JP2018183997A - Ion exchange membrane - Google Patents

Ion exchange membrane Download PDF

Info

Publication number
JP2018183997A
JP2018183997A JP2018106980A JP2018106980A JP2018183997A JP 2018183997 A JP2018183997 A JP 2018183997A JP 2018106980 A JP2018106980 A JP 2018106980A JP 2018106980 A JP2018106980 A JP 2018106980A JP 2018183997 A JP2018183997 A JP 2018183997A
Authority
JP
Japan
Prior art keywords
ion exchange
film
exchange membrane
porous
porous substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018106980A
Other languages
Japanese (ja)
Other versions
JP6517404B2 (en
Inventor
高橋 智明
Tomoaki Takahashi
智明 高橋
博 宮澤
Hiroshi Miyazawa
博 宮澤
田中 伸幸
Nobuyuki Tanaka
伸幸 田中
信彦 大村
Nobuhiko Omura
信彦 大村
和夫 水口
Kazuo Mizuguchi
和夫 水口
福田 憲二
Kenji Fukuda
憲二 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Astom Co Ltd
Original Assignee
Asahi Kasei Corp
Astom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Astom Co Ltd filed Critical Asahi Kasei Corp
Priority to JP2018106980A priority Critical patent/JP6517404B2/en
Publication of JP2018183997A publication Critical patent/JP2018183997A/en
Application granted granted Critical
Publication of JP6517404B2 publication Critical patent/JP6517404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ion exchange membrane which has high air permeability while having such a laminated structure that a base material film and a porous resin film are joined to each together, and accordingly effectively suppresses high electric resistance by lamination of a base materiel sheet.SOLUTION: There is provided an ion exchange membrane in which a gap part of a porous base material film is filled with the ion exchange membrane, where the porous base material film has such a structure that at least two layers of porous olefin-based resin layers are laminated with a bond strength of 100 gf/cm or more and less than 700 gf/cm, and has air permeability of 500 sec/100 ml or less in terms of 100 μm.SELECTED DRAWING: None

Description

本発明は、多数の微細な細孔が貫通している多孔質オレフィン系樹脂フィルムを基材として有しており、該フィルムの細孔内にイオン交換樹脂が充填された構造のイオン交換膜及びその製造する方法に関する。   The present invention has a porous olefin-based resin film through which a large number of fine pores penetrate as a base material, and an ion exchange membrane having a structure in which ion exchange resin is filled in the pores of the film, and It relates to a method of manufacturing the same.

イオン交換膜は、製塩や食品分野における脱塩工程などで利用される電気透析用膜や燃料電池の電解質膜として、また、鉄鋼業などで発生する金属イオンを含んだ酸からの酸回収に用いられる拡散透析用膜など多くの分野で工業的に利用されている。このようなイオン交換膜は、補強材としての機能を有する基材フィルムが芯材としてイオン交換樹脂中に設けられた構造を有しており、これにより一定の膜強度や膜の形状安定性が付与されている。もし芯材がないとイオン交換樹脂は、イオン交換基を多く持っているため、電解質水溶液に浸漬させると容易に膨潤してしまい、イオン交換膜は強度低下や形態変化が生じてしまう。   Ion exchange membranes are used as membranes for electrodialysis used in salt production and desalting processes in the food sector, electrolyte membranes for fuel cells, and for acid recovery from acids containing metal ions generated in the steel industry. It is used industrially in many fields such as diffusion dialysis membranes. Such an ion-exchange membrane has a structure in which a base film having a function as a reinforcing material is provided in an ion-exchange resin as a core material, thereby providing a certain membrane strength and membrane shape stability. Has been granted. If there is no core material, the ion exchange resin has a large number of ion exchange groups. Therefore, when immersed in an aqueous electrolyte solution, the ion exchange resin easily swells, and the ion exchange membrane undergoes a decrease in strength and a form change.

従来、上記の基材フィルムとして多孔性の熱可塑性樹脂フィルムを使用することが知られており、実際に使用されている。このような多孔性フィルムを基材とするイオン交換膜は、基材である多孔性フィルム中の細孔内にイオン交換樹脂が充填されており、この結果、膜の電気抵抗(以下、膜抵抗と呼ぶ)が低いという利点を有している。例えば、特許文献1には、多孔性の延伸ポリエチレンフィルム(旭化成株式会社製ハイポアや東燃化学那須株式会社製セティーラ等)を基材フィルムとして含む製塩用陽イオン交換膜が開示されている。   Conventionally, it is known to use a porous thermoplastic resin film as the base film, and it is actually used. In such an ion exchange membrane based on a porous film, pores in the porous film as a substrate are filled with an ion exchange resin. As a result, the electric resistance of the membrane (hereinafter referred to as membrane resistance) Has the advantage of low). For example, Patent Document 1 discloses a cation exchange membrane for salt production containing a porous stretched polyethylene film (Hypore made by Asahi Kasei Corporation, Cetilla made by Tonen Chemical Nasu Co., Ltd.) as a base film.

ところで、イオン交換膜の用途は様々であり、しかも、実施規模なども異なっており、従って、イオン交換膜の大きさも種々異なり、その大きさによっては、強度、寸法安定性及び形態安定性などを高めることが必要である。このため、イオン交換膜中の多孔質基材フィルムについては、その厚みを厚くすることが必要となる。この多孔質フィルムは、多数の細孔が設けられているため、このような細孔が設けられていないフィルムに比して低強度であり、また腰が無いため、これを厚くすることが、イオン交換膜の高強度化や、寸法安定性、形態安定性の向上をもたらすからである。   By the way, the use of the ion exchange membrane is various, and the scale of implementation is also different. Therefore, the size of the ion exchange membrane is also different, and depending on the size, the strength, dimensional stability, and morphological stability, etc. It is necessary to increase. For this reason, it is necessary to increase the thickness of the porous substrate film in the ion exchange membrane. Since this porous film is provided with a large number of pores, it is lower in strength than a film without such pores, and since there is no waist, it can be made thicker. This is because the strength of the ion exchange membrane is increased, and dimensional stability and form stability are improved.

しかしながら、市販されている多孔質フィルムは、厚みが限られており、おおよそ数十μm程度の厚みのものがほとんどである。イオン交換膜の用途や大きさなどに応じて適正な厚みの多孔質フィルムを製造していたのでは少量生産となり、工業的メリットが損なわれてしまうからである。   However, commercially available porous films have a limited thickness, and most have a thickness of about several tens of μm. This is because if a porous film having an appropriate thickness is produced according to the use and size of the ion exchange membrane, the production becomes a small amount and the industrial merit is impaired.

そこで、市販されている限られた厚みの多孔質フィルムを積層し、この積層フィルムを基材フィルムとしてイオン交換膜を製造することが行われているが、この場合には、多孔質フィルム同士の積層手段が問題となる。   Therefore, a commercially available porous film with a limited thickness is laminated, and an ion exchange membrane is produced using this laminated film as a base film. Lamination means becomes a problem.

例えば、特許文献2には、2枚の多孔質樹脂シートを積層し、融点以上の温度での熱融着により接合した多孔質膜を基材フィルムとして含むイオン交換膜が開示されているが、融点以上の温度での熱融着により接合しているため、多孔質フィルムに形成されている細孔が閉塞されてしまうという問題がある。即ち、このような基材フィルムは、透気度が高く、これを用いて形成されるイオン交換膜では、電気抵抗が高くなってしまう。従って、特許文献2では、積層する多孔質樹脂シートとして繊維状のもの(具体的にはフィブリル状のシート)を用い、その気孔率(空隙率)を大きくすることにより、熱融着による細孔の閉塞に由来する透気度の上昇やイオン交換膜の高電気抵抗化を抑制している。
しかるに、基材フィルムとして繊維状のものを使用した場合には、気孔率が大きくなりすぎ、当然、機械的強度の低下が否めず、必要以上の基材フィルムの厚みを厚くしなければならないなどの問題を生じてしまう。従って、この手段では、一般的なオレフィン系樹脂製のものは使用できず、このために、特許文献2では、ポリテトラフルオロエチレン製のものを使用しており、結果として、著しく高コストとなってしまう。
For example, Patent Document 2 discloses an ion exchange membrane that includes a porous film obtained by laminating two porous resin sheets and bonded by thermal fusion at a temperature equal to or higher than the melting point as a base film. Since bonding is performed by thermal fusion at a temperature equal to or higher than the melting point, there is a problem that pores formed in the porous film are blocked. That is, such a base film has high air permeability, and an ion exchange membrane formed using the base film has high electrical resistance. Therefore, in Patent Document 2, a fibrous resin sheet (specifically, a fibril-like sheet) is used as the porous resin sheet to be laminated, and the porosity (porosity) is increased to increase the pores due to heat fusion. The increase in the air permeability and the high electrical resistance of the ion exchange membrane resulting from the blockage of the ion are suppressed.
However, when a fibrous film is used as the base film, the porosity becomes too large, and naturally the mechanical strength cannot be reduced, and the thickness of the base film must be increased more than necessary. Cause problems. Therefore, this means cannot use a general olefin resin, and for this reason, Patent Document 2 uses a polytetrafluoroethylene, which results in a very high cost. End up.

また、特許文献3では、本出願人により、接合せずに、重ね合わされた複数枚の多孔質樹脂シート(積層シート)の空隙部にイオン交換樹脂形成用の単量体組成物を充填し、この状態で該単量体組成物を重合させてイオン交換樹脂とすることにより、イオン交換膜を製造する方法が提案されている。
この方法では、多孔質樹脂シート同士が直接接合されておらず、空隙部(細孔)に充填されているイオン交換樹脂によって接合された形態となっているため、多孔質樹脂シート同士の接合による細孔の閉塞という問題を完全に回避でき、イオン交換膜の高電気抵抗化を確実に防止することができ、しかも、多孔質樹脂シートの材質としてポリテトラフルオロエチレンのような高価な格別の樹脂を使用する必要もなく、コスト的なメリットも大きい。しかしながら、この方法では、多孔質樹脂シート同士が接合されていないため、多孔質樹脂シート同士の間で界面剥離を生じ易いという問題があり、さらなる改良が必要である。
Further, in Patent Document 3, the applicant of the present invention filled the monomer composition for forming an ion exchange resin into the voids of a plurality of stacked porous resin sheets (laminated sheets) without bonding, There has been proposed a method for producing an ion exchange membrane by polymerizing the monomer composition in this state to obtain an ion exchange resin.
In this method, the porous resin sheets are not directly joined to each other but are joined by the ion exchange resin filled in the voids (pores). The problem of pore clogging can be completely avoided, the high electrical resistance of the ion exchange membrane can be reliably prevented, and an expensive special resin such as polytetrafluoroethylene is used as the material of the porous resin sheet There is no need to use this, and the cost advantage is great. However, in this method, since the porous resin sheets are not joined to each other, there is a problem that interfacial peeling is likely to occur between the porous resin sheets, and further improvement is necessary.

特開2009−96923号公報JP 2009-96923 A 特開2008−4500号公報JP 2008-4500 A 特開2012−21099号公報JP2012-21099A

従って、本発明の目的は、基材フィルムが互いに接合された多孔性樹脂フィルムでありながら、透気度が低く、従って、基材シートの積層化による高電気抵抗化が有効に抑制されたイオン交換膜及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide an ion in which the base film is a porous resin film bonded to each other, but has a low air permeability, and therefore, the high electrical resistance due to the lamination of the base sheet is effectively suppressed. An object of the present invention is to provide an exchange membrane and a manufacturing method thereof.

本発明によれば、多孔質基材フィルムの空隙部にイオン交換樹脂が充填されているイオン交換膜において、該多孔質基材フィルムは、少なくとも2層の多孔質オレフィン系樹脂層が100gf/cm以上、700gf/cm未満の接合強度で積層された構造を有しており、且つ100μm厚さ換算の透気度が500sec/100ml以下を有していることを特徴とするイオン交換膜が提供される。   According to the present invention, in the ion exchange membrane in which the void portion of the porous substrate film is filled with the ion exchange resin, the porous substrate film has at least two porous olefin-based resin layers of 100 gf / cm. As described above, there is provided an ion exchange membrane characterized in that it has a laminated structure with a bonding strength of less than 700 gf / cm, and has an air permeability of 100 μm thickness conversion of 500 sec / 100 ml or less. The

本発明によれば、また、
少なくとも2枚の多孔質オレフィン系樹脂フィルムを用意する工程;
前記複数枚の多孔質オレフィン系樹脂フィルムを重ね合わせ、融点−20℃以上、融点未満の温度に加熱して延伸成形することにより積層構造を有する多孔質基材フィルムを作製する工程;
前記多孔質基材フィルムをイオン交換樹脂形成用の重合性組成物に浸漬して、該フィルムの空隙に該重合性組成物が充填されたイオン交換膜前駆体を作製する工程;
前記イオン交換膜前駆体内の前記重合性組成物を重合せしめる工程;
を含むことを特徴とするイオン交換膜の製造方法が提供される。
According to the invention,
Providing at least two porous olefin-based resin films;
A step of producing a porous substrate film having a laminated structure by superposing the plurality of porous olefin-based resin films, heating to a temperature of -20 ° C. or higher and lower than the melting point, and stretching and molding;
A step of immersing the porous substrate film in a polymerizable composition for forming an ion exchange resin to produce an ion exchange membrane precursor in which voids of the film are filled with the polymerizable composition;
Polymerizing the polymerizable composition in the ion exchange membrane precursor;
A process for producing an ion exchange membrane characterized by comprising:

本発明の製造方法においては、
(1)前記複数枚の多孔質オレフィン系樹脂フィルムは、何れも20〜60%の空隙率を有していること、
が好適であり、さらに、
(2)前記イオン交換樹脂形成用の重合性組成物として、イオン交換基を有する単量体を含有しているものを使用し、前記重合により、イオン交換樹脂が形成されること、
或いは、
(3)前記イオン交換樹脂形成用の重合性組成物として、イオン交換基を導入し得る官能基を有する単量体を含有するものを使用し、前記重合後に、イオン交換基の導入を行うこと、
という手段を採用することができる。
In the production method of the present invention,
(1) Each of the plurality of porous olefin-based resin films has a porosity of 20 to 60%,
Is preferred, and
(2) As the polymerizable composition for forming the ion exchange resin, a composition containing a monomer having an ion exchange group is used, and the ion exchange resin is formed by the polymerization.
Or
(3) As the polymerizable composition for forming the ion exchange resin, a composition containing a monomer having a functional group capable of introducing an ion exchange group is used, and the ion exchange group is introduced after the polymerization. ,
The following means can be adopted.

