JP2018184649A - Powder and method for producing the same - Google Patents
Powder and method for producing the same Download PDFInfo
- Publication number
- JP2018184649A JP2018184649A JP2017087838A JP2017087838A JP2018184649A JP 2018184649 A JP2018184649 A JP 2018184649A JP 2017087838 A JP2017087838 A JP 2017087838A JP 2017087838 A JP2017087838 A JP 2017087838A JP 2018184649 A JP2018184649 A JP 2018184649A
- Authority
- JP
- Japan
- Prior art keywords
- magnesium alloy
- powder
- ice
- hydrogen
- alloy particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- 229910000861 Mg alloy Inorganic materials 0.000 claims abstract description 84
- 239000002245 particle Substances 0.000 claims abstract description 57
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 53
- 238000007710 freezing Methods 0.000 claims abstract description 9
- 230000008014 freezing Effects 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 239000001257 hydrogen Substances 0.000 claims description 38
- 229910052739 hydrogen Inorganic materials 0.000 claims description 38
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 34
- 238000006460 hydrolysis reaction Methods 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 16
- 230000007062 hydrolysis Effects 0.000 claims description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 150000002431 hydrogen Chemical class 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 239000013535 sea water Substances 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 2
- 229910052779 Neodymium Inorganic materials 0.000 claims description 2
- 238000000498 ball milling Methods 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 2
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 2
- 230000003301 hydrolyzing effect Effects 0.000 claims description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 238000010298 pulverizing process Methods 0.000 abstract description 6
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、マグネシウム合金の切り屑を有効利用するための複合体であって、マグネシウム合金と氷を含有する粉体と、この複合体の製造方法に関する。 The present invention relates to a composite for effectively using magnesium alloy chips, a powder containing a magnesium alloy and ice, and a method for producing the composite.
マグネシウムやマグネシウム合金は、水と反応させることにより、水素を製造することが可能である。マグネシウムやマグネシウム合金の微細化によって、効率的に水素が製造できる。一方、マグネシウム合金は、切削性が良好、すなわち切削抵抗が低いものの、水との反応活性が高い。このため、空気中の水蒸気による発火などを考慮して、機械加工で発生させるマグネシウム合金の切り屑を大きくしている。粉末冶金の原料や、加水分解による水素の製造の原料に、マグネシウム合金の切り屑を用いるためには、さらなる微細化が必要である。 Magnesium or a magnesium alloy can produce hydrogen by reacting with water. Hydrogen can be produced efficiently by miniaturization of magnesium and magnesium alloys. On the other hand, the magnesium alloy has good machinability, that is, low cutting resistance, but has high reaction activity with water. For this reason, in consideration of ignition by water vapor in the air, the magnesium alloy chips generated by machining are enlarged. In order to use magnesium alloy chips as a raw material for powder metallurgy and hydrogen for hydrolysis, further refinement is necessary.
マグネシウム合金の切り屑の微細化には、安全性が要求される。金属切り屑の微細化方法として、液体窒素で冷却しながら、金属切り屑をボールミルで粉砕する方法が知られている(特許文献1および特許文献2)。また、マグネシウム合金の粒体の微細化方法として、この粒体をローラーミルで圧縮した後、せん断により微細化する方法が知られている(特許文献3)。しかしながら、マグネシウム合金の切り屑の微細化方法は報告されていない。また、マグネシウム合金の切り屑は、ローラーミルで圧縮した後、せん断により微細化できるが、得られた微細粉体同士が凝集してしまい、水素製造の原料としては不適当である。 Safety is required for miniaturization of magnesium alloy chips. As a method for refining metal chips, a method of grinding metal chips with a ball mill while cooling with liquid nitrogen is known (Patent Document 1 and Patent Document 2). Further, as a method for refining magnesium alloy particles, a method is known in which the particles are compressed by a roller mill and then refined by shearing (Patent Document 3). However, a method for refining magnesium alloy chips has not been reported. Further, the magnesium alloy chips can be refined by shearing after being compressed by a roller mill, but the obtained fine powders are agglomerated and are not suitable as raw materials for hydrogen production.
