JP2018181739A - Electrode catalyst for air electrode - Google Patents

Electrode catalyst for air electrode Download PDF

Info

Publication number
JP2018181739A
JP2018181739A JP2017083230A JP2017083230A JP2018181739A JP 2018181739 A JP2018181739 A JP 2018181739A JP 2017083230 A JP2017083230 A JP 2017083230A JP 2017083230 A JP2017083230 A JP 2017083230A JP 2018181739 A JP2018181739 A JP 2018181739A
Authority
JP
Japan
Prior art keywords
catalyst
alloy
particles
electrode
catalyst particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017083230A
Other languages
Japanese (ja)
Other versions
JP6814087B2 (en
Inventor
達也 畑中
Tatsuya Hatanaka
達也 畑中
修二 戸村
Shuji Tomura
修二 戸村
仙光 竹内
Norimitsu Takeuchi
仙光 竹内
亨 山本
Toru Yamamoto
亨 山本
宣明 水谷
Nobuaki Mizutani
宣明 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2017083230A priority Critical patent/JP6814087B2/en
Publication of JP2018181739A publication Critical patent/JP2018181739A/en
Application granted granted Critical
Publication of JP6814087B2 publication Critical patent/JP6814087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode catalyst for an air electrode, capable of suppressing degradation of efficiency point performance and degradation of output point performance even if being used under an environment where the number of potential variations is large.SOLUTION: An electrode catalyst for an air electrode includes first catalyst particles comprising a Pt alloy and second catalyst particles comprising pure Pt and having an average particle size smaller than that of the first catalyst particles. The Pt alloy has an atomic composition ratio represented by PtM (1≤x≤4, and M represents a nonmetallic element). It is preferable that the first catalyst particles have an average particle size dof 4 nm or more and 6 nm or less and the standard deviation σof the average particle sizes is 2 nm or less. It is preferable that the second catalyst particles have an average particle size dof 1 nm or more and 4 nm or less and the standard deviation σof the average particle sizes is 2 nm or less.SELECTED DRAWING: Figure 1

Description

本発明は、空気極用電極触媒に関し、さらに詳しくは、Pt合金を主成分とし、初期活性及び耐久性に優れた空気極用電極触媒に関する。   The present invention relates to an electrode catalyst for an air electrode, and more particularly to an electrode catalyst for an air electrode which is mainly composed of a Pt alloy and is excellent in initial activity and durability.

固体高分子形燃料電池は、電解質膜の両面に触媒を含む電極(触媒層及びガス拡散層)が接合された膜電極接合体(Membrane Electrode Assembly,MEA)を備えている。MEAの両面には、さらに、ガス流路を備えた集電体(セパレータ)が配置される。固体高分子形燃料電池は、通常、このようなMEAと集電体からなる単セルが複数個積層された構造(燃料電池スタック)を備えている。   The polymer electrolyte fuel cell includes a membrane electrode assembly (Membrane Electrode Assembly, MEA) in which electrodes (catalyst layer and gas diffusion layer) containing a catalyst are bonded to both sides of an electrolyte membrane. Further, current collectors (separators) provided with gas flow paths are disposed on both sides of the MEA. A polymer electrolyte fuel cell usually has a structure (fuel cell stack) in which a plurality of single cells composed of such MEAs and current collectors are stacked.

固体高分子形燃料電池の電極触媒には、Pt触媒、Pt合金触媒、カーボンアロイ触媒、酸化物触媒などが用いられている。これらの内、Pt合金触媒は、純Pt触媒よりも高い効率点性能(低電流密度・高電圧作動条件)が得られることが広く知られている。
例えば、非特許文献1には、3d金属(Ti、V、Fe、Co、Ni)を含むPt合金の酸素還元反応(ORR)が開示されている。
同文献には、
(a)3d金属を含むPt合金は、Ptよりも良好な触媒である点、及び、
(b)Pt3M(M=Fe、Co、Ni)は、純Ptに比べて活性が大きく改善される点
が記載されている。
Pt catalysts, Pt alloy catalysts, carbon alloy catalysts, oxide catalysts and the like are used as electrode catalysts for polymer electrolyte fuel cells. Among these, it is widely known that Pt alloy catalysts can achieve higher efficiency point performance (low current density and high voltage operating conditions) than pure Pt catalysts.
For example, Non-Patent Document 1 discloses an oxygen reduction reaction (ORR) of a Pt alloy containing 3d metal (Ti, V, Fe, Co, Ni).
In the same document,
(A) Pt alloy containing 3d metal is a better catalyst than Pt, and
(B) It is described that Pt 3 M (M = Fe, Co, Ni) significantly improves the activity as compared to pure Pt.

しかしながら、燃料電池自動車のような電位変動回数の多い環境では、Ptですら溶解する。このような環境下でPt合金触媒を使用すると、比較的小さなPt合金粒子からのPtの溶解と比較的大きなPt合金粒子へのPtの再析出によって反応面積が減少(平均粒径が増大)すると共に、合金表面に存在する卑金属は、Ptよりも容易に溶出する。さらに、合金組成が純Ptに近づいていくために、触媒の面積当たりの活性(面積活性)も低下する。その結果、その表面積と面積活性との積である効率点性能が低下する。   However, even in a high voltage fluctuation environment such as a fuel cell vehicle, even Pt dissolves. When using a Pt alloy catalyst in such an environment, the reaction area is reduced (average particle size is increased) by dissolution of Pt from relatively small Pt alloy particles and reprecipitation of Pt on relatively large Pt alloy particles. At the same time, the base metal present on the alloy surface elutes more easily than Pt. Furthermore, as the alloy composition approaches pure Pt, the activity per area (area activity) of the catalyst also decreases. As a result, the efficiency point performance, which is the product of its surface area and area activity, is reduced.

他方、反応面積が低下すると、発電集中が生じて酸素輸送抵抗が増加するため、出力点性能(高電流密度・低電圧作動条件)も低下する。さらに、溶出した卑金属は、カチオンコンタミとして電解質のプロトン移動抵抗をも増加させるため、さらに出力性能が低下する。このカチオンコンタミの影響は、特に自動車用途に求められる高温・低加湿作動時に顕著である。   On the other hand, when the reaction area decreases, power generation concentration occurs and oxygen transport resistance increases, so the power point performance (high current density, low voltage operating condition) also decreases. Furthermore, the eluted base metal also increases the proton transfer resistance of the electrolyte as a cation contamination, which further reduces the output performance. The effect of this cation contamination is remarkable especially at the time of high temperature and low humidity operation required for automobile applications.