本発明のイオン交換膜は、基材フィルムとして、少なくとも2枚の多孔質オレフィン系樹脂フィルムが重ね合わされた積層構造を有するものが使用されているものであるが、この基材フィルムにおいて、互いに対面する多孔質オレフィン系樹脂フィルム層の接合強度が100gf/cm以上と高く、しかも、このような高い積層構造を有していながら、その透気度は100μm厚さ換算で500sec/100ml以下と極めて低い。即ち、このような低い透気度を示すということは、この積層構造は、多孔質オレフィン系樹脂フィルムを熱融着により接合することにより形成されたものではなく、該フィルム中の細孔の閉塞が有効に回避されていることを示している。
従って、本発明のイオン交換膜では、高い接合強度での基材フィルムの積層構造により、強度が向上し、しかも、積層による基材フィルム中の細孔の閉塞が有効に回避されていることから、積層による高電気抵抗化が有効に抑制されている。
In the ion exchange membrane of the present invention, a substrate film having a laminated structure in which at least two porous olefin resin films are superposed is used. The bonding strength of the porous olefin-based resin film layer is as high as 100 gf / cm or more, and while having such a high laminated structure, its air permeability is extremely low as 500 sec / 100 ml or less in terms of 100 μm thickness. . That is, such low air permeability means that this laminated structure is not formed by joining porous olefin-based resin films by thermal fusion, and clogging of pores in the film. Is effectively avoided.
Therefore, in the ion exchange membrane of the present invention, the strength is improved by the laminated structure of the base film with high bonding strength, and furthermore, blockage of pores in the base film due to the lamination is effectively avoided. The increase in electrical resistance due to the lamination is effectively suppressed.

本発明において、基材フィルムが有する上記積層構造、即ち、低い透気度を有しながら高い接合強度を示すという積層構造は、多孔質オレフィン系樹脂フィルムを重ねわせて融点に近い温度(融点−20℃以上、融点未満の温度)で延伸成形を行うことにより実現される。即ち、互いに対面する多孔質オレフィン系樹脂フィルムの界面において、延伸操作によりオレフィン系樹脂の長鎖分子同士の絡み合いが生じ、この結果、上記のような高い接合強度で多孔質オレフィン系樹脂フィルムが積層されることとなる。また、このようにして得られた積層フィルムでは、同じ厚さの単層の多孔質フィルムに比べて破裂強度が向上する特徴を有する。しかも、延伸操作は、融点に近い温度ではあるが、融点未満であるため、熱融着による接合と異なり、多孔質オレフィン系樹脂中の微細な細孔の閉塞が有効に回避され、従って低い透気度を確保することが可能となるわけである。   In the present invention, the above laminated structure of the base film, that is, a laminated structure exhibiting a high bonding strength while having a low air permeability, has a temperature close to the melting point (melting point − This is realized by performing stretch molding at a temperature of 20 ° C. or higher and lower than the melting point. That is, at the interface of the porous olefin resin films facing each other, the long chain molecules of the olefin resin are entangled by the stretching operation, and as a result, the porous olefin resin film is laminated with the above high bonding strength. Will be. In addition, the laminated film thus obtained has a characteristic that the burst strength is improved as compared with a single-layer porous film having the same thickness. In addition, since the stretching operation is at a temperature close to the melting point, but below the melting point, unlike the joining by heat fusion, clogging of fine pores in the porous olefin resin is effectively avoided, and thus low permeability. It is possible to secure the mood.

このような本発明において、最大の利点は、製造や入手が容易な限られた厚みの未延伸多孔質オレフィン系樹脂フィルムを使用し、これを上述した方法での延伸操作によって積層し、積層枚数を適宜の枚数に設定して、その厚みを増大させて高強度の基材フィルムとすることができるということである。即ち、本発明で用いる基材フィルムと同等の単層の厚い多孔質フィルムを公知の方法で製造することは可能である。しかしながら、目的とする強度に応じて、その都度、そのような厚みの多孔質フィルムを製造することは実現性に乏しい。即ち、用途が著しく限定されてしまうため、工業ベースでの量産はできないし、少量生産とするのでは採算が合わないからである。
しかるに、本発明では、製造や入手が容易な厚みが限定されている多孔質オレフィン系樹脂フィルムを使用し、これを積層し、その透気度を上昇させることなく接合強度が高く且つ厚みの厚い多孔質積層フィルムを作製できるため、これを基材フィルムとしてイオン交換膜を製造することができる。即ち、用途が限定されて量産には適していない厚みの基材フィルムであっても、製造や入手が容易な厚みのフィルムを用いて容易に作製することができるので、本発明は、工業的に極めて有用である。
In such the present invention, the greatest advantage is that an unstretched porous olefin-based resin film having a limited thickness that is easy to manufacture and obtain is used, and this is laminated by the stretching operation by the above-described method. Is set to an appropriate number and the thickness can be increased to obtain a high-strength base film. That is, a single layer thick porous film equivalent to the base film used in the present invention can be produced by a known method. However, depending on the intended strength, it is not feasible to produce a porous film having such a thickness each time. That is, because the use is remarkably limited, mass production on an industrial basis cannot be performed, and it is not profitable to produce in small quantities.
However, in the present invention, a porous olefin resin film having a limited thickness that is easy to manufacture and obtain is used, and this is laminated, and the bonding strength is high and the thickness is high without increasing the air permeability. Since a porous laminated film can be produced, an ion exchange membrane can be produced using this as a base film. That is, even if the base film has a thickness that is not suitable for mass production due to limited use, it can be easily produced using a film having a thickness that is easy to manufacture and obtain. Very useful.

本発明のイオン交換膜の作成に用いる多孔質基材フィルムの概略断面図である。It is a schematic sectional drawing of the porous base film used for preparation of the ion exchange membrane of this invention.

<多孔質基材フィルム>
図1を参照して説明する。本発明で用いる多孔質基材フィルム(全体として1で示されている)は、2つの多孔質オレフィン系樹脂層3,3が積層された積層構造を有する。この積層界面は5で示されている。
尚、図1では2層構造となっているが、積層数は2つに限定されるものではなく、各層が多孔質オレフィン系樹脂で形成されており且つ重ね合せた状態での延伸操作が可能である限り、その積層数は3であってもよいし、それ以上の数であってもよい。即ち、この積層数は、多孔質基材フィルム1に要求する強度或いは厚みに応じて、適宜の数に設定することができる。
<Porous substrate film>
A description will be given with reference to FIG. The porous substrate film used in the present invention (shown as 1 as a whole) has a laminated structure in which two porous olefin resin layers 3 and 3 are laminated. This stacking interface is indicated by 5.
In addition, although it has a two-layer structure in FIG. 1, the number of layers is not limited to two, and each layer is formed of a porous olefin resin and can be stretched in a superposed state. As long as it is, the number of layers may be three or more. That is, the number of laminated layers can be set to an appropriate number according to the strength or thickness required for the porous substrate film 1.

多孔質オレフィン系樹脂層3には、表面から裏面に貫通する微細な細孔(引照数字は省略)が多数形成されている。例えば、イオン交換膜の基材フィルムとして使用されるものでは、適宜の交換膜特性が得られるように、細孔の平均孔径(表面もしくは裏面で観察)は0.01〜2.0μm、特に0.015〜0.4μm程度に設定される。   The porous olefin-based resin layer 3 has a large number of fine pores (the reference numerals are omitted) penetrating from the front surface to the back surface. For example, when used as a base film for an ion exchange membrane, the average pore diameter of the pores (observed on the front or back surface) is 0.01 to 2.0 μm, particularly 0 so that appropriate exchange membrane characteristics can be obtained. It is set to about .015 to 0.4 μm.

また、本発明においては、このような大きさの細孔が占める体積割合、即ち空隙率は、20〜65%、特に30〜60%の範囲にあることが好ましい。即ち、この空隙率が過度に大きく、例えばこの樹脂層3が不織布シートなどの繊維質で形成されるような場合には、該層3の強度がかなり低くなってしまい、積層による強度向上効果が損なわれてしまったり、また寸法安定性も損なわれてしまうおそれがある。また、この空隙率が低すぎると、この基材フィルム1を用いてイオン交換膜を製造したとき、高電気抵抗となってしまい、イオン交換膜特性が損なわれてしまうおそれがある。   Further, in the present invention, the volume ratio occupied by the pores having such a size, that is, the porosity is preferably in the range of 20 to 65%, particularly 30 to 60%. That is, when the porosity is excessively large, for example, when the resin layer 3 is formed of a fibrous material such as a non-woven sheet, the strength of the layer 3 is considerably reduced, and the effect of improving the strength by lamination is obtained. There is a risk that it may be damaged and the dimensional stability may also be lost. Moreover, when this porosity is too low, when manufacturing an ion exchange membrane using this base film 1, it will become high electrical resistance and there exists a possibility that an ion exchange membrane characteristic may be impaired.

さらに多孔質オレフィン系樹脂層3の厚みは、20〜150μm程度である。   Furthermore, the thickness of the porous olefin resin layer 3 is about 20 to 150 μm.

また、かかる多孔質オレフィン系樹脂層3を形成するオレフィン系樹脂としては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、3−メチル−1−ブテン、4−メチル−1−ペンテン、5−メチル−1−ヘプテン等のα−オレフィンの単独重合体または共重合体、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−オレフィン共重合体等の含塩素系オレフィン系樹脂などが代表的である。
尚、オレフィン系樹脂には、ポリテトラフルオロエチレンなどのフッ素系樹脂もあるが、このような含フッ素系樹脂は、非繊維質での細孔の形成が困難であり、また、後述する延伸による接合も困難であることから(おそらく、分子が伸縮しにくいためと思われる)上記で例示して非フッ素系のオレフィン系樹脂、特に高、中或いは低密度ポリエチレンが好ましく、なかでも極限粘度[η]が1.5dl/gを超える高密度ポリエチレンが最適である。
Examples of the olefin resin forming the porous olefin resin layer 3 include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, and 4-methyl-1-pentene. , Homopolymers or copolymers of α-olefins such as 5-methyl-1-heptene, polyvinyl chloride, vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinylidene chloride copolymers, vinyl chloride-olefin copolymers Typical examples include chlorine-containing olefin resins such as coalescence.
The olefin resin also includes a fluorine resin such as polytetrafluoroethylene, but such a fluorine-containing resin is difficult to form non-fibrous pores. Non-fluorinated olefinic resins, particularly high, medium or low density polyethylenes are preferred as exemplified above because bonding is also difficult (probably because the molecules are difficult to expand and contract), and the intrinsic viscosity [η ] Is most suitable for high-density polyethylene having a value exceeding 1.5 dl / g.

上述した多孔質オレフィン系樹脂層3,3は延伸されていることが必要であり、延伸方向はフィルムの倦回方向(フィルムの長さ方向、若しくは製膜時の原料樹脂吐出方向と同意。以下「MD」と略記することがある)とその垂直方向(フィルムの幅方向と同意。以下、「TD」と略記することがある。)に1軸或いは2軸延伸の何れであってもよいが、MD方向に少なくとも1.2倍以上、特に1.4倍以上の延伸倍率で延伸されていることが好ましく、TD方向には少なくとも1.2倍以上、特に1.5倍以上の延伸倍率で延伸されていることが好ましく、総延伸倍率は10倍以下が好ましい。延伸倍率が小さいと、後述する接合強度が低くなってしまうからである。   The porous olefin-based resin layers 3 and 3 described above need to be stretched, and the stretching direction agrees with the winding direction of the film (the length direction of the film or the direction of discharging the raw material resin during film formation. Although it may be abbreviated as “MD” and its vertical direction (which agrees with the width direction of the film; hereinafter, abbreviated as “TD”), it may be either uniaxial or biaxial stretching. It is preferably stretched at a stretch ratio of at least 1.2 times, particularly 1.4 times or more in the MD direction, and at a stretch ratio of at least 1.2 times, particularly 1.5 times or more in the TD direction. The film is preferably stretched, and the total stretching ratio is preferably 10 times or less. This is because if the draw ratio is small, the bonding strength described later will be low.

