JP2018180255A - 光送信機 - Google Patents

光送信機 Download PDF

Info

Publication number
JP2018180255A
JP2018180255A JP2017079168A JP2017079168A JP2018180255A JP 2018180255 A JP2018180255 A JP 2018180255A JP 2017079168 A JP2017079168 A JP 2017079168A JP 2017079168 A JP2017079168 A JP 2017079168A JP 2018180255 A JP2018180255 A JP 2018180255A
Authority
JP
Japan
Prior art keywords
driver circuit
output
differential driver
optical
optical transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017079168A
Other languages
English (en)
Other versions
JP6701115B2 (ja
Inventor
高橋 雅之
Masayuki Takahashi
雅之 高橋
慎介 中野
Shinsuke Nakano
慎介 中野
健太郎 本田
Kentaro Honda
健太郎 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017079168A priority Critical patent/JP6701115B2/ja
Publication of JP2018180255A publication Critical patent/JP2018180255A/ja
Application granted granted Critical
Publication of JP6701115B2 publication Critical patent/JP6701115B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】位相変調部の順バイアス状態への遷移を回避しつつParallel push−pull構成を半導体型のマッハツェンダ光変調器に適用し、高信頼度かつ、低消費電力の光送信機を実現する。
【解決手段】差動信号対を出力する差動ドライバ回路と、4つの進行波電極を備えた進行波電極型マッハツェンダ光変調器から構成され、差動ドライバ回路の第1の出力と第2の出力が進行波電極型マッハツェンダ光変調器の4つの進行波電極型にDCまたはAC接続されている光送信機とした。
【選択図】図3

Description

本発明は、光通信において用いられるマッハツェンダ光変調器とドライバ回路とで構成される光送信機に関する。特に、信頼度が高く、低消費電力な光送信機に関する。
インターネットを基盤とするサービスの爆発的な進展に伴い、これを支える光通信の大容量化、低電力化への期待はますます高まっている。マッハツェンダ光変調器は、入力側の光導波路に入射した光を2つの光導波路(アーム光導波路)に1:1の強度で分岐し、分岐した光を一定の長さ伝播させた後に、再度合波させて出力する構造を持つ。2つに分岐された光導波路に設けられた位相変調部により、2つの光の位相を変化させることで、合波されるときの光の干渉条件を変え、出力光の強度や位相を変調することができ、波長依存性が小さく、原理的に波長チャープ成分が無い、高速な光変調器として光通信に広く用いられている。
位相変調部の光導波路を構成する材料としては、LiNbO3等の誘電体、InP,GaAs,Si等の半導体が用いられ、これらの光導波路近傍に配置された電極に変調電気信号を入力して光導波路に電圧を印加することで、光導波路を伝搬する光の位相を変化させる。特にSi(シリコン)を光導波路として用いたマッハツェンダ光変調器は、小型集積化が可能であることから、次世代の光送信機への応用に向け、近年研究・開発が盛んに行われている。