そこでこの問題を解決するために、従来から種々の提案がなされている。
例えば、特許文献1には、
(a)Pt/C(Ptの平均粒径:約2.5nm、担持量約47質量%)からなる電極触媒と、アイオノマとを含む触媒層インクAを調製し、
(b)Pt/C(Ptの平均粒子径:約3.2nm、担持量約47質量%)からなる電極触媒:0.8重量部と、PtCo合金/C(PtCo合金の平均粒子径:約4nm、担持量約50質量%、Pt:Co質量比3:1(47.5at%Pt))からなる電極触媒:0.2重量部と、アイオノマとを含む触媒層インクB’を調製し、
(c)Pt/C(Ptの平均粒子径:約4.5nm、担持量約47質量%)からなる電極触媒:0.1重量部と、PtCo合金/C(PtCo合金の平均粒子径:約5.2nm、担持量約50質量%、Pt:Co質量比3:1(47.5at%Pt))からなる電極触媒:0.9重量部と、アイオノマとを含む触媒層インクC’を調製し、
(d)電解質膜の表面であって、ガス供給路の入口側に触媒層インクB’、ガス供給路の出口側に触媒層インクC’をそれぞれ塗布して触媒層(1)を形成し、
(e)触媒層(1)の表面であって、ガス供給路の入口側に触媒層インクA、ガス供給路の出口側に触媒層インクB’をそれぞれ塗布して触媒層(2)を形成する
ことにより得られる固体高分子形燃料電池が開示されている。
In order to solve this problem, various proposals have conventionally been made.
For example, in Patent Document 1,
(A) A catalyst layer ink A comprising an electrocatalyst comprising Pt / C (average particle diameter of Pt: about 2.5 nm, loading amount about 47 mass%) and an ionomer,
(B) Electrocatalyst composed of Pt / C (average particle size of Pt: about 3.2 nm, loading amount: about 47% by mass): 0.8 parts by weight, and PtCo alloy / C (average particle size of PtCo alloy: about) Preparation of catalyst layer ink B 'containing 0.2 parts by weight of an electrocatalyst consisting of 4 nm, a loading amount of about 50% by mass, and a Pt: Co mass ratio of 3: 1 (47.5 at% Pt)) and an ionomer,
(C) An electrode catalyst consisting of Pt / C (average particle size of Pt: about 4.5 nm, loading amount: about 47% by mass): 0.1 parts by weight, and PtCo alloy / C (average particle size of PtCo alloy: about Preparation of catalyst layer ink C ′ containing an ionomer and 0.9 parts by weight of an electrocatalyst consisting of 5.2 nm, a loading amount of about 50% by mass, and a Pt: Co mass ratio of 3: 1 (47.5 at% Pt)) And
(D) A catalyst layer ink B 'is applied to the inlet side of the gas supply passage on the surface of the electrolyte membrane, and a catalyst layer ink C' is applied to the outlet side of the gas supply passage to form a catalyst layer (1)
(E) A catalyst layer (2) is formed by applying catalyst layer ink A on the inlet side of the gas supply path and catalyst layer ink B 'on the outlet side of the gas supply path on the surface of the catalyst layer (1) Discloses a polymer electrolyte fuel cell obtained by

同文献には、
(a)触媒層においては、ガス供給路の入口側から出口側に向かって滞留する水分量が多くなり、水分量の多いガス供給路の出口側で触媒粒子の溶解が起きやすい点、
(b)ガス供給路の出口側の触媒粒子の粒子径を大きくすると、触媒粒子の溶解を抑制することができる点、
(c)白金粒子は触媒活性が高いのに対して、白金合金粒子は耐溶解性に優れているので、触媒粒子の溶解が生じがたい部位に白金粒子を配置し、触媒粒子の溶解が生じやすい部位に白金合金粒子を配置すると、高い触媒活性を維持できる点、及び
(d)Pt粒子の粒径が異なるPt/Cのみを用いて作製した燃料電池(実施例1)の耐久性(1000サイクル後のセル電圧の変化)は0.023V@1A/cm2であるのに対し、触媒粒子の粒径が異なるPt/C及びPtCo合金/Cを用いて作製した燃料電池(実施例2)の耐久性は0.044V@1A/cm2である点(すなわち、PtCo合金/Cを用いた燃料電池の方が耐久性に劣る点)、
が記載されている。
In the same document,
(A) In the catalyst layer, the amount of water retained from the inlet side to the outlet side of the gas supply passage increases, and dissolution of catalyst particles tends to occur at the outlet side of the gas supply passage with a large amount of water;
(B) Dissolution of the catalyst particles can be suppressed by increasing the particle size of the catalyst particles on the outlet side of the gas supply passage,
(C) Platinum particles have high catalytic activity while platinum alloy particles are excellent in solubility resistance. Therefore, platinum particles are disposed at a site where dissolution of the catalyst particles is unlikely to occur, and dissolution of the catalyst particles occurs. When platinum alloy particles are arranged at easy locations, high catalytic activity can be maintained, and (d) Durability of a fuel cell (Example 1) manufactured using only Pt / Cs different in particle diameter of Pt particles (1000 Fuel cell prepared using Pt / C and PtCo alloy / C different in particle size of catalyst particles while the change in cell voltage after cycle is 0.023 V @ 1 A / cm 2 (Example 2) The durability of the fuel cell is 0.044 V @ 1 A / cm 2 (that is, the fuel cell using PtCo alloy / C is inferior in durability),
Is described.

粒径の大きな触媒粒子は、比表面積が小さいので、溶出速度をある程度遅くすることができる。しかし、電極触媒全体の反応面積が低下するので、効率点性能が低下する。また、粒径の大きな触媒粒子を用いた場合であっても、燃料電池の作動環境下では、触媒粒子の溶解が進行する。
この問題を解決するために、特許文献1に記載されているように、ガス供給路の入口側にPt/C粒子を多量に配置し、ガス供給路の出口側にPtCo合金/C粒子を多量に配置することも考えられる。しかしながら、この方法により得られた燃料電池は、Pt粒子の粒径が異なるPt/Cのみを用いて作製された燃料電池よりも耐久性が劣っており、触媒粒子の溶出を抑制する効果は低い。
The large particle size catalyst particles have a small specific surface area, so the elution rate can be reduced to some extent. However, since the reaction area of the entire electrode catalyst is reduced, the efficiency point performance is reduced. In addition, even when catalyst particles having a large particle size are used, dissolution of the catalyst particles proceeds in the working environment of the fuel cell.
In order to solve this problem, as described in Patent Document 1, a large amount of Pt / C particles is disposed on the inlet side of the gas supply passage, and a large amount of PtCo alloy / C particles is provided on the outlet side of the gas supply passage. It is also conceivable to place in However, the fuel cell obtained by this method is inferior in durability to a fuel cell manufactured using only Pt / C different in particle diameter of Pt particles, and the effect of suppressing the elution of catalyst particles is low. .

特開2006−344428号公報JP 2006-344428 A

V. Stamenkovic el al., Angew. Chem. Int. Ed. 2006, 45, 2897-2901V. Stamenkovic el al., Angew. Chem. Int. Ed. 2006, 45, 2897-2901

本発明が解決しようとする課題は、初期の効率点性能及び出力点性能が高く、かつ、電位変動回数の多い環境下で使用した場合であっても、効率点性能及び出力点性能の低下を抑制することが可能な空気極用電極触媒を提供することにある。   The problem to be solved by the present invention is a reduction in the efficiency point performance and the output point performance even when used in an environment where the initial efficiency point performance and the output point performance are high and the potential fluctuation frequency is large. It is providing the electrode catalyst for air electrodes which can be suppressed.

上記課題を解決するために本発明に係る空気極用電極触媒は、以下の構成を備えていることを要旨とする。
(1)前記空気極用電極触媒は、
Pt合金からなる第1触媒粒子と、
前記第1触媒粒子よりも平均粒径が小さい純Ptからなる第2触媒粒子と
を備えている。
(2)前記Pt合金は、PtxM(1≦x≦4、Mは卑金属元素)で表される原子組成比を持つ。
In order to solve the above-mentioned subject, the electrode catalyst for air electrodes concerning the present invention makes it a summary to have the following composition.
(1) The electrode catalyst for the air electrode is
First catalyst particles made of Pt alloy;
And second catalyst particles made of pure Pt and having an average particle diameter smaller than that of the first catalyst particles.
(2) The Pt alloy has an atomic composition ratio represented by Pt x M (1 ≦ x ≦ 4, M is a base metal element).