上述した多孔質オレフィン系樹脂層3,3から成り且つ延伸された積層構造の多孔質基材フィルム1は、例えば、フィルム成形用の前述したオレフィン系樹脂に細孔形成用の添加材(パラフィンや無機粉末など)が配合された樹脂組成物を用い、押出成形等により所定厚みのフィルムを成形し、次いでフィルムに配合されている添加材を、有機溶剤による抽出、酸またはアルカリによる溶解などによって除去した後、得られた未延伸の多孔質オレフィン系樹脂フィルムの所定枚数(図1では2枚)を重ね合わせて延伸することにより作製される。   The porous base film 1 having a laminated structure composed of the above-described porous olefin resin layers 3 and 3 is, for example, an additive for pore formation (paraffin or Using a resin composition containing an inorganic powder, etc., a film having a predetermined thickness is formed by extrusion molding or the like, and then the additive contained in the film is removed by extraction with an organic solvent, dissolution with an acid or alkali, etc. After that, a predetermined number (two in FIG. 1) of the obtained unstretched porous olefin resin film is overlaid and stretched.

上記において、延伸操作は、所定枚数の未延伸多孔質オレフィン系樹脂フィルムを重ね合わせた状態で行われ、ロールやテンター等を使い1軸方向或いは2軸方向に、所定の延伸倍率で延伸されるのに加えて、耐熱収縮性向上のため、熱固定又は、熱緩和等の熱処理を行うことが好ましい。
また、延伸及び熱固定又は、熱緩和等の熱処理は、当然融点未満の温度で行われるが、本発明においては、融点に近い温度領域で行うことが必要であり、特に融点−20℃以上、特に融点−15℃〜融点−1℃の温度範囲で行われるのが、良好な接合強度を得る上で好ましい。当該温度の選択によって良好な接合強度が得られる理由は明らかではないが以下の様に考えられる。即ち、このように融点に近い状態で重ね合わされることで多孔質オレフィン系樹脂フィルムの界面5でオレフィン系樹脂の分子が相互に界面内部に侵入する。ついで延伸操作によりオレフィン系樹脂の分子が引き延ばされ、絡み合いが生ずる。その後の冷却により、この絡み合いが固定され、高い接合強度で多孔質オレフィン系樹脂フィルム同士が接合し、前述した多孔質オレフィン系樹脂層3,3から成る積層構造の多孔質基材フィルム1が形成されることとなる。
多孔質基材フィルム1の膜厚は特に制限されるものではないが、通常、40〜250μmである。厚いイオン交換膜を自在に得るという観点からは、80〜250μmであるのが好ましい。
In the above, the stretching operation is performed in a state where a predetermined number of unstretched porous olefin resin films are overlapped, and stretched at a predetermined stretching ratio in a uniaxial direction or a biaxial direction using a roll, a tenter, or the like. In addition to this, it is preferable to perform heat setting such as heat fixation or heat relaxation in order to improve heat shrinkage resistance.
Further, heat treatment such as stretching and heat setting or heat relaxation is naturally performed at a temperature lower than the melting point, but in the present invention, it is necessary to perform in a temperature region close to the melting point, in particular, a melting point of −20 ° C. or more, In particular, it is preferable to carry out in the temperature range of -15 ° C to -1 ° C in order to obtain good bonding strength. The reason why good bonding strength can be obtained by selecting the temperature is not clear, but is considered as follows. That is, by overlapping in a state close to the melting point in this way, molecules of the olefin resin enter the inside of the interface at the interface 5 of the porous olefin resin film. Subsequently, the olefin resin molecules are stretched by the stretching operation, and entanglement occurs. Subsequent cooling fixes this entanglement, and the porous olefin resin films are bonded to each other with high bonding strength to form the porous base film 1 having a laminated structure composed of the porous olefin resin layers 3 and 3 described above. Will be.
The film thickness of the porous substrate film 1 is not particularly limited, but is usually 40 to 250 μm. From the viewpoint of freely obtaining a thick ion exchange membrane, it is preferably 80 to 250 μm.

このようにして形成される多孔質基材フィルム1において、多孔質オレフィン系樹脂層3,3の接合強度は、100gf/cm以上、700gf/cm未満、特に150〜550gf/cmと極めて高い。なお、本特許ではgf/cmの単位を用いるが、SI単位系を用いる場合はgf/cm=0.0098N/cmで換算を行う。
驚くべきことに、接合強度が100gf/cm以上、700gf/cm未満の範囲にあることによって、良好な単位厚さ当たりの破裂強度と膜抵抗を得ることが出来る。接合強度が上記の範囲で良好な単位厚さ当たりの破裂強度と膜抵抗を得られることは明らかではないが、以下のように考えられる。多孔質オレフィン系樹脂フィルムを面内に垂直な方向に加圧(プレス)することなく、融点に近い温度で重ね合わせ、延伸されることによって、多孔質オレフィン系樹脂フィルムの透気度を低く維持することが出来る。また、延伸を行う際に前述した界面部分での分子の絡み合いが生じることで、膜表面部分に比べ界面部分の孔径は緻密化し、それによって単位厚さ当たりの破膜強度も改善すると考えられる。結果的に面内に垂直な方向に加圧して積層した微多孔膜に比較して良好な破裂強度と膜抵抗を得ることが出来ると考えられる。また、多孔質オレフィン系樹脂層3,3の積層及び接合に際しては、融点以上に加熱されていないため、前述した多孔質オレフィン系樹脂フィルムに形成されている微細な細孔を閉塞されておらず、従って、この基材フィルム1の透気度は低く、100μm換算の透気度で500sec/100ml以下、特に100〜300sec/100mlの範囲にある。
In the porous base film 1 formed as described above, the bonding strength of the porous olefin resin layers 3 and 3 is extremely high as 100 gf / cm or more and less than 700 gf / cm, particularly 150 to 550 gf / cm. In this patent, the unit of gf / cm is used, but when the SI unit system is used, conversion is performed with gf / cm = 0.008 N / cm.
Surprisingly, when the bonding strength is in the range of 100 gf / cm or more and less than 700 gf / cm, good burst strength and membrane resistance per unit thickness can be obtained. Although it is not clear that a good burst strength per unit thickness and membrane resistance can be obtained when the bonding strength is in the above range, it is considered as follows. The porous olefin resin film is kept low in air permeability by being superposed and stretched at a temperature close to the melting point without pressing (pressing) the porous olefin resin film in a direction perpendicular to the surface. I can do it. Further, when the stretching is performed, the molecular entanglement at the interface portion described above is generated, so that the pore diameter of the interface portion becomes denser than that of the film surface portion, thereby improving the membrane breaking strength per unit thickness. As a result, it is considered that better burst strength and membrane resistance can be obtained as compared with a microporous membrane laminated by pressing in a direction perpendicular to the surface. In addition, when the porous olefin resin layers 3 and 3 are laminated and joined, the fine pores formed in the porous olefin resin film are not blocked because they are not heated above the melting point. Therefore, the air permeability of the base film 1 is low, and the air permeability in terms of 100 μm is 500 sec / 100 ml or less, particularly in the range of 100 to 300 sec / 100 ml.

<イオン交換膜>
本発明のイオン交換膜は、上記のようにして形成された多孔質基材フィルム1の空隙部(即ち、閉塞されていない細孔)にイオン交換樹脂が充填された構造を有するものであり、多孔質基材フィルム1の積層構造により高強度化がもたらされ、さらに、積層による高電気抵抗化に由来する膜特性の低下が有効に回避されている。
<Ion exchange membrane>
The ion exchange membrane of the present invention has a structure in which the void portion (that is, pores that are not closed) of the porous base film 1 formed as described above is filled with an ion exchange resin, The laminated structure of the porous substrate film 1 provides high strength, and further, the deterioration of the film characteristics resulting from high electrical resistance due to lamination is effectively avoided.

イオン交換樹脂;
多孔質基材フィルム1の細孔内に充填されるイオン交換樹脂は、公知のものでよく、例えば、炭化水素系又はフッ素系の樹脂に、イオン交換能を発現させるイオン交換基、具体的には、陽イオン交換基或いは陰イオン交換基を導入したものである。
Ion exchange resins;
The ion exchange resin filled in the pores of the porous substrate film 1 may be a known one, for example, an ion exchange group that allows the hydrocarbon-based or fluorine-based resin to exhibit an ion-exchange ability, specifically Are those into which a cation exchange group or an anion exchange group has been introduced.

前記炭化水素系の樹脂としては、スチレン系樹脂、アクリル系樹脂等が、また、フッ素系の材質としては、パーフルオロカーボン系樹脂等が挙げられる。
また、イオン交換基は、水溶液中で負又は正の電荷となり得る官能基であり、陽イオン交換基の場合には、スルホン酸基、カルボン酸基、ホスホン酸基等が挙げられ、一般的に、強酸性基であるスルホン酸基が好適である。また、陰イオン交換基の場合には、1〜3級アミノ基、4級アンモニウム基、ピリジル基、イミダゾール基、4級ピリジニウム基等が挙げられ、一般的に、強塩基性である4級アンモニウム基や4級ピリジニウム基が好適である。
Examples of the hydrocarbon resins include styrene resins and acrylic resins, and examples of the fluorine-based materials include perfluorocarbon resins.
The ion exchange group is a functional group that can be negatively or positively charged in an aqueous solution. In the case of a cation exchange group, examples thereof include a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group. A sulfonic acid group which is a strongly acidic group is preferred. In the case of an anion exchange group, examples thereof include primary to tertiary amino groups, quaternary ammonium groups, pyridyl groups, imidazole groups, and quaternary pyridinium groups. Groups and quaternary pyridinium groups are preferred.

上記のようなイオン交換基を有するイオン交換樹脂は、前述した多孔質基材フィルム1の空隙率や該イオン交換樹脂に導入されているイオン交換基の量に応じて適宜のイオン交換容量(例えば、0.1乃至4.0meq/g程度)となるような量でイオン交換膜中に存在する。   The ion exchange resin having an ion exchange group as described above has an appropriate ion exchange capacity (for example, depending on the porosity of the porous base film 1 described above and the amount of ion exchange groups introduced into the ion exchange resin (for example, , About 0.1 to 4.0 meq / g) in the ion exchange membrane.

<イオン交換膜の製造>
本発明において、上述した多孔質基材フィルム1を有するイオン交換膜は、イオン交換樹脂を形成するための重合性組成物を用意し(重合性組成物調製)、このような重合性組成物中に、多孔質基材フィルム1を浸漬することにより、該フィルム1中の細孔内に重合性組成物を充填し(重合性組成物の充填)、次いで、細孔内に充填された重合性組成物を重合し、更に必要に応じて、重合工程で得られた重合体(イオン交換樹脂前駆体)にイオン交換基を導入すること(イオン交換基導入工程)により製造される。
<Manufacture of ion exchange membrane>
In the present invention, the ion exchange membrane having the porous base film 1 described above prepares a polymerizable composition for forming an ion exchange resin (preparation of a polymerizable composition), and in such a polymerizable composition In addition, the porous base film 1 is dipped to fill the pores in the film 1 with the polymerizable composition (filling the polymerizable composition), and then the polymerizability filled in the pores. It is produced by polymerizing the composition and, if necessary, introducing ion exchange groups into the polymer (ion exchange resin precursor) obtained in the polymerization step (ion exchange group introduction step).

1.重合性組成物調製;
イオン交換基を形成するための重合性組成物は、上述したイオン交換基を導入し得る官能基(交換基導入用官能基)を有する単量体又はイオン交換基を有する単量体(以下、これらの単量体を「基本単量体成分」と呼ぶことがある)、架橋単量体及び重合開始剤を含有するものであり、これらの成分を混合することにより調製される。
1. Preparation of polymerizable composition;
The polymerizable composition for forming an ion exchange group is a monomer having an ion exchange group or a monomer having an ion exchange group (hereinafter referred to as a functional group for introducing an exchange group). These monomers are sometimes referred to as “basic monomer components”), contain a crosslinking monomer and a polymerization initiator, and are prepared by mixing these components.

交換基導入用官能基を有する単量体及びイオン交換基を有する単量体は、イオン交換樹脂を製造するために、従来から使用されているもので良い。   The monomer having a functional group for introducing an exchange group and the monomer having an ion exchange group may be those conventionally used for producing an ion exchange resin.

例えば、陽イオン交換基導入用官能基を有する単量体としては、スチレン、ビニルトルエン、ビニルキシレン、α−メチルスチレン、ビニルナフタレン、α−ハロゲン化スチレン類等を挙げることができる。
陰イオン交換基導入用官能基を有する単量体としては、スチレン、ブロモブチルスチレン、ビニルトルエン、クロロメチルスチレン、ビニルピリジン、ビニルイミダゾール、α−メチルスチレン、ビニルナフタレン等が挙げられる。
Examples of the monomer having a functional group for introducing a cation exchange group include styrene, vinyl toluene, vinyl xylene, α-methyl styrene, vinyl naphthalene, α-halogenated styrenes and the like.
Examples of the monomer having a functional group for introducing an anion exchange group include styrene, bromobutyl styrene, vinyl toluene, chloromethyl styrene, vinyl pyridine, vinyl imidazole, α-methyl styrene, vinyl naphthalene and the like.