本発明はこのような事情に鑑みてなされたものであり、マグネシウム合金の粒体を安全に微細化することと、マグネシウム合金の粒子と氷を含む粉体を提供することを目的とする。 This invention is made | formed in view of such a situation, and it aims at providing the powder containing the particle | grains of a magnesium alloy, and ice safely to refine | miniaturize the granule of a magnesium alloy safely.
本発明の粉体の製造方法は、平均径が2mm以上であるマグネシウム合金の粒体と、水とを含有する混合物の水を凍結させて、マグネシウム合金の粒体と氷を含有する塊体を得る凍結工程と、塊体を粉砕して、平均径が1mm以下であるマグネシウム合金の粒子と、氷を含有する粉体を得る粉砕工程とを有する。本発明の粉体は、平均径が1mm以下であるマグネシウム合金の粒子と、氷を含有する。 According to the method for producing a powder of the present invention, a magnesium alloy particle having an average diameter of 2 mm or more and a mixture containing water are frozen to form a mass containing the magnesium alloy particle and ice. A freezing step to be obtained, and a crushing step to grind the lump to obtain a powder containing magnesium alloy particles having an average diameter of 1 mm or less and ice. The powder of the present invention contains magnesium alloy particles having an average diameter of 1 mm or less and ice.
本発明の水素の製造方法は、本発明の粉体の製造方法によって得られた粉末、または本発明の粉体を、塩化物イオンと水を含む液体と反応させて水素を発生させる加水分解工程を有する。本発明の他の水素の製造方法は、本発明の粉体の製造方法によって得られた粉末、または本発明の粉体から氷を除去してマグネシウム合金の粒子を得る除去工程と、マグネシウム合金の粒子を、塩化物イオンと水を含む液体と反応させて水素を発生させる加水分解工程とを有する。 The hydrogen production method of the present invention is a hydrolysis step in which hydrogen is generated by reacting the powder obtained by the powder production method of the present invention or the powder of the present invention with a liquid containing chloride ions and water. Have Another method for producing hydrogen of the present invention includes a removal step of removing particles of the powder obtained by the powder production method of the present invention or removing ice from the powder of the present invention to obtain magnesium alloy particles; A hydrolysis step in which the particles are reacted with a liquid containing chloride ions and water to generate hydrogen.
本発明によれば、マグネシウム合金の粒体を安全に微細化できるため、マグネシウム合金の切り屑の有効利用が可能となる。 According to the present invention, since the magnesium alloy particles can be safely refined, the magnesium alloy chips can be effectively used.
図1は、本発明の実施形態に係る粉体の製造方法および水素の製造方法を示している。本実施形態の粉体の製造方法は、凍結工程と、粉砕工程を備えている。凍結工程では、平均径が2mm以上であるマグネシウム合金の粒体と、水とを含有する混合物の水を凍結して、マグネシウム合金の粒体と氷を含有する塊体を得る。すなわち、まず、平均径が2mm以上であるマグネシウム合金の粒体と水を混合する。なお、マグネシウム合金の粒体の平均径は、マグネシウム合金の粒体の集合物の中から10個の粒体を選択し、これらの最大長を測定したときの数平均である。 FIG. 1 shows a method for producing a powder and a method for producing hydrogen according to an embodiment of the present invention. The powder manufacturing method of the present embodiment includes a freezing step and a pulverizing step. In the freezing step, water of a mixture containing magnesium alloy particles having an average diameter of 2 mm or more and water is frozen to obtain a mass containing magnesium alloy particles and ice. That is, first, magnesium alloy particles having an average diameter of 2 mm or more are mixed with water. The average diameter of the magnesium alloy grains is the number average when 10 grains are selected from the aggregate of magnesium alloy grains and the maximum length thereof is measured.
