を配置することでサジタルフレアを軽減している。ダブルガウスタイプは開口絞りSP付近でサジタルフレアが多く発生する。本発明ではこれを良好に補正するために軸外光線が光軸から離れた最も物体側に物体側のレンズ面を凹形状とした負レンズG11を配置する事で効果的に補正している。物体側のレンズ面を凹形状とする事で前玉有効径の小型化といった利点もあるが、反面歪曲収差が発生してくる。   In the present invention, sagittal flare is reduced by disposing a negative lens G11 having a concave surface facing the object side closest to the object side. In the double Gauss type, a lot of sagittal flare occurs near the aperture stop SP. In the present invention, in order to satisfactorily correct this, the negative lens G11 having a concave lens surface on the object side is arranged on the most object side where the off-axis rays are separated from the optical axis, thereby effectively correcting it. Although the lens surface on the object side has a concave shape, there is an advantage of reducing the effective diameter of the front lens, but on the other hand, distortion is generated.

そこで本発明では、最も物体側に配置した負レンズG11のレンズ形状を適切に設定する事でサジタルフレアと歪曲収差をバランス良く補正している。一方、大口径化すると周辺光量の確保が難しくなり、周辺光束を大きく取る必要があるため、特に周辺光線の撮像素子への入射角が大きくなる。   Therefore, in the present invention, sagittal flare and distortion are corrected in a well-balanced manner by appropriately setting the lens shape of the negative lens G11 disposed on the most object side. On the other hand, when the aperture is increased, it becomes difficult to ensure the amount of peripheral light, and it is necessary to increase the peripheral light flux, so that the incident angle of the peripheral light to the image sensor is particularly increased.

そこで本発明では、最も像側に正の屈折力のレンズ要素GRを配置する事で軸外光束の撮像素子への入射角を小さくしている。軸外光束の撮像素子への入射角を小さくするためには正の屈折力のレンズ要素GRの正の屈折力を強める必要がある。しかしながら、レンズの屈折力の配置が開口絞りに対して非対称形となるため歪曲収差やコマ収差が多く発生する原因となる。   Therefore, in the present invention, the angle of incidence of the off-axis light beam on the imaging element is reduced by disposing the lens element GR having the positive refractive power closest to the image side. In order to reduce the incident angle of the off-axis light beam on the image sensor, it is necessary to increase the positive refractive power of the lens element GR having a positive refractive power. However, the arrangement of the refractive power of the lens is asymmetric with respect to the aperture stop, which causes a lot of distortion and coma.

そこで本発明では、このレンズ要素GRの正の屈折力を適切に設定する事で軸外光束の撮像素子への入射角を小さくしつつ、諸収差を良好に補正している。これらの構成を採用する事で、本発明では大口径化と高画質化の撮像光学系を達成している。また本発明の撮像光学系は、大口径でありながらサジタルフレアを低減し高画質かつボケのきれいな画像を得るために次の構成をとっている。   Therefore, in the present invention, by appropriately setting the positive refracting power of the lens element GR, various angles are favorably corrected while reducing the incident angle of the off-axis light beam to the image sensor. By adopting these configurations, the present invention achieves an imaging optical system with a large aperture and high image quality. The imaging optical system according to the present invention has the following configuration in order to reduce sagittal flare and obtain a high-quality and clear image while having a large diameter.

負レンズG11の物体側と、像側のレンズ面の曲率半径を各々Rn1、Rn2とする。レンズ要素GRの焦点距離をfR、全系の焦点距離をfとする。   The curvature radii of the object-side and image-side lens surfaces of the negative lens G11 are Rn1 and Rn2, respectively. The focal length of the lens element GR is fR, and the focal length of the entire system is f.

このとき、
−0.9<(Rn1+Rn2)/(Rn1−Rn2)<0.1 ・・・(1)
1.0<fR/f<5.0 ・・・(2)
なる条件式を満足する。
At this time,
-0.9 <(Rn1 + Rn2) / (Rn1-Rn2) <0.1 (1)
1.0 <fR / f <5.0 (2)
The following conditional expression is satisfied.

本発明では開口絞りSP付近で発生するサジタルフレアを最も物体側に配置した負レンズG11を物体側に凹面を向けたレンズ形状とする事で、サジタルフレアを補正している。   In the present invention, the sagittal flare is corrected by making the negative lens G11 having the sagittal flare generated near the aperture stop SP closest to the object side into a lens shape with the concave surface facing the object side.

条件式(1)は、最も物体側に配置された負レンズG11のレンズ形状に関し、主にサジタルフレアを良好に補正するためのものである。条件式(1)の下限値を下回ると、物体側の凹面の負の屈折力が強まり(負の屈折力の絶対値が大きくなり)、サジタルフレアの補正は容易となるが、歪曲収差が増大し、これを補正することが困難となる。一方、条件式(1)の上限値を上回ると、像側の凹面の負の屈折力が強まり、像面湾曲を補正するのは容易となるが、サジタルフレアを補正するのが困難となる。   Conditional expression (1) is mainly for satisfactorily correcting sagittal flare with respect to the lens shape of the negative lens G11 disposed on the most object side. Below the lower limit of conditional expression (1), the negative refractive power of the concave surface on the object side increases (the absolute value of the negative refractive power increases), and sagittal flare can be easily corrected, but distortion increases. However, it is difficult to correct this. On the other hand, if the upper limit value of conditional expression (1) is exceeded, the negative refractive power of the concave surface on the image side becomes strong, and it becomes easy to correct curvature of field, but it becomes difficult to correct sagittal flare.

条件式(2)は、最も像側に配置された正の屈折力のレンズ要素GRの屈折力に関し、主に撮像素子への光束の入射角を適切にしつつ、コマ収差を良好に補正するためのものである。条件式(2)の下限値を下回ると、レンズ要素GRの正の屈折力が強まり、サジタルフレアの補正が困難となる。また、撮影距離の変動によるコマ収差の変動を軽減するのが困難となる。一方、条件式(2)の上限値を上回ると、レンズ要素GRの正の屈折力が弱まり、撮像素子への光束の入射角が大きくなり、これを小さくするのが困難となる。   Conditional expression (2) relates to the refractive power of the lens element GR having the positive refractive power disposed closest to the image side, and mainly corrects the coma aberration while appropriately adjusting the incident angle of the light beam to the image sensor. belongs to. If the lower limit value of conditional expression (2) is not reached, the positive refractive power of the lens element GR becomes strong, and it becomes difficult to correct sagittal flare. In addition, it is difficult to reduce fluctuations in coma due to fluctuations in shooting distance. On the other hand, if the upper limit value of conditional expression (2) is exceeded, the positive refractive power of the lens element GR is weakened, and the incident angle of the light beam on the image sensor increases, making it difficult to reduce it.

