JP2018181870A - Power generation element - Google Patents

Power generation element Download PDF

Info

Publication number
JP2018181870A
JP2018181870A JP2017073568A JP2017073568A JP2018181870A JP 2018181870 A JP2018181870 A JP 2018181870A JP 2017073568 A JP2017073568 A JP 2017073568A JP 2017073568 A JP2017073568 A JP 2017073568A JP 2018181870 A JP2018181870 A JP 2018181870A
Authority
JP
Japan
Prior art keywords
power generation
piezoelectric body
generation element
compensation layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017073568A
Other languages
Japanese (ja)
Other versions
JP6858370B2 (en
Inventor
亮平 武井
Ryohei Takei
亮平 武井
なつみ 牧本
Natsumi Makimoto
なつみ 牧本
小林 健
Takeshi Kobayashi
健 小林
竜夫 田原
Tatsuo Tawara
竜夫 田原
秋山 守人
Morihito Akiyama
守人 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017073568A priority Critical patent/JP6858370B2/en
Publication of JP2018181870A publication Critical patent/JP2018181870A/en
Application granted granted Critical
Publication of JP6858370B2 publication Critical patent/JP6858370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generation element capable of obtaining a large power generation amount by compensating excessive compressive stress of a piezoelectric body and inducing strain in a piezoelectric body efficiently/effectively against external vibration.SOLUTION: A power generation element according to the present invention has a cantilever structure including a beam portion and a weight portion, and the beam portion includes (a) a piezoelectric body sandwiched between two electrode layers laminated on a substrate, (b) at least one stress compensation layer in contact with at least one of the upper surface of an upper electrode layer and the lower surface of a lower electrode layer, or (c) at least one stress compensation layer in contact with at least one of the lower surface and the upper surface of the piezoelectric body.SELECTED DRAWING: Figure 1

Description

本発明は、発電素子に関し、より具体的には、片持ち梁構造を有する振動発電素子に関する。   The present invention relates to a power generation device, and more particularly to a vibration power generation device having a cantilever structure.

圧電体を備える片持ち梁構造により、振動エネルギーを電力エネルギーに変換する振動発電素子がある。この片持ち梁構造は、錘と梁、及び2つの金属に挟まれた圧電体からなる。この振動発電素子として、半導体のMEMS(Micro Electro Mechanical Systems)技術を用いて作製される片持ち梁が広く利用される。さらに、圧電体として高い圧電係数を有するスカンジウム窒化アルミニウム(ScAlN)を用いることが提案されている(特許文献1)。   There is a vibration power generation element that converts vibration energy into electric power energy by a cantilever structure including a piezoelectric body. This cantilever structure consists of a weight and a beam, and a piezoelectric material sandwiched between two metals. As this vibration power generation element, a cantilever beam manufactured using a semiconductor MEMS (Micro Electro Mechanical Systems) technology is widely used. Furthermore, it has been proposed to use scandium aluminum nitride (ScAlN) having a high piezoelectric coefficient as a piezoelectric body (Patent Document 1).

ScAlNは本質的に極めて大きな圧縮応力を有する材料であり、片持ち梁の梁上にScAlNを配置すると、ScAlNの圧縮応力により片持ち梁が下方向に大きく下方向に垂れ下がってしまう。変形した片持ち梁に対して上下方向に加振された場合に、錘が感じる慣性力は垂れ下がり角度に依存して小さくなり、得られる発電量が小さくなる。加えて、大きな応力は、片持ち梁の製造における歩留まり低下の原因となり、製造コストが上昇するといった課題がある。   ScAlN is essentially a material having a very large compressive stress, and when ScAlN is placed on a cantilever beam, the compressive stress of ScAlN causes the cantilever to sag greatly downward and downward. When the cantilever is vibrated in the vertical direction with respect to the deformed cantilever, the inertial force felt by the weight becomes smaller depending on the drooping angle, and the amount of power generation obtained becomes smaller. In addition, a large stress causes a reduction in yield in the manufacture of a cantilever beam, and there is a problem that the manufacturing cost increases.