マグネシウム合金の粒体と混合する水の温度は、10℃以下であることが好ましい。マグネシウム合金の粒体の加水分解が抑えられるからである。つぎに、この混合物を冷却して水を凍結させる。この凍結によって、マグネシウム合金の粒体と氷を含有する塊体が得られる。−20℃以下で水を凍結することが好ましい。次の粉砕工程で塊体を粉砕しやすいからである。 The temperature of the water mixed with the magnesium alloy grains is preferably 10 ° C. or less. This is because hydrolysis of the magnesium alloy particles can be suppressed. The mixture is then cooled to freeze the water. By this freezing, a mass containing magnesium alloy particles and ice is obtained. It is preferable to freeze water at -20 ° C or lower. This is because the lump is easily pulverized in the next pulverization step.
粉砕工程では、塊体を粉砕して、平均径が1mm以下であるマグネシウム合金の粒子と、氷を含有する粉体を得る。換言すると、マグネシウム合金の粒子の平均径が1mm以下になるまで、塊体を粉砕する。なお、マグネシウム合金の粒子の平均径は、粉体の集合物の中から10個の粉体を選択し、これらから氷を除去してマグネシウム合金の粒子とし、これらの粒子の最大長を測定したときの数平均である。粒子の平均径は、500μm以下であることが好ましく、200μm以下であることがより好ましい。マグネシウム合金の加水分解による合金単位質量当たりの水素発生量が、多くなるからである。 In the pulverization step, the lump is pulverized to obtain particles containing magnesium alloy particles having an average diameter of 1 mm or less and ice. In other words, the mass is pulverized until the average diameter of the magnesium alloy particles is 1 mm or less. The average diameter of the magnesium alloy particles was determined by selecting 10 powders from the aggregate of powders, removing ice from these to obtain magnesium alloy particles, and measuring the maximum length of these particles. The number average when. The average diameter of the particles is preferably 500 μm or less, and more preferably 200 μm or less. This is because the amount of hydrogen generated per unit mass of the alloy by hydrolysis of the magnesium alloy increases.
本発明の実施形態に係る粉体は、平均径が1mm以下であるマグネシウム合金の粒子と、氷を含有する。この粉体は、氷を含有するので低温である。このため、マグネシウム合金の粒子部分の反応性が低く、粉体中でマグネシウム合金が加水分解して水素を発生することはほとんどない。また、本実施形態の粉体では、マグネシウム合金の粒子の多くの表面が氷で覆われているため、マグネシウム合金の粒子の粉塵が発生しにくい。 The powder according to the embodiment of the present invention contains magnesium alloy particles having an average diameter of 1 mm or less and ice. Since this powder contains ice, it is low temperature. For this reason, the reactivity of the particle part of the magnesium alloy is low, and the magnesium alloy hardly hydrolyzes in the powder to generate hydrogen. Further, in the powder of the present embodiment, since many surfaces of the magnesium alloy particles are covered with ice, dust of the magnesium alloy particles is hardly generated.