陽イオン交換基を有する単量体としては、α−ハロゲン化ビニルスルホン酸、スチレンスルホン酸、ビニルスルホン酸等のスルホン酸系単量体、メタクリル酸、アクリル酸、無水マレイン酸等のカルボン酸系単量体、ビニルリン酸等のホスホン酸系単量体、それらの塩類およびエステル類等を挙げることができる。
また、陰イオン交換基を有する単量体としては、ビニルベンジルトリメチルアミン、[4−(4−ビニルフェニル)−メチル]−トリメチルアミン、ビニルベンジルトリエチルアミン等のアミン系単量体、ビニルピリジン、ビニルイミダゾール等の含窒素複素環系単量体、それらの塩類及びエステル類を挙げることができる。
Examples of the monomer having a cation exchange group include sulfonic acid monomers such as α-halogenated vinyl sulfonic acid, styrene sulfonic acid, and vinyl sulfonic acid, and carboxylic acid monomers such as methacrylic acid, acrylic acid, and maleic anhydride. Examples thereof include monomers, phosphonic acid monomers such as vinyl phosphoric acid, salts and esters thereof, and the like.
Examples of the monomer having an anion exchange group include amine monomers such as vinylbenzyltrimethylamine, [4- (4-vinylphenyl) -methyl] -trimethylamine, and vinylbenzyltriethylamine, vinylpyridine, vinylimidazole, and the like. And nitrogen-containing heterocyclic monomers, salts and esters thereof.

尚、上記のような単量体として、イオン交換基を有する単量体を用いた場合には、後述する重合工程が完了した段階で目的とするイオン交換膜が得られるが、イオン交換基導入用官能基を有する単量体を用いた場合には、重合工程後にイオン交換基導入工程を実施することにより、目的とするイオン交換膜を得ることができる。   In addition, when a monomer having an ion exchange group is used as the monomer as described above, a target ion exchange membrane can be obtained at the stage where the polymerization step described later is completed. When a monomer having a functional group for use is used, a target ion exchange membrane can be obtained by carrying out an ion exchange group introduction step after the polymerization step.

また、架橋性単量体は、イオン交換樹脂を緻密化し、膨潤抑止性や膜強度等を高めるために使用されるものであり、特に制限されるものでは無いが、例えば、ジビニルベンゼン、ジビニルスルホン、ブタジエン、クロロプレン、ジビニルビフェニル、トリビニルベンゼン類、ジビニルナフタリン、ジアリルアミン、ジビニルピリジン等のジビニル化合物が挙げられる。
このような架橋性単量体は、一般に、前述した基本単量体成分100重量部に対して、0.1〜50重量部が好ましく、さらに好ましくは1〜40重量部である。
The crosslinkable monomer is used to densify the ion exchange resin and enhance swelling suppression, membrane strength, etc., and is not particularly limited. For example, divinylbenzene, divinylsulfone , Divinyl compounds such as butadiene, chloroprene, divinylbiphenyl, trivinylbenzenes, divinylnaphthalene, diallylamine, and divinylpyridine.
Such a crosslinkable monomer is generally preferably 0.1 to 50 parts by weight, more preferably 1 to 40 parts by weight with respect to 100 parts by weight of the basic monomer component described above.

更に、上述した交換基導入用官能基を有する単量体、イオン交換基を有する単量体及び架橋性単量体の他に、必要に応じて、これらの単量体と共重合可能な他の単量体を添加しても良い。こうした他の単量体としては、例えば、スチレン、アクリロニトリル、メチルスチレン、アクロレイン、メチルビニルケトン、ビニルビフェニル等が用いられる。   Furthermore, in addition to the above-mentioned monomer having a functional group for introducing an exchange group, a monomer having an ion exchange group, and a crosslinkable monomer, other copolymerizable with these monomers as required. These monomers may be added. Examples of such other monomers include styrene, acrylonitrile, methylstyrene, acrolein, methyl vinyl ketone, and vinyl biphenyl.

重合開始剤としては、従来公知のものが特に制限されること無く使用される。具体的には、オクタノイルパーオキシド、ラウロイルパーオキシド、t−ブチルパーオキシ−2−エチルヘキサノエート、ベンゾイルパ−オキシド、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシラウレート、t−ヘキシルパーオキシベンゾエート、ジ−t−ブチルパーオキシド等の有機過酸化物が用いられる。
このような重合開始剤は、基本単量体成分100重量部に対して、0.1〜20重量部が好ましく、更に好ましくは0.5〜10重量部である。
As the polymerization initiator, conventionally known polymerization initiators are used without particular limitation. Specifically, octanoyl peroxide, lauroyl peroxide, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, t-butylperoxyisobutyrate, t-butylperoxylaurate, t- Organic peroxides such as hexyl peroxybenzoate and di-t-butyl peroxide are used.
Such a polymerization initiator is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the basic monomer component.

上述した各種成分を含有する重合性組成物には、粘度を調整するために、必要に応じてマトリックス樹脂を配合することもできる。
このようなマトリックス樹脂としては、例えば、エチレン−プロピレン共重合体、ポリブチレン等の飽和脂肪族炭化水素系ポリマー、スチレンーブタジエン共重合体等のスチレン系ポリマー、ポリ塩化ビニル、或いは、これらに、各種のコモノマー(例えばビニルトルエン、ビニルキシレン、クロロスチレン、クロロメチルスチレン、α−メチルスチレン、α−ハロゲン化スチレン、α,β,β´−トリハロゲン化スチレン等のスチレン系モノマーや、エチレン、ブチレン等のモノオレフィンや、ブタジエン、イソプレン等の共役ジオレフィンなど)を共重合させたものなどを使用することができる。
これらのマトリックス樹脂は、重合性組成物が、垂れ等を生じることなく、多孔質基材フィルム1の細孔内に速やかに充填保持し得るような粘度となるような量で使用される。
In order to adjust the viscosity, a matrix resin can be blended with the polymerizable composition containing the above-described various components as necessary.
Examples of such matrix resins include, for example, saturated aliphatic hydrocarbon polymers such as ethylene-propylene copolymers and polybutylene, styrene polymers such as styrene-butadiene copolymers, polyvinyl chloride, and various kinds thereof. Styrene monomers such as vinyltoluene, vinylxylene, chlorostyrene, chloromethylstyrene, α-methylstyrene, α-halogenated styrene, α, β, β'-trihalogenated styrene, ethylene, butylene, etc. Or a conjugated diolefin such as butadiene or isoprene) can be used.
These matrix resins are used in such an amount that the polymerizable composition has a viscosity that can be quickly filled and held in the pores of the porous substrate film 1 without causing dripping or the like.

2.重合性組成物の充填;
多孔質基材フィルム1の細孔内への充填は、例えば、前述した重合性組成物が充填された槽内に、該フィルム1を浸漬することで行われる。この浸漬によって、重合性組成物が多孔質基材フィルム1の細孔内に充填されたイオン交換膜前駆体が得られる。
勿論、浸漬の代わりに、スプレー塗布などによって重合性組成物の充填を行うこともできる。
2. Filling the polymerizable composition;
Filling into the pores of the porous substrate film 1 is performed, for example, by immersing the film 1 in a tank filled with the polymerizable composition described above. By this immersion, an ion exchange membrane precursor in which the polymerizable composition is filled in the pores of the porous substrate film 1 is obtained.
Of course, the polymerizable composition can be filled by spray coating or the like instead of dipping.

3.重合;
上記のようにして、多孔質基材フィルム1の細孔内に重合性組成物が充填されたイオン交換膜前駆体は、加熱オーブン等の重合装置内で加熱されて重合される。
基本単量体成分としてイオン交換基を有する単量体が使用されている場合には、この工程の完了により目的とするイオン交換膜が得られる。また、基本成分として、交換基導入用官能基を有する単量体を用いた場合には、この工程の完了後に、イオン交換基の導入が必要となる。
3. polymerization;
As described above, the ion exchange membrane precursor in which the polymerizable composition is filled in the pores of the porous substrate film 1 is heated and polymerized in a polymerization apparatus such as a heating oven.
When a monomer having an ion exchange group is used as the basic monomer component, the intended ion exchange membrane can be obtained by completing this step. When a monomer having a functional group for introducing an exchange group is used as a basic component, it is necessary to introduce an ion exchange group after completion of this step.

この重合工程では、一般に、重合性組成物が充填されたイオン交換膜前駆体をポリエステル等のフィルムに挟んで加圧下で常温から昇温する方法が採用される。加圧は、一般に0.1乃至1.0MPa程度の圧力で、窒素等の不活性ガスやロール等による加圧によって行われる。この加圧によって、フィルム1の外側界面に存在している余剰の重合性組成物が該フィルムの細孔内に押し込まれた状態で重合が行われ、樹脂溜りの発生などを効果的に防止することができる。
また、重合条件は、重合開始剤の種類、単量体の種類等によって左右されるものであ
り、公知の条件より適宜選択して決定すればよい。
In this polymerization step, generally, a method is adopted in which an ion exchange membrane precursor filled with a polymerizable composition is sandwiched between films of polyester or the like and heated from room temperature under pressure. The pressurization is generally performed at a pressure of about 0.1 to 1.0 MPa by pressurization with an inert gas such as nitrogen or a roll. By this pressurization, polymerization is performed in a state in which an excess polymerizable composition present at the outer interface of the film 1 is pushed into the pores of the film, thereby effectively preventing the occurrence of resin accumulation and the like. be able to.
Further, the polymerization conditions depend on the type of polymerization initiator, the type of monomer, and the like, and may be appropriately selected and determined from known conditions.

重合温度は、多孔質基材フィルム1を形成するオレフィン系樹脂の融点よりも低い温度とすればよく、一般に、ポリエチレンのフィルムの場合で40乃至130℃程度の範囲である。
尚、重合時間は、重合温度等によっても異なるが、一般には、3乃至20時間程度である。
The polymerization temperature may be a temperature lower than the melting point of the olefin resin forming the porous substrate film 1 and is generally in the range of about 40 to 130 ° C. in the case of a polyethylene film.
The polymerization time varies depending on the polymerization temperature and the like, but is generally about 3 to 20 hours.

4.イオン交換基導入;
先に述べたように、重合組成物中の基本単量体成分として、イオン交換基を有する単量体を用いた場合には、上記の重合工程によりイオン交換樹脂が形成され、この段階で目的とするイオン交換膜が得られるが、基本単量体成分として、交換基導入用官能基を有する単量体を用いた場合には、上記の重合工程で得られる樹脂にはイオン交換基を有していないため、重合工程後にイオン交換基の導入を行う必要がある。
4). Ion exchange group introduction;
As described above, when a monomer having an ion exchange group is used as a basic monomer component in the polymerization composition, an ion exchange resin is formed by the above polymerization process. However, when a monomer having a functional group for introducing an exchange group is used as a basic monomer component, the resin obtained in the above polymerization step has an ion exchange group. Therefore, it is necessary to introduce ion exchange groups after the polymerization step.

イオン交換基の導入は、それ自体公知の方法で行われ、例えば、陽イオン交換膜を製造する場合には、スルホン化、クロルスルホン化、ホスホニウム化、加水分解等の処理により行われ、陰イオン交換膜を製造する場合には、アミノ化、アルキル化等の処理により行われる。
以上により得られる本発明のイオン交換膜は、膜抵抗が同じであっても高い破裂強度を有すという特徴がある。一般に、厚さ1cm換算の膜抵抗で50〜300Ω・cm/cmを示し、厚さ1cm換算の破裂強度は30〜70MPa/cmである。
The introduction of the ion exchange group is carried out by a method known per se. For example, in the case of producing a cation exchange membrane, it is carried out by a treatment such as sulfonation, chlorosulfonation, phosphoniumation, hydrolysis, and the like. When producing an exchange membrane, it is carried out by a process such as amination or alkylation.
The ion exchange membrane of the present invention obtained as described above has a characteristic that it has a high burst strength even if the membrane resistance is the same. Generally, the film resistance in terms of thickness of 1 cm indicates 50 to 300 Ω · cm 2 / cm, and the burst strength in terms of thickness of 1 cm is 30 to 70 MPa / cm.

このようにして形成されたイオン交換膜は、適宜、適当な大きさに裁断されて、使用或いは販売に供される。
かかるイオン交換膜は、多孔質基材フィルム1の積層数に応じて強度が高く、しかも、該フィルム1の細孔の閉塞が有効に回避され、該基材フィルム1は高い透気度を示すため、この細孔内に充填されたイオン交換樹脂は、該基材フィルム1の表面から裏面に効果的に連続している部分を有しているため、その電気抵抗も低く、積層による高電気抵抗が抑制され、イオン交換特性も良好である。
The ion exchange membrane thus formed is appropriately cut into an appropriate size and used or sold.
Such an ion exchange membrane has a high strength depending on the number of laminated porous base film 1, and the blockage of pores of the film 1 is effectively avoided, and the base film 1 exhibits high air permeability. Therefore, since the ion exchange resin filled in the pores has a portion that is effectively continuous from the front surface to the back surface of the base film 1, its electric resistance is low, and high electric power by lamination Resistance is suppressed and ion exchange characteristics are also good.

本発明を、次の実験例で説明する。
尚、多孔質基材フィルムやイオン交換膜についての各種特性は、次の方法により測定した。
The invention is illustrated by the following experimental example.
Various characteristics of the porous substrate film and the ion exchange membrane were measured by the following methods.

