JP2018181664A - X-ray generator - Google Patents

X-ray generator Download PDF

Info

Publication number
JP2018181664A
JP2018181664A JP2017081116A JP2017081116A JP2018181664A JP 2018181664 A JP2018181664 A JP 2018181664A JP 2017081116 A JP2017081116 A JP 2017081116A JP 2017081116 A JP2017081116 A JP 2017081116A JP 2018181664 A JP2018181664 A JP 2018181664A
Authority
JP
Japan
Prior art keywords
anticathode
cooling passage
ray generator
cooling
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017081116A
Other languages
Japanese (ja)
Other versions
JP6966863B2 (en
Inventor
勝巳 川崎
Katsumi Kawasaki
勝巳 川崎
大 千葉
Masaru Chiba
大 千葉
忠二 片山
Chuji Katayama
忠二 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Japan KK
Original Assignee
Bruker AXS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker AXS KK filed Critical Bruker AXS KK
Priority to JP2017081116A priority Critical patent/JP6966863B2/en
Priority to PCT/JP2018/015693 priority patent/WO2018194020A1/en
Priority to KR1020197024813A priority patent/KR102535443B1/en
Publication of JP2018181664A publication Critical patent/JP2018181664A/en
Application granted granted Critical
Publication of JP6966863B2 publication Critical patent/JP6966863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures
    • H01J35/106Active cooling, e.g. fluid flow, heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1225Cooling characterised by method
    • H01J2235/1262Circulating fluids
    • H01J2235/1266Circulating fluids flow being via moving conduit or shaft

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • X-Ray Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a cooling effect in a rotating anticathode.SOLUTION: An X-ray generator (100) that includes an electron generator (2) that emits an electron beam (A) and a cylindrical rotating anticathode (1) that includes an anticathode section (13) irradiated with an electron beam (A) to emit X-rays (B) and is rotatable using a rotation axis (x) as the center further includes a cooling passage (4) formed along the anticathode section (13) excluding an irradiation region (13b) irradiated with the electron beam (A) in the anticathode section (13) in the outer peripheral side of the anticathode section (13).SELECTED DRAWING: Figure 1

Description

本発明は、回転対陰極型のX線発生装置に関する。   The present invention relates to a rotating anticathode X-ray generator.

従来から、試料の分析分野において、電子ビーム、例えば熱電子が照射されてX線を放出する回転対陰極型のX線発生装置が知られている。X線発生装置は、熱電子を放出する電子発生器と、当該熱電子が照射されてX線を放出する回転対陰極と、電子発生器および回転対陰極を真空状態において収容するケースとを備える。   2. Description of the Related Art In the field of sample analysis, there has conventionally been known a rotating anticathode type X-ray generator which emits an X-ray by being irradiated with an electron beam, for example, a thermal electron. The X-ray generator includes an electron generator that emits thermal electrons, a rotating anticathode that is irradiated with the thermal electrons and emits X-rays, and a case that accommodates the electron generator and the rotating anticathode in a vacuum state. .

回転対陰極は、ケースに取り付けられるハウジングと、熱電子の照射を受けることによりX線を発生する周面部と、当該周面部に一体に形成されてハウジングに対して回転自在な中空軸部とを備える。回転対陰極の内部には、周面部と中空軸部とを冷却するための冷媒が流れる冷却流路が設けられている(例えば、特許文献1参照。)。   The rotating anticathode includes a housing attached to the case, a peripheral surface portion generating X-rays by receiving the irradiation of thermal electrons, and a hollow shaft portion integrally formed on the peripheral surface portion and rotatable with respect to the housing Prepare. A cooling flow path through which a refrigerant for cooling the circumferential surface portion and the hollow shaft portion flows is provided inside the rotating anticathode (see, for example, Patent Document 1).

特開2011−54412号公報JP, 2011-54412, A

回転対陰極は、周面部に熱電子が照射されてX線を放出するが、当該周面部の外周面は、非常に高温になり冷却しない場合には溶けるおそれがある。そのため、回転対陰極は、その内部に形成された冷却流路内を通流する冷媒により内側から冷却されている。   The thermal anti-electron is irradiated to the peripheral surface portion of the rotating anticathode, and the X-ray is emitted. However, the outer peripheral surface of the peripheral surface portion may become very hot and may melt if it is not cooled. Therefore, the rotating anticathode is internally cooled by the refrigerant flowing in the cooling channel formed therein.