マグネシウム合金としては、マグネシウムと、アルミニウム、亜鉛、マンガン、ジルコニウム、カルシウム、イットリウム、セリウム、ネオジウム、およびガドリニウムの少なくも一種とを含む合金が挙げられる。これらの中でも、マグネシウムとアルミニウムと亜鉛の合金(以下「AZ合金」と記載することがある)は切削性が高く、各種分野で使用されている。したがって、AZ合金の切り屑も多く発生する。また、本実施形態の粉体は、水素の製造原料として利用できる。廃棄物であるAZ合金の切り屑を水素製造に再利用する観点からも、アルミニウムおよび亜鉛を含むマグネシウム合金の粒子と、氷を含有する粉体が好ましい。本実施形態のマグネシウム合金の粒子の平均径は、500μm以下であることが好ましく、200μm以下であることがより好ましい。マグネシウム合金の加水分解による合金単位質量当たりの水素発生量が、多くなるからである。 Examples of the magnesium alloy include alloys containing magnesium and at least one of aluminum, zinc, manganese, zirconium, calcium, yttrium, cerium, neodymium, and gadolinium. Among these, alloys of magnesium, aluminum, and zinc (hereinafter sometimes referred to as “AZ alloys”) have high machinability and are used in various fields. Therefore, a lot of AZ alloy chips are generated. Moreover, the powder of this embodiment can be utilized as a raw material for producing hydrogen. Also from the viewpoint of recycling waste AZ alloy chips for hydrogen production, particles of magnesium alloy containing aluminum and zinc and powder containing ice are preferable. The average diameter of the magnesium alloy particles of this embodiment is preferably 500 μm or less, and more preferably 200 μm or less. This is because the amount of hydrogen generated per unit mass of the alloy by hydrolysis of the magnesium alloy increases.
本発明の実施形態に係る水素の製造方法は、本実施形態の粉体の製造方法によって得られた粉体、または本実施形態のマグネシウム合金の粒子と氷を含有する粉体を、塩化物イオンと水を含む液体と反応させて水素を発生させる加水分解工程を備えている。加水分解工程では、ボールミル処理によって、粉体またはマグネシウム合金の粒子を、液体と反応させることが好ましい。水素発生量が多くなるからである。水素の下記の化学反応式に示すように、液体中の水がマグネシウム合金中のマグネシウムと反応して水素を発生する。
Mg+2H2O→Mg(OH)2+H2
A method for producing hydrogen according to an embodiment of the present invention is obtained by using a powder obtained by the method for producing a powder according to the present embodiment, or a powder containing magnesium alloy particles and ice according to the present embodiment. And a hydrolyzing step for generating hydrogen by reacting with a liquid containing water. In the hydrolysis step, the powder or magnesium alloy particles are preferably reacted with the liquid by ball milling. This is because the amount of hydrogen generation increases. As shown in the following chemical reaction formula of hydrogen, water in the liquid reacts with magnesium in the magnesium alloy to generate hydrogen.
Mg + 2H 2 O → Mg (OH) 2 + H 2
また、マグネシウム合金の粒子と氷を含有する粉体中のマグネシウム合金の粒子の表面は、水酸化物の被膜が存在する。液体中の塩化物イオンは、マグネシウム合金の粒子の表面の水酸化物被膜を侵食する。このため、液体中の水がマグネシウム合金のマグネシウム部に届き、加水分解反応が進行する。つまり、塩化物イオンを含む液体を用いてマグネシウム合金を加水分解すると、水素が多く製造できる。塩化物イオンと水を含む液体としては、食塩水や海水が挙げられる。液体には、エタノールやメタノール等のアルコール類が含まれていてもよい。工業的に水素を製造する場合は、海水を用いることが好ましい。マグネシウム合金の加水分解反応を促進するため、この加水分解工程は、20℃以上で行うことが好ましい。 Further, a hydroxide coating is present on the surface of the magnesium alloy particles in the powder containing the magnesium alloy particles and ice. Chloride ions in the liquid erode the hydroxide coating on the surface of the magnesium alloy particles. For this reason, the water in a liquid reaches the magnesium part of a magnesium alloy, and a hydrolysis reaction advances. That is, when a magnesium alloy is hydrolyzed using a liquid containing chloride ions, a large amount of hydrogen can be produced. Examples of the liquid containing chloride ions and water include saline and seawater. The liquid may contain alcohols such as ethanol and methanol. When industrially producing hydrogen, it is preferable to use seawater. In order to accelerate the hydrolysis reaction of the magnesium alloy, this hydrolysis step is preferably performed at 20 ° C. or higher.