1.多孔質基材フィルムの膜厚
東洋精機製の微少測厚器(タイプKBN(商標)、端子径Φ5mm、測定圧62.47kPa)を用いて、雰囲気温度23±2℃で測定する。
1. Film thickness of porous substrate film Using a micro thickness gauge (type KBN (trademark), terminal diameter Φ5 mm, measuring pressure 62.47 kPa) manufactured by Toyo Seiki, measurement is performed at an ambient temperature of 23 ± 2 ° C.

2.多孔質基材フィルムの膜融点
セイコー電子工業(株)製DSC−220Cを使用し測定した。多孔質基材フィルムを直径5mmの円形に打ち抜き、数枚重ね合わせて3mgとしたものを測定サンプルとして用いた。これを直径5mmのアルミ製オープンサンプルパンに敷き詰め、クランピングカバーを乗せサンプルシーラーでアルミパン内に固定した。窒素雰囲気下、昇温速度10℃/minで30℃から180℃までを測定し、融解吸熱曲線の極大となる温度を膜融点とした。融解曲線のピークが複数存在する場合はピーク面積が最も大きいピークの温度を膜融点とした。
2. Membrane melting point of porous substrate film Measured by using DSC-220C manufactured by Seiko Denshi Kogyo Co., Ltd. A porous substrate film was punched into a circle with a diameter of 5 mm, and several sheets were stacked to give 3 mg, which was used as a measurement sample. This was spread on an aluminum open sample pan having a diameter of 5 mm, and a clamping cover was placed thereon and fixed in the aluminum pan with a sample sealer. Under a nitrogen atmosphere, the temperature was increased from 30 ° C. to 180 ° C. at a rate of temperature increase of 10 ° C./min, and the temperature at which the melting endotherm curve was maximized was taken as the film melting point. When there were a plurality of melting curve peaks, the temperature of the peak with the largest peak area was taken as the film melting point.

3.多孔質基材フィルムの接合強度
25°C、65%相対湿度においてに幅15mm、長さ150mmで、予め接合面の一部を剥がしたサンプルを作成し、引張試験機(島津製作所製オートグラフAGS−X)にチャック間距離75mmでT状態にセットして500mm/分の速度で接合力を測定した。測定した接合力から以下の式により接合強度を求めた。
接合強度(gf/cm)=接合力(gf)/サンプル幅(cm)
3. Bonding strength of porous substrate film A sample with a part of the bonding surface peeled off in advance at a width of 15 mm and a length of 150 mm at 25 ° C. and 65% relative humidity was prepared, and a tensile tester (Autograph AGS manufactured by Shimadzu Corporation) was prepared. -X) was set in the T state at a chuck distance of 75 mm, and the bonding force was measured at a speed of 500 mm / min. The bonding strength was determined from the measured bonding force by the following formula.
Bonding strength (gf / cm) = bonding force (gf) / sample width (cm)

4.多孔質基材フィルムの透気度
JIS P−8117準拠のガーレー式透気度計を用いて測定した。なお、本明細書では透気抵抗度を透気度として表記している。この測定値を元に100μm厚みに換算し、透気度とする。
透気度(sec/100ml)=測定透気度(sec/100ml)×100(μm)/膜厚(μm)
4). The air permeability of the porous base film was measured using a Gurley type air permeability meter according to JIS P-8117. In this specification, the air resistance is expressed as air permeability. Based on this measured value, it is converted to a thickness of 100 μm to obtain the air permeability.
Air permeability (sec / 100 ml) = Measured air permeability (sec / 100 ml) × 100 (μm) / film thickness (μm)

5.多孔質基材フィルムの空隙率
Xcm×Ycmの矩形のサンプルを切り出し、下記(1)式により算出した。
空隙率(%)={1−(10000×M/ρ)/(X×Y×T)}×100 (1)
(1)式中、T:サンプル厚み(μm)、M:サンプル重量(g)、
ρ:樹脂の密度(g/cm
5. Porosity of porous substrate film A rectangular sample of Xcm × Ycm was cut out and calculated by the following equation (1).
Porosity (%) = {1− (10000 × M / ρ) / (X × Y × T)} × 100 (1)
(1) In the formula, T: sample thickness (μm), M: sample weight (g),
ρ: Resin density (g / cm 3 )

6.多孔質基材フィルムの平均細孔径
ASTM−F316−86に準拠し、ハーフドライ法にて測定した。
6). The average pore diameter of the porous base film was measured by a half dry method in accordance with ASTM-F316-86.

7.極限粘度[η]
[η]はASTM−D4020に基づき、溶剤としてデカリンを用い、測定温度135℃で測定した。
7). Intrinsic viscosity [η]
[η] was measured at a measurement temperature of 135 ° C. using decalin as a solvent based on ASTM-D4020.

8.イオン交換膜のイオン交換容量および含水率
イオン交換膜を1mol/l−HCl水溶液に10時間以上浸漬する。
その後、陽イオン交換膜の場合には、1mol/l−NaCl水溶液でイオン交換基の対イオンを水素イオンからナトリウムイオンに置換させ、遊離した水素イオンを水酸化ナトリウム水溶液を用いて電位差滴定装置(COMTITE−900、平沼産業株式会社製)で定量した(Amol)。一方、陰イオン交換膜の場合には、1mol/l−NaNO水溶液で対イオンを塩化物イオンから硝酸イオンに置換させ、遊離した塩化物イオンを硝酸銀水溶液を用いて電位差滴定装置(COMTITE−900、平沼産業株式会社製)で定量した(Amol)。
次に、同じイオン交換膜を1mol/l−NaCl水溶液に4時間以上浸漬し、イオン交換水で十分水洗した。その後ティッシュペーパーで表面の水分を拭き取り、湿潤時の膜の質量(Wg)を測定した。さらに、60℃で5時間減圧乾燥して乾燥時の重さ(Dg)を測定した。上記測定値に基づいて、イオン交換膜のイオン交換容量および含水率を次式により求めた。
イオン交換容量=A×1000/D[meq/g−乾燥質量]
含水率=100×(W−D)/D[%]
8). Ion exchange capacity and water content of the ion exchange membrane The ion exchange membrane is immersed in a 1 mol / l-HCl aqueous solution for 10 hours or more.
Thereafter, in the case of a cation exchange membrane, the counter ion of the ion exchange group is replaced with sodium ion from sodium ion with 1 mol / l-NaCl aqueous solution, and the liberated hydrogen ion is subjected to potentiometric titration using an aqueous sodium hydroxide solution ( COMMITITE-900, manufactured by Hiranuma Sangyo Co., Ltd.) (Amol). On the other hand, in the case of an anion exchange membrane, a counter ion is substituted from a chloride ion to a nitrate ion with a 1 mol / l-NaNO 3 aqueous solution, and the free chloride ion is converted into a potentiometric titrator (COMMITITE-900) using an aqueous silver nitrate solution. Quantified by Hiranuma Sangyo Co., Ltd. (Amol).
Next, the same ion exchange membrane was immersed in a 1 mol / l-NaCl aqueous solution for 4 hours or more, and sufficiently washed with ion exchange water. Thereafter, the moisture on the surface was wiped off with a tissue paper, and the mass (Wg) of the film when wet was measured. Furthermore, it dried under reduced pressure at 60 degreeC for 5 hours, and measured the weight (Dg) at the time of drying. Based on the measured values, the ion exchange capacity and water content of the ion exchange membrane were determined by the following equations.
Ion exchange capacity = A × 1000 / D [meq / g-dry mass]
Moisture content = 100 × (WD) / D [%]

9.イオン交換膜の厚さ
イオン交換膜を0.5mol/L−NaCl溶液に4時間以上浸漬した後、ティッシュペーパーで膜の表面の水分を拭き取り、マイクロモメ−タ
MED−25PJ(株式会社ミツトヨ社製)を用いて測定した。
9. Ion Exchange Membrane Thickness After immersing the ion exchange membrane in a 0.5 mol / L-NaCl solution for 4 hours or more, the surface of the membrane was wiped off with tissue paper, and the micrometer MED-25PJ (Mitutoyo Co., Ltd.) ).

10.イオン交換膜の単位厚さ当たり破裂強度:
イオン交換膜を0.5mol/L−NaCl水溶液に4時間以上浸漬し、イオン交換水で十分水洗した。次いで、膜を乾燥させることなく、ミューレン破裂試験機(東洋精機製)により、JIS−P8112に準拠して破裂強度を測定した。得られた測定値およびイオン交換膜の厚さから次式により単位厚さ当たり破裂強度を算出した。
単位厚さ当たり破裂強度(MPa/cm)=測定破裂強度(MPa)/膜厚(cm)
10. Burst strength per unit thickness of ion exchange membrane:
The ion exchange membrane was immersed in a 0.5 mol / L-NaCl aqueous solution for 4 hours or more and washed thoroughly with ion exchange water. Next, the burst strength was measured according to JIS-P8112 by using a Murren burst tester (manufactured by Toyo Seiki) without drying the membrane. The burst strength per unit thickness was calculated from the measured value obtained and the thickness of the ion exchange membrane according to the following formula.
Burst strength per unit thickness (MPa / cm) = measured burst strength (MPa) / film thickness (cm)

11.イオン交換膜の単位厚さ当たり膜抵抗
白金黒電極を有する2室セル中にイオン交換膜を挟み、イオン交換膜の両側に0.5mol/L−NaCl水溶液を満たし、交流ブリッジ(周波数1000サイクル/秒)により25℃における電極間の抵抗を測定し、該電極間抵抗とイオン交換膜を設置しない場合の電極間抵抗との差により膜抵抗を求めた。なお、上記測定に使用するイオン交換膜は、予め0.5mol/LNaCl水溶液中で平衡にしたものを用いた。
得られた膜抵抗およびイオン交換膜の厚さから次式により単位厚さ当たり膜抵抗を算出した。
単位厚さ当たり膜抵抗(Ω・cm/cm)=膜抵抗(Ω・cm)/膜の厚さ(cm)
11. Membrane resistance per unit thickness of ion exchange membrane An ion exchange membrane is sandwiched in a two-chamber cell having a platinum black electrode, 0.5 mol / L-NaCl aqueous solution is filled on both sides of the ion exchange membrane, and an AC bridge (frequency 1000 cycles / Second), the resistance between the electrodes at 25 ° C. was measured, and the membrane resistance was determined from the difference between the resistance between the electrodes and the resistance between the electrodes when no ion exchange membrane was installed. In addition, the ion exchange membrane used for the said measurement used what was previously equilibrated in 0.5 mol / L NaCl aqueous solution.
The membrane resistance per unit thickness was calculated from the obtained membrane resistance and the thickness of the ion exchange membrane by the following formula.
Film resistance per unit thickness (Ω · cm 2 / cm) = film resistance (Ω · cm 2 ) / film thickness (cm)

<製造例1>
極限粘度[η]が7.0dl/gの超高分子量ポリエチレン19.2重量%、極限粘度[η]が2.8dl/gの高密度ポリエチレン12.8重量%、フタル酸ジオクチル(D
OP)48重量%、微粉シリカ20重量%を混合造粒した後、先端にTダイを装着した2軸押出機にて溶融混練した後に押出し、両側から加熱したロールで圧延し、厚さ195μmのシート状に成形した。該成形物からDOP、微粉シリカを抽出除去し微多孔膜を作製した。該微多孔膜を2枚重ねて120℃で1.4倍MD方向に延伸した後、120℃でTD方向に1.9倍延伸し、最後に131℃にて熱処理して積層多孔質基材フィルムを得た。得られた積層多孔質基材フィルムの物性を表1に示す。
<Production Example 1>
Ultra-high molecular weight polyethylene having an intrinsic viscosity [η] of 7.0 dl / g 19.2% by weight, high-density polyethylene 12.8% by weight having an intrinsic viscosity [η] of 2.8 dl / g, dioctyl phthalate (D
OP) 48% by weight and 20% by weight of fine silica were mixed and granulated, then melt kneaded by a twin screw extruder equipped with a T-die at the tip, extruded, rolled with rolls heated from both sides, and a thickness of 195 μm Molded into a sheet. DOP and fine silica were extracted and removed from the molded product to prepare a microporous membrane. Two microporous membranes are stacked and stretched in the MD direction at 120 ° C. by 1.4 times, then 1.9 times in the TD direction at 120 ° C., and finally heat treated at 131 ° C. to obtain a laminated porous substrate. A film was obtained. Table 1 shows the physical properties of the obtained laminated porous substrate film.

<製造例2>
極限粘度[η]が7.0dl/gの超高分子量ポリエチレン19.2重量%、極限粘度[η]が2.8dl/gの高密度ポリエチレン12.8重量%、フタル酸ジオクチル(D
OP)48重量%、微粉シリカ20重量%を混合造粒した後、先端にTダイを装着した2軸押出機にて溶融混練した後に押出し、両側から加熱したロールで圧延し、厚さ170μmのシート状に成形した。該成形物からDOP、微粉シリカを抽出除去し微多孔膜を作製した。該微多孔膜を2枚重ねて120℃で1.4倍MD方向に延伸した後、120℃でTD方向に1.9倍延伸し、最後に129℃にて熱処理して積層多孔質基材フィルムを得た。得られた積層多孔質基材フィルムの物性を表1に示す。
<Production Example 2>
Ultra-high molecular weight polyethylene having an intrinsic viscosity [η] of 7.0 dl / g 19.2% by weight, high-density polyethylene 12.8% by weight having an intrinsic viscosity [η] of 2.8 dl / g, dioctyl phthalate (D
OP) 48% by weight and 20% by weight of fine silica were mixed and granulated, then melt kneaded by a twin screw extruder equipped with a T-die at the tip, extruded, rolled with rolls heated from both sides, and a thickness of 170 μm. Molded into a sheet. DOP and fine silica were extracted and removed from the molded product to prepare a microporous membrane. Two microporous membranes are stacked and stretched in the MD direction at 120 ° C. by 1.4 times, then 1.9 times in the TD direction at 120 ° C., and finally heat treated at 129 ° C. to form a laminated porous substrate. A film was obtained. Table 1 shows the physical properties of the obtained laminated porous substrate film.