ところで、熱電子の放出出力を上げて回転対陰極に当てる熱電子の量を増やして、X線の発生量を多くすると共に、輝度の高いX線を発生させたい場合がある。しかしながら、熱電子の放出量を増やした場合、熱電子の照射により加熱された回転対陰極は、一回転中に十分に冷却されない。冷却が十分に行われないまま回転対陰極に熱電子が照射され続けると、回転対陰極が溶けて回転対陰極の外周面が歪むおそれがある。   By the way, there are cases where it is desired to increase the emitted output of the thermal electrons and increase the amount of thermal electrons applied to the rotating anticathode to increase the generation amount of X-rays and generate X-rays with high luminance. However, when the amount of thermal electron emission is increased, the rotating anticathode heated by the thermal electron irradiation is not sufficiently cooled in one rotation. If the thermal anticathode continues to be irradiated with thermal electrons without sufficient cooling, the rotary anticathode may melt and the outer peripheral surface of the rotary anticathode may be distorted.

そこで、本発明は、上記課題に鑑みてなされたものであり、回転対陰極における冷却効果が向上したX線発生装置を提供することを目的とする。   Then, this invention is made in view of the said subject, and it aims at providing the X-ray generator with which the cooling effect in a rotating anticathode improved.

上記目的を達成するために、本発明によれば、電子ビームを放出する電子発生器と、前記電子ビームが照射されてX線を放出する対陰極部を有し、かつ回転軸線を中心に回転可能に構成された円筒状の回転対陰極と、を備えるX線発生装置であって、前記対陰極部の外周側において、前記対陰極部のうち前記電子ビームが照射される照射領域を除き当該対陰極部に沿って形成された冷却通路を備えることを特徴とする。   In order to achieve the above object, according to the present invention, an electron generator emitting an electron beam, and an anticathode portion irradiated with the electron beam to emit an X-ray, and rotated about a rotation axis An X-ray generator comprising a cylindrical rotating anticathode configured as described above, wherein, on the outer peripheral side of the anticathode portion, the irradiation region of the anticathode portion excluding the irradiation of the electron beam is excluded. A cooling passage is formed along the anticathode portion.

また、前記冷却通路は、前記回転対陰極の回転方向とは反対の方向に冷媒を流すことが好ましい。   Preferably, the cooling passage causes the refrigerant to flow in a direction opposite to the rotation direction of the rotating anticathode.

また、前記冷却通路は、その外面と前記対陰極部の外周面との間隔が1mm以下とされることが好ましい。   Further, it is preferable that the distance between the outer surface of the cooling passage and the outer peripheral surface of the anticathode portion be 1 mm or less.

また、前記冷却通路は、酸化した金属製の外壁面を有していることが好ましい。   Preferably, the cooling passage has an oxidized metallic outer wall surface.

また、前記回転対陰極は、その内部に冷媒を流す冷却流路を備えることが好ましい。   Further, it is preferable that the rotating anti-cathode includes a cooling flow passage through which the refrigerant flows.

本発明によれば、回転対陰極における冷却効果を向上させることができる。   According to the present invention, the cooling effect of the rotating anticathode can be improved.

本発明の実施の形態に係るX線発生装置の平面図である。It is a top view of the X-ray generator concerning an embodiment of the invention. 図1のII−II線に沿った断面図である。It is sectional drawing along the II-II line of FIG.

本発明の好ましい実施の形態について、図面を参照しながら説明する。なお、以下に示す実施の形態は一例であり、本発明の範囲において、種々の実施の形態をとりうる。   Preferred embodiments of the present invention will be described with reference to the drawings. The embodiments described below are merely examples, and various embodiments can be taken within the scope of the present invention.

<X線発生装置の構成>
図1は、本発明の実施の形態に係るX線発生装置を部分的に断面にして示す概略的な平面図である。図2は、図1のII−II線に沿った断面図である。
<Configuration of X-ray generator>
FIG. 1 is a schematic plan view showing an X-ray generator according to an embodiment of the present invention partially in cross section. FIG. 2 is a cross-sectional view taken along line II-II of FIG.