特許第5190841号公報Patent No. 5190841 gazette

本発明は、圧電体が有する過度な圧縮応力を補償し、加振に対して効率的/効果的に圧電体に歪を誘起させることにより大きな発電量を得ることが可能な発電素子を提供することを目的とする。   The present invention provides a power generation element capable of obtaining a large amount of power generation by compensating for excessive compressive stress of a piezoelectric body and efficiently / effectively inducing distortion in a piezoelectric body against vibration. The purpose is

本発明の他の一態様では、梁部と錘部を含む片持ち梁構造を有し、梁部は、基板上に積層された2つの電極層で挟まれた圧電体と、上側の電極層の上面及び下側の電極層の下面の少なくとも一方に接する少なくとも1つの応力補償層とを含む、発電素子を提供する。   Another embodiment of the present invention has a cantilever structure including a beam portion and a weight portion, and the beam portion is formed of a piezoelectric material sandwiched by two electrode layers stacked on a substrate, and an upper electrode layer And a stress compensation layer in contact with at least one of the upper surface and the lower surface of the lower electrode layer.

本発明の一態様では、梁部と錘部を含む片持ち梁構造を有し、梁部は、基板上に積層された2つの電極層で挟まれた圧電体と、圧電体の下面及び上面の少なくとも一方に接する少なくとも1つの応力補償層とを含む、発電素子を提供する。   One aspect of the present invention has a cantilever structure including a beam portion and a weight portion, and the beam portion includes a piezoelectric body sandwiched by two electrode layers stacked on a substrate, and a lower surface and an upper surface of the piezoelectric body And at least one stress compensation layer in contact with at least one of the two.

本発明の一実施形態の発電素子の構成を示す断面図である。It is sectional drawing which shows the structure of the electric power generation element of one Embodiment of this invention. 本発明の一実施形態の発電素子の梁部の層構成を示す断面図である。It is sectional drawing which shows the laminated constitution of the beam part of the electric power generation element of one Embodiment of this invention. 本発明の一実施形態の発電素子の梁部の層構成を示す断面図である。It is sectional drawing which shows the laminated constitution of the beam part of the electric power generation element of one Embodiment of this invention. 本発明の一実施形態の発電素子の梁部の層構成を示す断面図である。It is sectional drawing which shows the laminated constitution of the beam part of the electric power generation element of one Embodiment of this invention. 本発明の一実施形態の発電素子の梁部の層構成を示す断面図である。It is sectional drawing which shows the laminated constitution of the beam part of the electric power generation element of one Embodiment of this invention. 本発明の一実施形態の発電素子の梁部の層構成を示す断面図である。It is sectional drawing which shows the laminated constitution of the beam part of the electric power generation element of one Embodiment of this invention. 従来の発電素子の外観(a)と本発明の一実施例の発電素子の外観(b)を示す断面図である。It is sectional drawing which shows the external appearance (a) of the conventional electric power generation element, and the external appearance (b) of the electric power generation element of one Example of this invention. 本発明の一実施例の発電素子の梁部の層構成を示す断面図である。It is sectional drawing which shows the laminated constitution of the beam part of the electric power generation element of one Example of this invention.

図面を参照しながら本発明の実施形態について説明する。図1は、本発明の一実施形態の発電素子100の構成を示す断面図である。発電素子100は、基部(支点部)1から延びる片持ち梁(カンチレバー)構造を有する。片持ち梁構造は、梁部2と錘部3を含む。梁部2と錘部3は、例えば1つのSi基板あるいはSOI基板を用いて作ることができる。その際、梁部2は基板を異方性エッチング等により薄くして利用し、錘部3は基板の厚さをそのまま、あるいは所定の厚さにして利用することができる。いずれも従来からある半導体の加工プロセス(MEMS技術)を用いて製造することができる。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing the configuration of a power generation element 100 according to an embodiment of the present invention. The power generation element 100 has a cantilever (cantilever) structure extending from the base (fulcrum portion) 1. The cantilever structure includes a beam 2 and a weight 3. The beam portion 2 and the weight portion 3 can be produced using, for example, one Si substrate or SOI substrate. At that time, the beam portion 2 can be used by thinning the substrate by anisotropic etching or the like, and the weight portion 3 can be used with the thickness of the substrate as it is or with a predetermined thickness. All can be manufactured using a conventional semiconductor processing process (MEMS technology).

図2から図6は、図1の一実施形態の発電素子100の梁部2のA−A断面の多層構成の例を示す図である。図2から図6の多層構成は、梁部2の全体あるいは少なくとも所定の範囲以上に設けることができる。なお、発電量を増やすことを考慮すると、多層構成は梁部2のほぼ全体に設けることが望ましい。   FIGS. 2 to 6 are diagrams showing an example of the multilayer configuration of the cross section A-A of the beam portion 2 of the power generation element 100 according to the embodiment of FIG. 1. The multilayer structure of FIGS. 2 to 6 can be provided over the entire beam portion 2 or at least a predetermined range or more. In addition, in consideration of increasing the amount of power generation, it is desirable to provide the multi-layer structure in almost the entire beam portion 2.