<製造例3>
極限粘度[η]が7.0dl/gの超高分子量ポリエチレン19.2重量%、極限粘度[η]が2.8dl/gの高密度ポリエチレン12.8重量%、フタル酸ジオクチル(D
OP)48重量%、微粉シリカ20重量%を混合造粒した後、先端にTダイを装着した2軸押出機にて溶融混練した後に押出し、両側から加熱したロールで圧延し、厚さ190μmのシート状に成形した。該成形物からDOP、微粉シリカを抽出除去し、単層の多孔質基材フィルムを得た。得られた多孔質基材フィルムの物性を表1に示す。
<Production Example 3>
Ultra-high molecular weight polyethylene having an intrinsic viscosity [η] of 7.0 dl / g 19.2% by weight, high-density polyethylene 12.8% by weight having an intrinsic viscosity [η] of 2.8 dl / g, dioctyl phthalate (D
OP) 48% by weight and 20% by weight of fine silica were mixed and granulated, then melt kneaded by a twin screw extruder equipped with a T-die at the tip, extruded, rolled with a roll heated from both sides, and a thickness of 190 μm Molded into a sheet. DOP and fine silica were extracted and removed from the molded product to obtain a single layer porous substrate film. Table 1 shows the physical properties of the obtained porous substrate film.

<製造例4>
極限粘度[η]が7.0dl/gの超高分子量ポリエチレン19.2重量%、極限粘度[η]が2.8dl/gの高密度ポリエチレン12.8重量%、フタル酸ジオクチル(D
OP)48重量%、微粉シリカ20重量%を混合造粒した後、先端にTダイを装着した2軸押出機にて溶融混練した後に押出し、両側から加熱したロールで圧延し、厚さ210μmのシート状に成形した。該成形物からDOP、微粉シリカを抽出除去し、次いで、120℃でTD方向に1.9倍延伸し、最後に132℃にて熱処理して単層の多孔質基材フィルムを得た。得られた多孔質基材フィルムの物性を表1に示す。
<Production Example 4>
Ultra-high molecular weight polyethylene having an intrinsic viscosity [η] of 7.0 dl / g 19.2% by weight, high-density polyethylene 12.8% by weight having an intrinsic viscosity [η] of 2.8 dl / g, dioctyl phthalate (D
OP) 48% by weight and 20% by weight of fine silica were mixed and granulated, then melt kneaded by a twin screw extruder equipped with a T-die at the tip, extruded, rolled with a roll heated from both sides, and a thickness of 210 μm. Molded into a sheet. DOP and fine silica were extracted and removed from the molded article, then stretched 1.9 times in the TD direction at 120 ° C., and finally heat treated at 132 ° C. to obtain a single layer porous substrate film. Table 1 shows the physical properties of the obtained porous substrate film.

<製造例5>
製造例4で作成した単層の多孔質基材フィルムを2枚重ね、120℃で8.2kg/cmの圧力で5分間熱プレスした。得られた多孔質基材フィルムの物性を表1に示す。
<Production Example 5>
Two single-layer porous substrate films prepared in Production Example 4 were stacked and hot-pressed at 120 ° C. and a pressure of 8.2 kg / cm 2 for 5 minutes. Table 1 shows the physical properties of the obtained porous substrate film.

<製造例6>
製造例4で作成した単層の多孔質基材フィルムを2枚重ね、135℃で8.2kg/cmの圧力で5分間熱プレスした。得られた多孔質基材フィルムの物性を表1に示す。
<Production Example 6>
Two single-layer porous substrate films prepared in Production Example 4 were stacked and hot-pressed at 135 ° C. and a pressure of 8.2 kg / cm 2 for 5 minutes. Table 1 shows the physical properties of the obtained porous substrate film.

<製造例7>
製造例1において、延伸温度を137℃にし、最終熱処理温度を140℃にした以外は同様にして積層多孔質基材フィルムを得た。得られた積層多孔質基材フィルムの剥離強度を測定したところ、積層フィルム間は剥離せずフィルムが破断した。物性を表1に示す。
<Production Example 7>
A laminated porous substrate film was obtained in the same manner as in Production Example 1 except that the stretching temperature was 137 ° C and the final heat treatment temperature was 140 ° C. When the peel strength of the obtained laminated porous substrate film was measured, the laminated film was not peeled and the film was broken. The physical properties are shown in Table 1.

<製造例8>
極限粘度[η]が7.0dl/gの超高分子量ポリエチレン19.2重量%、極限粘度[η]が2.8dl/gの高密度ポリエチレン12.8重量%、フタル酸ジオクチル(D
OP)48重量%、微粉シリカ20重量%を混合造粒した後、先端にTダイを装着した2軸押出機にて溶融混練した後に押出し、両側から加熱したロールで圧延し、厚さ90μmのシート状に成形した。該成形物からDOP、微粉シリカを抽出除去し微多孔膜を作製した。該微多孔膜を2枚重ねて120℃で1.1倍MD方向に延伸した後、120℃でTD方向に1.1倍延伸し、最後に130℃にて熱処理して積層多孔質基材フィルムを得た。得られた積層多孔質基材フィルムの物性を表1に示す。
<Production Example 8>
Ultra-high molecular weight polyethylene having an intrinsic viscosity [η] of 7.0 dl / g 19.2% by weight, high-density polyethylene 12.8% by weight having an intrinsic viscosity [η] of 2.8 dl / g, dioctyl phthalate (D
OP) 48% by weight and 20% by weight of finely divided silica were mixed and granulated, then melt kneaded by a twin screw extruder equipped with a T-die at the tip, extruded, rolled with a roll heated from both sides, and a thickness of 90 μm. Molded into a sheet. DOP and fine silica were extracted and removed from the molded product to prepare a microporous membrane. Two microporous membranes are stacked and stretched 1.1 times in the MD direction at 120 ° C., then stretched 1.1 times in the TD direction at 120 ° C., and finally heat treated at 130 ° C. to form a laminated porous substrate. A film was obtained. Table 1 shows the physical properties of the obtained laminated porous substrate film.

<製造例9>
極限粘度[η]が7.0dl/gの超高分子量ポリエチレン19.2重量%、極限粘度[η]が2.8dl/gの高密度ポリエチレン12.8重量%、フタル酸ジオクチル(D
OP)48重量%、微粉シリカ20重量%を混合造粒した後、先端にTダイを装着した2軸押出機にて溶融混練した後に押出し、両側から加熱したロールで圧延し、厚さ290μmのシート状に成形した。該成形物からDOP、微粉シリカを抽出除去し微多孔膜を作製した。該微多孔膜を2枚重ねて120℃で2倍MD方向に延伸した後、120℃でTD方向に2倍延伸し、最後に132℃にて熱処理して積層多孔質基材フィルムを得た。得られた積層多孔質基材フィルムの物性を表1に示す。
<Production Example 9>
Ultra-high molecular weight polyethylene having an intrinsic viscosity [η] of 7.0 dl / g 19.2% by weight, high-density polyethylene 12.8% by weight having an intrinsic viscosity [η] of 2.8 dl / g, dioctyl phthalate (D
OP) 48% by weight and 20% by weight finely divided silica were mixed and granulated, then melt kneaded by a twin screw extruder equipped with a T-die at the tip, extruded, rolled with a roll heated from both sides, and a thickness of 290 μm. Molded into a sheet. DOP and fine silica were extracted and removed from the molded product to prepare a microporous membrane. Two of the microporous membranes were stacked and stretched in the MD direction twice at 120 ° C., then stretched twice in the TD direction at 120 ° C., and finally heat treated at 132 ° C. to obtain a laminated porous substrate film. . Table 1 shows the physical properties of the obtained laminated porous substrate film.

<製造例10>
極限粘度[η]が7.0dl/gの超高分子量ポリエチレン19.2重量%、極限粘度[η]が2.8dl/gの高密度ポリエチレン12.8重量%、フタル酸ジオクチル(D
OP)48重量%、微粉シリカ20重量%を混合造粒した後、先端にTダイを装着した2軸押出機にて溶融混練した後に押出し、両側から加熱したロールで圧延し、厚さ460μmのシート状に成形した。該成形物からDOP、微粉シリカを抽出除去し微多孔膜を作製した。該微多孔膜を2枚重ねて120℃で2.5倍MD方向に延伸した後、120℃でTD方向に2.5倍延伸し、最後に133℃にて熱処理して積層多孔質基材フィルムを得た。得られた積層多孔質基材フィルムの物性を表1に示す。
<Production Example 10>
Ultra-high molecular weight polyethylene having an intrinsic viscosity [η] of 7.0 dl / g 19.2% by weight, high-density polyethylene 12.8% by weight having an intrinsic viscosity [η] of 2.8 dl / g, dioctyl phthalate (D
OP) 48% by weight and 20% by weight of fine silica were mixed and granulated, then melt kneaded by a twin screw extruder equipped with a T-die at the tip, extruded, rolled with a roll heated from both sides, and a thickness of 460 μm. Molded into a sheet. DOP and fine silica were extracted and removed from the molded product to prepare a microporous membrane. Two microporous membranes are stacked and stretched 2.5 times in the MD direction at 120 ° C., then stretched 2.5 times in the TD direction at 120 ° C., and finally heat treated at 133 ° C. to form a laminated porous substrate. A film was obtained. Table 1 shows the physical properties of the obtained laminated porous substrate film.

<製造例11>
極限粘度[η]が7.0dl/gの超高分子量ポリエチレン19.2重量%、極限粘度[η]が2.8dl/gの高密度ポリエチレン12.8重量%、フタル酸ジオクチル(D
OP)48重量%、微粉シリカ20重量%を混合造粒した後、先端にTダイを装着した2軸押出機にて溶融混練した後に押出し、両側から加熱したロールで圧延し、厚さ660μmのシート状に成形した。該成形物からDOP、微粉シリカを抽出除去し微多孔膜を作製した。該微多孔膜を2枚重ねて120℃で3倍MD方向に延伸した後、120℃でTD方向に3倍延伸し、最後に134℃にて熱処理して積層多孔質基材フィルムを得た。得られた積層多孔質基材フィルムの物性を表1に示す。
<Production Example 11>
Ultra-high molecular weight polyethylene having an intrinsic viscosity [η] of 7.0 dl / g 19.2% by weight, high-density polyethylene 12.8% by weight having an intrinsic viscosity [η] of 2.8 dl / g, dioctyl phthalate (D
OP) 48% by weight and 20% by weight of fine silica were mixed and granulated, then melt kneaded by a twin screw extruder equipped with a T-die at the tip, extruded, rolled with a roll heated from both sides, and a thickness of 660 μm Molded into a sheet. DOP and fine silica were extracted and removed from the molded product to prepare a microporous membrane. Two microporous membranes were stacked and stretched 3 times in the MD direction at 120 ° C., then stretched 3 times in the TD direction at 120 ° C., and finally heat treated at 134 ° C. to obtain a laminated porous substrate film. . Table 1 shows the physical properties of the obtained laminated porous substrate film.

<製造例12>
極限粘度[η]が7.0dl/gの超高分子量ポリエチレン19.2重量%、極限粘度[η]が2.8dl/gの高密度ポリエチレン12.8重量%、フタル酸ジオクチル(D
OP)48重量%、微粉シリカ20重量%を混合造粒した後、先端にTダイを装着した2軸押出機にて溶融混練した後に押出し、両側から加熱したロールで圧延し、厚さ850μmのシート状に成形した。該成形物からDOP、微粉シリカを抽出除去し微多孔膜を作製した。該微多孔膜を2枚重ねて120℃で3.4倍MD方向に延伸した後、120℃でTD方向に3.4倍延伸し、最後に136℃にて熱処理して積層多孔質基材フィルムを得た。得られた積層多孔質基材フィルムの物性を表1に示す。
<Production Example 12>
Ultra-high molecular weight polyethylene having an intrinsic viscosity [η] of 7.0 dl / g 19.2% by weight, high-density polyethylene 12.8% by weight having an intrinsic viscosity [η] of 2.8 dl / g, dioctyl phthalate (D
OP) 48% by weight and 20% by weight of fine silica were mixed and granulated, then melt kneaded by a twin screw extruder equipped with a T-die at the tip, extruded, rolled with a roll heated from both sides, and a thickness of 850 μm. Molded into a sheet. DOP and fine silica were extracted and removed from the molded product to prepare a microporous membrane. Two microporous membranes are stacked and stretched 3.4 times in the MD direction at 120 ° C., then stretched 3.4 times in the TD direction at 120 ° C., and finally heat treated at 136 ° C. to form a laminated porous substrate. A film was obtained. Table 1 shows the physical properties of the obtained laminated porous substrate film.