本発明の実施形態に係る他の水素の製造方法は、本実施形態の粉体の製造方法によって得られた粉体、または本実施形態のマグネシウム合金の粒子と氷を含有する粉体から氷を除去してマグネシウム合金の粒子を得る除去工程と、得られたマグネシウム合金の粒子を、塩化物イオンと水を含む液体と反応させて水素を発生させる加水分解工程を備えている。除去工程では、例えば、マグネシウム合金の粒子と氷を含有する粉体を室温で放置し、氷を解凍した後に水切りをして、マグネシウム合金の粒子を得てもよい。マグネシウム合金の粒子と氷を含有する粉体を作製する過程で、マグネシウム合金がある程度加水分解されている。このため、マグネシウム合金の粒子の表面には水酸化物の被膜が形成されている。したがって、除去工程の途中で水素が大量に発生することはない。このように、安全な状態で、除去工程から加水分解工程に移行できる。 Another method for producing hydrogen according to an embodiment of the present invention is to produce ice from the powder obtained by the powder production method of the present embodiment or the powder containing magnesium alloy particles and ice of the present embodiment. A removal step of removing and obtaining magnesium alloy particles, and a hydrolysis step of reacting the obtained magnesium alloy particles with a liquid containing chloride ions and water to generate hydrogen are provided. In the removing step, for example, magnesium alloy particles and ice-containing powder may be allowed to stand at room temperature, and the ice may be thawed and drained to obtain magnesium alloy particles. In the process of producing a powder containing magnesium alloy particles and ice, the magnesium alloy is hydrolyzed to some extent. For this reason, a hydroxide coating is formed on the surface of the magnesium alloy particles. Therefore, a large amount of hydrogen is not generated during the removal process. Thus, it is possible to shift from the removal step to the hydrolysis step in a safe state.
(実施例1)
内径が約9cmで深さが約4cmの容器に、マグネシム合金AZ31の切り屑(平均径5mm以上)2gと、4℃の純水100gを混合した後、−20℃に冷却して、マグネシム合金の切り屑の一部が上面から飛び出している氷の塊体を得た。これに4℃の純水100gをさらに加え、−20℃に冷却して、マグネシム合金と氷を含む塊体を得た。かき氷機(パール金属株式会社、クールジョイ)を用いて、この塊体を粉砕し、マグネシウム合金の粒子と氷を含有する粉体を得た。プラスチック製ザル内でこの粉体を室温で放置し、水切りをして、マグネシウム合金の粒子(平均径1mm)を得た。
(Example 1)
In a container having an inner diameter of about 9 cm and a depth of about 4 cm, 2 g of magnesium alloy AZ31 chips (average diameter of 5 mm or more) and 100 g of pure water at 4 ° C. were mixed, cooled to −20 ° C., and then magnet alloy A lump of ice was obtained with some of the swarf protruding from the top surface. To this, 100 g of pure water at 4 ° C. was further added and cooled to −20 ° C. to obtain a mass containing a magnesium alloy and ice. The lump was pulverized using a shaved ice machine (Pearl Metal Co., Ltd., Cool Joy) to obtain a powder containing magnesium alloy particles and ice. The powder was allowed to stand at room temperature in a plastic colander and drained to obtain magnesium alloy particles (average diameter 1 mm).
このマグネシウム合金の粒子2gと、3%塩化ナトリウム水溶液200mLと、直径10mm超鋼製ボール130個を、容量1000mLのステンレス製ポットに入れた。20℃の環境下、ボールミル装置(アサヒ理化製作所、小型ボールミルAV型)を用いて、このポットを130rpmで回転し、発生した水素を10分毎に測定した。なお、このポットに装着したスンレス製の蓋に設けたロータリージョイントを通して、回転するポットから流出したガスを水上置換して、ガスの発生量を測定した。発生したガスが水素であることは、燃料電池での発電により確認した。そして、マグネシム合金1g当たりの水素発生量に換算した。その結果を図2の■で示す。 2 g of this magnesium alloy particle, 200 mL of a 3% sodium chloride aqueous solution, and 130 balls made of super steel having a diameter of 10 mm were placed in a stainless steel pot having a capacity of 1000 mL. Under an environment of 20 ° C., this pot was rotated at 130 rpm using a ball mill apparatus (Asahi Rika Seisakusho, small ball mill AV type), and the generated hydrogen was measured every 10 minutes. The amount of gas generated was measured by substituting the water flowing out of the rotating pot through a rotary joint provided on a sunless lid attached to the pot. It was confirmed by power generation with a fuel cell that the generated gas was hydrogen. And it converted into the amount of hydrogen generation per gram of a magnesium alloy. The result is shown by ■ in FIG.