図2から図6では、基板20としてSi基板、2つの電極層21、21として白金(Pt)、圧電体23としてスカンジウム窒化アルミニウム(ScAlN)、応力補償層24として窒化アルミニウム(AlN)、絶縁層25として酸化シリコン(SiO2)をそれぞれ用いた場合の例を示している。基板20としてはSi単結晶基板、多結晶Si基板、あるいは上述したSOI基板を用いることができる。 2 to 6, the substrate 20 is a Si substrate, the two electrode layers 21 and 21 are platinum (Pt), the piezoelectric body 23 is scandium aluminum nitride (ScAlN), the stress compensation layer 24 is aluminum nitride (AlN), and the insulating layer is An example in the case of using silicon oxide (SiO 2 ) as 25 is shown. As the substrate 20, a Si single crystal substrate, a polycrystalline Si substrate, or the above-described SOI substrate can be used.

2つの電極層21、21としては、Pt以外に例えばモリブデン(Mo)、タングステン(W)、アルミニウム(Al)、白金とチタンとの積層膜(Pt/Ti)、ルテニウム(Ru)、Ruとタンタル(Ta)の積層膜(Ru/Ta)、RuとWの積層膜(Ru/W)、および金とクロムの積層膜(Au/Cr)などを用いることができる。圧電体23のScAlNにおけるScの含有率は、0.5〜50原子%の範囲、より具体的には例えば0.5〜35原子%、10〜35原子%、あるいは40〜50原子%の範囲とすることができる。絶縁層25としてSiO2以外に例えば窒化シリコン(SiN)、あるいはSiO2とSiNの積層膜などを用いることができる。 As the two electrode layers 21 and 21, for example, molybdenum (Mo), tungsten (W), aluminum (Al), a laminated film of platinum and titanium (Pt / Ti), ruthenium (Ru), Ru and tantalum other than Pt A laminated film (Ru / Ta) of (Ta), a laminated film (Ru / W) of Ru and W, a laminated film of gold and chromium (Au / Cr), or the like can be used. The content of Sc in ScAlN of the piezoelectric body 23 is in the range of 0.5 to 50 atomic percent, more specifically, for example, in the range of 0.5 to 35 atomic percent, 10 to 35 atomic percent, or 40 to 50 atomic percent. It can be done. For example, silicon nitride (SiN) or a laminated film of SiO 2 and SiN can be used as the insulating layer 25 other than SiO 2 .

既に上述したように、圧電体23のScAlNは本質的に極めて大きな圧縮応力を有する材料であることから、本発明の一実施形態では、ScAlNの持つ大きな圧縮応力を補償し、片持ち梁の変形を防ぐ方法として、ScAlNとともに応力補償層24としてAlNを利用する。AlNはScAlNとは反対の引張応力を有する絶縁体であり、2つの電極層21、21に挟まれたScAlNの外側にAlNを配置することで、全体の応力を緩和することができる。   As already mentioned above, since ScAlN of the piezoelectric body 23 is essentially a material having a very large compressive stress, in one embodiment of the present invention, the large compressive stress of ScAlN is compensated to deform the cantilever. As a method of preventing stress, AlN is used as the stress compensation layer 24 together with ScAlN. AlN is an insulator having a tensile stress opposite to that of ScAlN, and by disposing the AlN on the outside of ScAlN sandwiched between two electrode layers 21, the overall stress can be relaxed.

本発明の一実施形態の発電素子100の発電動作は、従来からの発電動作と同様に、発電素子100が加振されると錘部3が上下方向に変位し、梁部2上に配置された圧電体23に歪が誘起される。その歪によって圧電体23内に上下方向の分極が生じ、2つの電極層21、22間に起電力が発生する。   In the power generation operation of the power generation element 100 according to the embodiment of the present invention, when the power generation element 100 is vibrated, the weight portion 3 is vertically displaced and disposed on the beam portion 2 as in the conventional power generation operation. Strain is induced in the piezoelectric body 23. The distortion causes vertical polarization in the piezoelectric body 23 and an electromotive force is generated between the two electrode layers 21 and 22.