尚、各実施例において、収差補正上更に好ましくは、条件式(1)、(2)の数値範囲を次の如く設定するのが良い。
−0.80<(Rn1+Rn2)/(Rn1−Rn2)<0.08 ・・・(1a)
1.2<fR/f<4.5 ・・・(2a)
In each embodiment, it is more preferable to set the numerical ranges of the conditional expressions (1) and (2) as follows in terms of aberration correction.
-0.80 <(Rn1 + Rn2) / (Rn1-Rn2) <0.08 (1a)
1.2 <fR / f <4.5 (2a)

より更に好ましくは、条件式(1a)、(2a)の数値範囲を次の如く設定するのが良い。
−0.70<(Rn1+Rn2)/(Rn1−Rn2)<0.05 ・・・(1b)
1.5<fR/f<4.0 ・・・(2b)
More preferably, the numerical ranges of the conditional expressions (1a) and (2a) are set as follows.
−0.70 <(Rn1 + Rn2) / (Rn1−Rn2) <0.05 (1b)
1.5 <fR / f <4.0 (2b)

本発明において更に好ましくは次の条件式のうち1つ以上を満足するのが良い。負レンズG11の焦点距離をf11とする。開口絞りSPから、開口絞りSPの像側に隣接して配置されたレンズの物体側のレンズ面までの光軸上の距離をDsn、開口絞りSPの像側に隣接して配置されたレンズの物体側のレンズ面の曲率半径をRsiとする。開口絞りよりも物体側に配置された少なくとも1つの正レンズの材料の屈折率をNdFPとする。   In the present invention, it is more preferable to satisfy one or more of the following conditional expressions. Let the focal length of the negative lens G11 be f11. The distance on the optical axis from the aperture stop SP to the object-side lens surface of the lens disposed adjacent to the image side of the aperture stop SP is Dsn, and the distance between the aperture stop SP and the image side of the lens disposed adjacent to the image side of the aperture stop SP. Let Rsi be the radius of curvature of the lens surface on the object side. Let NdFP be the refractive index of the material of at least one positive lens arranged on the object side of the aperture stop.

開口絞りSPの物体側に隣接して配置されたレンズの像側のレンズ面の曲率半径をRsoとする。開口絞りSPからレンズ要素GRの像側のレンズ面までの光軸上の距離をDLとする。開口絞りSPから像面までの光軸上の距離(但し最終レンズ面から像面までの間に光学部材が配置されているときは、光学部材の厚さは空気換算した厚さとする)をLとする。   Let Rso be the radius of curvature of the lens surface on the image side of the lens arranged adjacent to the object side of the aperture stop SP. Let DL be the distance on the optical axis from the aperture stop SP to the lens surface on the image side of the lens element GR. The distance on the optical axis from the aperture stop SP to the image plane (however, when the optical member is disposed between the final lens surface and the image plane, the thickness of the optical member is the thickness in terms of air). And

このとき、次の条件式のうち1つ以上を満足するのが良い。
−1.5<f11/f<−0.5 ・・・(3)
−0.50<Dsn/Rsi<−0.05 ・・・(4)
1.80<NdFP ・・・(5)
−0.15<(Rso+Rsi)/(Rso−Rsi)<0.15 ・・・(6)
0.65<DL/L<0.90 ・・・(7)
At this time, one or more of the following conditional expressions should be satisfied.
−1.5 <f11 / f <−0.5 (3)
−0.50 <Dsn / Rsi <−0.05 (4)
1.80 <NdFP (5)
−0.15 <(Rso + Rsi) / (Rso−Rsi) <0.15 (6)
0.65 <DL / L <0.90 (7)

次に前述の各条件式の技術的意味について説明する。条件式(3)は、最も物体側に配置された負レンズG11の負の屈折力に関し、主に像面湾曲と、歪曲収差を良好に補正するためのものである。条件式(3)の下限値を下回ると、負レンズG11の負の屈折力が弱まり(負の屈折力の絶対値が小さくなり)、ペッツバール和がプラス方向に大きくなり像面湾曲を良好に補正するのが困難となる。一方、条件式(3)の上限値を上回ると、負レンズG11の負の屈折力が強まり、歪曲収差を良好に補正するのが困難となる。   Next, the technical meaning of each conditional expression described above will be described. Conditional expression (3) is mainly for favorably correcting curvature of field and distortion with respect to the negative refractive power of the negative lens G11 disposed closest to the object side. If the lower limit of conditional expression (3) is not reached, the negative refractive power of the negative lens G11 becomes weaker (the absolute value of the negative refractive power becomes smaller), the Petzval sum increases in the positive direction, and the field curvature is corrected well. It becomes difficult to do. On the other hand, if the upper limit value of conditional expression (3) is exceeded, the negative refractive power of the negative lens G11 increases, and it becomes difficult to correct distortion well.

条件式(4)は、開口絞りSPから開口絞りSPに隣接した像側の凹面までの光軸上の距離と凹面の曲率半径に関し、主に球面収差とサジタルフレアを良好に補正するためのものである。条件式(4)の下限値を下回ると、凹面の曲率が強くなる(曲率半径の絶対値が小さくなる)ため、サジタルフレアを良好に補正するのが困難となる。一方、条件式(4)の上限値を上回ると、凹面の曲率が緩くなる(曲率半径の絶対値が大きくなる)ため、サジタルフレアの発生は少なくなるが、球面収差を良好に補正するのが困難となる。   Conditional expression (4) is mainly for satisfactorily correcting spherical aberration and sagittal flare with respect to the distance on the optical axis from the aperture stop SP to the concave surface on the image side adjacent to the aperture stop SP and the radius of curvature of the concave surface. It is. If the lower limit of conditional expression (4) is not reached, the curvature of the concave surface becomes strong (the absolute value of the radius of curvature becomes small), and it becomes difficult to correct sagittal flare well. On the other hand, if the upper limit value of conditional expression (4) is exceeded, the curvature of the concave surface becomes loose (the absolute value of the radius of curvature becomes large), so the occurrence of sagittal flare is reduced, but spherical aberration can be corrected well. It becomes difficult.

条件式(5)は、開口絞りSPよりも物体側に含まれる複数の正レンズのうちの少なくとも1つの正レンズの材料に関し、球面収差と像面湾曲を良好に補正するためのものである。条件式(5)の下限値を下回ると、ペッツバール和がプラス方向に大きくなり、像面湾曲の補正が困難となる。また、球面収差を補正するために曲率が強まり、レンズが大型化してくるため好ましくない。   Conditional expression (5) is for satisfactorily correcting spherical aberration and curvature of field with respect to the material of at least one positive lens among a plurality of positive lenses included closer to the object side than the aperture stop SP. If the lower limit of conditional expression (5) is not reached, the Petzval sum increases in the positive direction, making it difficult to correct field curvature. Further, it is not preferable because the curvature increases to correct the spherical aberration and the lens becomes larger.