(実施例2)
ボールミル処理に代えて以下の加水分解工程を行った点を除いて、実施例1と同様にして水素発生量を測定した。加水分解工程では、20℃の環境下、マグネシウム合金の粒子2gと3%塩化ナトリウム水溶液200mLを容量1000mLのフラスコに入れ、ゴム栓に設けた管から流出したガスを水上置換して、ガスの発生量を測定した。その結果を図2の●で示す。
(Example 2)
The amount of hydrogen generation was measured in the same manner as in Example 1 except that the following hydrolysis step was performed instead of the ball mill treatment. In the hydrolysis step, in an environment of 20 ° C., 2 g of magnesium alloy particles and 200 mL of 3% sodium chloride aqueous solution are placed in a 1000 mL volumetric flask, and the gas flowing out from the tube provided in the rubber stopper is replaced with water to generate gas. The amount was measured. The result is shown by ● in FIG.
(比較例)
マグネシウム合金の粒子に代えて、実施例1で使用したマグネシム合金の切り屑を用いた点を除いて、実施例2と同様にして水素発生量を測定した。その結果を図2の○で示す。図2の実施例1、実施例2、および比較例からわかるように、本発明によれば、マグネシム合金の切り屑をそのまま加水分解するときと比べて、より多くの水素が製造できる。
(Comparative example)
The amount of hydrogen generation was measured in the same manner as in Example 2 except that the magnesium alloy chips used in Example 1 were used instead of the magnesium alloy particles. The result is indicated by a circle in FIG. As can be seen from Example 1, Example 2 and Comparative Example in FIG. 2, according to the present invention, more hydrogen can be produced as compared with the case where the magnesium alloy chips are hydrolyzed as they are.
Claims (10)
前記塊体を粉砕して、平均径が1mm以下であるマグネシウム合金の粒子と、氷を含有する粉体を得る粉砕工程と、
を有する粉体の製造方法。 Freezing step of freezing the water of a mixture containing magnesium alloy particles having an average diameter of 2 mm or more and water to obtain a mass containing the magnesium alloy particles and ice;
Crushing the mass to obtain a powder containing magnesium alloy particles having an average diameter of 1 mm or less and ice;
The manufacturing method of the powder which has this.
前記粒子の平均径が500μm以下である粉体の製造方法。 In claim 1,
The manufacturing method of the powder whose average diameter of the said particle | grain is 500 micrometers or less.
前記粒子の平均径が200μm以下である粉体の製造方法。 In claim 2,
The manufacturing method of the powder whose average diameter of the said particle | grain is 200 micrometers or less.
−20℃以下で前記水を凍結する粉体の製造方法。 In any one of Claim 1 to 3,
The manufacturing method of the powder which freezes the said water at -20 degrees C or less.
前記マグネシウム合金が、アルミニウム、亜鉛、カルシウム、イットリウム、セリウム、ネオジウム、およびガドリニウムの少なくとも一種を含有する粉体。 In claim 5,
The powder in which the magnesium alloy contains at least one of aluminum, zinc, calcium, yttrium, cerium, neodymium, and gadolinium.