大容量な光通信を行うためには、変調速度が速いマッハツェンダ光変調器が必要となる。10Gbps以上の高速な光変調を、数ボルトの駆動電圧で行うためには、高速の変調電気信号と光導波路を伝播する光の速度を整合(位相速度整合)させ、電気信号を伝搬させながら光と相互作用を行う進行波型電極が必要となる。例えば、非特許文献1では、進行波型電極の長さを、数十ミリメートルにしたマッハツェンダ光変調器が報告されている。
この進行波電極型マッハツェンダ光変調器においては、光導波路方向に沿った変調部の長さLが大きくなるほど、半波長電圧Vπが小さくなることが一般に知られる。半波長電圧Vπとは、マッハツェンダ光変調器中を進む光の位相をπずらすのに要する電圧である。このVπに対してドライバ回路が出力する駆動電圧VDRVが大きいほど、変調の度合いが大きいことを意味し、より長距離伝送に適する。そのため、Vπの小さな変調器とVDRVが大きいドライバ回路が一般に要求される。
しかし、Vπを小さくする為には、高周波損失を持つ進行波電極を長尺化する必要があり、帯域を律速する要因となる。また、大きなVDRVを持つ(大出力振幅)のドライバは、大きな電源電圧が必要となる為に消費電力の増大を招く。さらに、VDRVの最大値は、信頼性の観点から材料・プロセスによっても制限される。
(Series push−pull構成)
図1に、従来の一般的な光送信機として、差動ドライバ回路100と進行波電極型マッハツェンダ光変調器110を用いたシリーズプッシュプル駆動構成(Series push−pull構成)の光送信機の平面図を示している。差動ドライバ回路100は、互いに逆位相の信号成分を含む第1の出力101と第2の出力102を備える。進行波電極型マッハツェンダ光変調器110は、入力光カプラ111と、それにより1対2本に分岐された第1のアーム光導波路112および第2のアーム光導波路113と、それらを結合する出力光カプラ114とを備える。
アーム光導波路112および113に形成された1対の位相変調部115および116は、半導体型の光変調器の場合は通常、第1および第2の異なる半導体極性の領域が光導波路に沿って接する半導体接合で構成されるので、等価的にダイオードとして図示している。
この1対の位相変調部115および116のカソード側には、1対2本の第1および第2の進行波電極120、121が設けられ、差動ドライバ回路100の第1の出力101と第2の出力102がそれぞれの進行波電極の入力側に接続される。2本の進行波電極120および121は、図示しない接続電極(ビア)などによって、光導波路を構成する一方の極性の半導体領域に電気的に接続されている。また、進行波電極120および121は、それぞれの特性インピーダンスと等しい値を持つ終端抵抗122Aおよび122Bによって終端され、終端抵抗の他端は共通の第1のバイアス電圧130に接続される。
位相変調部115および116のアノード側の1つの共通のバイアス電極123は、図示しない接続電極(ビア)などによって、光導波路を構成する他方の極性の半導体領域に電気的に接続されている。また、共通のバイアス電極123は、第2のバイアス電圧131に接続される。
第1のバイアス電圧130および第2のバイアス電圧131は、変調器を構成する材料によって異なるが、それぞれ一定の好適なDCバイアスに設定される。例えば、半導体材料としてシリコン(Si)を用いたSi光導波路に形成された、ラテラル型のPN接合を位相変調部として用いるSi光変調器の場合は、PN接合が逆バイアス状態でなければ、変調速度の劣化を招く。
そのため、第1のバイアス電圧130と第2のバイアス電圧131は、差動ドライバ回路100の出力する信号の状態にかかわらず、常にPN接合が逆バイアス状態となるように設定される。図1の例では、第1のバイアス電圧130は第2のバイアス電圧131よりも高い電位に設定される。
この構成では、差動ドライバ回路100の単相の出力振幅をVPPSとすると、その2倍の値を駆動電圧VDRVとして進行波電極型マッハツェンダ光変調器110の直列接続された位相変調部115および116に与えることが出来る。
(Parallel push−pull構成)
図1に示したSeries push−pull構成と比較して、さらに大きな駆動電圧を変調器に与えることが出来る構成として、Parallel push−pull(パラレルプッシュプル)と呼ばれる構成が報告されている。(下記、非特許文献2参照)
図2に、従来のParallel push−pull構成の概略図2(a)を、Series push−pull構成の概略図2(b)と対比して示す。(非特許文献2、Fig.3より抜粋)