粒径の大きなPt合金粒子は、相対的に大きな面積活性を持ち、かつ、電位変動が生じる環境下においても反応面積の減少(平均粒径の増大)は少ないが、比表面積は小さい。このような粒径の大きなPt合金粒子と粒径の小さな純Pt粒子とを共存させると、電極触媒全体の比表面積が増大する。その結果、初期の効率点性能及び出力点性能が向上する。
また、電位変動を伴う環境下においてこのような電極触媒を使用する場合において、Pt合金粒子に近接して純Pt粒子を配置すると、純Pt粒子が優先的に溶出し、溶出したPtがPt合金粒子の表面に再析出する。そのため、Pt合金粒子のみからなる電極触媒に比べて、Pt合金粒子表面からの合金元素の溶出が抑制される。また、使用中の効率点性能及び出力点性能の低下が抑制され、効率点性能及び出力点性能の双方を高いレベルで維持することができる。但し、PtよりもMが原子比で多い場合は、Mの溶出が止められず、このような効果は得られない。従って、Pt:M=1:1(原子比)〜Pt:M=4:1が好適となる。
The Pt alloy particles having a large particle size have a relatively large area activity, and the decrease in reaction area (the increase in average particle size) is small even in an environment where potential fluctuations occur, but the specific surface area is small. The coexistence of such large particle size Pt alloy particles and small particle size pure Pt particles increases the specific surface area of the entire electrode catalyst. As a result, the initial efficiency point performance and output point performance are improved.
In addition, in the case of using such an electrode catalyst in an environment with potential fluctuation, when pure Pt particles are arranged close to Pt alloy particles, pure Pt particles are preferentially eluted, and the eluted Pt is a Pt alloy Reprecipitate on the surface of particles. Therefore, the elution of the alloying element from the surface of the Pt alloy particle is suppressed as compared with the electrode catalyst made of only the Pt alloy particle. In addition, the drop in efficiency point performance and output point performance during use is suppressed, and both efficiency point performance and output point performance can be maintained at a high level. However, when M is larger than Pt in atomic ratio, the elution of M can not be stopped, and such an effect can not be obtained. Therefore, Pt: M = 1: 1 (atomic ratio) to Pt: M = 4: 1 are preferable.

各種触媒の反応面積維持率と活性維持率との関係を示す図である。It is a figure which shows the relationship of the reaction area maintenance factor of various catalysts, and activity maintenance factor. Pt−Co合金中のCo量に対するPt−Co合金の表面積当たりの活性(SA)依存性を示す図である。It is a figure which shows the activity (SA) dependence per surface area of Pt-Co alloy with respect to the amount of Co in Pt-Co alloy.

以下、本発明の一実施の形態について詳細に説明する。
[1. 空気極用電極触媒]
本発明に係る空気極用電極触媒(以下、単に「電極触媒」ともいう)は、以下の構成を備えている。
(1)前記空気極用電極触媒は、
Pt合金からなる第1触媒粒子と、
前記第1触媒粒子よりも平均粒径が小さい純Ptからなる第2触媒粒子と
を備えている。
(2)前記Pt合金は、PtxM(1≦x≦4、Mは卑金属元素)で表される原子組成比を持つ。
Hereinafter, an embodiment of the present invention will be described in detail.
[1. Electrode catalyst for air electrode]
An electrode catalyst for air electrode (hereinafter, also simply referred to as "electrode catalyst") according to the present invention has the following configuration.
(1) The electrode catalyst for the air electrode is
First catalyst particles made of Pt alloy;
And second catalyst particles made of pure Pt and having an average particle diameter smaller than that of the first catalyst particles.
(2) The Pt alloy has an atomic composition ratio represented by Pt x M (1 ≦ x ≦ 4, M is a base metal element).

[1.1. 第1触媒粒子]
[1.1.1. 組成]
第1触媒粒子は、Pt合金からなる。本発明において、Pt合金の組成は特に限定されるものではなく、Ptを含むあらゆる合金に対して本発明を適用することができる。粒径の大きなPt合金粒子と粒径の小さな純Pt粒子とを共存させ、かつ、Pt合金粒子と純Pt粒子を近接して配置し、これらを電位変動が生じる環境下に曝すと、純Pt粒子が優先的に溶解し、Pt合金粒子表面にPtが再析出する。このようなPtの溶解及び再析出は、Pt合金の組成や結晶構造によらず起こる。
[1.1. First catalyst particle]
[1.1.1. composition]
The first catalyst particles are made of Pt alloy. In the present invention, the composition of the Pt alloy is not particularly limited, and the present invention can be applied to any alloy containing Pt. When Pt alloy particles having a large particle size and pure Pt particles having a small particle size are coexistent, and the Pt alloy particles and the pure Pt particles are disposed close to each other and exposed to an environment in which potential fluctuations occur, pure Pt The particles preferentially dissolve and Pt reprecipitates on the surface of the Pt alloy particles. Such dissolution and reprecipitation of Pt occurs regardless of the composition and crystal structure of the Pt alloy.

Pt合金は、次の式(1)で表される原子組成比を持つ。
PtxM ・・・(1)
但し、Mは卑金属元素、1≦x≦4。
The Pt alloy has an atomic composition ratio represented by the following formula (1).
Pt x M (1)
However, M is a base metal element, 1 ≦ x ≦ 4.

式(1)中、Mは、卑金属元素を表す。「卑金属元素」とは、Au、Ag、Pt、Pd、Rh、Ir、Ru、及びOs以外の金属元素をいう。
元素Mとしては、例えば、
(a)Al、Ga、Pb、Sn、Sb、Inなどの典型金属元素、
(b)Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Znなどの3d遷移金属元素、
(c)Y、Zr、Nb、Moなどの4d遷移金属元素、
(d)W、Taなどの4f遷移金属元素、
などがある。
In formula (1), M represents a base metal element. The "base metal element" refers to a metal element other than Au, Ag, Pt, Pd, Rh, Ir, Ru, and Os.
As the element M, for example,
(A) Typical metal elements such as Al, Ga, Pb, Sn, Sb, In,
(B) 3d transition metal elements such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, etc.
(C) 4d transition metal elements such as Y, Zr, Nb, Mo
(D) 4f transition metal elements such as W and Ta;
and so on.

これらの中でも、元素Mは、Co、Ni、Fe、W、Pb、Cr、Mn、V、Mo、Ga、Y、及びAlからなる群から選ばれるいずれか1種以上の元素が好ましい。
これらは、Ptの電子状態をわずかに貴にする効果があると考えられている群であり、これらを含むことによって酸素還元反応の中間体の脱離がしやすくなる。
Among these, the element M is preferably any one or more elements selected from the group consisting of Co, Ni, Fe, W, Pb, Cr, Mn, V, Mo, Ga, Y, and Al.
These are a group thought to have the effect of making the electronic state of Pt slightly noble, and the inclusion of these groups makes it easy to release intermediates of the oxygen reduction reaction.