図2と図3は、いずれもAlNの応力補償層24を2つのPt電極21、22の外側に配置した例を示す。図2は、Si基板20上にAlNの応力補償層24を設け、その上に2つのPt電極21、22に挟まれたScAlNの圧電体23を設けた積層構成を示す。AlNの応力補償層24は下側のPt電極21の下面に接している。図2の構成では、AlNが絶縁性を有するので、Si基板20上に別途熱酸化膜(SiO2)のような絶縁層を設ける必要がない。 2 and 3 each show an example in which the stress compensation layer 24 of AlN is disposed outside the two Pt electrodes 21 and 22. FIG. 2 shows a laminated structure in which a stress compensation layer 24 of AlN is provided on a Si substrate 20, and a ScAlN piezoelectric body 23 sandwiched between two Pt electrodes 21 and 22 is provided thereon. The stress compensation layer 24 of AlN is in contact with the lower surface of the lower Pt electrode 21. In the configuration of FIG. 2, since AlN has an insulating property, it is not necessary to separately provide an insulating layer such as a thermal oxide film (SiO 2 ) on the Si substrate 20.

熱酸化膜(SiO2)は圧縮応力を有しており、ScAlNの大きな圧縮応力と合わせて、極めて大きな圧縮応力がSi基板20に加わることになる。Si基板上に結晶性良く成膜可能であり、かつ良好な絶縁性を有しながら、引張応力を有するAlNを絶縁体として、この場合は熱酸化膜(SiO2)の替わりに用いることで全応力を大きく低減させることができる。 The thermal oxide film (SiO 2 ) has a compressive stress, and together with the large compressive stress of ScAlN, a very large compressive stress is applied to the Si substrate 20. While being able to form a film with good crystallinity on a Si substrate and having good insulation properties, using AlN having tensile stress as an insulator, in this case, instead of a thermal oxide film (SiO 2 ) Stress can be greatly reduced.

図3は、Si基板20上に絶縁層25としてSiO2を設け、その上に2つのPt電極21、22に挟まれたScAlNの圧電体23を設け、さらに、上側のPt電極22上にAlNの応力補償層24を設けた積層構成を示す。AlNの応力補償層24は上側のPt電極22の上面に接している。図3の構成では、Si基板20上にSiO2層25を有するので、その分圧縮応力が大きくなるが、Pt電極22上のAlNの応力補償層24によって全体の圧縮応力を補償/低減させることができる。 In FIG. 3, SiO 2 is provided as the insulating layer 25 on the Si substrate 20, the ScAlN piezoelectric body 23 sandwiched between the two Pt electrodes 21 and 22 is provided thereon, and AlN on the upper Pt electrode 22 is further provided. The laminated structure which provided the stress compensation layer 24 of this is shown. The stress compensation layer 24 of AlN is in contact with the upper surface of the upper Pt electrode 22. In the configuration of FIG. 3, since the SiO 2 layer 25 is provided on the Si substrate 20, the compressive stress is increased accordingly, but the overall compressive stress is compensated / reduced by the stress compensation layer 24 of AlN on the Pt electrode 22. Can.

図4〜図6は、いずれもAlNの応力補償層24を2つのPt電極21、22の間(内側)に配置した例を示す。AlNの応力補償層24が、2つのPt電極21、22の間にあることから、図2と図3の2つのPt電極21、22の外側にある場合に比べて、発電性能が低下する。しかし、AlNが圧電材料であるため、その他の材料を用いた場合に比べてその発電性能の低下を小さく抑制することができる。   4 to 6 each show an example in which the stress compensation layer 24 of AlN is disposed between (inside) the two Pt electrodes 21 and 22. Since the stress compensation layer 24 of AlN is located between the two Pt electrodes 21 and 22, the power generation performance is reduced as compared with the case where it is located outside the two Pt electrodes 21 and 22 in FIGS. 2 and 3. However, since AlN is a piezoelectric material, the decrease in the power generation performance can be suppressed to a small level as compared with the case where other materials are used.

図4は、Si基板20上に絶縁層25としてSiO2を設け、その上に2つのPt電極21、22に挟まれたScAlNの圧電体23を設け、さらに、下側のPt電極21とScAlNの圧電体23の間にAlNの応力補償層24を設けた積層構成を示す。AlNの応力補償層24はScAlNの圧電体23の下面に接している。 In FIG. 4, SiO 2 is provided as the insulating layer 25 on the Si substrate 20, and the ScAlN piezoelectric body 23 sandwiched between the two Pt electrodes 21 and 22 is provided, and the lower Pt electrode 21 and ScAlN are further provided. The laminated structure in which the stress compensation layer 24 of AlN is provided between the piezoelectric bodies 23 of FIG. The stress compensation layer 24 of AlN is in contact with the lower surface of the piezoelectric body 23 of ScAlN.