図2(a)のParallel push−pull構成では、マッハツェンダ光変調器の位相変調部215および216は、差動ドライバ回路200に対して逆並列に接続されている。このため、差動ドライバ回路200の出力V/2が、そのまま位相変調部215および216に加わり、図2(b)のSeries push−pull構成の差動ドライバ回路300の出力Vの半分で、同様に位相変調部を駆動できる。
より具体的には、図1に示す単相のスイングの出力振幅をVPPSとして、図2(a)の差動ドライバ回路200で駆動をすれば、位相変調部215および216に入力される信号は、それぞれ−VPPSから+VPPSの間で遷移する。その為、図2(a)のParallel push−pull構成では全体として実質的に、VPPSの4倍の値をVDRVとしてマッハツェンダ光変調器に与えることが出来ることとなる。
(Parallel push−pull構成のメリット)
一般に、駆動電圧VDRVを大きくするためには、ドライバ回路の単相の出力振幅VPPSを大きくするしかない。しかし、VPPSの限界は、ドライバの材料・プロセスによって決まり、信頼性を担保しながらVPPSを大きくすることは一般に困難である。また、大きなVPPSを出力する為には、大きな電源電圧が必要となり、消費電力の増加を招く。
しかし、上述のようにParallel push−pull構成を用いることで、VPPSを変えずとも、その4倍の値をVDRVとしてマッハツェンダ光変調器に与えることができる。よって、信頼性を担保しながら、図1に示したSeries push−pull構成よりも大きなVDRVを与えることが出来る。さらに、VPPSを変えずとも良いことから、電源電圧をSeries push−pull構成よりも削減でき、より低消費電力かつ高変調効率化が図れる。
David Patel, Samir Ghosh, Mathieu Chagnon, Alireza Samani,Venkat Veerasubramanian, Mohamed Osman, and David V. Plant, "Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator", Opt. Express vol.23, no.11, pp.14263-14275, 2015. Robert G. Walker, "High-Speed III-V Semiconductor Intensity Modulators", IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 27, NO. 3, pp.654-667, 1991. Nan Qi, Xi Xiao, Shang Hu, Xianyao Li, Hao Li, Liyuan Liu, Zhiyong Li, Nanjian Wu, and Patrick Yin Chiang, "Co-Design and Demonstration of a 25-Gb/s Silicon-Photonic Mach-Zehnder Modulator With a CMOS-Based High-Swing Driver", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 22, NO. 6, pp. 3400410, 2016.
図2(a)で示した従来のParallel push−pull構成では、位相変調部215および216に入力される信号は、−VPPSと+VPPSの間で遷移する。この為、半導体のPN接合を位相変調部としたSi変調器などでは、PN接合が順バイアス状態と逆バイアス状態の間で遷移することになる。これにより、いわゆるダイオードのリカバリー時間(逆回復時間)が発生し、遅れが生じて変調速度が劣化してしまう。この対策として上記非特許文献3などでは、ドライバ回路を2つ用いて順バイアス状態への遷移を回避する構成を開示しているが、ドライバ回路を2つ含む(Dual−drive)ので電子回路規模が増大し、消費電力が増え、信頼度も低下してしまう。
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、例えばSiなどの半導体のPN接合を用いた光変調器に対して、位相変調部の順バイアス状態への遷移を回避しつつParallel push−pullを適用し、信頼度が高く、高速、低消費電力かつ高変調効率な光送信機を実現することにある。
本発明は、このような目的を達成するために、以下のような構成を備えることを特徴とする。
(発明の構成1)
入力光カプラと、前記入力光カプラより1対2本に分岐された第1のアーム光導波路および第2のアーム光導波路と、それらを結合する出力光カプラとを備えた進行波電極型マッハツェンダ光変調器と、差動信号対を出力する第1の出力と第2の出力とを備えた差動ドライバ回路からなる光送信機であって、
前記第1のアーム光導波路および前記第2のアーム光導波路は、光導波路進行方向に沿って、其々、第1の半導体極性を持つ領域および第2の半導体極性を持つ領域からなる位相変調部を備えており、
前記第1のアーム光導波路の前記第1の半導体極性を持つ領域に設けられた第1の進行波電極の、入力端が前記差動ドライバ回路の前記第1の出力とDC接続され、出力端が第1の終端抵抗を通じて第1のバイアス電圧と接続され、
前記第1のアーム光導波路の前記第2の半導体極性を持つ領域に設けられた第2の進行波電極の、入力端が前記差動ドライバ回路の前記第2の出力と第1のキャパシタによってAC接続され、出力端が第2の終端抵抗を通じて第2のバイアス電圧と接続され、
前記第2のアーム光導波路の前記第2の半導体極性を持つ領域に設けられた第3の進行波電極の、入力端が前記差動ドライバ回路の前記第1の出力と第2のキャパシタによってAC接続され、出力端が第3の終端抵抗を通じて前記第2のバイアス電圧と接続され、
前記第2のアーム光導波路の前記第1の半導体極性を持つ領域に設けられた第4の進行波電極の、入力端が前記差動ドライバ回路の前記第2の出力とDC接続され、出力端が第4の終端抵抗を通じて前記第1のバイアス電圧と接続されること
を特徴とする光送信機。
(発明の構成2)
発明の構成1記載の光送信機であって、
前記差動ドライバ回路がハイパスフィルタ特性を備え、
前記第1のキャパシタと前記第2のキャパシタが同一のキャパシタンスを有し、
前記第1の終端抵抗、前記第2の終端抵抗、前記第3の終端抵抗、そして前記第4の終端抵抗は、それぞれ同一の抵抗値を有し、
前記ハイパスフィルタ特性H(f)が、fを周波数とし、前記第1および第2のキャパシタの有する低域のカットオフ周波数をfLとし、前記差動ドライバ回路が前記ハイパスフィルタ特性を備えない場合の、前記差動ドライバ回路の第1および第2の出力におけるゲイン特性をg(f)とし、g(fm)がg(fL)−3dBとなる周波数をfmとすると、
H(f)< g(fL)−3dB−g(f) f<fm
H(f)=0 f>fm
であることを特徴とする光送信機。
(発明の構成3)
発明の構成1または2に記載の光送信機において、
前記第1のバイアス電圧および第2のバイアス電圧の値は等しく、前記第1の半導体極性を持つ領域が前記位相変調部のアノードであり、前記第2の半導体極性を持つ領域が前記位相変調部のカソードであり、
前記差動ドライバ回路の前記第1および第2の出力の直流動作電圧をVDとし、その単相の電圧振幅の大きさをVPPSとした場合に、前記第1または第2のバイアス電圧の値VBIAS
BIAS ≧VD+VPPS
となることを特徴とする光送信機。
(発明の構成4)
発明の構成1から3のいずれか1項に記載の光送信機において、
前記差動ドライバ回路は、出力端子に送端抵抗を持たないこと
を特徴とする光送信機。
(発明の構成5)
発明の構成1から4のいずれか1項に記載の光送信機において、
前記進行波電極型マッハツェンダ光変調器の前記第1のアーム光導波路および第2のアーム光導波路の位相変調部は、ラテラル型のPN接合であること
を特徴とする光送信機。
(発明の構成6)
発明の構成1から5のいずれか1項に記載の光送信機において、
前記差動ドライバ回路は、補助アンプを用いて帰還する差動オフセット補償回路を備えたことを特徴とする光送信機。
本発明に係る光送信機においては、位相変調部の順バイアス状態への遷移を回避しつつParallel push−pull構成を半導体(例えばSi)型のマッハツェンダ光変調器に適用することができる。さらに、低周波数領域(カットオフ周波数fL以下の領域)での大きな出力振幅を補償する為に、差動ドライバ回路にハイパスフィルタ特性を設けることもできる。それにより、さらに信頼度が高く、低消費電力な光送信機を実現することが出来る。
従来のSeries push−pull構成の光送信機の平面図である。 従来のParallel push−pull構成(a)を、Series push−pull構成(b)と対比して示す光送信機の概略図である。 本発明の第1の実施形態の光送信機の構成を示す平面図である。 ハイパスフィルタ特性を持たない場合の、低周波数領域における動作の説明図である。 ハイパスフィルタ特性を持たない場合の、差動ドライバ回路の周波数特性を示した図である。 本発明で用いる、ハイパスフィルタおよび差動ドライバ回路の周波数特性を示した図である。 本発明の第1の実施形態の第1の変形の構成を示した平面図である。 本発明の第1の実施形態の第2の変形の構成を示した平面図である。 本発明の第2の実施形態の光送信機の構成を示す平面図である。
以下に、本発明を進行波電極型マッハツェンダ光変調器とドライバ回路で構成される光送信機に適用した場合の実施形態を示す。以下の実施形態においては、半導体型の光変調器(望ましくはシリコン:Si)を例示するが、いずれの半導体構成材料、いずれのドライバ回路の作製プロセスにおいても実現可能である。
(第1の実施形態)
図3に、本発明の第1の実施形態の光送信機の構成の平面図示す。以下、図3の構成について説明する。
本実施形態1の光送信機は、差動信号対を出力する差動ドライバ回路400と、進行波電極型マッハツェンダ光変調器410から構成される。差動ドライバ回路400は、第1の出力401と第2の出力402を備え、進行波電極型マッハツェンダ光変調器410の4つの進行波電極420〜423の入力端にDCまたはAC接続されている。
進行波電極型マッハツェンダ光変調器410の光回路部分は、入力光カプラ411と、それにより1対2本に分岐された第1のアーム光導波路412および第2のアーム光導波路413と、それらを結合する出力光カプラ414とを備える。第1のアーム光導波路412および第2のアーム光導波路413は、光導波路進行方向に沿って、其々、第1の半導体極性を持つ領域および第2の半導体極性を持つ領域からなる位相変調部を備えている。位相変調部はPN接合を含むので、ダイオード記号により位相変調部415と416として図示する。以下の説明においては、第1の半導体極性を持つ領域をダイオード記号のアノードとして、第2の半導体極性を持つ領域をカソードとする。
第1のアーム光導波路412の位相変調部415のカソード側には、第1の進行波電極420が設けられ、その入力端が差動ドライバ回路400の第1の出力401とDC接続され、出力端が第1の終端抵抗430Aを通じて第1のバイアス電圧440と接続されている。
一方で、第1のアーム光導波路412の位相変調部415のアノード側には、第2の進行波電極421が設けられ、その入力端が差動ドライバ回路400の第2の出力402と第1のキャパシタ431AによってAC接続され、出力端が終端抵抗430Bを介して第2のバイアス電圧441と接続されている。
第2のアーム光導波路413の位相変調部416のアノード側には、第3の進行波電極422が設けられ、その入力端が差動ドライバ回路400の第1の出力401と第2のキャパシタ431BによってAC接続され、出力端が第2の終端抵抗430Cを通じて第2のバイアス電圧441と接続されている。
一方で、第2のアーム光導波路413の位相変調部416のカソード側には、第4の進行波電極423が設けられ、その入力端が差動ドライバ回路400の第2の出力402とDC接続され、出力端が終端抵抗430Dを通じて第1のバイアス電圧440と接続されている。
終端抵抗430A〜430Dは、2つのアームが同一ないし対称の構造、動作条件であればそれぞれ等しい抵抗値とすることができ、第1〜第4の進行波電極420〜423が持つ特性インピーダンスと同じ抵抗値に設定することができる。さらにキャパシタ431Aおよび431Bもそれぞれ等しいキャパシタンスとすることができる。
上述の説明においては、第1の半導体極性を持つ領域がアノードであり、第2の半導体極性を持つ領域がカソードとしたが、それぞれを入れ替えてもよい。また、説明の為、第2の進行波電極421と第1のキャパシタ431Aの間を、ノード403とし、第3の進行波電極422と第2のキャパシタ431Bの間を、ノード404とする。
(実施形態1の動作説明1)
図3の実施形態1の動作を説明する。図3では、差動ドライバ回路400の単相の出力電圧振幅の大きさをVPPSとして、第1の出力401がポジ信号VHiを、第2の出力402がネガ信号VLoを出力した場合を示している。図3の場合、第1のアーム光導波路412の位相変調部415には、VHi−VLoの逆バイアスが与えられる。他方、第2のアーム光導波路413には、VLo−VHiの逆バイアスが与えられる。
つまり、ポジ信号からネガ信号への遷移が差動ドライバ回路400から与えられた時、アーム光導波路412および413にかかる電圧スイングは、VHi−VLoからVLo−VHiで遷移する。すなわち、アーム光導波路412および413はVPPSの2倍の電圧振幅で駆動されていることになる。第1の出力401と第2の出力402はそれぞれ逆相の差動信号であるため、アーム光導波路412および413に与えられるバイアスはそれぞれ逆相となる。その結果、マッハツェンダ光変調器410には、VPPSの4倍の値が駆動電圧VDRVとして与えられる。
第2の進行波電極421と第3の進行波電極422に設けられたキャパシタ431Aおよび431Bは、ノード403および404における差動信号のコモンレベルを任意に調整する為に設けられている。例えば、VHiが3V、VLoが2Vであるとする(コモンレベルは2.5Vであり、VPPSは1Vである)。もし、ノード403および404のコモンレベルも2.5Vであれば、アーム光導波路412および413にかかる電圧スイングは1Vから−1Vの間で遷移する。その場合、ラテラル型のPN接合を持つSiマッハツェンダ光変調器を用いた場合には、PN接合を常に逆バイアスに保たなければ、動作速度の低下を招く。
そのような場合には、バイアス電圧441を1.5Vとすれば、コモンレベルがオフセットされ、ノード403および404のおける電圧スイングは、1Vから2Vの間で遷移する。その場合、第1と第2のアーム光導波路420および423にかかる電圧スイングの遷移は、2Vから0Vである。よって、PN接合を常に逆バイアス状態に保った上で、4Vの駆動電圧VDRVをマッハツェンダ光変調器420に与えることが出来る。
(実施形態1の動作説明2:カットオフ周波数fL以下の周波数成分を入力信号が含む場合)
上述の動作説明1では、キャパシタのカットオフ周波数fLと入力信号の周波数成分については考慮していない。しかし、光通信において一般的に用いられるNRZ信号では、最も低い信号の周波数成分として、100kHz程度の信号成分を含む場合がある。これに対して、カットオフ周波数fLを100kHz程度とする為には、1μF程度の大きな値を持つ大型のキャパシタが必要である。そのようなキャパシタは光変調器チップでの実装が困難であり、実際には数pF程度のキャパシタが通常であることから、そのカットオフ周波数fLは数GHzのオーダーになる。
そこで、ハイパスフィルタ特性を持たないドライバ回路を用いた場合において、カットオフ周波数fL以下の周波数成分を含む信号が入力された場合を考える。その際、信頼性から鑑みた差動ドライバ回路400の出力電圧振幅の限界はVPPSであるとする。
図4は、ドライバ回路にハイパスフィルタ特性が無いとして、キャパシタ431Aおよび431Bのカットオフ周波数fL以下の周波数成分を含む信号を伝送する場合の動作を説明する図である。図4では、図3の場合と異なり、差動ドライバ回路400からの高周波の信号電流成分は第2と第3の進行波電極421および422には分流せず、第1と第4の進行波電極420および423にのみ電流は分流する状態を示している。つまり、カットオフ周波数fL以下では、ノード403および404には電圧振幅が発生しないことを示している。
第1と第4の進行波電極420および423にのみ分流する電流の値は、図3において第1から第4の進行波電極420〜423それぞれに流れる電流の2倍の値である。差動ドライバ回路において、出力電圧振幅の大きさは、負荷抵抗(図3、図4においては、進行波電極の特性インピーダンスと一致する終端抵抗が負荷抵抗である)と大きさと電流に比例することから、第1と第4の進行波電極420および423には、図3における進行波電極420〜423それぞれの電圧振幅の2倍の値が入力される。