条件式(6)は、開口絞りSPに隣接した物体側のレンズ面の曲率半径と、開口絞りSPに隣接した像側のレンズ面の曲率半径に関する。即ち、開口絞りSPが配置される空間の空気レンズに関する。条件式(6)は主に球面収差、コマ収差、像面湾曲等を良好に補正するためのものである。条件式(6)の下限値を下回ると、物体側のレンズ面の曲率が強まるため球面収差、コマ収差等を補正するのが困難となる。一方、条件式(6)の上限値を上回ると、像側のレンズ面の曲率が強まるため像面湾曲を補正するのが困難となる。   Conditional expression (6) relates to the radius of curvature of the lens surface on the object side adjacent to the aperture stop SP and the radius of curvature of the lens surface on the image side adjacent to the aperture stop SP. That is, the present invention relates to an air lens in a space where the aperture stop SP is disposed. Conditional expression (6) is mainly for satisfactorily correcting spherical aberration, coma, field curvature, and the like. If the lower limit of conditional expression (6) is not reached, the curvature of the lens surface on the object side will increase, making it difficult to correct spherical aberration, coma aberration, and the like. On the other hand, if the upper limit of conditional expression (6) is exceeded, the curvature of the lens surface on the image side will increase, making it difficult to correct field curvature.

条件式(7)は、開口絞りSPより像側に配置されたレンズ構成に関し、主にレンズ全長と、バックフォーカスに関するものである。条件式(7)の下限値を下回ると、バックフォーカスを長くするのが容易になるが、レンズ全長が長くなるため好ましくない。一方、条件式(7)の上限値を上回ると、開口絞りSPより像側に配置されるレンズの数が増えるため、各収差の補正は容易となるが、所定の長さのバックフォーカスを確保するのが困難となる。   Conditional expression (7) relates to the lens arrangement disposed on the image side from the aperture stop SP, and mainly relates to the total lens length and the back focus. If the lower limit of conditional expression (7) is not reached, it is easy to lengthen the back focus, but this is not preferable because the total lens length becomes long. On the other hand, if the upper limit of conditional expression (7) is exceeded, the number of lenses arranged on the image side from the aperture stop SP increases, so that each aberration can be corrected easily, but a back focus of a predetermined length is secured. It becomes difficult to do.

尚、各実施例において、収差補正上更に好ましくは、条件式(3)乃至(7)の数値範囲を次の如く設定するのが良い。
−1.4<f11/f<−0.6 ・・・(3a)
−0.45<Dsn/Rsi<−0.08 ・・・(4a)
1.84<NdFP<2.20 ・・・(5a)
−0.12<(Rso+Rsi)/(Rso−Rsi)<0.12 ・・・(6a)
0.68<DL/L<0.88 ・・・(7a)
In each embodiment, it is more preferable to set the numerical ranges of conditional expressions (3) to (7) as follows in terms of aberration correction.
−1.4 <f11 / f <−0.6 (3a)
−0.45 <Dsn / Rsi <−0.08 (4a)
1.84 <NdFP <2.20 (5a)
−0.12 <(Rso + Rsi) / (Rso−Rsi) <0.12 (6a)
0.68 <DL / L <0.88 (7a)

より更に好ましくは、条件式(3a)乃至(7a)の数値範囲を次の如く設定するのが良い。
−1.3<f11/f<−0.7 ・・・(3b)
−0.40<Dsn/Rsi<−0.10 ・・・(4b)
1.86<NdFP<2.10 ・・・(5b)
−0.10<(Rso+Rsi)/(Rso−Rsi)<0.10 ・・・(6b)
0.70<DL/L<0.85 ・・・(7b)
More preferably, the numerical ranges of the conditional expressions (3a) to (7a) are set as follows.
−1.3 <f11 / f <−0.7 (3b)
−0.40 <Dsn / Rsi <−0.10 (4b)
1.86 <NdFP <2.10 (5b)
−0.10 <(Rso + Rsi) / (Rso−Rsi) <0.10 (6b)
0.70 <DL / L <0.85 (7b)

次に実施例1、2、3の各レンズ群のレンズ構成について説明する。第1レンズ群L1は両レンズ面が凹形状の負レンズG11、正レンズと負レンズを接合した接合レンズ、正レンズ、正レンズと負レンズを接合した接合レンズを有する。更に開口絞りSP、正レンズと負レンズを接合した接合レンズ、正レンズと負レンズを接合した接合レンズ、負レンズと正レンズを接合した接合レンズより構成している。   Next, the lens configuration of each lens group in Examples 1, 2, and 3 will be described. The first lens unit L1 includes a negative lens G11 having concave concave surfaces, a cemented lens in which a positive lens and a negative lens are cemented, a positive lens, and a cemented lens in which a positive lens and a negative lens are cemented. Further, the aperture stop SP, a cemented lens in which a positive lens and a negative lens are cemented, a cemented lens in which a positive lens and a negative lens are cemented, and a cemented lens in which a negative lens and a positive lens are cemented are configured.

各実施例の撮像光学系では全系を小型とするために第1レンズ群L1の屈折力を適切な範囲で強めている。このとき、第1レンズ群L1内で諸収差、特にサジタルフレア、像面湾曲が多く発生してくる。   In the imaging optical system of each embodiment, the refractive power of the first lens unit L1 is increased within an appropriate range in order to reduce the size of the entire system. At this time, various aberrations, particularly sagittal flare and field curvature, frequently occur in the first lens unit L1.

そこで最も物体側に両レンズ面が凹形状(両凹形状)の負レンズG11を配置することで、第1レンズ群L1で発生するサジタルフレアを抑制している。また、正レンズに高屈折率の硝材を使用する事で像面湾曲の発生、接合レンズを複数配置する事で軸上色収差、倍率色収差の発生を軽減している。第2レンズ群L2は両凸形状の正レンズと物体側が凹でメニスカス形状の負レンズを接合した正の屈折力の接合レンズ(レンズ要素)GRで構成している。   Therefore, the sagittal flare generated in the first lens unit L1 is suppressed by disposing the negative lens G11 having both concave surfaces (biconcave shape) on the most object side. In addition, the use of a glass material having a high refractive index for the positive lens reduces the occurrence of curvature of field, and the arrangement of a plurality of cemented lenses reduces the occurrence of axial chromatic aberration and lateral chromatic aberration. The second lens unit L2 includes a biconvex positive lens and a cemented lens (lens element) GR having a positive refractive power in which a negative meniscus lens having a concave object side is cemented.

各実施例の撮像光学系ではフォーカシングによる光学性能の変化を抑制、撮像素子への光線入射角を抑制するために第2レンズ群L2の屈折力を適切な範囲で強めている。各実施例では、接合レンズとすることによりフォーカス全域で色収差を軽減している。また、高屈折率の硝材を使用する事でペッツバール和の抑制、フォーカシングによるコマ収差の変動を軽減している。尚、収差補正上、必要に応じて接合レンズは空気レンズを介した2枚のレンズ構成としても良い。フォーカシングは第1レンズ群L1によって行っている。   In the imaging optical system of each embodiment, the refractive power of the second lens unit L2 is increased within an appropriate range in order to suppress a change in optical performance due to focusing and to suppress a light incident angle to the imaging element. In each embodiment, the chromatic aberration is reduced over the entire focus area by using a cemented lens. In addition, by using a glass material with a high refractive index, Petzval sum is suppressed, and fluctuations in coma due to focusing are reduced. For aberration correction, the cemented lens may have a two-lens configuration via an air lens as necessary. Focusing is performed by the first lens unit L1.