図5は、Si基板20上に絶縁層25としてSiO2を設け、その上に2つのPt電極21、22に挟まれたScAlNの圧電体23を設け、さらに、上側のPt電極22とScAlNの圧電体23の間にAlNの応力補償層24を設けた積層構成を示す。AlNの応力補償層24はScAlNの圧電体23の上面に接している。 In FIG. 5, SiO 2 is provided as the insulating layer 25 on the Si substrate 20, and the ScAlN piezoelectric body 23 sandwiched between the two Pt electrodes 21 and 22 is provided, and further, the Pt electrode 22 and ScAlN on the upper side are provided. The laminated structure which provided the stress compensation layer 24 of AlN between the piezoelectric bodies 23 is shown. The stress compensation layer 24 of AlN is in contact with the top surface of the piezoelectric body 23 of ScAlN.

図6は、Si基板20上に絶縁層25としてSiO2を設け、その上に2つのPt電極21、22に挟まれた2つのScAlNの圧電体23、26を設け、さらに、2つのScAlNの圧電体23、26の間にAlNの応力補償層24を設けた積層構成を示す。AlNの応力補償層24は、下側のScAlNの圧電体23の上面及び上側のScAlNの圧電体26の下面に接している。 In FIG. 6, SiO 2 is provided as the insulating layer 25 on the Si substrate 20, and two ScAlN piezoelectrics 23 and 26 sandwiched between the two Pt electrodes 21 and 22 are provided, and further, two ScAlN The laminated structure which provided the stress compensation layer 24 of AlN between the piezoelectric bodies 23 and 26 is shown. The stress compensation layer 24 of AlN is in contact with the upper surface of the lower ScAlN piezoelectric body 23 and the lower surface of the upper ScAlN piezoelectric body 26.

図2から図6の実施形態では、AlNの応力補償層24はいずれも1層のみ設けられているが、本発明の実施形態はその1層のみに限定されず、配置を変えた2層以上のAlNの応力補償層24を設けてもよい。例えば、図2の構成例では、さらに上側のPt電極22の上にもう一つのAlNの応力補償層を追加し、全体で2つのAlNの応力補償層を有する構成とすることができる。同様に、図4の構成例では、さらに上側のPt電極22の上に追加のAlNの応力補償層を追加することができる。あるいは、図5の構成例において、下側のPt電極21とScAlNの圧電体23の間に追加のAlNの応力補償層を設けることもできる。   In the embodiments of FIGS. 2 to 6, only one stress compensation layer 24 of AlN is provided, but the embodiment of the present invention is not limited to only one layer, and two or more layers whose arrangement is changed The stress compensation layer 24 of AlN may be provided. For example, in the configuration example of FIG. 2, another stress compensation layer of AlN can be added on the upper Pt electrode 22 so that a total of two stress compensation layers of AlN can be provided. Similarly, in the configuration example of FIG. 4, an additional stress compensation layer of AlN can be added on the upper Pt electrode 22. Alternatively, in the configuration example of FIG. 5, an additional stress compensation layer of AlN can be provided between the lower Pt electrode 21 and the piezoelectric body 23 of ScAlN.

本発明の図2から図6の実施形態によると、その製造プロセス途中に応力補償層24を形成することによって、常に基板の全応力を低い水準に保ったまま、製造プロセスを進めることができる。その結果、従来の製造プロセス途中で基板の大きな全応力が膜剥がれを引き起こし、製造歩留まりの低下を誘発してしまうことを改善することができる。   According to the embodiment of FIGS. 2 to 6 of the present invention, by forming the stress compensation layer 24 in the middle of the manufacturing process, the manufacturing process can be advanced while keeping the total stress of the substrate at a low level all the time. As a result, it is possible to improve that the large total stress of the substrate causes film peeling in the middle of the conventional manufacturing process and causes a decrease in manufacturing yield.