前記マグネシウム合金の粒子を、塩化物イオンと水を含む液体と反応させて水素を発生させる加水分解工程と、
を有する水素の製造方法。 A removal step of removing the ice from the powder obtained by the method for producing a powder according to any one of claims 1 to 4 or the powder according to claim 5 or 6 to obtain particles of the magnesium alloy;
Hydrolyzing the magnesium alloy particles with a liquid containing chloride ions and water to generate hydrogen;
A method for producing hydrogen having:
前記液体が海水である水素の製造方法。 In claim 7 or 8,
A method for producing hydrogen, wherein the liquid is seawater.
前記加水分解工程では、ボールミル処理によって、前記粉体または前記マグネシウム合金の粒子を、前記液体と反応させる水素の製造方法。 In any of claims 7 to 9,
In the hydrolysis step, a method for producing hydrogen, wherein the powder or the magnesium alloy particles are reacted with the liquid by ball milling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017087838A JP6858371B2 (en) | 2017-04-27 | 2017-04-27 | Powder and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017087838A JP6858371B2 (en) | 2017-04-27 | 2017-04-27 | Powder and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018184649A true JP2018184649A (en) | 2018-11-22 |
JP6858371B2 JP6858371B2 (en) | 2021-04-14 |
Family
ID=64355554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017087838A Active JP6858371B2 (en) | 2017-04-27 | 2017-04-27 | Powder and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6858371B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020111496A (en) * | 2019-01-16 | 2020-07-27 | 国立研究開発法人産業技術総合研究所 | Method of producing hydrogen using chips of magnesium alloy with oily substances attached thereto |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4849694A (en) * | 1971-04-16 | 1973-07-13 | ||
JPS5242405A (en) * | 1975-06-06 | 1977-04-02 | Ford Motor Co | Method of improving sintering property of iron powder formed by ultralow temperature technique |
JPH1160227A (en) * | 1997-08-08 | 1999-03-02 | Toyo Denka Kogyo Kk | Regenerative treatment of sintered hard alloy |
JP2005256133A (en) * | 2004-03-15 | 2005-09-22 | Katsuyoshi Kondo | Raw alloy powder and manufacturing method therefor |
JP2007031169A (en) * | 2005-07-22 | 2007-02-08 | National Institute For Materials Science | Hydrogen production method, and method of immobilizing carbon dioxide |
JP2008150289A (en) * | 2005-01-07 | 2008-07-03 | Hitachi Maxell Ltd | Hydrogen generating material, cartridge for producing hydrogen, device for producing hydrogen, method for producing hydrogen and fuel cell system |
JP2008156148A (en) * | 2006-12-22 | 2008-07-10 | Mitsubishi Heavy Ind Ltd | Method for generating hydrogen |
US20100150826A1 (en) * | 2005-08-09 | 2010-06-17 | The University Of British Columbia | Microporous metals and methods for hydrogen generation from water split reaction |
CN105345016A (en) * | 2015-12-08 | 2016-02-24 | 南京中锗科技有限责任公司 | Magnesium alloy crushing system and method |
JP2016074032A (en) * | 2013-12-11 | 2016-05-12 | ザ・ボーイング・カンパニーThe Boeing Company | Method for production of performance enhanced metallic materials |
-
2017
- 2017-04-27 JP JP2017087838A patent/JP6858371B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4849694A (en) * | 1971-04-16 | 1973-07-13 | ||
JPS5242405A (en) * | 1975-06-06 | 1977-04-02 | Ford Motor Co | Method of improving sintering property of iron powder formed by ultralow temperature technique |
JPH1160227A (en) * | 1997-08-08 | 1999-03-02 | Toyo Denka Kogyo Kk | Regenerative treatment of sintered hard alloy |
JP2005256133A (en) * | 2004-03-15 | 2005-09-22 | Katsuyoshi Kondo | Raw alloy powder and manufacturing method therefor |
JP2008150289A (en) * | 2005-01-07 | 2008-07-03 | Hitachi Maxell Ltd | Hydrogen generating material, cartridge for producing hydrogen, device for producing hydrogen, method for producing hydrogen and fuel cell system |