次に実施例4の各レンズ群のレンズ構成について説明する。第1レンズ群L1は物体側のレンズ面が凹形状の負レンズG11、正レンズと負レンズを接合した接合レンズ、正レンズ、正レンズと負レンズを接合した接合レンズを有する。更に開口絞りSP、負レンズと正レンズを接合した接合レンズ、正レンズと負レンズを接合した接合レンズ、負レンズ、正レンズより構成している。   Next, the lens configuration of each lens unit of Example 4 will be described. The first lens unit L1 includes a negative lens G11 having a concave object-side lens surface, a cemented lens in which a positive lens and a negative lens are cemented, a positive lens, and a cemented lens in which a positive lens and a negative lens are cemented. Further, the aperture stop SP, a cemented lens in which a negative lens and a positive lens are cemented, a cemented lens in which a positive lens and a negative lens are cemented, a negative lens, and a positive lens are included.

実施例4の撮像光学系では全系を小型とするために第1レンズ群L1の屈折力を適切な範囲で強めている。このとき、第1レンズ群L1内で諸収差、特にサジタルフレア、像面湾曲が多く発生してくる。   In the imaging optical system of Example 4, the refractive power of the first lens unit L1 is increased within an appropriate range in order to reduce the size of the entire system. At this time, various aberrations, particularly sagittal flare and field curvature, frequently occur in the first lens unit L1.

そこで最も物体側に両レンズ面が凹形状の負レンズG11を配置することで、第1レンズ群L1で発生するサジタルフレアを抑制している。また、正レンズに高屈折率の硝材を使用する事で像面湾曲の発生、接合レンズを複数配置する事で軸上色収差、倍率色収差の発生を軽減している。第2レンズ群L2は両凸形状の正レンズと物体側が凹でメニスカス形状の負レンズを接合した正の屈折力の接合レンズ(レンズ要素)GRで構成している。   Therefore, the sagittal flare generated in the first lens unit L1 is suppressed by disposing the negative lens G11 having concave concave surfaces on the most object side. In addition, the use of a glass material having a high refractive index for the positive lens reduces the occurrence of curvature of field, and the arrangement of a plurality of cemented lenses reduces the occurrence of axial chromatic aberration and lateral chromatic aberration. The second lens unit L2 includes a biconvex positive lens and a cemented lens (lens element) GR having a positive refractive power in which a negative meniscus lens having a concave object side is cemented.

実施例4の撮像光学系ではフォーカシングによる光学性能の変化を抑制、撮像素子への光線入射角を抑制するために第2レンズ群L2の屈折力を適切な範囲で強めている。実施例4では、接合レンズとすることによりフォーカス全域で色収差を軽減している。また、高屈折率の硝材を使用する事でペッツバール和の抑制、フォーカシングによるコマ収差の変動を軽減している。   In the imaging optical system of Example 4, the refractive power of the second lens unit L2 is increased within an appropriate range in order to suppress a change in optical performance due to focusing and to suppress a light incident angle to the imaging element. In the fourth embodiment, the chromatic aberration is reduced over the entire focus range by using a cemented lens. In addition, by using a glass material with a high refractive index, Petzval sum is suppressed, and fluctuations in coma due to focusing are reduced.

尚、収差補正上、必要に応じて接合レンズは空気レンズを介した2枚のレンズ構成としても良い。フォーカシングは第1レンズ群L1によって行っている。   For aberration correction, the cemented lens may have a two-lens configuration via an air lens as necessary. Focusing is performed by the first lens unit L1.

次に実施例5の各レンズ群のレンズ構成について説明する。第1レンズ群L1は両レンズ面が凹形状の負レンズG11、正レンズと負レンズを接合した接合レンズ、正レンズ、正レンズと負レンズを接合した接合レンズ、開口絞りSPを有する。更に正レンズと負レンズを接合した接合レンズ、正レンズと負レンズを接合した接合レンズ、負レンズと正レンズを接合した接合レンズとを有する。更に両凸形状の正レンズと物体側が凹でメニスカス形状の負レンズを接合した接合レンズ(レンズ要素)GRより構成している。   Next, the lens configuration of each lens unit of Example 5 will be described. The first lens unit L1 includes a negative lens G11 having concave concave surfaces, a cemented lens in which a positive lens and a negative lens are cemented, a positive lens, a cemented lens in which a positive lens and a negative lens are cemented, and an aperture stop SP. Further, a cemented lens in which a positive lens and a negative lens are cemented, a cemented lens in which a positive lens and a negative lens are cemented, and a cemented lens in which a negative lens and a positive lens are cemented are included. Further, it is composed of a cemented lens (lens element) GR in which a biconvex positive lens and a meniscus negative lens having a concave object side are cemented.

実施例5の撮像光学系では全系を小型とするために第1レンズ群L1の屈折力を適切な範囲で強めている。このとき、第1レンズ群L1内で諸収差、特にサジタルフレア、像面湾曲が多く発生してくる。そこで最も物体側に両レンズ面が凹形状の負レンズG11を配置することで、第1レンズ群L1で発生するサジタルフレアを抑制している。また、正レンズに高屈折率の硝材を使用する事で像面湾曲の発生、接合レンズを複数配置する事で軸上色収差、倍率色収差の発生を軽減している。   In the imaging optical system of Example 5, the refractive power of the first lens unit L1 is increased within an appropriate range in order to reduce the size of the entire system. At this time, various aberrations, particularly sagittal flare and field curvature, frequently occur in the first lens unit L1. Therefore, the sagittal flare generated in the first lens unit L1 is suppressed by disposing the negative lens G11 having concave concave surfaces on the most object side. In addition, the use of a glass material having a high refractive index for the positive lens reduces the occurrence of curvature of field, and the arrangement of a plurality of cemented lenses reduces the occurrence of axial chromatic aberration and lateral chromatic aberration.

尚、収差補正上、必要に応じて接合レンズは空気レンズを介した2枚のレンズ構成としても良い。フォーカシングは第1レンズ群L1によって行っている。   For aberration correction, the cemented lens may have a two-lens configuration via an air lens as necessary. Focusing is performed by the first lens unit L1.

実施例1乃至4では、無限遠から至近距離へのフォーカシングに際して矢印のように、第1レンズ群L1を物体側に移動することによって行う。フォーカシングに際して第2レンズ群L2は不動だが、収差補正上移動させても良い。実施例5では、無限遠から至近距離へのフォーカスに際して矢印のように、第1レンズ群L1(レンズ全体)を物体側に移動することによって行う。   In Examples 1 to 4, focusing is performed from infinity to a close distance by moving the first lens unit L1 toward the object side as indicated by an arrow. The second lens unit L2 does not move during focusing, but may be moved for aberration correction. In the fifth embodiment, when focusing from infinity to a close distance, the first lens unit L1 (entire lens) is moved to the object side as indicated by an arrow.