図7と図8を参照しながら本発明の一実施例の発電素子について説明する。図7は、実際に作製した、従来技術による発電素子(a)と、本発明の一実施例の発電素子(b)の外観を示す図(写真)である。本発明の一実施例の発電素子(b)は、SOI基板(4インチウエハ)を用いて作製した。両図において、Beamが梁部を示し、Massが錘部を示している。図7(b)の幅Wは約4mmであり、梁部(Beam)の長さL1は約3.2mmであり、錘部(Mass)の長さL2は約3.6mmである。また、錘部(Mass)の厚さは約400μmである。   The power generation element according to the embodiment of the present invention will be described with reference to FIGS. 7 and 8. FIG. 7 is a diagram (photograph) showing the appearance of the power generation element (a) according to the prior art and the power generation element (b) of one embodiment of the present invention which were actually produced. The power generation element (b) of one example of the present invention was manufactured using an SOI substrate (4-inch wafer). In both figures, Beam indicates a beam portion, and Mass indicates a weight portion. The width W in FIG. 7B is about 4 mm, the length L1 of the beam (Beam) is about 3.2 mm, and the length L2 of the mass (Mass) is about 3.6 mm. Also, the thickness of the weight (Mass) is about 400 μm.

図8は、図7(b)の本発明の一実施例の発電素子の梁部の多層構造の構成を示す図である。図8の積層構成は、上述した図4の構成、すなわち下側のPt電極21とScAlNの圧電体23の間にAlNの応力補償層24を設けた構成に相当する。各層の厚さは図8に示した通りである。図8のScAlN層23のScの含有率は約39原子%である。   FIG. 8 is a view showing the structure of a multilayer structure of a beam portion of the power generation element of the embodiment of the present invention shown in FIG. 7 (b). The laminated structure of FIG. 8 corresponds to the structure of FIG. 4 described above, that is, a structure in which a stress compensation layer 24 of AlN is provided between the lower Pt electrode 21 and the piezoelectric body 23 of ScAlN. The thickness of each layer is as shown in FIG. The Sc content of the ScAlN layer 23 in FIG. 8 is about 39 at%.

図7の外観から明らかなように、(a)の従来の発電素子では、AlNの応力補償層を用いていないので、錘部(Mass)が大きく垂れ下がってしまっており、多層膜成膜後の4インチウエハにおける反り量は最大で約174μmであった。一方、(b)の本発明の一実施例の発電素子では、AlNの応力補償層を用いているので、多層膜成膜後の4インチウエハにおける反り量は約3μmと大きく改善されることがわかった。   As apparent from the appearance of FIG. 7, in the conventional power generation element of (a), since the stress compensation layer of AlN is not used, the mass portion (Mass) has fallen significantly, and the multilayer film has been formed. The amount of warpage on a 4-inch wafer was about 174 μm at maximum. On the other hand, in the power generation element according to the embodiment of the present invention of (b), since the stress compensation layer of AlN is used, the amount of warpage in the 4-inch wafer after multilayer film formation is largely improved to about 3 μm. all right.

また、実際に発電素子を0.5m/sの一定の大きさで加振しながら直流発電量(μW)を測定した。その結果、応力補償層の無い従来の発電素子(a)は、最大で1.6Vで0.13μWの発電量であったのに対して、本発明の応力補償層を設けた一実施例の発電素子(b)は、最大で2.1Vで0.21μWの発電量を得ることができ、従来の発電素子(a)に比べて約66%発電量が増加することが確認できた。 In addition, while the power generation element was actually vibrated at a constant magnitude of 0.5 m / s 2 , the DC power generation amount (μW) was measured. As a result, while the conventional power generation element (a) having no stress compensation layer has a power generation amount of 0.13 μW at maximum of 1.6 V, the stress compensation layer of the present invention is provided in one embodiment. The power generation element (b) can obtain a power generation amount of 0.21 μW at a maximum of 2.1 V, and it has been confirmed that the power generation amount is increased by about 66% as compared with the conventional power generation element (a).

本発明の実施形態について、図を参照しながら説明をした。しかし、本発明はこれらの実施形態に限られるものではない。さらに、本発明はその趣旨を逸脱しない範囲で当業者の知識に基づき種々なる改良、修正、変形を加えた態様で実施できるものである。   Embodiments of the present invention have been described with reference to the drawings. However, the present invention is not limited to these embodiments. Furthermore, the present invention can be implemented in variously modified, modified, or modified forms based on the knowledge of those skilled in the art without departing from the scope of the present invention.

本発明の発電素子は、既存の半導体MEMSプロセスを利用して製作可能であり、小型で軽量な発電素子として産業上の幅広い利用が可能である。   The power generation element of the present invention can be manufactured using the existing semiconductor MEMS process, and can be widely used in industry as a small and lightweight power generation element.