式(1)中、xは、元素Mに対するPtの比率を表す。元素Mは、通常、単独では酸素還元反応(ORR)活性を示さない。一方、元素Mを含むPt合金は、ORR活性を示す。一般に、ORRは、触媒粒子表面において起こるので、表面に露出しているPt原子の量が少なくなるほど、ORR活性が低下する。また、xが小さ過ぎると、元素Mの溶出を抑制することができない。さらに、xが過度に小さくなると、pH〜1程度の燃料電池環境下で数日間、安定に存在できる微粒子合金の作製が困難となる場合がある。従って、xは、1以上(すなわち、50at%Pt以上)が好ましい。   In formula (1), x represents the ratio of Pt to the element M. The element M usually does not exhibit oxygen reduction reaction (ORR) activity alone. On the other hand, a Pt alloy containing the element M exhibits ORR activity. In general, since ORR occurs at the surface of catalyst particles, the lower the amount of Pt atoms exposed to the surface, the lower the ORR activity. In addition, if x is too small, elution of the element M can not be suppressed. Furthermore, if x becomes excessively small, it may be difficult to produce a particulate alloy which can be stably present for several days in a fuel cell environment of about pH 1 or so. Therefore, x is preferably 1 or more (that is, 50 at% Pt or more).

Pt合金のORR活性は、あるxの値で極大となり、それ以降は減少に転じる。ORR活性が極大値となるときのxは、元素Mの種類により異なるが、通常、1.0±α(50at%Pt±15at%)の範囲内にある。そのため、xが大きくなるに従い、Pt合金のORR活性は、やがて純Ptのそれに近づく。相対的に大きなORR活性を得るためには、xは、4以下(すなわち、80at%Pt以下)が好ましい。   The ORR activity of the Pt alloy becomes maximum at a certain value of x, and then decreases. Although x at which the ORR activity reaches the maximum value varies depending on the type of the element M, it is usually in the range of 1.0 ± α (50 at% Pt ± 15 at%). Therefore, as x increases, the ORR activity of the Pt alloy eventually approaches that of pure Pt. In order to obtain relatively large ORR activity, x is preferably 4 or less (that is, 80 at% Pt or less).

[1.1.2. 平均粒径dm1
第1触媒粒子の平均粒径dm1は、電極触媒のORR活性に影響を与える。一般に、dm1が小さくなるほど、第1触媒粒子は、溶解しやすくなる。第1触媒粒子の溶解が進行するすると、第1触媒粒子の反応面積(粒径)が減少する。また、第1触媒粒子から元素Mが溶出し、出力点性能が低下する。従って、dm1は、4nm以上が好ましい。
[1.1.2. Average particle size d m1 ]
The average particle size d m1 of the first catalyst particles influences the ORR activity of the electrocatalyst. In general, the smaller the d m1 , the easier the first catalyst particles are to be dissolved. As the dissolution of the first catalyst particles progresses, the reaction area (particle size) of the first catalyst particles decreases. In addition, the element M is eluted from the first catalyst particles, and the output point performance is reduced. Therefore, d m1 is preferably 4 nm or more.

一方、dm1が大きくなるほど、比表面積が減少する。本発明では、第1触媒粒子中に含まれるPt比を適度に下げることで高い面積活性を得ているため、比表面積の減少に起因する効率点性能の低下をある程度相殺することができる。しかしながら、dm1が大きくなりすぎると、比表面積の減少を面積活性の増大で補うことができなくなり、効率点性能が低下する。従って、dm1は、6nm以下が好ましい。 On the other hand, the specific surface area decreases as d m1 increases. In the present invention, high area activity is obtained by appropriately reducing the Pt ratio contained in the first catalyst particles, so that the decrease in the efficiency point performance due to the decrease in the specific surface area can be offset to some extent. However, if d m1 becomes too large, the decrease in specific surface area can not be compensated for by the increase in area activity, and the efficiency point performance decreases. Therefore, d m1 is preferably 6 nm or less.

[1.1.3. 平均粒径の標準偏差σ1
第1触媒粒子の平均粒径の標準偏差σ1は、電極触媒のORR活性に影響を与える。第1触媒粒子の粒度分布が正規分布であると仮定し、第1触媒粒子の平均粒径の標準偏差をσ1とすると、ある粒子の粒径がdm1±σ1となる確率は、68.27%となる。
(dm1−σ1)未満の粒径を持つ微細な第1触媒粒子は、元素Mが溶出しやすいため、電極触媒全体の出力点性能を低下させる原因となる。一方、(dm1+σ1)を超える粒径を持つ粗大な第1触媒粒子は、比表面積が小さいため、電極触媒全体の効率点性能を低下させる原因となる。そのため、σ1は、小さいほど良い。出力点性能と効率点性能を高い次元で両立させるためには、σ1は、2nm以下が好ましい。σ1は、好ましくは、1.5nm以下、さらに好ましくは、1.0nm以下である。
[1.1.3. Standard deviation of mean particle size σ 1 ]
The standard deviation σ 1 of the mean particle size of the first catalyst particles influences the ORR activity of the electrode catalyst. The particle size distribution of the first catalyst particles are assumed to be normally distributed, when the standard deviation of the average particle diameter of the first catalyst particles and sigma 1, the probability that the particle diameter of a particle is d m1 ± sigma 1 is 68 It will be .27%.
(D m1 - [sigma] 1) less than the first catalyst particles fine having a particle size, since the element M is likely to elute, causes a decrease in the output point performance of the overall electrocatalyst. On the other hand, (d m1 + σ 1) coarse first catalyst particles having a particle size greater than the specific surface area is small, causes a decrease in efficiency point performance of the overall electrocatalyst. Therefore, the smaller σ 1 is, the better. In order to reconcile output point performance and efficiency point performance in high dimensions, σ 1 is preferably 2 nm or less. The σ 1 is preferably 1.5 nm or less, more preferably 1.0 nm or less.

[1.2. 第2触媒粒子]
[1.2.1. 組成]
第2触媒粒子は、純Ptからなる。「純Pt」とは、99.9at%以上のPtを含み、残部が不可避的不純物からなるものをいう。不可避的不純物は、燃料電池の作動環境下で溶出し、出力点性能を低下させる原因となるので、少ないほど良い。
[1.2. Second catalyst particle]
[1.2.1. composition]
The second catalyst particles consist of pure Pt. The term "pure Pt" refers to one containing at least 99.9 at% of Pt, with the balance being composed of unavoidable impurities. Unavoidable impurities are eluted in the operating environment of the fuel cell and cause deterioration of the power point performance, so the smaller the better.

[1.2.2. 平均粒径dm2
第2触媒粒子の平均粒径dm2は、電極触媒のORR活性に影響を与える。第2触媒粒子は、電極触媒全体の反応面積を増加させて、初期の第1触媒粒子の効率点性能及び出力点性能を補完する役割を果たす。また、電位変動を伴う環境下では、粒径の小さな純Pt粒子が優先的に溶解し、Pt合金粒子の表面にPtが再析出することによって、Pt合金粒子からの元素Mの溶出を抑制する。そのためには、dm2は、少なくともdm1未満である必要がある。
[1.2.2. Average particle size d m2 ]
The average particle diameter d m2 of the second catalyst particles affects the ORR activity of the electrode catalyst. The second catalyst particle serves to increase the reaction area of the entire electrode catalyst to complement the efficiency point performance and power point performance of the initial first catalyst particle. Further, in an environment with potential fluctuation, pure Pt particles having a small particle size are dissolved preferentially, and Pt is reprecipitated on the surface of the Pt alloy particles, thereby suppressing the elution of the element M from the Pt alloy particles. . For this purpose, d m2 needs to be at least less than d m1 .