<実施例1>
下記処方により、各成分を混合して重合性組成物を調製した。
スチレン 73.5質量部
p−クロルメチルスチレン 16.5質量部
アクリロニトリル 10.0質量部
アセチルクエン酸トリブチル 2.5質量部
スチレンオキサイド 2.9質量部
カヤブチルD
(ジ−t−ブチルパーオキシド、化薬アクゾ株式会社製) 1.9質量部
この重合性組成物の組成は、表2に示した。
この重合性組成物500gを1000mlのガラス容器に入れ、ここに基材シートとして前記製造例1で作製された多孔質基材フィルムを浸漬して、該フィルムの空隙部に重合体組成物を充填した。
上記の重合体組成物を充填した多孔質基材フィルムを取り出し、厚さ100μmのポリエステルフィルムを剥離材として多孔質基材フィルムの両側を被覆した後、0.4MPaの窒素加圧下、120℃で6.8時間加熱重合した。
<Example 1>
Each component was mixed according to the following formulation to prepare a polymerizable composition.
Styrene 73.5 parts by mass p-chloromethylstyrene 16.5 parts by mass Acrylonitrile 10.0 parts by mass Tributyl acetylcitrate 2.5 parts by mass Styrene oxide 2.9 parts by mass Kayabutyl D
(Di-t-butyl peroxide, manufactured by Kayaku Akzo Corporation) 1.9 parts by mass The composition of this polymerizable composition is shown in Table 2.
500 g of this polymerizable composition is put into a 1000 ml glass container, and the porous substrate film produced in Production Example 1 is immersed therein as a substrate sheet, and the polymer composition is filled in the voids of the film. did.
The porous base film filled with the above polymer composition was taken out, and both sides of the porous base film were coated with a polyester film having a thickness of 100 μm as a release material, and then at 120 ° C. under nitrogen pressure of 0.4 MPa. Polymerization was carried out by heating for 6.8 hours.

得られた膜状物を98%濃硫酸と純度90%以上のクロロスルホン酸の1:1(重量比)の混合物中に40℃で60分浸漬した。その後、膜状物を90%硫酸、60%硫酸、イ
オン交換水に順次浸漬し、さらに4mol/L−NaOH水溶液に12時間浸漬し、水洗することによりスルホン酸型陽イオン交換膜を得た。得られた陽イオン交換膜の特性を評価した結果を表3に示す。
The obtained film was immersed in a 1: 1 (weight ratio) mixture of 98% concentrated sulfuric acid and chlorosulfonic acid having a purity of 90% or more at 40 ° C. for 60 minutes. Thereafter, the membrane was immersed in 90% sulfuric acid, 60% sulfuric acid and ion-exchanged water successively, further immersed in a 4 mol / L-NaOH aqueous solution for 12 hours, and washed with water to obtain a sulfonic acid cation exchange membrane. Table 3 shows the results of evaluating the characteristics of the obtained cation exchange membrane.

<実施例2、3>
表2に示す基材シート、重合性組成物を用い、実施例1と同様にして本発明の陽イオン交換膜を作成した。得られた陽イオン交換膜の特性を評価した結果を表3に示す。
<Examples 2 and 3>
A cation exchange membrane of the present invention was prepared in the same manner as in Example 1 using the base sheet and the polymerizable composition shown in Table 2. Table 3 shows the results of evaluating the characteristics of the obtained cation exchange membrane.

<実施例4>
下記処方により、各成分を混合して重合性組成物を調製した。
p−クロロメチルスチレン 86.0質量部
ジビニルベンゼン(純度57%) 14.0質量部
スチレンオキサイド 4.0質量部
カヤブチルD
(ジ−t−ブチルパーオキシド、化薬アクゾ株式会社製) 4.0質量部
この重合性組成物の組成は表2に示した。
この重合性組成物500gを1000mlのガラス容器に入れ、ここに基材シートとして製造例1で作製された多孔質基材フィルムを浸漬して、該シートの空隙部に重合体組成物を充填した。
上記の重合体組成物を充填した多孔質基材フィルムを取り出し、厚さ100μmのポリエステルフィルムを剥離材として多孔質基材フィルムの両側を被覆した後、0.4MPaの窒素加圧下、80℃で5時間、さらにその後90℃で2時間加熱重合した。
<Example 4>
Each component was mixed according to the following formulation to prepare a polymerizable composition.
p-Chloromethylstyrene 86.0 parts by weight Divinylbenzene (purity 57%) 14.0 parts by weight Styrene oxide 4.0 parts by weight Kayabutyl D
(Di-t-butyl peroxide, manufactured by Kayaku Akzo Co., Ltd.) 4.0 parts by mass The composition of this polymerizable composition is shown in Table 2.
500 g of this polymerizable composition was placed in a 1000 ml glass container, and the porous substrate film produced in Production Example 1 was immersed therein as a substrate sheet, and the polymer composition was filled in the voids of the sheet. .
The porous base film filled with the polymer composition was taken out, covered on both sides of the porous base film using a 100 μm thick polyester film as a release material, and then at 80 ° C. under nitrogen pressure of 0.4 MPa. Polymerization was carried out for 5 hours and then at 90 ° C. for 2 hours.

得られた膜状物を30%トリメチルアミン水溶液15重量部、水52.5重量部、アセ
トン22.5重量部の混合物中に30℃で16時間浸漬して、4級アンモニウム型陰イオ
ン交換膜を得た。得られた陰イオン交換膜の特性を評価した結果を表3に示した。
The obtained film was immersed in a mixture of 15 parts by weight of 30% trimethylamine aqueous solution, 52.5 parts by weight of water and 22.5 parts by weight of acetone at 30 ° C. for 16 hours to form a quaternary ammonium type anion exchange membrane. Obtained. The results of evaluating the properties of the obtained anion exchange membrane are shown in Table 3.

<実施例5、6、7>
表2に示す基材シート、重合性組成物を用い、実施例1と同様にして本発明の陽イオン交換膜を作成した。得られた陽イオン交換膜の特性を評価した結果を表3に示す。
<Examples 5, 6, and 7>
A cation exchange membrane of the present invention was prepared in the same manner as in Example 1 using the base sheet and the polymerizable composition shown in Table 2. Table 3 shows the results of evaluating the characteristics of the obtained cation exchange membrane.

<比較例1>
製造例1の積層多孔質基材フィルムの代わりに、製造例3の単層多孔質基材フィルムを用いた以外は、実施例2と同様にして陽イオン交換膜を作成した。この陽イオン交換膜の作成に使用されている重合性組成物の組成を表2に示し、得られた陽イオン交換膜の特性を評価した結果を表3に示す。
<Comparative Example 1>
A cation exchange membrane was prepared in the same manner as in Example 2 except that the single-layer porous substrate film of Production Example 3 was used instead of the laminated porous substrate film of Production Example 1. Table 2 shows the composition of the polymerizable composition used in the preparation of the cation exchange membrane, and Table 3 shows the results of evaluating the characteristics of the obtained cation exchange membrane.

<比較例2>
製造例1の積層多孔質基材フィルムの代わりに、製造例3の単層多孔質基材フィルムを用いた以外は、実施例4と同様にして陰イオン交換膜を作成した。この陰イオン交換膜の作成に使用されている重合性組成物の組成を表2に示し、得られた陰イオン交換膜の特性を評価した結果を表3に示す。
<Comparative example 2>
An anion exchange membrane was prepared in the same manner as in Example 4 except that the single-layer porous substrate film of Production Example 3 was used instead of the laminated porous substrate film of Production Example 1. The composition of the polymerizable composition used for the production of this anion exchange membrane is shown in Table 2, and the results of evaluating the properties of the obtained anion exchange membrane are shown in Table 3.

<比較例3>
製造例1の積層多孔質基材フィルムの代わりに、製造例4の単層多孔質基材フィルムを用いた以外は、実施例2と同様にして陽イオン交換膜を作成した。この陽イオン交換膜の作成に使用されている重合性組成物の組成を表2に示し、得られた陽イオン交換膜の特性を評価した結果を表3に示す。
<Comparative Example 3>
A cation exchange membrane was prepared in the same manner as in Example 2 except that the single-layer porous substrate film of Production Example 4 was used instead of the laminated porous substrate film of Production Example 1. Table 2 shows the composition of the polymerizable composition used in the preparation of the cation exchange membrane, and Table 3 shows the results of evaluating the characteristics of the obtained cation exchange membrane.

<比較例4>
製造例1の積層多孔質基材フィルムの代わりに、製造例5で作成した積層した多孔質基材フィルムを用い、実施例2と同様にして陽イオン交換膜を作成したが、濃硫酸とクロロスルホン酸の混合物でスルホン化を実施した際に積層した多孔質基材フィルム同士が剥離し、所望の陽イオン交換膜を得ることができなかった。
<Comparative example 4>
A cation exchange membrane was prepared in the same manner as in Example 2 using the laminated porous substrate film prepared in Production Example 5 instead of the laminated porous substrate film of Production Example 1, but concentrated sulfuric acid and chloro When the sulfonation was carried out with a mixture of sulfonic acids, the laminated porous substrate films were peeled off, and a desired cation exchange membrane could not be obtained.

<比較例5>
製造例1の積層多孔質基材フィルムの代わりに、製造例6で作成した積層多孔質基材フィルムを用いた以外は、実施例2と同様にして陽イオン交換膜を作成した。この陽イオン交換膜の作成に使用されている重合性組成物の組成を表2に示し、得られた陽イオン交換膜の特性を評価した結果を表3に示す。
<Comparative Example 5>
A cation exchange membrane was prepared in the same manner as in Example 2 except that the laminated porous substrate film prepared in Production Example 6 was used instead of the laminated porous substrate film of Production Example 1. Table 2 shows the composition of the polymerizable composition used in the preparation of the cation exchange membrane, and Table 3 shows the results of evaluating the characteristics of the obtained cation exchange membrane.

<比較例6>
製造例1の積層多孔質基材フィルムの代わりに、製造例4で作成した単層多孔質基材フィルムを2枚重ねて基材シートとして用い、実施例2と同様にして陽イオン交換膜を作成したが、濃硫酸とクロロスルホン酸の混合物でスルホン化を実施した際に重ねた多孔質基材フィルム同士が剥離し、所望の陽イオン交換膜を得ることができなかった。
<Comparative Example 6>
Instead of the laminated porous substrate film of Production Example 1, two single-layer porous substrate films prepared in Production Example 4 were used as a substrate sheet by overlapping them, and a cation exchange membrane was prepared in the same manner as in Example 2. Although produced, when the sulfonation was carried out with a mixture of concentrated sulfuric acid and chlorosulfonic acid, the laminated porous substrate films were peeled off, and the desired cation exchange membrane could not be obtained.

<比較例7>
製造例1の積層多孔質基材フィルムの代わりに、製造例7の積層多孔質基材フィルムを用いた以外は、実施例2と同様にして陽イオン交換膜を作成した。この陽イオン交換膜の作成に使用されている重合性組成物の組成を表2に示し、得られた陽イオン交換膜の特性を評価した結果を表3に示す。
<Comparative Example 7>
A cation exchange membrane was prepared in the same manner as in Example 2 except that the laminated porous substrate film of Production Example 7 was used instead of the laminated porous substrate film of Production Example 1. Table 2 shows the composition of the polymerizable composition used in the preparation of the cation exchange membrane, and Table 3 shows the results of evaluating the characteristics of the obtained cation exchange membrane.

<比較例8>
製造例1の積層多孔質基材フィルムの代わりに、製造例8の積層多孔質基材フィルムを用いた以外は、実施例2と同様にして陽イオン交換膜を作成したが、濃硫酸とクロロスルホン酸の混合物でスルホン化を実施した際に重ねた多孔質基材フィルム同士が剥離し、所望の陽イオン交換膜を得ることができなかった。
<Comparative Example 8>
A cation exchange membrane was prepared in the same manner as in Example 2 except that the laminated porous substrate film of Production Example 8 was used instead of the laminated porous substrate film of Production Example 1, but concentrated sulfuric acid and chloro When the sulfonation was carried out with a mixture of sulfonic acids, the laminated porous substrate films were peeled off, and a desired cation exchange membrane could not be obtained.

<比較例9>
製造例1の積層多孔質基材フィルムの代わりに、製造例12の積層多孔質基材フィルムを用いた以外は、実施例2と同様にして陽イオン交換膜を作成した。この陽イオン交換膜の作成に使用されている重合性組成物の組成を表2に示し、得られた陽イオン交換膜の特性を評価した結果を表3に示す。
<Comparative Example 9>
A cation exchange membrane was prepared in the same manner as in Example 2 except that the laminated porous substrate film of Production Example 12 was used instead of the laminated porous substrate film of Production Example 1. Table 2 shows the composition of the polymerizable composition used in the preparation of the cation exchange membrane, and Table 3 shows the results of evaluating the characteristics of the obtained cation exchange membrane.

1:多孔質基材フィルム
3:多孔質オレフィン系樹脂層
1: Porous base film 3: Porous olefin resin layer

従って、本発明の目的は、基材フィルムが互いに接合された多孔性樹脂フィルムでありながら、透気度が低く、従って、基材シートの積層化による高電気抵抗化が有効に抑制されたイオン交換膜を提供することにある。
Accordingly, an object of the present invention is to provide an ion in which the base film is a porous resin film bonded to each other, but has a low air permeability, and therefore, the high electrical resistance due to the lamination of the base sheet is effectively suppressed. It is to provide an exchange membrane .