1 基部(支点部)
2 梁部
3 錘部
20 基板
21、22 電極層
23、26 圧電体
24 応力補償層
25 絶縁層
100 発電素子
1 base (fulcrum part)
DESCRIPTION OF SYMBOLS 2 beam part 3 weight part 20 board | substrate 21, 22 electrode layer 23, 26 piezoelectric material 24 stress compensation layer 25 insulation layer 100 electric power generation element

Claims (6)

梁部と錘部を含む片持ち梁構造を有する発電素子であって、
梁部は、基板上に積層された2つの電極層で挟まれた圧電体と、上側の電極層の上面及び下側の電極層の下面の少なくとも一方に接する少なくとも1つの応力補償層とを含む、発電素子。
A power generation element having a cantilever structure including a beam portion and a weight portion,
The beam portion includes a piezoelectric body sandwiched between two electrode layers stacked on a substrate, and at least one stress compensation layer in contact with at least one of the upper surface of the upper electrode layer and the lower surface of the lower electrode layer. , Power generation element.
梁部と錘部を含む片持ち梁構造を有する発電素子であって、
梁部は、基板上に積層された2つの電極層で挟まれた圧電体と、圧電体の下面及び上面の少なくとも一方に接する少なくとも1つの応力補償層とを含む、発電素子。
A power generation element having a cantilever structure including a beam portion and a weight portion,
A beam generating element comprising: a piezoelectric body sandwiched between two electrode layers stacked on a substrate; and at least one stress compensation layer in contact with at least one of the lower surface and the upper surface of the piezoelectric body.
前記圧電体は積層された2つの圧電体を含み、前記応力補償層は2つの圧電体の間に在る、請求項2の発電素子。   The power generation device according to claim 2, wherein the piezoelectric body includes two stacked piezoelectric bodies, and the stress compensation layer is between the two piezoelectric bodies. 前記圧電体はScAlNを含み、前記応力補償層はAlNを含む、請求項1〜3のいずれかに記載の発電素子。   The power generation device according to any one of claims 1 to 3, wherein the piezoelectric body includes ScAlN, and the stress compensation layer includes AlN. 前記2つの電極層は、白金(Pt)、モリブデン(Mo)、タングステン(W)、アルミニウム(Al)、白金とチタンとの積層膜(Pt/Ti)、ルテニウム(Ru)、Ruとタンタル(Ta)の積層膜(Ru/Ta)、RuとWの積層膜(Ru/W)、および金とクロムの積層膜(Au/Cr)の中から選択された少なくとも1つを含む、請求項4に記載の発電素子。   The two electrode layers are platinum (Pt), molybdenum (Mo), tungsten (W), aluminum (Al), a laminated film of platinum and titanium (Pt / Ti), ruthenium (Ru), Ru and tantalum (Ta And at least one selected from a laminated film of Ru and Ta (Ru / Ta), a laminated film of Ru and W (Ru / W), and a laminated film of gold and chromium (Au / Cr). Power generation element as described. 前記基板は前記錘部の先端まで延びるSi基板またはSOI基板を含む、請求項5に記載の発電素子。   The power generation device according to claim 5, wherein the substrate includes a Si substrate or an SOI substrate extending to a tip of the weight portion.
JP2017073568A 2017-04-03 2017-04-03 Power generation element Active JP6858370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017073568A JP6858370B2 (en) 2017-04-03 2017-04-03 Power generation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017073568A JP6858370B2 (en) 2017-04-03 2017-04-03 Power generation element

Publications (2)

Publication Number Publication Date
JP2018181870A true JP2018181870A (en) 2018-11-15
JP6858370B2 JP6858370B2 (en) 2021-04-14

Family

ID=64277029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017073568A Active JP6858370B2 (en) 2017-04-03 2017-04-03 Power generation element

Country Status (1)