一般に、dm2が小さくなるほど、Ptの溶解・再析出が起きやすくなる。しかし、dm2が小さくなりすぎると、Ptの面積活性が顕著に低下することが知られており、その結果、効率点性能を向上させる効果に欠ける。従って、dm2は、1nm以上が好ましい。dm2は、好ましくは、1.5nm以上、さらに好ましくは、2.0nm以上である。
一方、dm2が大きくなりすぎると、電極触媒全体の反応面積が低下し、かつ、Ptの溶解・再析出速度も低下する。その結果、初期性能を向上させ、あるいは、耐久性を向上させる効果が不十分となる。従って、dm2は、4nm以下が好ましい。dm2は、好ましくは、3.5nm以下、さらに好ましくは、3.0nm以下である。
In general, as d m2 becomes smaller, dissolution and reprecipitation of Pt is more likely to occur. However, it is known that the area activity of Pt decreases significantly if d m2 becomes too small, and as a result, the effect of improving the efficiency point performance is lacking. Therefore, d m2 is preferably 1 nm or more. d m2 is preferably 1.5 nm or more, more preferably 2.0 nm or more.
On the other hand, if d m2 is too large, the reaction area of the entire electrode catalyst decreases, and the dissolution / redeposition rate of Pt also decreases. As a result, the effect of improving the initial performance or improving the durability becomes insufficient. Therefore, d m2 is preferably 4 nm or less. d m2 is preferably 3.5 nm or less, more preferably 3.0 nm or less.

[1.2.3. 平均粒径の標準偏差σ2
第2触媒粒子の平均粒径の標準偏差σ2は、電極触媒のORR活性に影響を与える。第1触媒粒子と同様に、第2触媒粒子の粒度分布が正規分布であると仮定し、第2触媒粒子の平均粒径の標準偏差をσ2とすると、ある粒子の粒径がdm2±σ2となる確率は、68.27%となる。
(dm2−σ2)未満の粒径を持つ微細な第2触媒粒子は、Ptの面積活性が低く、効率点性能を向上させる効果に欠ける。一方、(dm2+σ2)を超える粒径を持つ粗大な第2触媒粒子は、比表面積が小さく、かつ、Ptの溶解・再析出速度も過度に小さくなる。そのため、σ2は、小さいほど良い。出力点性能と効率点性能を高い次元で両立させるためには、σ2は、2nm以下が好ましい。σ1は、好ましくは、1.5nm以下、さらに好ましくは、1.0nm以下である。
[1.2.3. Standard deviation of mean particle size σ 2 ]
The standard deviation σ 2 of the mean particle size of the second catalyst particles affects the ORR activity of the electrocatalyst. Assuming that the particle size distribution of the second catalyst particles is normal distribution, and the standard deviation of the average particle diameter of the second catalyst particles is σ 2 as in the case of the first catalyst particles, the particle diameter of certain particles is d m2 ± The probability of becoming σ 2 is 68.27%.
(D m2 2) less fine second catalyst particles having a particle diameter, low surface area activity Pt, lacks effect of improving the efficiency point performance. On the other hand, (d m2 + σ 2) coarse second catalyst particles having a particle size greater than the specific surface area is small and, dissolution and re-deposition rate of Pt also excessively small. Therefore, the smaller the σ 2 , the better. In order to reconcile output point performance and efficiency point performance in high dimensions, σ 2 is preferably 2 nm or less. The σ 1 is preferably 1.5 nm or less, more preferably 1.0 nm or less.

[1.3. 重量比]
第2触媒粒子の重量(W2)に対する前記第1触媒粒子の重量(W1)の比(=W1/W2)は、電極触媒のORR活性に影響を与える。電極触媒全体に含まれる第1触媒粒子の量が過度に少なくなると、合金の活性向上効果が十分に得られないために、効率点性能が低下する。従って、W1/W2比は、2/1以上が好ましい。W1/W2比は、好ましくは、2.5/1以上、さらに好ましくは、3/1以上である。
一方、第1触媒粒子の量が過度に多くなると、より多くの元素Mが溶出しやすくなる。従って、W1/W2比は、9/1以下が好ましい。W1/W2比は、好ましくは、8/1以下、さらに好ましくは、6/1以下である。
[1.3. Weight ratio]
The ratio of the weight (W 1 ) of the first catalyst particle to the weight (W 2 ) of the second catalyst particle (= W 1 / W 2 ) affects the ORR activity of the electrode catalyst. If the amount of the first catalyst particles contained in the entire electrode catalyst is excessively reduced, the effect of improving the activity of the alloy can not be sufficiently obtained, and the efficiency point performance is lowered. Therefore, the W 1 / W 2 ratio is preferably 2/1 or more. The W 1 / W 2 ratio is preferably 2.5 / 1 or more, more preferably 3/1 or more.
On the other hand, when the amount of the first catalyst particles is excessively large, more element M is easily eluted. Therefore, the W 1 / W 2 ratio is preferably 9/1 or less. The W 1 / W 2 ratio is preferably 8/1 or less, more preferably 6/1 or less.

[1.4. 担体]
第1触媒粒子及び第2触媒粒子は、Ptの溶解・再析出が生じる限りにおいて、そのままの状態で使用しても良く、あるいは、担体表面に担持された状態で使用しても良い。
担体としては、例えば、カーボンブラック、ファーネスブラック、カーボンナノチューブ、メソポーラスカーボン、電子伝導性セラミックス(TiOx、Sb−SnO2)などがある。
[1.4. Carrier]
The first catalyst particles and the second catalyst particles may be used as they are as long as dissolution and reprecipitation of Pt occur, or may be used as supported on the surface of a carrier.
Examples of the carrier include carbon black, furnace black, carbon nanotubes, mesoporous carbon, and electron conductive ceramics (TiO x , Sb-SnO 2 ).

[1.5. 第1触媒粒子と第2触媒粒子との間の距離]
Ptの溶解・再析出を生じさせるためには、第2触媒粒子は、第1触媒粒子の溶出を抑制することが可能な位置に近接して配置されているのが好ましい。Ptの溶解・再析出が効率良く進行するように、第1触媒粒子と第2触媒粒子とが近接して配置されている態様としては、例えば、
(a)微細な担体表面に第1触媒粒子が担持されたものと、微細な担体表面に第2触媒粒子が担持されたものとが均一に混合されている態様、
(b)第1触媒粒子と第2触媒粒子が、同一の担体表面に担持されている態様、
(c)第2触媒粒子が、第1触媒粒子の表面に担持されている態様、
などがある。
[1.5. Distance between first catalyst particle and second catalyst particle]
In order to cause dissolution and reprecipitation of Pt, it is preferable that the second catalyst particles be disposed close to a position at which the elution of the first catalyst particles can be suppressed. As an embodiment in which the first catalyst particles and the second catalyst particles are disposed in proximity to each other, for example, so that dissolution and reprecipitation of Pt proceed efficiently.
(A) An embodiment in which the fine support surface on which the first catalyst particles are supported and the fine support surface on which the second catalyst particles are supported are uniformly mixed.
(B) an embodiment in which the first catalyst particles and the second catalyst particles are supported on the same support surface,
(C) a mode in which the second catalyst particles are supported on the surface of the first catalyst particles,
and so on.

[2. 空気極用電極触媒の製造方法]
本発明に係る空気極用電極触媒は、種々の方法により製造することができる。本発明に係る空気極用電極触媒は、例えば、
(a)特許文献1と同様に、2種類の触媒を混合する方法、
(b)純Pt粒子(又は、Pt合金粒子)が担持されている担体表面に、さらにPt合金粒子(又は、純Pt粒子)を担持させる方法、
(c)Pt合金粒子の表面に純Pt粒子を担持させる方法、
などにより製造することができる。
[2. Method of producing electrode catalyst for air electrode]
The electrode catalyst for an air electrode according to the present invention can be manufactured by various methods. The electrode catalyst for air electrode according to the present invention is, for example,
(A) A method of mixing two types of catalysts as in Patent Document 1;
(B) A method of further supporting Pt alloy particles (or pure Pt particles) on a support surface on which pure Pt particles (or Pt alloy particles) are supported,
(C) A method of supporting pure Pt particles on the surface of Pt alloy particles,
And so on.

[3. 作用]
電位変動回数の多い環境下において、効率点性能の低下と出力点性能の低下の双方を抑制するためには、(1)面積活性の低下の抑制、(2)反応面積の低下の抑制、及び(3)卑金属元素の溶出の抑制、の3つを同時に達成する必要がある。
効率点性能は、面積活性と反応面積の積で表されるため、面積活性又は反応面積の一方が低下しても、これらの積の低下が抑制されれば、効率点性能の低下を抑制することができる。一方、出力点性能の低下の抑制には、反応面積の低下と、卑金属元素の溶出の双方を抑制する必要がある。
[3. Action]
(1) Suppression of reduction in area activity, (2) Suppression of reduction in reaction area, and (2) Suppression of reduction in reaction area in order to suppress both the reduction in efficiency point performance and the reduction in output point performance under an environment where the number of potential fluctuations is large. (3) The suppression of the elution of base metal elements must be achieved simultaneously.
Since the efficiency point performance is expressed by the product of the area activity and the reaction area, even if one of the area activity or the reaction area is reduced, the reduction in efficiency point performance is suppressed if the reduction in these products is suppressed. be able to. On the other hand, in order to suppress the decrease in output point performance, it is necessary to suppress both the decrease in reaction area and the elution of the base metal element.

粒径が比較的大きく、かつ、Pt比の小さいPt合金触媒は、反応面積の低下(溶解・再析出による平均粒径の増大)の抑制に対して有効であり、結果として効率点性能の低下の抑制には有用と考えられる。しかし、Pt比が小さいため、卑金属元素の溶出の抑制を達成することは困難である。そのため、出力点性能の低下が大きいと考えられる。
一方、粒径が比較的小さく、かつ、Pt比の大きいPt合金触媒は、卑金属元素の溶出の抑制に対しては有効であるが、反応面積の低下の抑制に対しては有効ではない。そのため、効率点と出力点の双方の性能低下が大きいと考えられる。
A Pt alloy catalyst having a relatively large particle size and a small Pt ratio is effective for suppressing a decrease in reaction area (an increase in average particle size due to dissolution and reprecipitation), resulting in a decrease in efficiency point performance It is considered useful for the suppression of However, since the Pt ratio is small, it is difficult to achieve suppression of the elution of the base metal element. Therefore, it is considered that the drop in output point performance is large.
On the other hand, a Pt alloy catalyst having a relatively small particle size and a large Pt ratio is effective for suppressing the elution of the base metal element, but is not effective for suppressing the reduction of the reaction area. Therefore, it is considered that the performance drop of both the efficiency point and the output point is large.

これに対し、第1触媒粒子としてPt合金触媒を用いる場合において、平均粒径を大きくすると総表面積は低下するが、Pt比を下げると面積活性は向上する。その結果、面積活性と反応面積の積である初期の効率点性能を担保することができる。また、Pt総量を一定として平均粒径の大きなPt合金触媒と平均粒径の小さな純Pt触媒とを共存させると、総表面積が増加する。すなわち、平均粒径の小さな純Pt触媒は、初期のPt合金触媒の効率点性能及び出力点性能を補完する役割を果たす。   On the other hand, when a Pt alloy catalyst is used as the first catalyst particles, the total surface area decreases as the average particle size increases, but the area activity improves as the Pt ratio decreases. As a result, the initial efficiency point performance which is the product of the area activity and the reaction area can be secured. In addition, when the total amount of Pt is made constant and the Pt alloy catalyst having a large average particle diameter and the pure Pt catalyst having a small average particle diameter coexist, the total surface area is increased. That is, the pure Pt catalyst having a small average particle size plays a role to complement the efficiency point performance and output point performance of the initial Pt alloy catalyst.

電位変動を伴う環境下において純Pt粒子とPt合金粒子とが共存している電極触媒を使用する場合において、Pt合金粒子に近接して純Pt粒子を配置すると、平均粒径の小さな純Pt粒子が優先的に溶出し、これが平均粒径の大きなPt合金粒子の表面に再析出する。その結果、純Pt粒子が共存しない場合に比べて、Pt合金粒子からの合金元素の溶出が抑制される。また、効率点性能の低下及び出力点性能の低下は、純Pt粒子の溶出に起因する程度は生じるものの、全体としては抑制される。さらに、Pt合金触媒の特徴である高い面積活性に起因して、効率点性能が高いレベルで維持される。これと同時に、Pt合金触媒の反応面積の減少、及び合金元素の溶出が抑制されるため、出力点性能も高いレベルで維持される。   When using pure Pt particles close to Pt alloy particles in the case of using an electrode catalyst in which pure Pt particles and Pt alloy particles coexist in an environment with potential fluctuation, pure Pt particles having a small average particle diameter Preferentially elutes and reprecipitates on the surface of Pt alloy particles having a large average particle size. As a result, elution of alloying elements from Pt alloy particles is suppressed as compared with the case where pure Pt particles do not coexist. In addition, the reduction of the efficiency point performance and the reduction of the output point performance are suppressed as a whole, although to a certain extent due to the elution of pure Pt particles. Furthermore, due to the high area activity that is characteristic of Pt alloy catalysts, the efficiency point performance is maintained at a high level. At the same time, the reduction of the reaction area of the Pt alloy catalyst and the elution of the alloying elements are suppressed, so the power point performance is also maintained at a high level.

従来の触媒設計では、合金元素の溶出を抑制するためにPt合金触媒のPt比を上げて面積活性を少し改良すること、及び、比較的小さな平均粒径とすることで総表面積を増やすことが行われていた。そのため、従来のPt合金触媒は、初期性能は高いが耐久性が低い。これに対し、本発明に係る電極触媒は、従来と同等以上の初期の効率点性能及び出力点性能と、従来よりも高い耐久性とを併せ持つ。   In the conventional catalyst design, the Pt ratio of the Pt alloy catalyst is increased to slightly improve the area activity in order to suppress the elution of alloy elements, and the total surface area is increased by making the average particle size relatively small. It was done. Therefore, the conventional Pt alloy catalyst has high initial performance but low durability. On the other hand, the electrode catalyst according to the present invention has both initial efficiency point performance and output point performance equal to or higher than those of conventional ones and durability higher than that of conventional ones.

(実施例1〜2、比較例1〜2)
[1. 試料の作製]
[1.1. 電極触媒の作製]
[1.1.1. 比較例1]
旧知の知見として、平均粒径が4〜6nmになると、2〜3nmの触媒より電位変動に対する耐久性が顕著に改善されることがわかっている。また、PtxM合金において、卑金属M(M=Co、Ni、Feなど)に対するPtの比(x)が1未満(50at%Pt未満)になると、pH〜1程度の燃料電池環境下で数日間、安定に存在できる微粒子合金の作製が困難であるとの知見もある。
そこで、平均粒径6.0nmのPt2Co(66.7at%Pt)をPt合金触媒の代表例(比較例1)として選定した。また、比較として、平均粒径3.1nmのPt7Co(87.5at%Pt)(比較例2)も試験に供した。いずれも、カーボン担体に30wt%Pt量で担持したものを用いた。
(Examples 1-2, comparative examples 1-2)
[1. Preparation of sample]
[1.1. Preparation of electrode catalyst]
[1.1.1. Comparative Example 1]
As the knowledge of old knowledge, it is known that when the average particle diameter is 4 to 6 nm, the durability against potential fluctuations is significantly improved over the catalyst of 2 to 3 nm. In the Pt x M alloy, when the ratio (x) of Pt to the base metal M (M = Co, Ni, Fe, etc.) is less than 1 (less than 50 at% Pt), the number of fuel cells is about 1 to 1 There is also a finding that it is difficult to make a particulate alloy that can be stably present for a day.
Therefore, Pt 2 Co (66.7 at% Pt) having an average particle diameter of 6.0 nm was selected as a representative example (comparative example 1) of the Pt alloy catalyst. Further, as a comparison, Pt 7 Co (87.5 at% Pt) (Comparative Example 2) having an average particle diameter of 3.1 nm was also subjected to the test. All used what carry | supported 30 wt% Pt amount on the carbon support.

[1.1.2. 実施例1]
比較例1のカーボン担持Pt合金触媒(Pt合金/C触媒)に対して、平均粒径2.6nmのPt/CをPt重量換算で23wt%混合した(実施例1)。
[1.1.3. 実施例2]
比較例1のPt合金/C触媒の担体表面に、Pt重量換算で23wt%相当のPt粒子を追加担持した(実施例2)。追加担持された純Ptの平均粒径は、TEM/EDX解析より、1.4nmであった。
[1.1.2. Example 1]
With respect to the carbon-supported Pt alloy catalyst (Pt alloy / C catalyst) of Comparative Example 1, Pt / C with an average particle diameter of 2.6 nm was mixed in an amount of 23 wt% in terms of Pt weight (Example 1).
[1.1.3. Example 2]
On the support surface of the Pt alloy / C catalyst of Comparative Example 1, Pt particles equivalent to 23 wt% in terms of Pt weight were additionally supported (Example 2). The average particle size of additionally loaded pure Pt was 1.4 nm according to TEM / EDX analysis.

[1.2. MEAの作製]
上記の触媒に、旧知の方法に従い溶媒とアイオノマ溶液とを加え、十分に混合してインクを作製した。このインクをポリテトラフルオロエチレンシートに塗布することで空気極用の触媒層キャスト膜を得た。それぞれのPt目付量は、約0.2mg/cm2であった。また、純Pt粒子のみを用いた以外は、上記と同様にして、燃料極用の触媒層キャスト膜を得た。フッ素系電解質膜の両面に、それぞれ、空気極用触媒層及び燃料極用触媒層を転写し、ホットプレスを行い、電極面積4cm2のMEAを作製した。
[1.2. Production of MEA]
A solvent and an ionomer solution were added to the above catalyst according to a method known to the art, and thoroughly mixed to prepare an ink. The ink was applied to a polytetrafluoroethylene sheet to obtain a cast catalyst layer for the air electrode. Each Pt basis weight was about 0.2 mg / cm 2 . In addition, a catalyst layer cast film for a fuel electrode was obtained in the same manner as described above except that only pure Pt particles were used. The air electrode catalyst layer and the fuel electrode catalyst layer were respectively transferred to both sides of the fluorine-based electrolyte membrane, and hot pressing was performed to produce an MEA having an electrode area of 4 cm 2 .

[2. 試験方法]
MEAを拡散層とともに燃料電池単セルに組み込み、電位サイクル試験を行った。耐久試験条件は、以下の通りである。
(a)セル温度:80℃
(b)空気極N2流量:0.5L/min、フル加湿
(c)燃料極H2流量:0.5L/min、フル加湿
(d)電位サイクル:0.85V(3s)−0.1V(3s)の電位サイクルを5万回
[2. Test method]
The MEA was incorporated into a single fuel cell together with a diffusion layer, and a potential cycle test was performed. The endurance test conditions are as follows.
(A) Cell temperature: 80 ° C
(B) an air electrode N 2 flow rate: 0.5 L / min, full humidification (c) a fuel electrode flow rate of H 2: 0.5 L / min, full humidification (d) potential cycles: 0.85V (3s) -0.1V 50,000 cycles of the potential cycle of (3s)

[3. 結果]
図1に、各種触媒の反応面積維持率と活性維持率との関係を示す。高Pt比の触媒(比較例2)は、活性維持率が高いものの、反応面積維持率が低いことがわかる。これは、出力性能の低下が促進されていることを示している。他方、低Pt比の触媒(比較例1)は、反応面積維持率が高いものの、活性維持率が低いことがわかる。これは、Coの溶出が一因と考えられる。これらに対して、Pt合金粒子に近接して純Pt粒子を共存させた触媒(実施例1、2)では、反応面積維持率及び活性維持率の両方が改善されることが明らかとなった。
[3. result]
FIG. 1 shows the relationship between the reaction area maintenance rate and the activity maintenance rate of various catalysts. It can be seen that although the catalyst having a high Pt ratio (Comparative Example 2) has a high activity retention rate, the reaction area retention rate is low. This indicates that the decrease in output performance is promoted. On the other hand, it can be seen that although the catalyst having a low Pt ratio (Comparative Example 1) has a high reaction area maintenance rate, it has a low activity maintenance rate. This is considered to be due to the elution of Co. On the other hand, in the catalyst (Examples 1 and 2) in which pure Pt particles coexist in close proximity to Pt alloy particles, it was revealed that both the reaction area retention rate and the activity retention rate are improved.

(実施例3)
[1. 試験方法]
Co組成の異なるPt−Co合金粒子を作製し、Pt−Co合金の表面積当たりの活性(SA)を回転電極法で評価した。
(Example 3)
[1. Test method]
Pt-Co alloy particles different in Co composition were prepared, and the activity (SA) per surface area of the Pt-Co alloy was evaluated by the rotating electrode method.

[2. 結果]
図2に、Pt−Co合金中のCo量に対するPt−Co合金の表面積当たりの0.9V vs RHEにおける活性(SA)依存性を示す。図2中、実線は、実験値を2次関数でフィッティングしたものである。図2より、以下のことがわかる。
(a)Co量が20at%以上(80at%Pt以下)になると、SAは純Ptの約1.7倍以上になる。
(b)Co量が50at%近傍のところで、SAは極大値を取る。
[2. result]
FIG. 2 shows the activity (SA) dependence at 0.9 V vs RHE per surface area of the Pt-Co alloy on the amount of Co in the Pt-Co alloy. The solid line in FIG. 2 is obtained by fitting the experimental value with a quadratic function. The following can be understood from FIG.
(A) When the amount of Co is 20 at% or more (80 at% Pt or less), SA is about 1.7 or more times that of pure Pt.
(B) When the amount of Co is around 50 at%, SA takes a maximum value.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。   As mentioned above, although embodiment of this invention was described in detail, this invention is not limited at all to the said embodiment, A various change is possible within the range which does not deviate from the summary of this invention.

本発明に係る空気極用電極触媒は、自動車用動力源、定置型小型発電機等に用いられる燃料電池の空気極の電極触媒として用いることができる。   The electrode catalyst for an air electrode according to the present invention can be used as an electrode catalyst of an air electrode of a fuel cell used for a power source for automobiles, a small stationary electric generator or the like.

Claims (5)

以下の構成を備えた空気極用電極触媒。
(1)前記空気極用電極触媒は、
Pt合金からなる第1触媒粒子と、
前記第1触媒粒子よりも平均粒径が小さい純Ptからなる第2触媒粒子と
を備えている。
(2)前記Pt合金は、PtxM(1≦x≦4、Mは卑金属元素)で表される原子組成比を持つ。
An electrode catalyst for an air electrode having the following configuration.
(1) The electrode catalyst for the air electrode is
First catalyst particles made of Pt alloy;
And second catalyst particles made of pure Pt and having an average particle diameter smaller than that of the first catalyst particles.
(2) The Pt alloy has an atomic composition ratio represented by Pt x M (1 ≦ x ≦ 4, M is a base metal element).
前記第1触媒粒子及び前記第2触媒粒子を担持するための担体をさらに備えた請求項1に記載の空気極用電極触媒。   The electrode catalyst for an air electrode according to claim 1, further comprising a carrier for supporting the first catalyst particles and the second catalyst particles. 前記Mは、Co、Ni、Fe、W、Pb、Cr、Mn、V、Mo、Ga、Y、及びAlからなる群から選ばれるいずれか1種以上の元素である請求項1又は2に記載の空気極用電極触媒。   The M is any one or more elements selected from the group consisting of Co, Ni, Fe, W, Pb, Cr, Mn, V, Mo, Ga, Y, and Al. Electrode catalyst for air electrode. 以下の構成をさらに備えた請求項1から3までのいずれか1項に記載の空気極用電極触媒。
(3)前記第1触媒粒子は、平均粒径dm1が4nm以上6nm以下であり、かつ、前記平均粒径の標準偏差σ1が2nm以下である。
(4)前記第2触媒粒子は、平均粒径dm2が1nm以上4nm以下であり、かつ、前記平均粒径の標準偏差σ2が2nm以下である。
The electrode catalyst for air electrodes of any one of Claim 1 to 3 further equipped with the following structure.
(3) the first catalyst particles have an average particle size d m1 is at 4nm than 6nm or less, and the standard deviation sigma 1 of the average particle diameter of 2nm or less.
(4) The second catalyst particles have an average particle diameter d m2 of 1 nm or more and 4 nm or less, and a standard deviation σ 2 of the average particle diameter of 2 nm or less.
前記第2触媒粒子の重量(W2)に対する前記第1触媒粒子の重量(W1)の比(=W1/W2)は、2/1以上9/1以下である請求項1から4までのいずれか1項に記載の空気極用電極触媒。 The ratio (= W 1 / W 2 ) of the weight (W 1 ) of the first catalyst particles to the weight (W 2 ) of the second catalyst particles is 2/1 or more and 9/1 or less. The air electrode electrode catalyst according to any one of the above.
JP2017083230A 2017-04-19 2017-04-19 Electrode catalyst for air electrode Active JP6814087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017083230A JP6814087B2 (en) 2017-04-19 2017-04-19 Electrode catalyst for air electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017083230A JP6814087B2 (en) 2017-04-19 2017-04-19 Electrode catalyst for air electrode

Publications (2)

Publication Number Publication Date
JP2018181739A true JP2018181739A (en) 2018-11-15
JP6814087B2 JP6814087B2 (en) 2021-01-13

Family

ID=64277133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017083230A Active JP6814087B2 (en) 2017-04-19 2017-04-19 Electrode catalyst for air electrode

Country Status (1)

Country Link
JP (1) JP6814087B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220038754A (en) 2019-08-02 2022-03-29 닛신보 홀딩스 가부시키 가이샤 Metal-supported catalyst, battery electrode and battery
KR20220038752A (en) 2019-08-02 2022-03-29 닛신보 홀딩스 가부시키 가이샤 Metal-supported catalyst, battery electrode and battery
KR20220038753A (en) 2019-08-02 2022-03-29 닛신보 홀딩스 가부시키 가이샤 Metal-supported catalyst, battery electrode and battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220038754A (en) 2019-08-02 2022-03-29 닛신보 홀딩스 가부시키 가이샤 Metal-supported catalyst, battery electrode and battery
KR20220038752A (en) 2019-08-02 2022-03-29 닛신보 홀딩스 가부시키 가이샤 Metal-supported catalyst, battery electrode and battery
KR20220038753A (en) 2019-08-02 2022-03-29 닛신보 홀딩스 가부시키 가이샤 Metal-supported catalyst, battery electrode and battery

Also Published As

Publication number Publication date
JP6814087B2 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
US8304362B2 (en) Core/shell-type catalyst particles and methods for their preparation
US8288308B2 (en) Core/shell-type catalyst particles and methods for their preparation
TWI404258B (en) Electrode catalyst with improved longevity properties and fuel cell using the same
JP2002511639A (en) Improved compositions of selective oxidation catalysts for fuel cells
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
JP5305699B2 (en) Catalyst, catalyst manufacturing method, membrane electrode assembly, and fuel cell
WO2009096356A1 (en) Fuel cell electrode catalyst, method for manufacturing the same, and solid polymer type fuel cell using the same
JP2007111582A (en) Catalyst, electrode for fuel electrode of fuel cell and fuel cell
JP2007273340A (en) High-durability electrode catalyst for fuel cell, and fuel cell using the same
WO2020059504A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP6814087B2 (en) Electrode catalyst for air electrode
JP7152987B2 (en) Electrocatalyst
WO2011125196A1 (en) Fuel cell
JP4374036B2 (en) Polymer solid oxide fuel cell catalyst, membrane electrode assembly and fuel cell
JP4785757B2 (en) Method for producing noble metal-supported electrode catalyst and noble metal-supported electrode catalyst obtained by the production method
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2006127979A (en) Fuel cell and electrode catalyst therefor
JP2008171647A (en) Catalyst for fuel cell, cathode for fuel cell, and solid polymer fuel cell equipped with the same
WO2020059502A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2018190545A (en) Electrode catalyst for fuel cell and method for producing the same
JP2005050734A (en) Manufacturing method of electrode for solid polymer fuel cell
US20140170525A1 (en) Membrane electrode assembly and fuel cell including the same
Li et al. High-temperature annealing improves Pt utilization of proton exchange membrane fuel cell cathode catalysts
Miller et al. Electrocatalysts and Mechanisms of Hydrogen Oxidation in Alkaline Media for Anion Exchange Membrane Fuel Cells
JP7131535B2 (en) Catalyst layer for fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201218

R150 Certificate of patent or registration of utility model

Ref document number: 6814087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250