本発明によれば、多孔質基材フィルムの空隙部にイオン交換樹脂が充填されているイオン交換膜において、
前記多孔質基材フィルムは、少なくとも2層の多孔質オレフィン系樹脂層が100gf/cm以上、700gf/cm未満の接合強度で積層された構造を有しており、該多孔質基材フィルムの膜厚が40〜250μmであり且つ100μm厚さ換算の透気度が500sec/100ml以下であると共に、
該イオン交換膜は、厚さ1cm換算の膜抵抗が50〜300Ω・cm /cmであり、厚さ1cm換算の破裂強度が30〜70MPa/cmであることを特徴とするイオン交換膜が提供される。
According to the present invention, in the ion exchange membrane in which the void portion of the porous base film is filled with an ion exchange resin,
The porous substrate film has a structure in which at least two porous olefin resin layers are laminated with a bonding strength of 100 gf / cm or more and less than 700 gf / cm, and the film of the porous substrate film The thickness is 40 to 250 μm and the air permeability in terms of 100 μm thickness is 500 sec / 100 ml or less ,
The ion exchange membrane has an ion exchange membrane characterized by having a membrane resistance in terms of thickness of 1 cm of 50 to 300 Ω · cm 2 / cm and a burst strength in terms of thickness of 1 cm of 30 to 70 MPa / cm. Is done.

本発明の上記イオン交換膜は、
少なくとも2枚の多孔質オレフィン系樹脂フィルムを用意する工程;
前記複数枚の多孔質オレフィン系樹脂フィルムを重ね合わせ、融点−20℃以上、融点未満の温度に加熱して延伸成形することにより積層構造を有する前記多孔質基材フィルムを作製する工程;
前記多孔質基材フィルムをイオン交換樹脂形成用の重合性組成物に浸漬して、該フィルムの空隙に該重合性組成物が充填されたイオン交換膜前駆体を作製する工程;
前記イオン交換膜前駆体内の前記重合性組成物を重合せしめる工程;
を含む方法によって製造される。
The ion exchange membrane of the present invention is
Providing at least two porous olefin-based resin films;
A step of producing the porous substrate film having a laminated structure by superposing the plurality of porous olefin-based resin films, heating to a temperature of -20 ° C. or higher and lower than the melting point, and stretching and molding;
A step of immersing the porous substrate film in a polymerizable composition for forming an ion exchange resin to produce an ion exchange membrane precursor in which voids of the film are filled with the polymerizable composition;
Polymerizing the polymerizable composition in the ion exchange membrane precursor;
Manufactured by a method comprising:

上記の製造方法においては、
(1)前記複数枚の多孔質オレフィン系樹脂フィルムは、何れも20〜60%の空隙率を有していること、
が好適であり、さらに、
(2)前記イオン交換樹脂形成用の重合性組成物として、イオン交換基を有する単量体を含有しているものを使用し、前記重合により、イオン交換樹脂が形成されること、
或いは、
(3)前記イオン交換樹脂形成用の重合性組成物として、イオン交換基を導入し得る官能基を有する単量体を含有するものを使用し、前記重合後に、イオン交換基の導入を行うこと、
という手段を採用することができる。
In the above manufacturing method ,
(1) Each of the plurality of porous olefin-based resin films has a porosity of 20 to 60%,
Is preferred, and
(2) As the polymerizable composition for forming the ion exchange resin, a composition containing a monomer having an ion exchange group is used, and the ion exchange resin is formed by the polymerization.
Or
(3) As the polymerizable composition for forming the ion exchange resin, a composition containing a monomer having a functional group capable of introducing an ion exchange group is used, and the ion exchange group is introduced after the polymerization. ,
The following means can be adopted.

上記において、延伸操作は、所定枚数の未延伸多孔質オレフィン系樹脂フィルムを重ね合わせた状態で行われ、ロールやテンター等を使い1軸方向或いは2軸方向に、所定の延伸倍率で延伸されるのに加えて、耐熱収縮性向上のため、熱固定又は、熱緩和等の熱処理を行うことが好ましい。
また、延伸及び熱固定又は、熱緩和等の熱処理は、当然融点未満の温度で行われるが、本発明においては、融点に近い温度領域で行うことが必要であり、特に融点−20℃以上、特に融点−15℃〜融点−1℃の温度範囲で行われるのが、良好な接合強度を得る上で好ましい。当該温度の選択によって良好な接合強度が得られる理由は明らかではないが以下の様に考えられる。即ち、このように融点に近い状態で重ね合わされることで多孔質オレフィン系樹脂フィルムの界面5でオレフィン系樹脂の分子が相互に界面内部に侵入する。ついで延伸操作によりオレフィン系樹脂の分子が引き延ばされ、絡み合いが生ずる。その後の冷却により、この絡み合いが固定され、高い接合強度で多孔質オレフィン系樹脂フィルム同士が接合し、前述した多孔質オレフィン系樹脂層3,3から成る積層構造の多孔質基材フィルム1が形成されることとなる。
本発明の多孔質基材フィルム1の膜厚は40〜250μmの範囲にあるが、厚いイオン交換膜を自在に得るという観点からは、80〜250μmであるのが好ましい。
In the above, the stretching operation is performed in a state where a predetermined number of unstretched porous olefin resin films are overlapped, and stretched at a predetermined stretching ratio in a uniaxial direction or a biaxial direction using a roll, a tenter, or the like. In addition to this, it is preferable to perform heat setting such as heat fixation or heat relaxation in order to improve heat shrinkage resistance.
Further, heat treatment such as stretching and heat setting or heat relaxation is naturally performed at a temperature lower than the melting point, but in the present invention, it is necessary to perform in a temperature region close to the melting point, in particular, a melting point of −20 ° C. or more, In particular, it is preferable to carry out in the temperature range of -15 ° C to -1 ° C in order to obtain good bonding strength. The reason why good bonding strength can be obtained by selecting the temperature is not clear, but is considered as follows. That is, by overlapping in a state close to the melting point in this way, molecules of the olefin resin enter the inside of the interface at the interface 5 of the porous olefin resin film. Subsequently, the olefin resin molecules are stretched by the stretching operation, and entanglement occurs. Subsequent cooling fixes this entanglement, and the porous olefin resin films are bonded to each other with high bonding strength to form the porous base film 1 having a laminated structure composed of the porous olefin resin layers 3 and 3 described above. Will be.
The film thickness of the porous substrate film 1 of the present invention is in the range of 40 to 250 μm, but from the viewpoint of freely obtaining a thick ion exchange membrane, it is preferably 80 to 250 μm.

イオン交換基の導入は、それ自体公知の方法で行われ、例えば、陽イオン交換膜を製造する場合には、スルホン化、クロルスルホン化、ホスホニウム化、加水分解等の処理により行われ、陰イオン交換膜を製造する場合には、アミノ化、アルキル化等の処理により行われる。
以上により得られる本発明のイオン交換膜は、膜抵抗が同じであっても高い破裂強度を有すという特徴を有しており、厚さ1cm換算の膜抵抗で50〜300Ω・cm/cmを示し、厚さ1cm換算の破裂強度は30〜70MPa/cmである。
The introduction of the ion exchange group is carried out by a method known per se. For example, in the case of producing a cation exchange membrane, it is carried out by a treatment such as sulfonation, chlorosulfonation, phosphoniumation, hydrolysis, and the like. When producing an exchange membrane, it is carried out by a process such as amination or alkylation.
The ion exchange membrane of the present invention obtained as described above has a characteristic that it has a high burst strength even when the membrane resistance is the same, and the membrane resistance in terms of thickness of 1 cm is 50 to 300 Ω · cm 2 / cm. The burst strength in terms of 1 cm thickness is 30 to 70 MPa / cm.

Claims (1)

多孔質基材フィルムの空隙部にイオン交換樹脂が充填されているイオン交換膜において、該多孔質基材フィルムは、少なくとも2層の多孔質オレフィン系樹脂層が100gf/cm以上、700gf/cm未満の接合強度で積層された構造を有しており、且つ100μm厚さ換算の透気度が500sec/100ml以下を有していることを特徴とするイオン交換膜。   In the ion exchange membrane in which the void portion of the porous substrate film is filled with an ion exchange resin, the porous substrate film has at least two porous olefin-based resin layers of 100 gf / cm or more and less than 700 gf / cm. An ion exchange membrane characterized by having a laminated structure with a bonding strength of 100 μm and an air permeability of 100 μm thickness or less of 500 sec / 100 ml.
JP2018106980A 2018-06-04 2018-06-04 Ion exchange membrane Active JP6517404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018106980A JP6517404B2 (en) 2018-06-04 2018-06-04 Ion exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018106980A JP6517404B2 (en) 2018-06-04 2018-06-04 Ion exchange membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014150413A Division JP6434732B2 (en) 2014-07-24 2014-07-24 Production method of ion exchange membrane

Publications (2)

Publication Number Publication Date
JP2018183997A true JP2018183997A (en) 2018-11-22
JP6517404B2 JP6517404B2 (en) 2019-05-22

Family

ID=64356893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018106980A Active JP6517404B2 (en) 2018-06-04 2018-06-04 Ion exchange membrane

Country Status (1)

Country Link
JP (1) JP6517404B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63503074A (en) * 1986-04-07 1988-11-10 サイマット・リミテッド composite membrane
JPS6422932A (en) * 1987-07-20 1989-01-25 Toa Nenryo Kogyo Kk Electrolytic thin film
JPH11322989A (en) * 1998-05-19 1999-11-26 Asahi Chem Ind Co Ltd Polyolefin-made microporous film for battery separator
WO2004020511A1 (en) * 2002-08-28 2004-03-11 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane and method of evaluating the same
JP2008004500A (en) * 2006-06-26 2008-01-10 Toyota Motor Corp Porous membrane for fuel cell electrolyte membrane and its manufacturing method
WO2008120675A1 (en) * 2007-03-30 2008-10-09 Tokuyama Corporation Diaphragm for direct liquid fuel cell and method for producing the same
JP2009039694A (en) * 2007-08-10 2009-02-26 Astom:Kk Bipolar membrane and its manufacturing method
JP2009096923A (en) * 2007-10-18 2009-05-07 Solt Industry Center Of Japan Cation exchange membrane and method for production thereof
JP2012021099A (en) * 2010-07-15 2012-02-02 Astom:Kk Method for manufacturing ion exchange membrane
JP2012207095A (en) * 2011-03-29 2012-10-25 Astom:Kk Ion-exchange membrane
US20130299060A1 (en) * 2012-05-11 2013-11-14 Entire Technology Co., Ltd. Manufacturing method of porous composite film

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63503074A (en) * 1986-04-07 1988-11-10 サイマット・リミテッド composite membrane
JPS6422932A (en) * 1987-07-20 1989-01-25 Toa Nenryo Kogyo Kk Electrolytic thin film
JPH11322989A (en) * 1998-05-19 1999-11-26 Asahi Chem Ind Co Ltd Polyolefin-made microporous film for battery separator
WO2004020511A1 (en) * 2002-08-28 2004-03-11 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane and method of evaluating the same
JP2008004500A (en) * 2006-06-26 2008-01-10 Toyota Motor Corp Porous membrane for fuel cell electrolyte membrane and its manufacturing method
WO2008120675A1 (en) * 2007-03-30 2008-10-09 Tokuyama Corporation Diaphragm for direct liquid fuel cell and method for producing the same
JP2009039694A (en) * 2007-08-10 2009-02-26 Astom:Kk Bipolar membrane and its manufacturing method
JP2009096923A (en) * 2007-10-18 2009-05-07 Solt Industry Center Of Japan Cation exchange membrane and method for production thereof
JP2012021099A (en) * 2010-07-15 2012-02-02 Astom:Kk Method for manufacturing ion exchange membrane
JP2012207095A (en) * 2011-03-29 2012-10-25 Astom:Kk Ion-exchange membrane
US20130299060A1 (en) * 2012-05-11 2013-11-14 Entire Technology Co., Ltd. Manufacturing method of porous composite film

Also Published As

Publication number Publication date
JP6517404B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
JP4979824B1 (en) Ion exchange membrane
JP6434732B2 (en) Production method of ion exchange membrane
CN109071852B (en) Bipolar membrane
TWI532596B (en) Ion-exchange membrane and process for producing the same
JP5207569B2 (en) Lithium battery separator
JP7262741B2 (en) bipolar membrane
JP5436357B2 (en) Production method of ion exchange membrane
JP6517404B2 (en) Ion exchange membrane
JP2018127506A (en) Ion-exchange membrane for water electrolysis, and method for manufacturing the ion-exchange membrane
CN115335440A (en) Cation exchange membrane and method for producing same
JP4950539B2 (en) Diaphragm for direct liquid fuel cell
JP4979825B1 (en) Production method of ion exchange membrane
CN115298249A (en) Anion exchange membrane and method for producing same
CN111211275B (en) Partially crosslinked composite polyethylene lithium battery diaphragm and preparation method thereof
JP5850764B2 (en) Method for producing ion exchange membrane using long porous thermoplastic resin film
JP2023081116A (en) Composite membrane
JP2009039694A (en) Bipolar membrane and its manufacturing method
JPS6026414B2 (en) Novel ion exchange membrane manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190417

R150 Certificate of patent or registration of utility model

Ref document number: 6517404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250