JP2007031169A (en) * | 2005-07-22 | 2007-02-08 | National Institute For Materials Science | Hydrogen production method, and method of immobilizing carbon dioxide |
US20100150826A1 (en) * | 2005-08-09 | 2010-06-17 | The University Of British Columbia | Microporous metals and methods for hydrogen generation from water split reaction |
JP2008156148A (en) * | 2006-12-22 | 2008-07-10 | Mitsubishi Heavy Ind Ltd | Method for generating hydrogen |
JP2016074032A (en) * | 2013-12-11 | 2016-05-12 | ザ・ボーイング・カンパニーThe Boeing Company | Method for production of performance enhanced metallic materials |
CN105345016A (en) * | 2015-12-08 | 2016-02-24 | 南京中锗科技有限责任公司 | Magnesium alloy crushing system and method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020111496A (en) * | 2019-01-16 | 2020-07-27 | 国立研究開発法人産業技術総合研究所 | Method of producing hydrogen using chips of magnesium alloy with oily substances attached thereto |
JP7220460B2 (en) | 2019-01-16 | 2023-02-10 | 国立研究開発法人産業技術総合研究所 | Method for producing hydrogen using magnesium alloy chips with oily substances |
Also Published As
Publication number | Publication date |
---|---|
JP6858371B2 (en) | 2021-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7000556B2 (en) | Aluminum-based nanogalvanic composite material useful for hydrogen gas generation and its low temperature treatment and its manufacturing method | |
JP4169197B2 (en) | Hydrogen gas production method using friction corrosion reaction | |
Huang et al. | Hydrogen generation from hydrolysis of aluminum/graphite composites with a core–shell structure | |
Alasmar et al. | Hydrogen generation from Nd-Ni-Mg system by hydrolysis reaction | |
Zhou et al. | Controllable hydrogen generation behavior by hydrolysis of MgH2-based materials | |
EP2499089A1 (en) | Preparation of silicon for fast generation of hydrogen through reaction with water | |
Hong et al. | Rate enhancement of hydrogen generation through the reaction of magnesium hydride with water by MgO addition and ball milling | |
CN101891151A (en) | Magnesium-aluminum based hydride composite material for hydrolytic hydrogen production | |
JP2008156148A (en) | Method for generating hydrogen | |
CN105800553B (en) | A kind of Al BiOCl aluminum-based composite hydrogen manufacturing materials and preparation method thereof | |
JP5311334B2 (en) | Hydrogen production method using sponge iron | |
JP2018184649A (en) | Powder and method for producing the same | |
Xiao et al. | Research progress in hydrogen production by hydrolysis of magnesium-based materials | |
JP2009132553A (en) | Method for producing hydrogen storage material and hydrogen generation method | |
Lukashev et al. | Effect of mechanical activation on the reaction of magnesium hydride with water | |
Qiu et al. | Hydrogen generation from the hydrolysis of LaMg12H27 ball-milled with LiH | |
WO2021129704A1 (en) | Aluminum alloy powder that is capable of blooming, preparation method therefor, and use thereof | |
US20030173229A1 (en) | Process for producing hydrogen | |
Qiu et al. | Effect of LiH on the fast hydrolysis and hydrogen generation of MgH 2 by ball milling | |
CN110155943B (en) | Ultrahigh-activity hydrolysis hydrogen production aluminum-based composite material and preparation method thereof | |
JP5202023B2 (en) | Hydrogen generating material and method for producing the hydrogen generating material | |
CN111712459A (en) | Hydrogen generation | |
JP2019199368A (en) | Method for producing tetrahydroborate | |
TW201033117A (en) | Solid hydrogen fuel and methods for manufacturing and using the same | |
KR102235364B1 (en) | Process for Synthesizing of Manganese Sulfide using Electrolytic Manganese Flake and Elemental Sulfur Powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210310 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210316 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6858371 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |