JP2005050734A - Manufacturing method of electrode for solid polymer fuel cell - Google Patents

Manufacturing method of electrode for solid polymer fuel cell Download PDF

Info

Publication number
JP2005050734A
JP2005050734A JP2003282957A JP2003282957A JP2005050734A JP 2005050734 A JP2005050734 A JP 2005050734A JP 2003282957 A JP2003282957 A JP 2003282957A JP 2003282957 A JP2003282957 A JP 2003282957A JP 2005050734 A JP2005050734 A JP 2005050734A
Authority
JP
Japan
Prior art keywords
exchange resin
cation exchange
electrode
pefc
carbon particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003282957A
Other languages
Japanese (ja)
Inventor
Naohiro Tsumura
直宏 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2003282957A priority Critical patent/JP2005050734A/en
Publication of JP2005050734A publication Critical patent/JP2005050734A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a PEFC electrode in which a platinum metal exists mainly in the interface of the surface of carbon particles and ion cluster portion of a cation exchange resin and in which the platinum metal in the PEFC electrode is increased and the utilization factor of the platinum metal is improved by solving a problem that binding force between the surface of the carbon particles and the cation exchange resin is not sufficient. <P>SOLUTION: The manufacturing method of a PEFC electrode includes a process in which a mixture containing carbon particles and a cation exchange resin is heated at a temperature of glass transition temperature or more and decomposition temperature or less of the cation exchange resin, and then, cations containing a platinum metal element are adsorbed to the cation exchange resin contained in the above mixture, and then the cations are reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体高分子形燃料電池用電極の製造方法に関するものである。   The present invention relates to a method for producing a polymer electrolyte fuel cell electrode.

固体高分子形燃料電池(PEFC)のコストを削減するために、極めて少ない量の白金族金属で高い性能を持つ燃料電池用の電極が、特許文献1で開示されている。   In order to reduce the cost of a polymer electrolyte fuel cell (PEFC), Patent Document 1 discloses an electrode for a fuel cell having high performance with a very small amount of platinum group metal.

特開2000−12041号公報。JP 2000-12041 A.

この電極の白金族金属は、おもにカーボン粒子の表面と陽イオン交換樹脂のイオンクラスター部分との接面に存在している。この電極の従来の製造方法はつぎのとおりである。まず、カーボン粒子と陽イオン交換樹脂の溶液とのペーストをFEPフィルム基材上に塗布したのちに乾燥することによって、カーボン粒子と陽イオン交換樹脂との混合物のシートをその基材上に製作する。   The platinum group metal of this electrode exists mainly on the contact surface between the surface of the carbon particles and the ion cluster portion of the cation exchange resin. The conventional manufacturing method of this electrode is as follows. First, a paste of a solution of carbon particles and a cation exchange resin is applied on an FEP film substrate and then dried to produce a sheet of a mixture of carbon particles and a cation exchange resin on the substrate. .

つぎに、その混合物のシートを白金族金属の元素を含む陽イオンの水溶液に浸漬する。この工程では、白金族金属の元素を含む陽イオンが陽イオン交換樹脂のイオンクラスター部分に吸着する。この吸着は、イオンクラスター部分を構成する陽イオン交換基の対イオンと白金族金属の元素を含む陽イオンとのイオン交換反応によって進行する。   Next, the sheet of the mixture is immersed in an aqueous solution of a cation containing a platinum group metal element. In this step, a cation containing a platinum group metal element is adsorbed on the ion cluster portion of the cation exchange resin. This adsorption proceeds by an ion exchange reaction between a counter ion of a cation exchange group constituting an ion cluster portion and a cation containing a platinum group metal element.

さらに、この工程を経たシートを乾燥した後に、水素ガスを含む約180℃の雰囲気下で静置する。この工程では、イオンクラスターに吸着した白金族金属の元素を含む陽イオンのうちでカーボン粒子表面の付近に存在しているものが優先的に還元されるので、白金族金属がカーボン粒子の表面と陽イオン交換樹脂のイオンクラスター部分との接面に析出する。この静置の工程を経た混合物のシートが電極の触媒層として用いられる。この触媒層とガス拡散層とを積層することによって燃料電池用の電極が得られる。   Furthermore, after the sheet having undergone this step is dried, it is allowed to stand in an atmosphere of about 180 ° C. containing hydrogen gas. In this step, among the cations containing platinum group metal elements adsorbed on the ion clusters, those existing in the vicinity of the surface of the carbon particles are preferentially reduced, so that the platinum group metal is separated from the surface of the carbon particles. It is deposited on the contact surface with the ion cluster part of the cation exchange resin. A sheet of the mixture that has undergone this stationary step is used as the catalyst layer of the electrode. By laminating the catalyst layer and the gas diffusion layer, an electrode for a fuel cell can be obtained.

白金族金属が、主にカーボン粒子の表面と陽イオン交換樹脂のイオンクラスター部分との接面に存在する電極の従来の製造方法では、カーボン粒子の表面と陽イオン交換樹脂との結着力が充分でないことに起因する問題があった。   The conventional manufacturing method for electrodes in which the platinum group metal exists mainly on the contact surface between the surface of the carbon particles and the ion cluster portion of the cation exchange resin has sufficient binding force between the surface of the carbon particles and the cation exchange resin. There was a problem caused by not.

例えば、カーボン粒子と陽イオン交換樹脂との混合物のシートを白金族金属の元素を含む陽イオンの水溶液に浸漬する工程では、混合物のシートに含まれる陽イオン交換樹脂が水溶液中の水分によって膨潤するので、陽イオン交換の一部がカーボン粒子の表面から剥離することが問題となっていた。この剥離が生じた場合、カーボン粒子の表面と陽イオン交換樹脂のイオンクラスターとの接面の総面積が減少し、その結果、混合物のシートに析出する白金族金属の量が減少する。   For example, in the step of immersing a sheet of a mixture of carbon particles and a cation exchange resin in a cation aqueous solution containing a platinum group metal element, the cation exchange resin contained in the mixture sheet is swollen by moisture in the aqueous solution. Therefore, it has been a problem that a part of the cation exchange is separated from the surface of the carbon particles. When this delamination occurs, the total area of the contact surface between the surface of the carbon particles and the ion cluster of the cation exchange resin decreases, and as a result, the amount of platinum group metal deposited on the sheet of the mixture decreases.

また、カーボン粒子と陽イオン交換樹脂との混合物のシートを、水素ガスを含む約180℃の雰囲気下で静置する工程でもつぎの問題があった。この工程では、混合物のシートに含まれる陽イオン交換樹脂が約180℃に加熱される。この温度はその樹脂のガラス転移温度よりも高いので、陽イオン交換樹脂はこの工程のあいだに膨張または収縮する。この膨張または収縮によって、析出した白金族金属の一部が陽イオン交換樹脂のフロロカーボン骨格部分で被覆され、その結果、白金族金属の利用率が低下することが問題となっていた。   In addition, the following problem was also encountered in the process of leaving a sheet of a mixture of carbon particles and cation exchange resin in an atmosphere of about 180 ° C. containing hydrogen gas. In this step, the cation exchange resin contained in the mixture sheet is heated to about 180 ° C. Since this temperature is higher than the glass transition temperature of the resin, the cation exchange resin expands or contracts during this process. Due to this expansion or contraction, a part of the deposited platinum group metal is covered with the fluorocarbon skeleton portion of the cation exchange resin, and as a result, the utilization rate of the platinum group metal has been problematic.

請求項1の発明は、上記の問題を解決するための固体高分子形燃料電池用電極の製造方法であり、この製造方法の特徴は、カ−ボン粒子と陽イオン交換樹脂とを含む混合物を、前記陽イオン交換樹脂のガラス転移温度以上、分解温度以下の温度で加熱した後、前記混合物に含まれる前記陽イオン交換樹脂に白金族金属元素を含む陽イオンを吸着させ、その後前記陽イオンを還元する工程を含むことを特徴とする。   The invention of claim 1 is a method for producing an electrode for a polymer electrolyte fuel cell for solving the above-mentioned problems, and the feature of this production method is that a mixture containing carbon particles and a cation exchange resin is used. Then, after heating at a temperature not lower than the glass transition temperature and not higher than the decomposition temperature of the cation exchange resin, the cation exchange resin contained in the mixture is adsorbed with a cation containing a platinum group metal element, and then the cation is absorbed. It includes a step of reducing.

ここで、カ−ボン粒子と陽イオン交換樹脂とを含む混合物を、陽イオン交換樹脂のガラス転移温度以上、分解温度以下の温度で加熱する工程を「加熱工程」、カ−ボン粒子と陽イオン交換樹脂とを含む混合物に含まれる前記陽イオン交換樹脂に白金族金属元素を含む陽イオンを吸着させる工程を「吸着工程」、陽イオン交換樹脂に吸着させた陽イオンを還元する工程を「還元工程」とする。   Here, the process of heating the mixture containing the carbon particles and the cation exchange resin at a temperature not lower than the glass transition temperature and not higher than the decomposition temperature of the cation exchange resin is referred to as a “heating process”, and the carbon particles and the cation. The process of adsorbing a cation containing a platinum group metal element to the cation exchange resin contained in the mixture containing the exchange resin is called “adsorption process”, and the process of reducing the cation adsorbed on the cation exchange resin is called “reduction” Process.

本発明によれば、固体高分子形燃料電池用電極中の白金族金属を増加させることができ、さらに、白金族金属の利用率を向上することができる。したがって、カーボン粒子、陽イオン交換樹脂および白金族金属の使用量を大幅に削減できるので、低コストな固体高分子形燃料電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the platinum group metal in the electrode for polymer electrolyte fuel cells can be increased, and also the utilization factor of a platinum group metal can be improved. Therefore, the amount of carbon particles, cation exchange resin, and platinum group metal used can be greatly reduced, and a low-cost solid polymer fuel cell can be provided.

本発明の固体高分子形燃料電池(PEFC)用電極の製造方法は、カ−ボン粒子と陽イオン交換樹脂とを含む混合物が、陽イオン交換樹脂のガラス転移温度以上、分解温度以下の温度で加熱される「加熱工程」を経るものである。この加熱工程を経ることによって、カーボン粒子と陽イオン交換樹脂との結着力が増大する。この結着力の増大は、陽イオン交換樹脂の結晶構造の安定性向上または/およびカーボン粒子の表面と陽イオン交換樹脂との密着性の向上に起因するものと思われる。   In the method for producing an electrode for a polymer electrolyte fuel cell (PEFC) of the present invention, the mixture containing the carbon particles and the cation exchange resin is at a temperature not lower than the glass transition temperature of the cation exchange resin and not higher than the decomposition temperature. It goes through a “heating process” to be heated. By passing through this heating step, the binding force between the carbon particles and the cation exchange resin increases. This increase in binding force is thought to be due to the improvement in the stability of the crystal structure of the cation exchange resin or / and the improvement in the adhesion between the surface of the carbon particles and the cation exchange resin.

この加熱工程を経たカ−ボン粒子と陽イオン交換樹脂とを含む混合物は、カーボン粒子と陽イオン交換樹脂との結着の強度が、この加熱工程を経ていない場合と比べて高いので、この加熱工程に引き続いて行われる工程では、カーボン粒子の表面からの陽イオン交換樹脂の剥離や樹脂の膨張収縮が、従来の製造方法の場合と比べて大幅に抑制される。   The mixture containing the carbon particles and the cation exchange resin that has undergone this heating process has a higher binding strength between the carbon particles and the cation exchange resin than the case in which this heating process has not been performed. In the process performed subsequent to the process, the separation of the cation exchange resin from the surface of the carbon particles and the expansion and contraction of the resin are greatly suppressed as compared with the conventional manufacturing method.

本発明の製造方法を用いて製作した電極は、カーボン粒子の表面からの陽イオン交換樹脂の剥離が抑制されたので、カーボン粒子の表面と陽イオン交換樹脂のイオンクラスターとの接面が従来の製造方法を用いた場合の電極のそれと比べて大きい。この接面は白金属金属が析出する場所であるので、本発明の製造方法を用いて製作した電極は、白金族金属の量が従来の製造方法を用いた場合の電極のそれと比べて多い。   In the electrode manufactured using the manufacturing method of the present invention, the separation of the cation exchange resin from the surface of the carbon particles was suppressed, so that the contact surface between the surface of the carbon particles and the ion cluster of the cation exchange resin was the conventional one. It is larger than that of the electrode when the manufacturing method is used. Since this contact surface is where white metal metal is deposited, the amount of platinum group metal produced using the production method of the present invention is greater than that of the electrode produced using the conventional production method.

また、本発明の製造方法を用いて製作した電極は、陽イオン交換樹脂の膨張・収縮が抑制されるので、陽イオン交換樹脂のフロロカーボン骨格部分によって被覆される白金族金属が従来の製造方法を用いた場合の電極のそれと比べて少なくなり、その結果、電極中の白金族金属の利用率が向上する。   In addition, since the electrode manufactured using the manufacturing method of the present invention suppresses the expansion / contraction of the cation exchange resin, the platinum group metal covered with the fluorocarbon skeleton portion of the cation exchange resin is different from the conventional manufacturing method. Compared to that of the electrode when used, the utilization rate of the platinum group metal in the electrode is improved.

本発明において、カ−ボン粒子と陽イオン交換樹脂とを含む混合物を、前記陽イオン交換樹脂のガラス転移温度以上、分解温度以下の温度で加熱する方法としては、カ−ボン粒子と陽イオン交換樹脂との混合物を加熱用の炉に入れたのちに、炉内の雰囲気の温度をガラス転移温度以上、分解温度以下にする方法がある。   In the present invention, as a method of heating a mixture containing carbon particles and a cation exchange resin at a temperature not lower than the glass transition temperature and not higher than the decomposition temperature of the cation exchange resin, carbon particles and cation exchange may be used. There is a method in which the temperature of the atmosphere in the furnace is set to the glass transition temperature or more and the decomposition temperature or less after the mixture with the resin is placed in a heating furnace.

混合物を加熱する温度を陽イオン交換樹脂の分解温度以下とすることによって、陽イオン交換樹脂の劣化を防止することができる。炉内は空気雰囲気でもよいが、陽イオン交換樹脂の劣化を防ぐために窒素ガス、ヘリウムガス、ネオンガスまたはアルゴンガスなどの不活性ガスを主成分とする雰囲気であることが好ましい。   By setting the temperature for heating the mixture to be equal to or lower than the decomposition temperature of the cation exchange resin, the deterioration of the cation exchange resin can be prevented. The inside of the furnace may be an air atmosphere, but in order to prevent deterioration of the cation exchange resin, an atmosphere mainly containing an inert gas such as nitrogen gas, helium gas, neon gas or argon gas is preferable.

また、本発明では、陽イオン交換樹脂のイオン交換容量の低下を防ぐために、カ−ボン粒子と陽イオン交換樹脂とを含む混合物を、水を含む液体雰囲気中で加熱してもよい。さらに、本発明では、陽イオン交換樹脂の含水率の低下を防ぐために、混合物中の陽イオン交換樹脂の対イオンをプロトン以外の陽イオンで置換した後に、カ−ボン粒子と陽イオン交換樹脂とを含む混合物を加熱することが好ましい。   Moreover, in this invention, in order to prevent the fall of the ion exchange capacity of a cation exchange resin, you may heat the mixture containing a carbon particle and a cation exchange resin in the liquid atmosphere containing water. Furthermore, in the present invention, in order to prevent a decrease in the moisture content of the cation exchange resin, after replacing the counter ion of the cation exchange resin in the mixture with a cation other than protons, the carbon particles and the cation exchange resin It is preferable to heat the mixture containing.

ここで使用できる陽イオンとしては、どのようなものを用いても本発明の効果はあるが、含水率の低下を防ぐ効果が高いまたは取り扱いが容易であることから、リチウムイオン、ナトリウムイオン、カルシウムイオン、マグネシウムイオン、カリウムイオンおよびアンモニウムイオンが好ましい。   Although any cation can be used here, the effect of the present invention is obtained, but since the effect of preventing a decrease in moisture content is high or easy to handle, lithium ion, sodium ion, calcium Ions, magnesium ions, potassium ions and ammonium ions are preferred.

本発明において、加熱工程を経たカ−ボン粒子と陽イオン交換樹脂とを含む混合物の陽イオン交換樹脂に白金族金属元素を含む陽イオンを吸着させる吸着工程は、例えば、カ−ボン粒子と陽イオン交換樹脂との混合物を、白金族金属元素を含む陽イオンの水溶液に浸漬することによって実施される。   In the present invention, the adsorption step of adsorbing a cation containing a platinum group metal element on a cation exchange resin of a mixture containing carbon particles and a cation exchange resin that has undergone a heating step is, for example, a carbon particle and a cation exchange resin. It is carried out by immersing the mixture with the ion exchange resin in an aqueous solution of a cation containing a platinum group metal element.

この吸着工程における、白金族金属元素を含む陽イオンの吸着は、その陽イオンと陽イオン交換樹脂のイオンクラスターを構成するイオン交換基の対イオンとのイオン交換反応を利用したものであることが好ましい。本発明で使用できる白金族金属元素の陽イオンは、その陽イオンを還元して生成した白金属金属が触媒となることが可能な陽イオンである。そのような陽イオンとして、例えば、白金、ロジウム、ルテニウム、イリジウム、パラジウム、オスニウムなどの金属元素を含む陽イオンがある。   The adsorption of the cation containing the platinum group metal element in this adsorption process is based on the use of an ion exchange reaction between the cation and the counter ion of the ion exchange group constituting the ion cluster of the cation exchange resin. preferable. The cation of the platinum group metal element that can be used in the present invention is a cation that can be a catalyst of a white metal metal produced by reducing the cation. Examples of such a cation include a cation containing a metal element such as platinum, rhodium, ruthenium, iridium, palladium, and osnium.

特に、電気化学的な酸素の還元反応または水素酸化反応に対して高い触媒活性の触媒金属が得られることから、白金族金属元素を含む陽イオンを吸着させるとともに、マグネシウム、アルミニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀またはタングステンを含む陽イオンを吸着させてもよい。   In particular, since a catalytic metal having high catalytic activity for electrochemical oxygen reduction reaction or hydrogen oxidation reaction is obtained, a cation containing a platinum group metal element is adsorbed, and magnesium, aluminum, vanadium, chromium, Cations containing manganese, iron, cobalt, nickel, copper, zinc, silver or tungsten may be adsorbed.

さらに、本発明の製造方法に用いる触媒金属元素の陽イオンは、イオン交換反応によって、混合物中の陽イオン交換樹脂のイオン交換基に吸着するものであることが好ましい。そのような吸着特性を持つ白金族金属元素を含む陽イオンとして、白金族金属元素の錯体陽イオン、たとえば[Pt(NH2+や[Pt(NH4+と表すことができる白金のアンミン錯体陽イオン、または[Ru(NH2+や[Ru(NH3+と表すことができるルテニウムのアンミン錯体陽イオンがある。 Furthermore, it is preferable that the cation of the catalytic metal element used in the production method of the present invention is adsorbed on the ion exchange group of the cation exchange resin in the mixture by an ion exchange reaction. As a cation containing a platinum group metal element having such adsorption characteristics, a complex cation of a platinum group metal element, for example, [Pt (NH 3 ) 4 ] 2+ or [Pt (NH 3 ) 6 ] 4+ can be expressed. There is an ammine complex cation of platinum that can be produced, or an ammine complex cation of ruthenium that can be represented by [Ru (NH 3 ) 4 ] 2+ or [Ru (NH 3 ) 6 ] 3+ .

また、本発明では、2種類以上の錯体陽イオンを同時に使用することができる。例えば、白金のアンミン錯体陽イオンとルテニウムのアンミン錯体陽イオンとを同時に用いることによって、耐CO被毒性能を持つ白金−ルテニウム二元合金を得ることができる。   In the present invention, two or more kinds of complex cations can be used simultaneously. For example, by using a platinum ammine complex cation and a ruthenium ammine complex cation at the same time, a platinum-ruthenium binary alloy having a CO poisoning resistance can be obtained.

本発明の陽イオン交換樹脂に吸着させた白金族金属元素を含む陽イオンを還元する還元工程では、還元剤を用いてその陽イオンを還元することが好ましく、なかでも、その還元剤の種類および濃度と、還元を行う時の圧力、時間および温度とを調整することによって混合物中のカーボン粒子表面の付近に存在する陽イオンを優先的に還元することが好ましい。   In the reduction step of reducing a cation containing a platinum group metal element adsorbed on the cation exchange resin of the present invention, it is preferable to reduce the cation using a reducing agent. It is preferable to preferentially reduce cations present in the vicinity of the surface of the carbon particles in the mixture by adjusting the concentration and the pressure, time, and temperature at which the reduction is performed.

例えば、還元剤として水素を用いて還元温度180℃の条件でこの工程をおこなった場合、陽イオン交換樹脂に吸着した陽イオンのうちカーボン粒子表面付近のものを選択的に還元することができる。この選択的な還元は、カーボン粒子が白金族金属元素の陽イオンの還元反応に対する触媒活性を備えていることを利用したものである。   For example, when this step is performed using hydrogen as a reducing agent at a reduction temperature of 180 ° C., cations adsorbed on the cation exchange resin near the carbon particle surface can be selectively reduced. This selective reduction utilizes the fact that the carbon particles have catalytic activity for the reduction reaction of the cation of the platinum group metal element.

本発明の還元工程では、混合物中のカーボン粒子表面と陽イオン交換樹脂のイオンクラスターとの接面に生成させた白金族金属の量を、全白金族金属量100重量部に対して50重量部を越えるようにすることが好ましく、80重量部を越えるようにすることがさらに好ましい。   In the reduction step of the present invention, the amount of platinum group metal formed on the surface of the carbon particles in the mixture and the ion cluster of the cation exchange resin is 50 parts by weight with respect to 100 parts by weight of the total platinum group metal. It is preferable to exceed 80, more preferably 80 parts by weight.

カーボン粒子表面と陽イオン交換樹脂のイオンクラスターとの接面は、電子とプロトンとの授受を同時におこなうことのできる場所であるので、この接面に担持された白金族金属の量の割合を高めることによって、PEFC用電極に用いる白金族金属の使用量を削減し、PEFCのコスト低減をはかることができる。   The contact surface between the carbon particle surface and the ion cluster of the cation exchange resin is a place where electrons and protons can be exchanged at the same time. Therefore, the ratio of the amount of platinum group metal supported on the contact surface is increased. Thus, the amount of platinum group metal used for the PEFC electrode can be reduced, and the cost of PEFC can be reduced.

この還元工程で使用できる還元剤として、水素、硫化水素、ヨウ化水素、ヨウ素イオンなどの非金属のイオン、一酸化炭素や二酸化硫黄などの低級酸化物、ホスフィン酸ナトリウム、チオ硫酸ナトリウム、水素化ホウ素ナトリウムやテトラヒドロアルミン酸リチウムなどの水素化物、ヒドラジン、ジイミド、ギ酸、アルデヒド、糖類などがある。   Reducing agents that can be used in this reduction process include hydrogen, hydrogen sulfide, hydrogen iodide, non-metallic ions such as iodine ions, lower oxides such as carbon monoxide and sulfur dioxide, sodium phosphinate, sodium thiosulfate, hydrogenation Examples include hydrides such as sodium boron and lithium tetrahydroaluminate, hydrazine, diimide, formic acid, aldehyde, and saccharides.

特に、量産に適していることから、水素ガスまたはヒドラジンを含むガスが好ましい。この水素ガスは、窒素、ヘリウムまたはアルゴンなどの不活性ガスとの混合ガス(水素混合ガス)として用いられることが好ましく、そして、この水素混合ガスの水素ガスの含有量は10vol%以上であることが好ましい。   In particular, a gas containing hydrogen gas or hydrazine is preferable because it is suitable for mass production. The hydrogen gas is preferably used as a mixed gas (hydrogen mixed gas) with an inert gas such as nitrogen, helium or argon, and the hydrogen gas content of the hydrogen mixed gas is 10 vol% or more. Is preferred.

さらに、この工程における還元温度は、陽イオン交換樹脂の劣化を防ぐために、その樹脂の分解温度よりも低いことが好ましい。例えば、陽イオン交換樹脂がパーフルオロカーボンスルフォン酸形の陽イオン交換樹脂である場合、この樹脂の分解温度280℃より低い温度で還元することによって、樹脂の劣化を押さえることができる。   Further, the reduction temperature in this step is preferably lower than the decomposition temperature of the resin in order to prevent deterioration of the cation exchange resin. For example, when the cation exchange resin is a perfluorocarbon sulfonic acid type cation exchange resin, it is possible to suppress degradation of the resin by reducing it at a temperature lower than the decomposition temperature of 280 ° C.

還元剤として水素ガスまたは水素混合ガスを用いる場合、還元温度条件は100℃以上200℃以下であることが好ましい。その温度条件がこの範囲のとき、全触媒金属100重量部のうち80重量部以上がカーボン粒子表面と陽イオン交換樹脂のイオンクラスターとの接面に担持された状態の混合物を効率よく製造することができる。このことは、還元温度条件が100℃以上のときにカーボン粒子の触媒金属元素の陽イオンの還元反応に対する触媒活性が高くなることと、200℃以下のときに陽イオン交換樹脂の劣化が少ないこととによるものである。   When hydrogen gas or a hydrogen mixed gas is used as the reducing agent, the reduction temperature condition is preferably 100 ° C. or higher and 200 ° C. or lower. When the temperature condition is within this range, a mixture in which 80 parts by weight or more of 100 parts by weight of all catalyst metals are supported on the contact surface between the carbon particle surface and the ion cluster of the cation exchange resin is efficiently produced. Can do. This means that the catalytic activity for the cation reduction reaction of the catalytic metal element of the carbon particles is high when the reduction temperature condition is 100 ° C. or higher, and that the cation exchange resin is less deteriorated when it is 200 ° C. or lower. It is due to.

本発明で用いるカ−ボン粒子と陽イオン交換樹脂とを含む混合物は、カーボン粒子と陽イオン交換樹脂の溶液またはこの樹脂の分散液とのペーストを成形した後に乾燥することによって製造することができる。この陽イオン交換樹脂の溶液またはこの樹脂の分散液に含まれる溶媒は、水とアルコールとの混合溶液であることが好ましく、そのアルコールは炭素数が4以下のものであることが好ましい。また、そのペーストは、必要に応じて、PTFE粒子などのフッ素系樹脂、または/およびカルボキシルメチルセルロースやグリセリンなどの増粘剤を含んでもよい。   The mixture containing the carbon particles and the cation exchange resin used in the present invention can be produced by forming a paste of a solution of carbon particles and a cation exchange resin or a dispersion of this resin and then drying the paste. . The solvent contained in the cation exchange resin solution or the resin dispersion is preferably a mixed solution of water and alcohol, and the alcohol preferably has 4 or less carbon atoms. Further, the paste may contain a fluorine-based resin such as PTFE particles or / and a thickener such as carboxymethyl cellulose and glycerin as necessary.

本発明で使用できるカ−ボン粒子と陽イオン交換樹脂とを含む混合物の形状としては、シート状または粉末状のものがある。混合物がシート状の場合、その混合物に白金族金属を付与することによって、触媒層が得られる。したがって、この混合物の厚さは、触媒層としての充分な強度と高い電子伝導性と高いガス拡散性とを維持するために、3μm以上30μm以下とするのが好ましく、3μm以上20μm以下であることがさらに好ましい。一方で、混合物が粒子状の場合では、その混合物に白金族金属を付与したのちにシート状に成形することによって、触媒層が得られる。   As a shape of the mixture containing the carbon particles and the cation exchange resin that can be used in the present invention, there are a sheet shape and a powder shape. When the mixture is in sheet form, a catalyst layer is obtained by applying a platinum group metal to the mixture. Therefore, the thickness of the mixture is preferably 3 μm or more and 30 μm or less in order to maintain sufficient strength as the catalyst layer, high electron conductivity, and high gas diffusivity, and is 3 μm or more and 20 μm or less. Is more preferable. On the other hand, when the mixture is in the form of particles, a catalyst layer can be obtained by forming a platinum group metal into the mixture and then forming it into a sheet.

したがって、粒子状の混合物の平均粒度は0.10μm以上、200μm以下であることが好ましい。この理由はつぎのとおりである。平均粒度が200μm以下の混合物を用いて製造した触媒層の表面は、200μmよりも大きいものを用いた場合よりも著しく平坦となる。その表面が平坦なほど電極面内の電流分布が均一になるので、平均粒度が200μm以下の混合物を用いて製造した触媒層を備えたPEFCの出力性能は、200μmよりも大きいものを用いた場合よりも著しく高い。   Therefore, the average particle size of the particulate mixture is preferably 0.10 μm or more and 200 μm or less. The reason for this is as follows. The surface of the catalyst layer produced using a mixture having an average particle size of 200 μm or less is remarkably flat compared to the case where a catalyst layer having a particle size larger than 200 μm is used. Since the current distribution in the electrode surface becomes more uniform as the surface becomes flat, the output performance of the PEFC having a catalyst layer manufactured using a mixture having an average particle size of 200 μm or less is larger than 200 μm. Is significantly higher than.

そして、平均粒度が0.1μm以上の粒子状の混合物は、0.1μmよりも小さい平均粒度のものに比べて飛散性が低いなどの特長がある。したがって、平均粒度が0.1μm以上の混合物は、0.1μmよりも小さい平均粒度のものに比べて取り扱いの点で優れている。さらに、原因は明らかではないが、平均粒度が0.1μm以上の混合物を用いて製造した触媒層を備えたPEFCの出力性能は、0.1μmよりも小さい平均粒度のものを用いた場合よりも著しく高い。   A particulate mixture having an average particle size of 0.1 μm or more has a feature such that the scattering property is lower than that of an average particle size smaller than 0.1 μm. Therefore, a mixture having an average particle size of 0.1 μm or more is superior in terms of handling compared to a mixture having an average particle size smaller than 0.1 μm. Furthermore, although the cause is not clear, the output performance of PEFC having a catalyst layer produced using a mixture having an average particle size of 0.1 μm or more is higher than that using an average particle size smaller than 0.1 μm. Remarkably high.

粒子状の混合物の平均粒度を制御する方法としては、例えば、ふるい機や分級機を用いて粒子を分類する方法、および、粉砕機または造粒機を用いて粒子を粉砕または造粒する方法がある。分級機としては、水力分級機、機械分級機、液体サイクロンなど湿式分級機あるいは乾式サイクロンなどの空気式分級機を用いることができる。粉砕機としては、高速回転衝撃剪断式、ロール回転式、ボールミル、気流粉砕式、剪断摩擦式のものが使用できる。特に、粉砕機としてボールミルを使用した場合、粒度分布の狭い混合物が容易に得られる。また、二種以上の粉砕器を使用することによって、効率よく粉砕をおこなうことができる。また、粉砕機は、作動条件を調整することによって造粒機としても使用できる。また、混合物の平均粒度を10μm以下に制御する場合は、湿式粉砕が好ましい。   Examples of a method for controlling the average particle size of the particulate mixture include a method of classifying particles using a sieve or a classifier, and a method of pulverizing or granulating particles using a pulverizer or a granulator. is there. As the classifier, a hydraulic classifier, a mechanical classifier, a wet classifier such as a liquid cyclone, or a pneumatic classifier such as a dry cyclone can be used. As the pulverizer, those of a high-speed rotational impact shear type, a roll rotary type, a ball mill, an airflow pulverization type, and a shear friction type can be used. In particular, when a ball mill is used as a pulverizer, a mixture having a narrow particle size distribution can be easily obtained. Moreover, it can grind | pulverize efficiently by using 2 or more types of grinders. The pulverizer can also be used as a granulator by adjusting the operating conditions. Moreover, when controlling the average particle diameter of a mixture to 10 micrometers or less, wet grinding is preferable.

本発明で使用できる陽イオン交換樹脂として、パーフルオロカーボンスルフォン酸形またはスチレン−ジビニルベンゼン系のスルフォン酸形の陽イオン交換樹脂や、イオン交換基としてカルボキシル基を備えた陽イオン交換樹脂などがある。また、カーボン粒子としては、白金族金属の元素を含む陽イオンの還元反応に対して高い活性を示すカーボンブラックが好ましく、例えば、Denka Black、 Vulcan XC―72、Black Pearl 2000等のカーボンブラックがとくに好ましい。   Examples of the cation exchange resin that can be used in the present invention include perfluorocarbon sulfonic acid type or styrene-divinylbenzene sulfonic acid type cation exchange resins, and cation exchange resins having carboxyl groups as ion exchange groups. Further, as the carbon particles, carbon black exhibiting high activity with respect to the reduction reaction of a cation containing a platinum group metal element is preferable. For example, carbon black such as Denka Black, Vulcan XC-72, Black Pearl 2000 and the like are particularly preferable. preferable.

[実施例1]
以下、本発明を好適な実施例を用いて説明する。
[Example 1]
The present invention will be described below with reference to preferred embodiments.

陽イオン交換樹脂としてはNafionを用いた。ここで用いたNafionのガラス転移温度は116℃、分解温度は280℃であった。   Nafion was used as the cation exchange resin. The glass transition temperature of Nafion used here was 116 ° C., and the decomposition temperature was 280 ° C.

陽イオン交換樹脂溶液(Nafion5wt%溶液、Aldrich)とカーボン粒子(Vulcan XC―72、Cabot)とを撹拌することによってペーストを製造した。陽イオン交換樹脂溶液とカーボン粒子との配合割合は11:1とした。つぎに、このペーストをカーボンペーパー上に100μmの厚さで塗布したのち室温で乾燥することによって、カーボン粒子と陽イオン交換樹脂とを含む混合物をカーボンペーパー上に成形した。この混合物の厚さは25μmであった。   A paste was prepared by stirring a cation exchange resin solution (Nafion 5 wt% solution, Aldrich) and carbon particles (Vulcan XC-72, Cabot). The mixing ratio of the cation exchange resin solution and the carbon particles was 11: 1. Next, this paste was applied to carbon paper to a thickness of 100 μm and then dried at room temperature, thereby forming a mixture containing carbon particles and a cation exchange resin on carbon paper. The thickness of this mixture was 25 μm.

つづいて、加熱工程において、表面にカーボン粒子と陽イオン交換樹脂とを含む混合物を成形したカーボンペーパーを、窒素雰囲気下150℃で、1時間加熱した。この温度は、陽イオン交換樹脂のガラス転移温度以上、分解温度以下である。   Subsequently, in the heating step, carbon paper having a mixture containing carbon particles and a cation exchange resin formed on the surface was heated at 150 ° C. for 1 hour in a nitrogen atmosphere. This temperature is not lower than the glass transition temperature of the cation exchange resin and not higher than the decomposition temperature.

さらに、吸着工程では、この表面にカーボン粒子と陽イオン交換樹脂とを含む混合物を成形したカーボンぺーパーを、[Pt(NH]Clの水溶液に浸漬した後、脱イオン水による洗浄と60℃の空気中での乾燥とを行った。その後の還元工程において、表面にカーボン粒子と陽イオン交換樹脂とを含む混合物を形成したカーボンぺーパーを200℃の水素雰囲気中で7時間静置することによって、実施例1のPEFC用電極を作製した。 Further, in the adsorption step, carbon paper having a mixture of carbon particles and cation exchange resin formed on its surface is immersed in an aqueous solution of [Pt (NH 3 ) 4 ] Cl 2 and then washed with deionized water. And drying in air at 60 ° C. In the subsequent reduction step, the PEFC electrode of Example 1 was prepared by allowing a carbon paper having a mixture containing carbon particles and a cation exchange resin on the surface to stand in a hydrogen atmosphere at 200 ° C. for 7 hours. did.

[実施例2]
加熱工程における加熱時間を30分とした以外は実施例1と同様にして、実施例2のPEFC用電極を作製した。
[Example 2]
A PEFC electrode of Example 2 was produced in the same manner as Example 1 except that the heating time in the heating step was 30 minutes.

[実施例3]
加熱工程における加熱時間を2時間とした以外は実施例1と同様にして、実施例3のPEFC用電極を作製した。
[Example 3]
A PEFC electrode of Example 3 was produced in the same manner as in Example 1 except that the heating time in the heating step was 2 hours.

[実施例4]
加熱工程における加熱時間を5時間とした以外は実施例1と同様にして、実施例4のPEFC用電極を作製した。
[Example 4]
A PEFC electrode of Example 4 was produced in the same manner as in Example 1 except that the heating time in the heating step was 5 hours.

[実施例5]
加熱工程における加熱温度を130℃とした以外は実施例1と同様にして、実施例5のPEFC用電極を作製した。
[Example 5]
A PEFC electrode of Example 5 was produced in the same manner as in Example 1 except that the heating temperature in the heating step was 130 ° C.

[実施例6]
加熱工程における加熱温度を180℃とした以外は実施例1と同様にして、実施例6のPEFC用電極を作製した。
[Example 6]
A PEFC electrode of Example 6 was produced in the same manner as in Example 1 except that the heating temperature in the heating step was 180 ° C.

[実施例7]
加熱工程における加熱温度を250℃とした以外は実施例1と同様にして、実施例7のPEFC用電極を作製した。
[Example 7]
A PEFC electrode of Example 7 was produced in the same manner as in Example 1 except that the heating temperature in the heating step was 250 ° C.

[比較例1]
加熱工程を経なかった以外は実施例1と同様にして、比較例1のPEFC用電極を作製した。
[Comparative Example 1]
A PEFC electrode of Comparative Example 1 was produced in the same manner as in Example 1 except that the heating step was not performed.

[比較例2]
加熱工程における加熱温度を100℃とした以外は実施例1と同様にして、比較例2のPEFC用電極を作製した。
[Comparative Example 2]
A PEFC electrode of Comparative Example 2 was produced in the same manner as in Example 1 except that the heating temperature in the heating step was 100 ° C.

[比較例3]
加熱工程における加熱温度を300℃とした以外は実施例1と同様にして、比較例3のPEFC用電極を作製した。
[Comparative Example 3]
A PEFC electrode of Comparative Example 3 was produced in the same manner as in Example 1 except that the heating temperature in the heating step was 300 ° C.

ここで作製した実施例1〜7および比較例1〜3のPEFC用電極の内容を表1に示した。   Table 1 shows the contents of the electrodes for PEFC of Examples 1 to 7 and Comparative Examples 1 to 3 manufactured here.


Figure 2005050734
Figure 2005050734

つぎに、実施例1〜7および比較例1〜3のPEFC用電極について、PEFC用電極の白金担持量、担持された白金の活性表面積、白金1mg当たりの活性表面積を求めた。   Next, for the PEFC electrodes of Examples 1 to 7 and Comparative Examples 1 to 3, the amount of platinum supported on the PEFC electrode, the active surface area of the supported platinum, and the active surface area per 1 mg of platinum were determined.

PEFC用電極の白金担持量は、PEFC用電極に含まれる白金を王水で抽出し、抽出液中の白金をICP発光分析法によって定量して求めた。PEFC用電極に担持された白金の活性表面積は、電解質として固体高分子膜(Nafion 115、DuPont)を用い、作用極としてPEFC電極を、対極に作用極と同じ電極を使用し、ボルタメトリーによって作用極での水素の脱離反応に起因する電気量を求め、この電気量を210(μC/cm)で割った値を白金の活性表面積とした。さらに、この活性表面積を白金担持量で割ることによって、PEFC電極中の白金1mg当たりの活性表面積を得た。測定結果を表2に示した。 The amount of platinum supported on the PEFC electrode was determined by extracting platinum contained in the PEFC electrode with aqua regia and quantifying the platinum in the extract by ICP emission spectrometry. The active surface area of platinum supported on the electrode for PEFC works by voltammetry using a solid polymer membrane (Nafion 115, DuPont) as the electrolyte, the PEFC electrode as the working electrode, and the same electrode as the working electrode as the counter electrode. The amount of electricity resulting from the elimination reaction of hydrogen at the electrode was determined, and the value obtained by dividing this amount of electricity by 210 (μC / cm 2 ) was defined as the active surface area of platinum. Furthermore, the active surface area per 1 mg of platinum in the PEFC electrode was obtained by dividing this active surface area by the amount of platinum supported. The measurement results are shown in Table 2.

Figure 2005050734
Figure 2005050734

表2から、つぎのようなことがわかった。比較例3のPEFC用電極は、加熱工程での温度が、ナフィオンの分解温度の280℃よりも高い300℃であったため、ナフィオンが分解してしまい、白金が担持されなかった。   Table 2 shows the following. Since the temperature in the heating step of the PEFC electrode of Comparative Example 3 was 300 ° C., which was higher than the decomposition temperature of Nafion, 280 ° C., Nafion was decomposed and platinum was not supported.

PEFC用電極に含まれるカーボン粒子と陽イオン交換樹脂との合計量は、実施例1〜7と比較例1、2とでは、ほぼ同等であることがわかったが、PEFC用電極の白金担持量は、実施例1〜7の方が、比較例1、2に比べて多くなっていることがわかった。また、PEFC用電極に担持された白金1mgの活性表面積は、実施例1〜7の方が比較例1、2に比べて大きいことがわかった。   The total amount of carbon particles and cation exchange resin contained in the PEFC electrode was found to be substantially the same in Examples 1 to 7 and Comparative Examples 1 and 2, but the amount of platinum supported on the PEFC electrode It was found that Examples 1-7 were more in comparison with Comparative Examples 1 and 2. Moreover, it turned out that the active surface area of 1 mg of platinum carry | supported by the electrode for PEFC is larger compared with the comparative examples 1 and 2 of Examples 1-7.

また、実施例1〜4の比較から、加熱工程の加熱時間は、PEFC用電極の白金担持量や白金1mgの活性表面積にほとんど影響しないことがわかった。また、実施例1、5〜7の比較から、加熱工程の加熱温度が、ナフィオンのガラス転移温度116℃以上で、分解温度は280℃以下の場合には、PEFC用電極の白金担持量や白金1mgの活性表面積にほとんど影響しないことがわかった。   Moreover, it turned out that the heating time of a heating process hardly influences the platinum carrying amount of the electrode for PEFC, and the active surface area of 1 mg of platinum from the comparison of Examples 1-4. Further, from the comparison between Examples 1 and 5 to 7, when the heating temperature in the heating process is not less than 116 ° C. of Nafion glass transition temperature and not more than 280 ° C., the amount of platinum supported on the PEFC electrode and platinum It was found to have little effect on the active surface area of 1 mg.

以上の結果は、実施例1〜7のPEFC用電極に含まれるカーボン表面と陽イオン交換樹脂のイオンクラスターとの接面の面積が、比較例1、2のPEFC用電極のそれと比べて大きいことを意味するものである。したがって、カーボン粒子と陽イオン交換樹脂とを含む混合物を、陽イオン交換樹脂のガラス転移温度以上、分解温度以下の温度で加熱する加熱工程は、カーボン粒子と陽イオン交換樹脂との接面の減少を抑制する効果があることが明らかとなった。   The above results indicate that the area of the contact surface between the carbon surface contained in the PEFC electrodes of Examples 1 to 7 and the ion cluster of the cation exchange resin is larger than that of the PEFC electrodes of Comparative Examples 1 and 2. Means. Therefore, a heating process in which a mixture containing carbon particles and a cation exchange resin is heated at a temperature not lower than the glass transition temperature of the cation exchange resin and not higher than the decomposition temperature reduces the contact surface between the carbon particles and the cation exchange resin. It became clear that there was an effect to suppress.

また、白金1mg当たりの活性表面積は、実施例1〜7のPEFC用電極の方が実施例1、2よりも大きい値となったが、このことは、実施例1〜7のPEFC用電極における白金の利用率が、比較例1、2のPEFC用電極のそれと比べて高いことを意味している。したがって、カーボン粒子と陽イオン交換樹脂とを含む混合物を、陽イオン交換樹脂のガラス転移温度以上、分解温度以下の温度で加熱する工程は、陽イオン交換樹脂の骨格部分が白金を被覆する現象を抑制する効果があることが明らかとなった。   In addition, the active surface area per 1 mg of platinum was larger in the PEFC electrodes of Examples 1 to 7 than in Examples 1 and 2, and this is the same as in the PEFC electrodes of Examples 1 to 7. This means that the utilization rate of platinum is higher than that of the PEFC electrodes of Comparative Examples 1 and 2. Therefore, the process of heating the mixture containing the carbon particles and the cation exchange resin at a temperature not lower than the glass transition temperature of the cation exchange resin and not higher than the decomposition temperature is a phenomenon in which the skeleton of the cation exchange resin covers platinum. It became clear that there was an inhibitory effect.

[実施例8]
還元工程において、カーボン粒子と陽イオン交換樹脂とを含む混合物を形成したカーボンぺーパーを150℃の水素とアルゴンの体積比3:7の混合ガス雰囲気中で7時間静置した以外は、実施例1と同様にして、実施例8のPEFC用電極を作製した。
[Example 8]
In the reduction step, the carbon paper in which a mixture containing carbon particles and a cation exchange resin was formed was allowed to stand in a mixed gas atmosphere of 150 ° C. hydrogen and argon in a volume ratio of 3: 7 for 7 hours. In the same manner as in Example 1, the PEFC electrode of Example 8 was produced.

[実施例9]
還元工程において、150℃の水素とヘリウムの体積比3:7の混合ガスを用いた以外は実施例8と同様にして、実施例9のPEFC用電極を作製した。
[Example 9]
A PEFC electrode of Example 9 was produced in the same manner as in Example 8 except that a gas mixture of hydrogen and helium at 150 ° C. in a volume ratio of 3: 7 was used in the reduction step.

[実施例10]
還元工程において、25℃のヒドラジンを用いた以外は実施例8と同様にして、実施例10のPEFC用電極を作製した。
[Example 10]
A PEFC electrode of Example 10 was produced in the same manner as in Example 8 except that hydrazine at 25 ° C. was used in the reduction step.

[実施例11]
還元工程において、25℃の硫化水素を用いた以外は実施例8と同様にして、実施例11のPEFC用電極を作製した。
[Example 11]
A PEFC electrode of Example 11 was produced in the same manner as in Example 8, except that hydrogen sulfide at 25 ° C. was used in the reduction step.

[実施例12]
還元工程において、150℃のヒドラジンとアルゴンの体積比3:7の混合ガスを用いた以外は実施例8と同様にして、実施例12のPEFC用電極を作製した。
[Example 12]
A PEFC electrode of Example 12 was produced in the same manner as in Example 8, except that a gas mixture of 150 ° C. hydrazine and argon in a volume ratio of 3: 7 was used.

[実施例13]
還元工程において、25℃の硫化水素とアルゴンの体積比3:7の混合ガスを用いた以外は実施例8と同様にして、実施例13のPEFC用電極を作製した。
[Example 13]
A PEFC electrode of Example 13 was produced in the same manner as in Example 8, except that in the reduction step, a mixed gas of hydrogen sulfide and argon having a volume ratio of 3: 7 at 25 ° C. was used.

ここで作製した実施例8〜13のPEFC用電極の内容を表3に示した。   Table 3 shows the contents of the electrodes for PEFC of Examples 8 to 13 produced here.

Figure 2005050734
Figure 2005050734

実施例8〜13のPEFC用電極について、実施例1と同様にして、カーボン粒子と
陽イオン交換樹脂との合計量、PEFC用電極の白金担持量、担持された白金の活性表面積、白金1mg当たりの活性表面積を求めた。結果を表4に示した。
For the PEFC electrodes of Examples 8 to 13, in the same manner as in Example 1, the total amount of carbon particles and cation exchange resin, the amount of platinum supported on the PEFC electrode, the active surface area of the supported platinum, per 1 mg of platinum The active surface area was determined. The results are shown in Table 4.

Figure 2005050734
Figure 2005050734

表3と表4の結果から、還元工程の還元ガスの種類は、PEFC用電極の白金担持量や白金1mg当たりの活性表面積にほとんど影響しないことがわかった。   From the results of Tables 3 and 4, it was found that the type of reducing gas in the reducing step hardly affects the amount of platinum supported on the PEFC electrode and the active surface area per 1 mg of platinum.

[実施例14]
吸着工程における、カーボン粒子と陽イオン交換樹脂とを含む混合物を成形したカーボンぺーパーを浸漬する水溶液として、[Pt(NH]Clの水溶液を用いた以外は実施例1と同様にして、実施例14のPEFC用電極を作製した。
[Example 14]
The same procedure as in Example 1 was used except that an aqueous solution of [Pt (NH 3 ) 6 ] Cl 4 was used as an aqueous solution for immersing the carbon paper formed with a mixture containing carbon particles and a cation exchange resin in the adsorption step. Thus, an electrode for PEFC of Example 14 was produced.

[実施例15]
吸着工程における、カーボン粒子と陽イオン交換樹脂とを含む混合物を成形したカーボンぺーパーを浸漬する水溶液として、[Ru(NH]Clの水溶液を用いた以外は実施例1と同様にして、実施例15のPEFC用電極を作製した。
[Example 15]
The same procedure as in Example 1 was used except that an aqueous solution of [Ru (NH 3 ) 4 ] Cl 2 was used as an aqueous solution for immersing the carbon paper formed with a mixture containing carbon particles and a cation exchange resin in the adsorption step. Thus, an electrode for PEFC of Example 15 was produced.

[実施例16]
吸着工程における、カーボン粒子と陽イオン交換樹脂とを含む混合物を成形したカーボンぺーパーを浸漬する水溶液として、[Ru(NH]Clの水溶液を用いた以外は実施例1と同様にして、実施例16のPEFC用電極を作製した。
[Example 16]
The same procedure as in Example 1 was used except that an aqueous solution of [Ru (NH 3 ) 6 ] Cl 3 was used as an aqueous solution for immersing the carbon paper formed with a mixture containing carbon particles and a cation exchange resin in the adsorption step. Thus, an electrode for PEFC of Example 16 was produced.

[実施例17]
吸着工程における、カーボン粒子と陽イオン交換樹脂とを含む混合物を成形したカーボンぺーパーを浸漬する水溶液として、[Pt(NH]Clと[Ru(NH]Clとをモル比1:1で含む水溶液を用いた以外は実施例1と同様にして、実施例17のPEFC用電極を作製した。
[Example 17]
In the adsorption process, [Pt (NH 3 ) 4 ] Cl 2 and [Ru (NH 3 ) 4 ] Cl 2 are used as an aqueous solution in which a carbon paper formed with a mixture containing carbon particles and a cation exchange resin is immersed. A PEFC electrode of Example 17 was produced in the same manner as in Example 1 except that an aqueous solution containing a molar ratio of 1: 1 was used.

ここで作製した実施例14〜17のPEFC用電極の内容を表5に示した。   The contents of the PEFC electrodes of Examples 14 to 17 produced here are shown in Table 5.

Figure 2005050734
Figure 2005050734

実施例14〜17のPEFC用電極のアノードとしての特性を調査した。調査方法はつぎのとおりである。まず、これらのPEFC用電極をアノードとして備えたPEFCをそれぞれ製作した。すべてのPEFCのカソードには作用極と同じ電極を用い、電解質には固体高分子膜を用いた。つぎに、アノードに水素ガスまたは一酸化炭素を含む水素ガスを、カソードに酸素を供給しながら、PEFCをセル温度80℃、電流密度100mA/cmで運転し、そのときのアノードの電位を測定した。結果を表6に示した。比較として実施例1のPEFC用電極の結果も併記した。 The characteristics of the PEFC electrodes of Examples 14 to 17 as the anode were investigated. The survey method is as follows. First, PEFCs each having these PEFC electrodes as anodes were manufactured. The same electrode as the working electrode was used for the cathodes of all PEFCs, and a solid polymer membrane was used for the electrolyte. Next, while supplying hydrogen gas or hydrogen gas containing carbon monoxide to the anode and supplying oxygen to the cathode, the PEFC was operated at a cell temperature of 80 ° C. and a current density of 100 mA / cm 2 , and the potential of the anode at that time was measured. did. The results are shown in Table 6. As a comparison, the results of the PEFC electrode of Example 1 are also shown.

Figure 2005050734
Figure 2005050734

表5と表6の結果から、実施例14のPEFC用電極のアノードとしての特性は、実施例1のPEFC用電極のものとほぼ同様であることがわかる。このことから、吸着工程において[Pt(NH]Clを用いて得られるPEFC用電極は、[Pt(NH]Clを用いた場合のPEFC用電極と同様のものであることがわかった。 From the results of Table 5 and Table 6, it can be seen that the characteristics of the PEFC electrode of Example 14 as the anode are substantially the same as those of the PEFC electrode of Example 1. From this, the PEFC electrode obtained using [Pt (NH 3 ) 6 ] Cl 4 in the adsorption step is the same as the PEFC electrode obtained using [Pt (NH 3 ) 4 ] Cl 2. I found out.

また、表5と表6の結果から、実施例15と実施例16のPEFC用電極のアノードとしての特性は、実施例1のPEFC電極のそれよりも若干劣るものの、水素ガスを供給したときの電位は極めて卑なことがわかる。これは、これらの電極にルテニウムが担持されていることと、これらの電極がPEFCのアノードとしての性能を充分に備えていることとを意味するものである。   Also, from the results of Tables 5 and 6, the characteristics of the PEFC electrodes of Examples 15 and 16 as anodes are slightly inferior to those of the PEFC electrode of Example 1, but when hydrogen gas is supplied. It can be seen that the potential is extremely low. This means that ruthenium is supported on these electrodes and that these electrodes have sufficient performance as PEFC anodes.

また、表5と表6の結果から、実施例17のPEFC用電極に一酸化炭素を含む水素ガスを供給したときの電位は、実施例1のPEFC電極のものと比べて卑なことがわかる。このことから、吸着工程において[Pt(NH]Clと[Ru(NH]Clとを含む水溶液を用いることによって、耐CO被毒性能の優れた白金―ルテニウム二元合金を備えたPEFC用電極が得られたことがわかった。 Further, from the results of Table 5 and Table 6, it is understood that the potential when hydrogen gas containing carbon monoxide is supplied to the PEFC electrode of Example 17 is lower than that of the PEFC electrode of Example 1. . From this, the platinum-ruthenium binary having excellent CO poisoning resistance can be obtained by using an aqueous solution containing [Pt (NH 3 ) 4 ] Cl 2 and [Ru (NH 3 ) 4 ] Cl 2 in the adsorption step. It turned out that the electrode for PEFC provided with the alloy was obtained.

Claims (1)

カ−ボン粒子と陽イオン交換樹脂とを含む混合物を、前記陽イオン交換樹脂のガラス転移温度以上、分解温度以下の温度で加熱した後、前記混合物に含まれる前記陽イオン交換樹脂に白金族金属元素を含む陽イオンを吸着させ、その後前記陽イオンを還元する工程を含むことを特徴とする固体高分子形燃料電池用電極の製造方法。
After heating the mixture containing the carbon particles and the cation exchange resin at a temperature not lower than the glass transition temperature and not higher than the decomposition temperature of the cation exchange resin, platinum group metal is added to the cation exchange resin included in the mixture. A method for producing an electrode for a polymer electrolyte fuel cell, comprising a step of adsorbing a cation containing an element and then reducing the cation.
JP2003282957A 2003-07-30 2003-07-30 Manufacturing method of electrode for solid polymer fuel cell Pending JP2005050734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003282957A JP2005050734A (en) 2003-07-30 2003-07-30 Manufacturing method of electrode for solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003282957A JP2005050734A (en) 2003-07-30 2003-07-30 Manufacturing method of electrode for solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2005050734A true JP2005050734A (en) 2005-02-24

Family

ID=34268004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003282957A Pending JP2005050734A (en) 2003-07-30 2003-07-30 Manufacturing method of electrode for solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2005050734A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179852A (en) * 2005-12-27 2007-07-12 Nissan Motor Co Ltd Highly durable fuel cell
JP2009162646A (en) * 2008-01-08 2009-07-23 Toshiba Corp Method for treating used ion-exchange resin
JP2010165622A (en) * 2009-01-19 2010-07-29 Toyota Motor Corp Catalyst layer for fuel cell, and method of manufacturing the same
WO2011125716A1 (en) * 2010-03-31 2011-10-13 株式会社エクォス・リサーチ Fuel cell reaction layer production method and catalyst paste production method
JP2012088330A (en) * 2011-12-26 2012-05-10 Toshiba Corp Method for treating used ion-exchange resin
JP2013020816A (en) * 2011-07-11 2013-01-31 Jx Nippon Oil & Energy Corp Membrane electrode assembly and manufacturing method therefor, and fuel cell
JP2013051051A (en) * 2011-08-30 2013-03-14 Toyota Motor Corp Method for manufacturing electrolytic solution, catalyst paste, and method for manufacturing catalyst paste
DE102015120531A1 (en) 2014-12-08 2016-06-09 Toyota Jidosha Kabushiki Kaisha Method for producing a membrane electrode assembly

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179852A (en) * 2005-12-27 2007-07-12 Nissan Motor Co Ltd Highly durable fuel cell
JP2009162646A (en) * 2008-01-08 2009-07-23 Toshiba Corp Method for treating used ion-exchange resin
JP2010165622A (en) * 2009-01-19 2010-07-29 Toyota Motor Corp Catalyst layer for fuel cell, and method of manufacturing the same
WO2011125716A1 (en) * 2010-03-31 2011-10-13 株式会社エクォス・リサーチ Fuel cell reaction layer production method and catalyst paste production method
JP2011228267A (en) * 2010-03-31 2011-11-10 Equos Research Co Ltd Method of manufacturing reaction layer for fuel cell and device of manufacturing catalyst paste
JP2013020816A (en) * 2011-07-11 2013-01-31 Jx Nippon Oil & Energy Corp Membrane electrode assembly and manufacturing method therefor, and fuel cell
JP2013051051A (en) * 2011-08-30 2013-03-14 Toyota Motor Corp Method for manufacturing electrolytic solution, catalyst paste, and method for manufacturing catalyst paste
JP2012088330A (en) * 2011-12-26 2012-05-10 Toshiba Corp Method for treating used ion-exchange resin
DE102015120531A1 (en) 2014-12-08 2016-06-09 Toyota Jidosha Kabushiki Kaisha Method for producing a membrane electrode assembly
US9673442B2 (en) 2014-12-08 2017-06-06 Toyota Jidosha Kabushiki Kaisha Method of manufacturing membrane electrode assembly
DE102015120531B4 (en) 2014-12-08 2023-09-07 Toyota Jidosha Kabushiki Kaisha Method of making a membrane electrode assembly

Similar Documents

Publication Publication Date Title
Neto et al. Electro-oxidation of ethylene glycol on PtRu/C and PtSn/C electrocatalysts prepared by alcohol-reduction process
KR101556580B1 (en) Processes for production of catalyst microparticles, catalyst microparticles supported on carbon, catalyst mix and electrode
Ramos-Sánchez et al. Mesoporous carbon supported nanoparticulated PdNi2: a methanol tolerant oxygen reduction electrocatalyst
US20080020924A1 (en) Method of fabricating platinum alloy electrocatalysts for membrane fuel cell applications
US20070161501A1 (en) Method for making carbon nanotube-supported platinum alloy electrocatalysts
EP3446781A1 (en) Electrocatalyst, membrane electrode assembly using said electrocatalyst, and fuel cell
US6866960B2 (en) Electrodes for fuel cell and processes for producing the same
JPWO2007119640A1 (en) Fuel cell electrode catalyst and method for producing the same
Kabir et al. Stability of carbon-supported palladium nanoparticles in alkaline media: A case study of graphitized and more amorphous supports
WO2020059504A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
CN108808027B (en) Electrode catalyst for fuel cell and method for producing same
Ávila‐Bolívar et al. Electrochemical reduction of CO2 to formate on nanoparticulated Bi− Sn− Sb electrodes
JPWO2006082981A1 (en) Catalyst-supported powder and method for producing the same
JP2011159517A (en) Method for manufacturing fuel cell catalyst layer
Wu et al. Incorporation of cobalt into Pd2Sn intermetallic nanoparticles as durable oxygen reduction electrocatalyst
Maumau et al. Electro-oxidation of alcohols using carbon supported gold, palladium catalysts in alkaline media
JP2002100374A (en) Electrode for fuel cell and its manufacturing method
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2005050734A (en) Manufacturing method of electrode for solid polymer fuel cell
JP2002015745A (en) Solid polymer fuel cell
JP4207116B2 (en) Electrode production material, method for producing the electrode production material, and method for producing an electrode for a fuel cell using the electrode production material.
JP6956851B2 (en) Electrode catalyst for fuel cells and fuel cells using them
JP5601280B2 (en) Catalyst for polymer electrolyte fuel cell
JP2006209999A (en) Electrode for polymer electrolyte fuel cell and its manufacturing method
US20230420694A1 (en) Composite particles of core-shell structure including metal oxide particle core and platinum-group transition metal shell, and electrochemical reaction electrode material including same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213