X線発生装置100は、いわゆる回転対陰極方式を用いてX線(エックス線)を発生させる装置である。図1に示すように、X線発生装置100は、回転対陰極1と、電子発生器2と、回転対陰極1および電子発生器2を収容する真空ケース3と、当該真空ケース3内において回転対陰極1をその外周側から冷却する冷却通路4とを備える。   The X-ray generator 100 is a device that generates X-rays (X-rays) using a so-called rotating anticathode method. As shown in FIG. 1, the X-ray generator 100 includes a rotating anticathode 1, an electron generator 2, a vacuum case 3 accommodating the rotating anticathode 1 and the electron generator 2, and rotation within the vacuum case 3. And a cooling passage 4 for cooling the anticathode 1 from the outer peripheral side thereof.

[回転対陰極]
回転対陰極1は、軸線(回転軸線)xを中心に回転可能に構成され、電子発生器2から高電圧で加速された電子ビーム(以下、「熱電子」ともいう。)Aが衝突してX線を発生させるものである。
[Rotating anticathode]
The rotating anticathode 1 is configured to be rotatable about an axis (rotational axis) x, and an electron beam (hereinafter also referred to as “thermionic electron”) A accelerated by a high voltage from the electron generator 2 collides and collides. It generates x-rays.

図2に示すように、回転対陰極1は、軸線x方向の一端が真空ケース3内に挿入された状態で真空ケース3に取り付けられるハウジング11と、当該ハウジング11に対して軸線xを中心に回転自在に軸支された中空軸部12と、当該中空軸部12に一体に形成されて電子発生器2から放出された熱電子Aの照射を受けることによりX線を発生する円筒型の対陰極部13とを備える。対陰極部13の外周面には、例えばモリブデン、銅等の金属層が被覆されて形成された周面部13aが形成されている。なお、中空軸部12および対陰極部13は、図示しない電動機によりハウジング11に対して回転駆動させられる。   As shown in FIG. 2, the rotating anticathode 1 is mounted on the vacuum case 3 with one end in the direction of the axis x being inserted into the vacuum case 3, and the housing 11 centered on the axis x A hollow shaft 12 rotatably supported and a cylindrical pair that is integrally formed with the hollow shaft 12 and generates X-rays by being irradiated with thermal electrons A emitted from the electron generator 2 And a cathode portion 13. On the outer peripheral surface of the anti-cathode portion 13, a peripheral surface portion 13a formed by covering a metal layer of, for example, molybdenum, copper or the like is formed. The hollow shaft portion 12 and the anti-cathode portion 13 are rotationally driven relative to the housing 11 by a motor (not shown).

回転対陰極1の内部には、中空軸部12と対陰極部13とを冷却するための、例えば水、油、ガス等の冷媒を流す冷却流路14が設けられている。冷却流路14は、回転対陰極1の内部に同心状に挿入されたセパレータ部材15により、往路14aと復路14bの2つの流路に仕切られている。往路14aは、最も高温化する対陰極部13に冷媒を流入させる流入側流路16の一部を構成する部分、復路14bは、対陰極部13から冷媒を外部に向けて流出させる流出側流路17の一部を構成する部分である。回転対陰極1の内部を流れる冷媒の流れ方向Fdは、対陰極部13において回転対陰極1の回転方向Rと同じである。具体的に冷媒は、回転対陰極1の回転により、当該回転対陰極1の内壁面に押し付けられて回転対陰極1の回転に追従するように流れる。   In the inside of the rotating anticathode 1, a cooling flow path 14 for flowing a refrigerant such as water, oil, gas or the like for cooling the hollow shaft portion 12 and the anticathode portion 13 is provided. The cooling flow passage 14 is divided into two flow passages of an outward passage 14 a and a return passage 14 b by a separator member 15 concentrically inserted inside the rotating anticathode 1. The forward path 14a is a portion that constitutes a part of the inflow side flow path 16 that causes the refrigerant to flow into the most temperature-rising anti-cathode portion 13, and the return path 14 b is an outflow side flow that causes the refrigerant to flow out from the anti-cathode portion 13 It is a part that constitutes a part of the path 17. The flow direction Fd of the refrigerant flowing inside the rotating anticathode 1 is the same as the rotating direction R of the rotating anticathode 1 in the anticathode portion 13. Specifically, the refrigerant is pressed against the inner wall surface of the rotating anticathode 1 by the rotation of the rotating anticathode 1 and flows so as to follow the rotation of the rotating anticathode 1.

[電子発生器]
電子発生器2は、熱電子型、電界放出型、またはショットキー型の電子発生器であってよく、本実施の形態では熱電子型を用いた。電子発生器2は、略直方体状の本体部21と、タングステン・フィラメント等からなり熱電子を発する電子源22とを備える。
[Electron generator]
The electron generator 2 may be a thermoelectron type, field emission type, or Schottky type electron generator, and the thermoelectron type is used in this embodiment. The electron generator 2 includes a substantially rectangular main body portion 21 and an electron source 22 made of a tungsten filament or the like and emitting thermoelectrons.

[真空ケース]
真空ケース3は、X線透過率が低い金属材料により略直方体状に形成されていて、対陰極部13および電子発生器2をそれらの周囲を真空雰囲気に保って収容する。図1および図2に示すように、真空ケース3は、周壁部31と、底壁部32と、天壁部(図示せず)を備え、周壁部31、底壁部32および天壁部により回転対陰極1および電子発生器2を収容する収容空間3sが画成されている。
[Vacuum case]
The vacuum case 3 is formed substantially in the shape of a rectangular solid from a metal material having a low X-ray transmittance, and the anti-cathode portion 13 and the electron generator 2 are accommodated with their peripheries maintained in a vacuum atmosphere. As shown in FIGS. 1 and 2, the vacuum case 3 includes a peripheral wall 31, a bottom wall 32, and a top wall (not shown), and the peripheral wall 31, the bottom wall 32, and the top wall A housing space 3s for housing the rotating anticathode 1 and the electron generator 2 is defined.

図1に示すように、電子発生器2側からの熱電子Aの放出方向に対して側方の真空ケース3の周壁部31には、後述する冷却通路4を真空ケース3の外部と内部との間において案内する2つの接続開口が対向して形成されている。具体的には、2つの接続開口のうち一方は、真空ケース3の外部から冷媒を真空ケース3の内部に送り込む流入接続開口33であり、他方は、真空ケース3内において対陰極部13の周面部13aからの熱を吸収した冷媒を真空ケース3の外部に排出する流出接続開口34である。   As shown in FIG. 1, in the peripheral wall portion 31 of the vacuum case 3 lateral to the emitting direction of the thermoelectrons A from the electron generator 2 side, the cooling passage 4 described later is provided outside and inside the vacuum case 3 The two connection openings are formed opposite to each other to guide between them. Specifically, one of the two connection openings is an inflow connection opening 33 for feeding the refrigerant from the outside of the vacuum case 3 to the inside of the vacuum case 3, and the other is the circumference of the cathode portion 13 in the vacuum case 3. The outflow connection opening 34 discharges the refrigerant that has absorbed the heat from the surface portion 13 a to the outside of the vacuum case 3.

図2に示すように、真空ケース3の底壁部32には、回転対陰極1を挿入する挿入開口35が形成されている。また、真空ケース3の天壁部には、対陰極部13の周面部13aから放出されたX線が通過する窓開口(図示せず)が形成されている。なお、挿入開口35は、底壁部32ではなく天壁部に形成されていてもよく、この場合、窓開口は、天壁部ではなく底壁部32に形成されている。   As shown in FIG. 2, the bottom wall 32 of the vacuum case 3 is formed with an insertion opening 35 into which the rotating anticathode 1 is inserted. Further, in the top wall portion of the vacuum case 3, a window opening (not shown) through which X-rays emitted from the circumferential surface portion 13 a of the anti-cathode portion 13 pass is formed. The insertion opening 35 may be formed not in the bottom wall portion 32 but in the top wall portion. In this case, the window opening is formed in the bottom wall portion 32 instead of the top wall portion.

真空ケース3における流入接続開口33および流出接続開口34は、図示の実施の形態では対向する壁部に設けられているが、流入接続開口33および流出接続開口34の配置関係は、これに限定されない。   Although the inflow connection opening 33 and the outflow connection opening 34 in the vacuum case 3 are provided in the opposite wall in the illustrated embodiment, the arrangement relationship of the inflow connection opening 33 and the outflow connection opening 34 is not limited thereto. .

[冷却通路]
冷却通路4は、真空ケース3の収容空間3s内において対陰極部13の周面部13aから外部に放射される熱(輻射熱)を吸収するための、例えば、水、油、ガス等の冷媒が流れるための流路を形成する。冷却通路4は、例えば、金、銀、銅、アルミニウム、鉄またはこれらの合金等の金属製の管路として断面略矩形状に形成されている。なお、特に、冷媒に水を選択し、冷却通路4は銅により形成されていることが好ましい。
[Cooling passage]
In the cooling passage 4, for example, a coolant such as water, oil, or gas flows for absorbing heat (radiative heat) radiated to the outside from the peripheral surface portion 13 a of the cathode portion 13 in the housing space 3 s of the vacuum case 3. To form a flow path. The cooling passage 4 is formed in, for example, a substantially rectangular cross section as a metal conduit such as gold, silver, copper, aluminum, iron, or an alloy thereof. In particular, it is preferable that water be selected as the refrigerant, and the cooling passage 4 be formed of copper.

対陰極部13の周面部13aから放射される輻射熱の吸収率を高める観点から、冷却通路4は、酸化させられた外面(外壁面)41を有していることが好ましい。また、冷却通路4の酸化させられた外面41により、回転対陰極1に向かい合う冷却通路4の外面41の表面積が拡大するので、輻射熱の熱吸収効率がさらに高まる。   From the viewpoint of enhancing the absorptivity of the radiant heat radiated from the peripheral surface portion 13a of the anti-cathode portion 13, the cooling passage 4 preferably has an oxidized outer surface (outer wall surface) 41. Further, the oxidized outer surface 41 of the cooling passage 4 expands the surface area of the outer surface 41 of the cooling passage 4 facing the rotating anticathode 1, thereby further enhancing the heat absorption efficiency of radiant heat.

図1に示すように、冷却通路4は、電子発生器2から放出された熱電子Aを遮らないように、真空ケース3の収容空間3s内において対陰極部13の周面部13aを外周側から部分的に覆うようにして形成されている。具体的には、冷却通路4は、周面部13aの外周側において、周面部13aのうち熱電子Aが照射される照射領域13bを除いた周面部13aに沿って形成されている。また、図2に示すように、冷却通路4は、回転対陰極1の軸線x方向に沿って対陰極部13全体に対向するように形成されている。   As shown in FIG. 1, the cooling passage 4 does not block the thermoelectrons A emitted from the electron generator 2 in the housing space 3s of the vacuum case 3 from the outer peripheral side of the peripheral surface portion 13a of the cathode portion 13. It is formed so as to partially cover. Specifically, the cooling passage 4 is formed on the outer peripheral side of the peripheral surface portion 13a along the peripheral surface portion 13a excluding the irradiation region 13b of the peripheral surface portion 13a to which the thermal electrons A are irradiated. Further, as shown in FIG. 2, the cooling passage 4 is formed to face the whole of the anti-cathode portion 13 along the axis x direction of the rotating anti-cathode 1.

冷却通路4は、例えば、対陰極部13の周長の約1/2(50%)以上に亘って対陰極部13の周面部13aを覆っており、約3/4(75%)を覆っていることが好ましい。また、冷却通路4は、その内部を流れる冷媒を、回転対陰極1の回転方向Rに対して反対方向(逆方向)Rrに流すようになっている。   The cooling passage 4 covers, for example, the peripheral surface portion 13 a of the anti-cathode portion 13 over about 1/2 (50%) or more of the peripheral length of the anti-cathode portion 13 and covers about 3/4 (75%) Is preferred. Further, the cooling passage 4 is configured to allow the refrigerant flowing therein to flow in the opposite direction (reverse direction) Rr with respect to the rotation direction R of the rotating anticathode 1.

冷却通路4は、対陰極部13の周面部13aの外周面に対して所定の間隔dをあけて設けられている。周面部13aを臨む冷却通路4の外面41と、対陰極部13の周面部13aの外周面との間の間隔dは、最大で1mm(1mm以下)であることが好ましい。   The cooling passage 4 is provided at a predetermined distance d with respect to the outer peripheral surface of the peripheral surface portion 13 a of the anti-cathode portion 13. The distance d between the outer surface 41 of the cooling passage 4 facing the circumferential surface portion 13a and the outer circumferential surface of the circumferential surface portion 13a of the anti-cathode portion 13 is preferably at most 1 mm (1 mm or less).

なお、冷却通路4が流入接続開口33および流出接続開口34に挿通された状態において、冷却通路4の外面41と、流入接続開口33および流出接続開口34の周縁との間には、収容空間3s内を気密に保つためのシール部材(図示せず)が備え付けられている。   In the state where cooling passage 4 is inserted into inflow connection opening 33 and outflow connection opening 34, housing space 3s is provided between outer surface 41 of cooling passage 4 and the peripheries of inflow connection opening 33 and outflow connection opening 34. A sealing member (not shown) is provided to keep the inside airtight.

<回転対陰極の冷却効果>
上記実施の形態に係るX線発生装置100において、冷却通路4は、熱電子Aが照射される周面部13aの外周面に外周側で沿うように形成されているので、熱電子Aの照射により高温になった周面部13aの外周面から放射される熱を積極的に吸収することができる。
<Cooling effect of rotating anticathode>
In the X-ray generator 100 according to the above embodiment, the cooling passage 4 is formed along the outer peripheral surface of the peripheral surface portion 13a to which the thermal electrons A are irradiated, so that the irradiation of the thermal electrons A is performed. The heat radiated from the outer peripheral surface of the peripheral surface portion 13a which has become high temperature can be positively absorbed.

また、冷却通路4内を流れる冷媒が、回転対陰極1の軸線xを中心とした回転方向Rに対して反対方向Rrに流れるので、流入接続開口33側から流入した冷媒は、まず、最も高温化した状態を既に脱した回転対陰極1の傍らを通流する。冷却通路4内の冷媒は、比較的低温状態を保ったままで流出接続開口34に到達するので、最も高温化した状態にある対陰極部13の周面部13aを効果的に冷却する。かくして、回転対陰極1の冷却効果を高めることができる。   In addition, since the refrigerant flowing in the cooling passage 4 flows in the opposite direction Rr with respect to the rotational direction R centering on the axis x of the rotating anticathode 1, the refrigerant flowing from the inflow connection opening 33 first has the highest temperature. Flow through the side of the rotating anticathode 1 which has already been removed. The refrigerant in the cooling passage 4 reaches the outflow connection opening 34 while maintaining a relatively low temperature state, and thus effectively cools the peripheral surface portion 13a of the anti-cathode portion 13 which is in the highest temperature state. Thus, the cooling effect of the rotating anticathode 1 can be enhanced.

また、対陰極部13の周面部13aの外周面と当該周面部13aを臨む冷却通路4の外面41との間の間隔dを1mm以下にして、冷却通路4が回転対陰極1の近傍に配置されているので、対陰極部13の周面部13aにおける冷却効果が高まる。   In addition, the distance d between the outer peripheral surface of the circumferential surface 13a of the anticathode 13 and the outer surface 41 of the cooling passage 4 facing the circumferential surface 13a is 1 mm or less. Because of this, the cooling effect on the circumferential surface 13 a of the anti-cathode portion 13 is enhanced.

また、冷却通路4は、熱伝導率の高い金属、例えば銅により形成されているので、対陰極部13の周面部13aから発せられる熱を積極的に吸収することができる。   Further, since the cooling passage 4 is formed of a metal having a high thermal conductivity, such as copper, it is possible to actively absorb the heat generated from the peripheral surface portion 13 a of the anti-cathode portion 13.

さらに、回転対陰極1の内部には冷却流路14が形成されているので、対陰極部13の周面部13aは、冷却流路14と冷却通路4とに挟まれて内側および外側より冷却することができる。本実施の形態に係るX線発生装置100によれば、対陰極部13の周面部13aを継続的に効果的に冷却することができる。かくして、試料の検査期間が数時間または数日に及ぶことがあったとしても、X線発生装置100により長期に亘って精度の高い検査を実施することができる。   Furthermore, since the cooling flow path 14 is formed inside the rotating anticathode 1, the circumferential surface 13 a of the anticathode portion 13 is sandwiched between the cooling flow path 14 and the cooling passage 4 and cooled from the inside and the outside. be able to. According to the X-ray generator 100 relating to the present embodiment, the peripheral surface portion 13a of the anti-cathode portion 13 can be continuously and effectively cooled. Thus, even if the inspection period of the sample may extend to several hours or several days, the X-ray generator 100 can perform a highly accurate inspection over a long period of time.

<その他>
なお、本発明は、上記の実施の形態に限定されるものではない。例えば、冷却通路4は、上記の実施の形態のように管路として形成された構成に限定されない。例えば、冷却通路4を、電子発生器2に対向する真空ケース3の周壁部31内に回転対陰極1を臨む外面41を露出した状態で埋め込んでもよい。この場合、真空ケース3の周壁部31の周壁部31は、対陰極部13の周面部13aの外周面に沿って形成されている。
<Others>
The present invention is not limited to the above embodiment. For example, the cooling passage 4 is not limited to the configuration formed as a conduit as in the above embodiment. For example, the cooling passage 4 may be embedded in the peripheral wall 31 of the vacuum case 3 facing the electron generator 2 with the outer surface 41 facing the rotating anticathode 1 exposed. In this case, the peripheral wall 31 of the peripheral wall 31 of the vacuum case 3 is formed along the outer peripheral surface of the peripheral surface 13 a of the anti-cathode portion 13.

冷却通路4の断面形状は、略矩形状に限られず、略円形、略楕円形、略長円形等の他の断面形状であってもよい。また、冷却通路4は、軸線x方向に沿って、対陰極部13の周面部13aの少なくとも一部に対向しているだけでもよい。   The cross-sectional shape of the cooling passage 4 is not limited to a substantially rectangular shape, and may be another cross-sectional shape such as a substantially circular shape, a substantially elliptical shape, or a substantially oval shape. Further, the cooling passage 4 may only be opposed to at least a part of the circumferential surface portion 13 a of the anti-cathode portion 13 along the axial line x direction.

1 回転対陰極
11 ハウジング
12 中空軸部
13 対陰極部
13a 周面部
13b 照射領域
14 冷却流路
2 電子発生器
22 電子源
3 真空ケース
4 冷却通路
41 外面
100 X線発生装置
A 熱電子(電子ビーム)
B X線
R 回転方向
d 間隔
x 軸線(回転軸線)
DESCRIPTION OF SYMBOLS 1 rotation anti-cathode 11 housing 12 hollow shaft part 13 counter-cathode part 13a circumferential surface part 13b irradiation area 14 cooling channel 2 electron generator 22 electron source 3 vacuum case 4 cooling channel 41 outer surface 100 X-ray generator A thermal electron (electron beam )
B X-ray R Rotation direction d Spacing x axis (rotation axis)

Claims (5)

電子ビームを放出する電子発生器と、
前記電子ビームが照射されてX線を放出する対陰極部を有し、かつ回転軸線を中心に回転可能に構成された円筒状の回転対陰極と、
前記対陰極部の外周側において、前記対陰極部のうち前記電子ビームが照射される照射領域を除き当該対陰極部に沿って形成された冷却通路と
を備えることを特徴とするX線発生装置。
An electron generator that emits an electron beam,
A cylindrical rotating anticathode having an anticathode portion irradiated with the electron beam to emit an X-ray, and configured to be rotatable about an axis of rotation;
An X-ray generator characterized by including, on the outer peripheral side of the anti-cathode portion, a cooling passage formed along the anti-cathode portion except the irradiation region of the anti-cathode portion irradiated with the electron beam; .
前記冷却通路は、前記回転対陰極の回転方向とは反対の方向に冷媒を流す
ことを特徴とする請求項1に記載のX線発生装置。
The X-ray generator according to claim 1, wherein the cooling passage causes the refrigerant to flow in a direction opposite to the rotation direction of the rotating anticathode.
前記冷却通路は、その外面と前記対陰極部の外周面との間隔が1mm以下とされる
ことを特徴とする請求項1または2に記載のX線発生装置。
The X-ray generator according to claim 1 or 2, wherein a distance between an outer surface of the cooling passage and an outer peripheral surface of the anticathode portion is 1 mm or less.
前記冷却通路は、酸化した金属製の外壁面を有している
ことを特徴とする請求項1から3までのいずれか一項に記載のX線発生装置。
The X-ray generator according to any one of claims 1 to 3, wherein the cooling passage has an oxidized metal outer wall surface.
前記回転対陰極は、その内部に冷媒を流す冷却流路を備える
ことを特徴とする請求項1から4までのいずれか一項に記載のX線発生装置。
The X-ray generator according to any one of claims 1 to 4, wherein the rotating anticathode is provided with a cooling flow passage in which a refrigerant flows.
JP2017081116A 2017-04-17 2017-04-17 X-ray generator Active JP6966863B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017081116A JP6966863B2 (en) 2017-04-17 2017-04-17 X-ray generator
PCT/JP2018/015693 WO2018194020A1 (en) 2017-04-17 2018-04-16 X-ray generation device
KR1020197024813A KR102535443B1 (en) 2017-04-17 2018-04-16 X-ray generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081116A JP6966863B2 (en) 2017-04-17 2017-04-17 X-ray generator

Publications (2)

Publication Number Publication Date
JP2018181664A true JP2018181664A (en) 2018-11-15
JP6966863B2 JP6966863B2 (en) 2021-11-17

Family

ID=63857138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081116A Active JP6966863B2 (en) 2017-04-17 2017-04-17 X-ray generator

Country Status (3)

Country Link
JP (1) JP6966863B2 (en)
KR (1) KR102535443B1 (en)
WO (1) WO2018194020A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622687A (en) * 1981-04-02 1986-11-11 Arthur H. Iversen Liquid cooled anode x-ray tubes
JPS6076862U (en) * 1983-10-31 1985-05-29 株式会社島津製作所 rotating anode x-ray tube
FR2675628B1 (en) * 1991-04-17 1996-09-13 Gen Electric Cgr ANODE ASSEMBLY WITH HIGH THERMAL DISSIPATION FOR X-RAY TUBE AND TUBE THUS OBTAINED.
JPH07192665A (en) * 1993-12-27 1995-07-28 Mac Sci:Kk X-ray generating device
JPH094953A (en) * 1995-06-21 1997-01-10 Dainippon Screen Mfg Co Ltd Board cooler
FR2895831B1 (en) * 2006-01-03 2009-06-12 Alcatel Sa COMPACT SOURCE WITH VERY BRILLIANT X-RAY BEAM
JP5113813B2 (en) 2009-09-01 2013-01-09 ブルカー・エイエックスエス株式会社 X-ray generator

Also Published As

Publication number Publication date
KR102535443B1 (en) 2023-05-22
KR20190137777A (en) 2019-12-11
JP6966863B2 (en) 2021-11-17
WO2018194020A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
US6005918A (en) X-ray tube window heat shield
US7738632B2 (en) X-ray tube with transmission anode
US9514911B2 (en) X-ray tube aperture body with shielded vacuum wall
US6011829A (en) Liquid cooled bearing assembly for x-ray tubes
US9530528B2 (en) X-ray tube aperture having expansion joints
EP0952605A2 (en) Cooling of x-ray apparatus
EP1764820B1 (en) X-ray generating apparatus whose rotating anticathode is axially moved
JP2001319606A (en) Vapor-chamber target for x-ray tube
US20150078533A1 (en) Cooled Stationary Anode for an X-Ray Tube
JP4150237B2 (en) X-ray tube
KR102535443B1 (en) X-ray generator
JP6652197B2 (en) X-ray tube
CN210123714U (en) X-ray tube and medical imaging apparatus
US20150103978A1 (en) Cooled Rotary Anode for an X-Ray Tube
US6512816B1 (en) Temperature clock for x-ray tubes
US10734186B2 (en) System and method for improving x-ray production in an x-ray device
JP2007157640A (en) Rotating anode x-ray tube, and x-ray tube device
US11721515B2 (en) X-ray module
US20070053496A1 (en) X-ray generating method and X-ray generating apparatus
JP2017123246A (en) X-ray generator
JP2011086463A (en) Rotating anode type x-ray tube
JP2023154827A (en) Rotary anode x-ray tube
JP2020013715A (en) X-ray tube device and x-ray computer tomographic device
JP2009170306A (en) X-ray tube device
JP2008034137A (en) X-ray tube

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211022

R150 Certificate of patent or registration of utility model

Ref document number: 6966863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250