次に本発明の撮像光学系を用いた撮像装置(デジタルカメラ)の実施例を図11を用いて説明する。図11において、30はカメラ本体、31は実施例1乃至5で説明したいずれかの撮像光学系である。撮像光学系31によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)はカメラ本体30内に内蔵されている。   Next, an embodiment of an image pickup apparatus (digital camera) using the image pickup optical system of the present invention will be described with reference to FIG. In FIG. 11, reference numeral 30 denotes a camera body, and 31 denotes any one of the imaging optical systems described in the first to fifth embodiments. A solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor that receives a subject image formed by the imaging optical system 31 is built in the camera body 30.

以下、実施例1乃至5の具体的な数値データを示す。各数値データにおいてiは物体側から数えた順序を示している。riは物体側からi番目の面の曲率半径、diは物体側からi番目の面とi+1番目の面との間の面間隔、niは第i番目のレンズの材料のd線における屈折率、νiは第i番目のレンズの材料のd線におけるアッベ数を示すものとする。   Specific numerical data of Examples 1 to 5 will be shown below. In each numerical data, i indicates the order counted from the object side. ri is the radius of curvature of the i-th surface from the object side, di is the surface spacing between the i-th surface and the i + 1-th surface from the object side, ni is the refractive index at the d-line of the material of the i-th lens, ν i represents the Abbe number of the material of the i-th lens at the d-line.

非球面形状はkを円錐定数、A4、A6、A8、A10、A12を4次、6次、8次、10次、12次の非球面係数とし、光軸からの高さhの位置での光軸方向の変位を面頂点を基準にしてxとする。このとき、非球面形状は、
x=(h2/R)/[1+[1−(1+K)(h/R)2]1/2] +A4h4+A6h6+A8h8+A10h10+A12h12
で表示される。
The aspherical shape has k as a conic constant, A4, A6, A8, A10, and A12 as fourth, sixth, eighth, tenth, and twelfth aspheric coefficients, at a position of height h from the optical axis. Let the displacement in the optical axis direction be x with respect to the surface apex. At this time, the aspheric shape is
x = (h 2 / R) / [1+ [1- (1 + K) (h / R) 2] 1/2] + A4h 4 + A6h 6 + A8h 8 + A10h 10 + A12h 12
Is displayed.

但し、Rは近軸曲率半径である。「e−X」は「×10-X」を意味している。尚、非球面は各表中の面番号の右側に*印を付している。また前述の各条件式と数値データとの関係を表1に示す。 Where R is the paraxial radius of curvature. “E-X” means “× 10 −X ”. For aspheric surfaces, an asterisk (*) is attached to the right side of the surface number in each table. Table 1 shows the relationship between the above conditional expressions and numerical data.

数値データ1
単位 mm

面データ
面番号 r d nd νd
1 -33.216 1.10 1.61340 44.3
2 69.971 1.14
3 438.454 7.02 1.91082 35.3
4 -20.900 1.00 1.85478 24.8
5 -69.666 0.30
6 32.578 4.79 2.00100 29.1
7 -241.107 0.30
8 29.260 6.83 1.59522 67.7
9 -37.343 1.00 1.72825 28.5
10 19.479 4.48
11(絞り) ∞ 4.42
12 -20.320 2.27 1.76385 48.5
13 -13.113 0.65 1.72047 34.7
14 254.875 0.30
15 33.906 7.10 1.88300 40.8
16 -15.415 0.77 1.59551 39.2
17 -39.342 1.52
18 -19.316 0.82 1.51742 52.4
19 48.407 3.46 1.83220 40.1
20* -107.689 (可変)
21 110.437 6.00 1.88300 40.8
22 -23.631 0.92 2.00069 25.5
23 -115.722 8.52
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.55
像面 ∞
Numerical data 1
Unit mm

Surface data surface number rd nd νd
1 -33.216 1.10 1.61340 44.3
2 69.971 1.14
3 438.454 7.02 1.91082 35.3
4 -20.900 1.00 1.85478 24.8
5 -69.666 0.30
6 32.578 4.79 2.00 100 29.1
7 -241.107 0.30
8 29.260 6.83 1.59522 67.7
9 -37.343 1.00 1.72825 28.5
10 19.479 4.48
11 (Aperture) ∞ 4.42
12 -20.320 2.27 1.76385 48.5
13 -13.113 0.65 1.72047 34.7
14 254.875 0.30
15 33.906 7.10 1.88300 40.8
16 -15.415 0.77 1.59551 39.2
17 -39.342 1.52
18 -19.316 0.82 1.51742 52.4
19 48.407 3.46 1.83220 40.1
20 * -107.689 (variable)
21 110.437 6.00 1.88300 40.8
22 -23.631 0.92 2.00069 25.5
23 -115.722 8.52
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.55
Image plane ∞

非球面データ
第20面
K = 0.00000e+000 A 4= 2.72221e-005 A 6=-4.08304e-008 A 8= 9.78129e-010 A10=-6.80101e-012 A12= 1.95167e-014

各種データ
INF
焦点距離 32.42
Fナンバー 1.45
半画角(度) 22.85
レンズ全長 68.39
BF 11.20

INF 至近
d20 1.00 9.54

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長
1 1 38.43 49.28
2 21 86.53 6.92

近距離倍率:-0.187
Aspheric data 20th surface
K = 0.00000e + 000 A 4 = 2.72221e-005 A 6 = -4.08304e-008 A 8 = 9.78129e-010 A10 = -6.80101e-012 A12 = 1.95167e-014

Various data
INF
Focal length 32.42
F number 1.45
Half angle of view (degrees) 22.85
Total lens length 68.39
BF 11.20

INF close
d20 1.00 9.54

Zoom lens group data group Start surface Focal length Lens construction length
1 1 38.43 49.28
2 21 86.53 6.92

Short-range magnification: -0.187

数値データ2
単位 mm

面データ
面番号 r d nd νd
1 -34.638 1.10 1.61340 44.3
2 62.277 1.29
3 401.619 6.92 1.91082 35.3
4 -21.209 1.00 1.85478 24.8
5 -72.744 0.30
6 31.623 4.89 2.00100 29.1
7 -256.304 0.30
8 30.220 6.72 1.59522 67.7
9 -37.281 1.00 1.72825 28.5
10 20.014 4.41
11(絞り) ∞ 4.39
12 -20.602 2.23 1.76385 48.5
13 -13.305 0.65 1.72047 34.7
14 202.936 0.30
15 32.559 7.27 1.88300 40.8
16 -15.188 0.77 1.62004 36.3
17 -39.984 1.53
18 -19.363 0.82 1.51742 52.4
19 39.779 3.63 1.85135 40.1
20* -130.662 (可変)
21 115.076 5.74 1.88300 40.8
22 -24.703 0.92 2.00069 25.5
23 -115.561 8.52
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.55
像面 ∞
Numerical data 2
Unit mm

Surface data surface number rd nd νd
1 -34.638 1.10 1.61340 44.3
2 62.277 1.29
3 401.619 6.92 1.91082 35.3
4 -21.209 1.00 1.85478 24.8
5 -72.744 0.30
6 31.623 4.89 2.00 100 29.1
7 -256.304 0.30
8 30.220 6.72 1.59522 67.7
9 -37.281 1.00 1.72825 28.5
10 20.014 4.41
11 (Aperture) ∞ 4.39
12 -20.602 2.23 1.76385 48.5
13 -13.305 0.65 1.72047 34.7
14 202.936 0.30
15 32.559 7.27 1.88300 40.8
16 -15.188 0.77 1.62004 36.3
17 -39.984 1.53
18 -19.363 0.82 1.51742 52.4
19 39.779 3.63 1.85 135 40.1
20 * -130.662 (variable)
21 115.076 5.74 1.88300 40.8
22 -24.703 0.92 2.00069 25.5
23 -115.561 8.52
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.55
Image plane ∞

非球面データ
第20面
K = 0.00000e+000 A 4= 2.89085e-005 A 6=-3.83128e-008 A 8= 9.59571e-010 A10=-6.49456e-012 A12= 1.83530e-014

各種データ
INF
焦点距離 32.00
Fナンバー 1.45
半画角(度) 23.12
レンズ全長 68.37
BF 11.20

INF 至近
d20 1.00 9.19

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長
1 1 37.79 49.52
2 21 87.22 6.66

近距離倍率:-0.184
Aspheric data 20th surface
K = 0.00000e + 000 A 4 = 2.89085e-005 A 6 = -3.83128e-008 A 8 = 9.59571e-010 A10 = -6.49456e-012 A12 = 1.83530e-014

Various data
INF
Focal length 32.00
F number 1.45
Half angle of view (degrees) 23.12
Total lens length 68.37
BF 11.20

INF close
d20 1.00 9.19

Zoom lens group data group Start surface Focal length Lens construction length
1 1 37.79 49.52
2 21 87.22 6.66

Short-range magnification: -0.184

数値データ3
単位 mm

面データ
面番号 r d nd νd
1 -34.217 1.10 1.61340 44.3
2 51.992 1.16
3 137.147 6.98 1.91082 35.3
4 -22.754 1.00 1.85478 24.8
5 -69.791 0.30
6 28.676 5.32 1.91082 35.3
7 -257.267 0.30
8 33.160 6.27 1.59522 67.7
9 -48.342 1.00 1.73800 32.3
10 20.242 4.10
11(絞り) ∞ 4.08
12 -19.159 2.30 1.76385 48.5
13 -12.686 0.72 1.67542 34.8
14 179.943 0.30
15 32.368 7.65 1.88300 40.8
16 -15.173 0.78 1.67270 32.1
17 -43.332 1.53
18 -20.058 0.82 1.51742 52.4
19 40.757 3.81 1.85135 40.1
20* -120.561 (可変)
21 99.378 5.55 1.88300 40.8
22 -27.864 0.92 2.00069 25.5
23 -137.906 8.52
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.55
像面 ∞
Numerical data 3
Unit mm

Surface data surface number rd nd νd
1 -34.217 1.10 1.61340 44.3
2 51.992 1.16
3 137.147 6.98 1.91082 35.3
4 -22.754 1.00 1.85478 24.8
5 -69.791 0.30
6 28.676 5.32 1.91082 35.3
7 -257.267 0.30
8 33.160 6.27 1.59522 67.7
9 -48.342 1.00 1.73800 32.3
10 20.242 4.10
11 (Aperture) ∞ 4.08
12 -19.159 2.30 1.76385 48.5
13 -12.686 0.72 1.67542 34.8
14 179.943 0.30
15 32.368 7.65 1.88300 40.8
16 -15.173 0.78 1.67270 32.1
17 -43.332 1.53
18 -20.058 0.82 1.51742 52.4
19 40.757 3.81 1.85135 40.1
20 * -120.561 (variable)
21 99.378 5.55 1.88300 40.8
22 -27.864 0.92 2.00069 25.5
23 -137.906 8.52
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.55
Image plane ∞

非球面データ
第20面
K = 0.00000e+000 A 4= 2.83327e-005 A 6=-5.45082e-008 A 8= 1.10996e-009 A10=-7.56124e-012 A12= 2.06296e-014

各種データ
INF
焦点距離 32.34
Fナンバー 1.45
半画角(度) 22.90
レンズ全長 68.27
BF 11.20

INF 至近
d20 1.09 9.71

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長
1 1 38.54 49.51
2 21 84.58 6.47

近距離倍率:-0.188
Aspheric data 20th surface
K = 0.00000e + 000 A 4 = 2.83327e-005 A 6 = -5.45082e-008 A 8 = 1.10996e-009 A10 = -7.56124e-012 A12 = 2.06296e-014

Various data
INF
Focal length 32.34
F number 1.45
Half angle of view (degrees) 22.90
Total lens length 68.27
BF 11.20

INF close
d20 1.09 9.71

Zoom lens group data group Start surface Focal length Lens construction length
1 1 38.54 49.51
2 21 84.58 6.47

Short-range magnification: -0.188

数値データ4
単位 mm

面データ
面番号 r d nd νd
1 -39.941 1.05 1.61340 44.3
2 38.297 1.74
3 95.189 4.71 1.88300 40.8
4 -41.962 1.00 1.72047 34.7
5 -277.654 0.15
6 33.511 5.70 1.76385 48.5
7 -94.800 0.15
8 23.106 7.58 1.76385 48.5
9 -43.825 0.90 1.72047 34.7
10 15.841 5.26
11(絞り) ∞ 3.66
12 -18.100 0.60 1.58144 40.8
13 16.467 2.63 1.67790 55.3
14 59.755 0.15
15 28.540 6.39 1.88300 40.8
16 -16.584 0.70 1.58144 40.8
17 -1250.488 2.77
18 -17.837 0.75 1.71736 29.5
19 -44.980 0.30
20 85.584 3.34 1.85400 40.4
21* -57.521 (可変)
22 77.594 4.43 1.77250 49.6
23 -42.589 0.90 2.00069 25.5
24 -165.495 8.52
25 ∞ 1.75 1.54400 60.0
26 ∞ 1.55
像面 ∞
Numerical data 4
Unit mm

Surface data surface number rd nd νd
1 -39.941 1.05 1.61340 44.3
2 38.297 1.74
3 95.189 4.71 1.88300 40.8
4 -41.962 1.00 1.72047 34.7
5 -277.654 0.15
6 33.511 5.70 1.76385 48.5
7 -94.800 0.15
8 23.106 7.58 1.76385 48.5
9 -43.825 0.90 1.72047 34.7
10 15.841 5.26
11 (Aperture) ∞ 3.66
12 -18.100 0.60 1.58144 40.8
13 16.467 2.63 1.67790 55.3
14 59.755 0.15
15 28.540 6.39 1.88300 40.8
16 -16.584 0.70 1.58144 40.8
17 -1250.488 2.77
18 -17.837 0.75 1.71736 29.5
19 -44.980 0.30
20 85.584 3.34 1.85400 40.4
21 * -57.521 (variable)
22 77.594 4.43 1.77250 49.6
23 -42.589 0.90 2.00069 25.5
24 -165.495 8.52
25 ∞ 1.75 1.54400 60.0
26 ∞ 1.55
Image plane ∞

非球面データ
第21面
K = 0.00000e+000 A 4= 2.98027e-005 A 6= 4.89834e-008 A 8=-5.38583e-010 A10= 5.37514e-012 A12=-1.53486e-014

各種データ
INF
焦点距離 32.87
Fナンバー 1.45
半画角(度) 22.57
レンズ全長 67.23
BF 11.21

INF 至近
d21 1.16 9.10

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長
1 1 38.49 49.54
2 22 94.21 5.33

近距離倍率:-0.176
Aspheric data 21st surface
K = 0.00000e + 000 A 4 = 2.98027e-005 A 6 = 4.89834e-008 A 8 = -5.38583e-010 A10 = 5.37514e-012 A12 = -1.53486e-014

Various data
INF
Focal length 32.87
F number 1.45
Half angle of view (degrees) 22.57
Total lens length 67.23
BF 11.21

INF close
d21 1.16 9.10

Zoom lens group data group Start surface Focal length Lens length
1 1 38.49 49.54
2 22 94.21 5.33

Short-range magnification: -0.176

数値データ5
単位 mm

面データ
面番号 r d nd νd
1 -34.023 1.10 1.61340 44.3
2 52.627 1.11
3 131.949 6.98 1.91082 35.3
4 -22.855 1.00 1.85478 24.8
5 -69.772 0.30
6 28.622 5.32 1.91082 35.3
7 -268.400 0.30
8 33.304 6.27 1.59522 67.7
9 -47.947 1.00 1.73800 32.3
10 20.085 4.23
11(絞り) ∞ 3.97
12 -19.016 2.30 1.76385 48.5
13 -12.535 0.72 1.67542 34.8
14 218.291 0.30
15 32.261 7.65 1.88300 40.8
16 -15.189 0.78 1.67270 32.1
17 -42.579 1.53
18 -19.870 0.82 1.51742 52.4
19 40.110 3.81 1.85135 40.1
20* -167.450 1.18
21 97.367 5.55 1.88300 40.8
22 -27.249 0.92 2.00069 25.5
23 -115.681 (可変)
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.55
像面 ∞
Numerical data 5
Unit mm

Surface data surface number rd nd νd
1 -34.023 1.10 1.61340 44.3
2 52.627 1.11
3 131.949 6.98 1.91082 35.3
4 -22.855 1.00 1.85478 24.8
5 -69.772 0.30
6 28.622 5.32 1.91082 35.3
7 -268.400 0.30
8 33.304 6.27 1.59522 67.7
9 -47.947 1.00 1.73800 32.3
10 20.085 4.23
11 (Aperture) ∞ 3.97
12 -19.016 2.30 1.76385 48.5
13 -12.535 0.72 1.67542 34.8
14 218.291 0.30
15 32.261 7.65 1.88300 40.8
16 -15.189 0.78 1.67270 32.1
17 -42.579 1.53
18 -19.870 0.82 1.51742 52.4
19 40.110 3.81 1.85135 40.1
20 * -167.450 1.18
21 97.367 5.55 1.88300 40.8
22 -27.249 0.92 2.00069 25.5
23 -115.681 (variable)
24 ∞ 1.75 1.54400 60.0
25 ∞ 1.55
Image plane ∞

非球面データ
第20面
K = 0.00000e+000 A 4= 2.84400e-005 A 6=-5.05232e-008 A 8= 9.88419e-010 A10=-6.60991e-012 A12= 1.76998e-014

各種データ
INF
焦点距離 32.58
Fナンバー 1.45
半画角(度) 22.75
レンズ全長 68.33
BF 11.20

INF 至近
d23 8.52 11.81

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長
1 1 32.58 57.13

近距離倍率:-0.101
Aspheric data 20th surface
K = 0.00000e + 000 A 4 = 2.84400e-005 A 6 = -5.05232e-008 A 8 = 9.88419e-010 A10 = -6.60991e-012 A12 = 1.76998e-014

Various data
INF
Focal length 32.58
F number 1.45
Half angle of view (degrees) 22.75
Total lens length 68.33
BF 11.20

INF close
d23 8.52 11.81

Zoom lens group data group Start surface Focal length Lens construction length
1 1 32.58 57.13

Short-range magnification: -0.101

G11 負レンズ GR レンズ要素 L1 第1レンズ群
L2 第2レンズ群 SP 開口絞り
G11 Negative lens GR Lens element L1 First lens unit L2 Second lens unit SP Aperture stop

Claims (9)

開口絞りと、該開口絞りの物体側に隣接して配置され、像側に凹面を向けたレンズと、前記開口絞りの像側に隣接して配置され、物体側に凹面を向けたレンズを有する撮像光学系であって、
前記撮像光学系に含まれるレンズの中で最も物体側に配置された負レンズG11の物体側のレンズ面の曲率半径をRn1、前記負レンズG11の像側のレンズ面の曲率半径をRn2、前記撮像光学系に含まれるレンズ要素の中で最も像側に配置された正の屈折力のレンズ要素GRの焦点距離をfR、前記撮像光学系の焦点距離をfとするとき、
−0.9<(Rn1+Rn2)/(Rn1−Rn2)<0.1
1.0<fR/f<5.0
なる条件式を満足することを特徴とする撮像光学系。
An aperture stop, a lens disposed adjacent to the object side of the aperture stop and having a concave surface facing the image side, and a lens disposed adjacent to the image side of the aperture stop and having a concave surface directed to the object side An imaging optical system,
Among the lenses included in the imaging optical system, the radius of curvature of the lens surface on the object side of the negative lens G11 disposed closest to the object side is Rn1, the radius of curvature of the lens surface on the image side of the negative lens G11 is Rn2, and When the focal length of the lens element GR having the positive refractive power disposed on the most image side among the lens elements included in the imaging optical system is fR, and the focal length of the imaging optical system is f,
−0.9 <(Rn1 + Rn2) / (Rn1−Rn2) <0.1
1.0 <fR / f <5.0
An imaging optical system that satisfies the following conditional expression:
前記負レンズG11の焦点距離をf11とするとき、
−1.5<f11/f<−0.5
なる条件式を満足することを特徴とする請求項1に記載の撮像光学系。
When the focal length of the negative lens G11 is f11,
−1.5 <f11 / f <−0.5
The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
前記開口絞りから前記開口絞りの像側に隣接して配置されたレンズの物体側のレンズ面までの光軸上の距離をDsn、前記開口絞りの像側に隣接して配置されたレンズの物体側のレンズ面の曲率半径をRsiとするとき、
−0.50<Dsn/Rsi<−0.05
なる条件式を満足することを特徴とする請求項1または2に記載の撮像光学系。
The distance on the optical axis from the aperture stop to the lens surface on the object side of the lens disposed adjacent to the image side of the aperture stop is Dsn, and the object of the lens disposed adjacent to the image side of the aperture stop When the radius of curvature of the lens surface on the side is Rsi,
−0.50 <Dsn / Rsi <−0.05
The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
前記開口絞りの物体側に配置された正レンズの材料の屈折率をNdFPとするとき、前記開口絞りの物体側に、
1.80<NdFP
なる条件式を満足する材料から構成される正レンズが配置されていることを特徴とする請求項1乃至3のいずれか1項に記載の撮像光学系。
When the refractive index of the material of the positive lens arranged on the object side of the aperture stop is NdFP, on the object side of the aperture stop,
1.80 <NdFP
4. The imaging optical system according to claim 1, wherein a positive lens made of a material that satisfies the following conditional expression is disposed.
前記開口絞りの像側に隣接して配置されたレンズの物体側のレンズ面の曲率半径をRsi、前記開口絞りの物体側に隣接して配置されたレンズの像側のレンズ面の曲率半径をRsoとするとき、
−0.15<(Rso+Rsi)/(Rso−Rsi)<0.15
なる条件式を満足することを特徴とする請求項1乃至4のいずれか1項に記載の撮像光学系。
The radius of curvature of the lens surface on the object side of the lens disposed adjacent to the image side of the aperture stop is Rsi, and the radius of curvature of the lens surface on the image side of the lens disposed adjacent to the object side of the aperture stop is When Rso,
−0.15 <(Rso + Rsi) / (Rso−Rsi) <0.15
The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
前記開口絞りから前記レンズ要素GRの像側のレンズ面までの光軸上の距離をDL、前記開口絞りから像面までの光軸上の距離をLとするとき、
0.65<DL/L<0.90
なる条件式を満足することを特徴とする請求項1乃至5のいずれか1項に記載の撮像光学系。
When the distance on the optical axis from the aperture stop to the lens surface on the image side of the lens element GR is DL, and the distance on the optical axis from the aperture stop to the image plane is L,
0.65 <DL / L <0.90
The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
前記負レンズG11は両凹形状であることを特徴とする請求項1乃至6のいずれか1項に記載の撮像光学系。   The imaging optical system according to any one of claims 1 to 6, wherein the negative lens G11 has a biconcave shape. 前記レンズ要素GRは、正レンズと、該正レンズの像側に配置された負レンズを接合した接合レンズよりなることを特徴とする請求項1乃至7のいずれか1項に記載の撮像光学系。   The imaging optical system according to any one of claims 1 to 7, wherein the lens element GR includes a cemented lens in which a positive lens and a negative lens disposed on the image side of the positive lens are cemented. . 請求項1乃至8のいずれか1項に記載の撮像光学系と、該撮像光学系によって形成された像を受光する撮像素子を有することを特徴とする撮像装置。   An imaging apparatus comprising: the imaging optical system according to claim 1; and an imaging element that receives an image formed by the imaging optical system.
JP2017085943A 2017-04-25 2017-04-25 Imaging optical system and imaging equipment using it Active JP6995492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017085943A JP6995492B2 (en) 2017-04-25 2017-04-25 Imaging optical system and imaging equipment using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017085943A JP6995492B2 (en) 2017-04-25 2017-04-25 Imaging optical system and imaging equipment using it

Publications (2)

Publication Number Publication Date
JP2018185383A true JP2018185383A (en) 2018-11-22
JP6995492B2 JP6995492B2 (en) 2022-01-14

Family

ID=64355790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017085943A Active JP6995492B2 (en) 2017-04-25 2017-04-25 Imaging optical system and imaging equipment using it

Country Status (1)

Country Link
JP (1) JP6995492B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176509A1 (en) * 2020-03-02 2021-09-10 オリンパス株式会社 Objective optical system, imaging device, and endoscope

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519169A (en) * 1991-06-29 1993-01-29 Olympus Optical Co Ltd Zoom lens
JPH10161026A (en) * 1996-12-05 1998-06-19 Canon Inc Zoom lens
JP2007322656A (en) * 2006-05-31 2007-12-13 Fujinon Corp Wide-angle imaging lens
JP2011039401A (en) * 2009-08-17 2011-02-24 Canon Inc Zoom lens and imaging device having the same
JP2012123340A (en) * 2010-12-10 2012-06-28 Olympus Imaging Corp Photographic lens and imaging apparatus including the same
JP2013007856A (en) * 2011-06-23 2013-01-10 Ricoh Co Ltd Imaging lens, camera device, and portable information terminal device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519169A (en) * 1991-06-29 1993-01-29 Olympus Optical Co Ltd Zoom lens
JPH10161026A (en) * 1996-12-05 1998-06-19 Canon Inc Zoom lens
JP2007322656A (en) * 2006-05-31 2007-12-13 Fujinon Corp Wide-angle imaging lens
JP2011039401A (en) * 2009-08-17 2011-02-24 Canon Inc Zoom lens and imaging device having the same
JP2012123340A (en) * 2010-12-10 2012-06-28 Olympus Imaging Corp Photographic lens and imaging apparatus including the same
JP2013007856A (en) * 2011-06-23 2013-01-10 Ricoh Co Ltd Imaging lens, camera device, and portable information terminal device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176509A1 (en) * 2020-03-02 2021-09-10 オリンパス株式会社 Objective optical system, imaging device, and endoscope

Also Published As

Publication number Publication date
JP6995492B2 (en) 2022-01-14

Similar Documents

Publication Publication Date Title
JP5379784B2 (en) Fixed focus lens
CN111913274B (en) Imaging optical system and imaging device
JP4532916B2 (en) Zoom lens and imaging apparatus having the same
JP4909089B2 (en) Zoom lens and imaging apparatus having the same
JP6632311B2 (en) Optical system and imaging apparatus having the same
JP4289958B2 (en) Zoom lens and imaging apparatus having the same
JP2008185782A (en) Zoom lens and imaging apparatus having same
JP2006343552A (en) Zoom lens and imaging apparatus having the same
JP2016009113A (en) Zoom lens and imaging apparatus having the same
JP4902179B2 (en) Zoom lens and imaging apparatus having the same
JP3652179B2 (en) Zoom lens
JP4847091B2 (en) Zoom lens and imaging apparatus having the same
JPWO2014141348A1 (en) Zoom lens and imaging device
JP6173975B2 (en) Zoom lens and imaging device
JP2004240038A (en) Zoom lens
JPWO2013031180A1 (en) Zoom lens and imaging device
JP2005134746A (en) Zoom lens and imaging unit having the same
JP2005037935A (en) Compact lightweight zoom lens
JP5767330B2 (en) Zoom lens and imaging device
JP2012252253A (en) Zoom lens and imaging device with the same
JP4817551B2 (en) Zoom lens
JP2017116702A (en) Zoom lens and imaging apparatus including the same
JP6657008B2 (en) Variable power optical system and imaging device
JP5058634B2 (en) Zoom lens and imaging apparatus having the same
JP6995492B2 (en) Imaging optical system and imaging equipment using it

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20191203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211215

R151 Written notification of patent or utility model registration

Ref document number: 6995492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151