Country Link
JP (1) JP6858370B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113293355A (en) * 2021-06-11 2021-08-24 武汉大学 Temperature-resistant and wear-resistant AlCrN/AlScN nano composite piezoelectric coating for intelligent bolt and preparation method thereof
CN113584443A (en) * 2021-06-30 2021-11-02 武汉大学 AlN/AlScN nano composite piezoelectric coating for high-temperature-resistant fastener and preparation method thereof
JP2022505749A (en) * 2018-10-26 2022-01-14 エヴァテック・アーゲー Sedimentation treatment for piezoelectric coating
WO2022244589A1 (en) * 2021-05-20 2022-11-24 国立研究開発法人産業技術総合研究所 Scaln layered body and method for producing same
JP2023516429A (en) * 2020-03-06 2023-04-19 レイセオン カンパニー Semiconductor device with aluminum nitride anti-bending layer
WO2023171108A1 (en) * 2022-03-09 2023-09-14 MicroInnovators Laboratory株式会社 Film structure and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037271A (en) * 2005-07-26 2007-02-08 Tdk Corp Piezoelectric thin-film vibrator, drive unit using the same, and piezoelectric motor
EP2109217A2 (en) * 2008-04-07 2009-10-14 Stichting IMEC Nederland System and method for resonance frequency tuning of resonant devices
JP2011029274A (en) * 2009-07-22 2011-02-10 Panasonic Electric Works Co Ltd Power generation device and method of manufacturing the same
JP2013201346A (en) * 2012-03-26 2013-10-03 Ulvac Japan Ltd Piezoelectric element and manufacturing method of piezoelectric element
JP2014121025A (en) * 2012-12-18 2014-06-30 Taiyo Yuden Co Ltd Piezoelectric thin film resonator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037271A (en) * 2005-07-26 2007-02-08 Tdk Corp Piezoelectric thin-film vibrator, drive unit using the same, and piezoelectric motor
EP2109217A2 (en) * 2008-04-07 2009-10-14 Stichting IMEC Nederland System and method for resonance frequency tuning of resonant devices
US20090284102A1 (en) * 2008-04-07 2009-11-19 Stichting Imec Nederland System and Method for Resonance Frequency Tuning of Resonant Devices
JP2011029274A (en) * 2009-07-22 2011-02-10 Panasonic Electric Works Co Ltd Power generation device and method of manufacturing the same
JP2013201346A (en) * 2012-03-26 2013-10-03 Ulvac Japan Ltd Piezoelectric element and manufacturing method of piezoelectric element
JP2014121025A (en) * 2012-12-18 2014-06-30 Taiyo Yuden Co Ltd Piezoelectric thin film resonator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022505749A (en) * 2018-10-26 2022-01-14 エヴァテック・アーゲー Sedimentation treatment for piezoelectric coating
JP2023516429A (en) * 2020-03-06 2023-04-19 レイセオン カンパニー Semiconductor device with aluminum nitride anti-bending layer
JP7479493B2 (en) 2020-03-06 2024-05-08 レイセオン カンパニー Semiconductor device having aluminum nitride anti-deflection layer
WO2022244589A1 (en) * 2021-05-20 2022-11-24 国立研究開発法人産業技術総合研究所 Scaln layered body and method for producing same
CN113293355A (en) * 2021-06-11 2021-08-24 武汉大学 Temperature-resistant and wear-resistant AlCrN/AlScN nano composite piezoelectric coating for intelligent bolt and preparation method thereof
CN113584443A (en) * 2021-06-30 2021-11-02 武汉大学 AlN/AlScN nano composite piezoelectric coating for high-temperature-resistant fastener and preparation method thereof
CN113584443B (en) * 2021-06-30 2023-03-21 武汉大学 AlN/AlScN nano composite piezoelectric coating for high-temperature-resistant fastener and preparation method thereof
WO2023171108A1 (en) * 2022-03-09 2023-09-14 MicroInnovators Laboratory株式会社 Film structure and electronic device

Also Published As

Publication number Publication date
JP6858370B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP6858370B2 (en) Power generation element
JP5921079B2 (en) Electromechanical transducer and method for manufacturing the same
TWI455472B (en) Power generation device with vibration unit
US7474590B2 (en) Pressure wave generator and process for manufacturing the same
JP5632643B2 (en) Ferroelectric device
JP6241684B2 (en) Piezoelectric vibrator and piezoelectric vibrator
JP6882722B2 (en) Piezoelectric element and resonator using piezoelectric element
JP6819002B2 (en) Piezoelectric element
TWI455471B (en) Vibration based power generation device and production method of the same
JP2011091319A (en) Power generation device
JP5660216B2 (en) Thin film device and method for manufacturing thin film device
EP3091586B1 (en) High temperature flexural mode piezoelectric dynamic pressure sensor and method of forming the same
JP2011091318A (en) Power generation device
JP6177375B2 (en) Electromechanical transducer and method for manufacturing the same
JP6362741B2 (en) Electromechanical transducer and method for manufacturing the same
US10608166B2 (en) Method for manufacturing a piezoelectric device
JP2011125071A (en) Power generation device
JP2015171295A (en) power generator
JP2015018830A (en) Power generation device
WO2014020786A1 (en) Power-generating device
JP2016058534A (en) Power generator
JP2011091977A (en) Power-generating device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210316

R150 Certificate of patent or registration of utility model

Ref document number: 6858370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250