ここで、差動ドライバ回路400の単相の出力電圧振幅の限界をVPPSであるとして設計した場合には、その限界を超えてしまっており、信頼性を確保することができない。つまり、この現象を補償しなければ、カットオフ周波数fL以下の周波数成分を含む信号が入力された場合には、信頼性を担保して、Parallel push−pull構成をSiマッハツェンダ光変調器に適用することが出来ない。
上記の現象について、図5に示した周波数特性を用いて説明する。図5は、周波数f(GHz)を横軸として、本願の光変調器各部の周波数特性(伝達関数dB)を示した図である。
図5の3本のグラフで、差動ドライバ回路400の第1と第2の出力401および402におけるゲイン特性を中央のグラフg(f)、ノード403および404におけるゲイン特性を下のグラフg’(f)としている。そして、一番上のグラフが、最終的に第1と第2の光導波路アーム412および413に与えられる差動電圧振幅のゲイン特性G(f)を示している。
参考までに、20GHzにおいて、ゲイン特性G(f)は、ゲイン特性g(f)およびゲイン特性g’(f)よりも6dB大きい値のピークを持つ。これは、単相の出力振幅の4倍の値(6dB)がマッハツェンダ光変調器に対して、駆動電圧VDRVとして与えられることを意味する。
ここで、カットオフ周波数fL以上において本発明の効果を最大化する為には、図5のゲイン特性g(f)およびゲイン特性g’(f)が20GHzにあるピークにおいて、差動ドライバ回路400が出力する最大の単相出力振幅VPPSとなるように設計する。すなわちそのピークが電圧振幅の限界Vlimitとして設計する。
ここで、ゲイン特性g(f)がg(fL)-3dBとなる値の周波数をfmとする。すると、ゲイン特性g(f)はfm以下の周波数において、電圧振幅の限界Vlimitを超えるゲインを持つことがわかる。
よって、カットオフ周波数fL以下の周波数成分を含む信号が入力された場合には、すべての周波数で信頼性を保った上で、Parallel push−pull構成を実現することはできない。または、ゲイン特性g(f)の最大のゲイン(図5においては0.1GHzに存在する)をVlimitとなるように設計することで、信頼性を保つことが出来るが、fm以上の周波数におけるゲイン特性G(f)も同様に小さくなり、マッハツェンダ光変調器に与える駆動振幅VDRVが小さくなってしまう。よって、この場合においては、差動ドライバ回路400にハイパスフィルタ特性を設ける必要がある。
さらに、本発明では、図3に示したようにマッハツェンダ光変調器410は終端抵抗430A〜Dを介してバイアス電圧440および441に接続される。そのため、オープンドレイン(オープンコレクタ)ドライバ、すなわち出力端子に送端抵抗を持たないドライバ回路を差動ドライバ回路とすることが出来る。
(最も効果を発揮するハイパスフィルタ特性)
図6に、本発明で用いるハイパスフィルタおよび差動ドライバ回路の周波数特性を説明する。図6(a)は、差動ドライバ回路400に設けるべきハイパスフィルタ特性H (f)を示す。その特性H (f)は概ね下記式によって定義される。
H(f)=g(fL)−3dB−g(f) f<fm
H(f)=0 f>fm
上述のハイパスフィルタ特性をドライバに備えると、図6(b)に示したようにg(f)は、すべての周波数領域において、電圧振幅の限界Vlimitを超えることはない。
また副次的な効果として、最終的に第1と第2の光導波路アーム412および413に与えられる電圧振幅のゲイン特性G(f)は、カットオフ周波数をfLにもつディエンファシスを備える。以上説明したようにドライバ回路にハイパスフィルタ特性を備えることにより、カットオフ周波数fL以下の周波数成分を含む信号が入力された場合であっても、本発明の効果を発揮することができる。信頼性を保つ為には、f<fmにおいて、H(f)< g(fL)−3dB−g(f)となる特性であれば良い。
(実施形態1の変形例1)
実施形態1の動作説明2においては、差動ドライバ回路400自体がハイパスフィルタ特性を持つものとして説明した。図7には、ドライバ回路にハイパスフィルタ特性を備える為の変形例1として、差動ドライバ回路400の前段に別途のハイパス特性のフィルタ回路800を挿入した変形例1を示す。別途のフィルタ回路800を設けることによって、より最適なハイパスフィルタ特性を実現することが容易となる。
(実施形態1の変形例2)
図8には、ドライバ回路にハイパスフィルタ特性を備える為の、さらなる別の変形例2を示す。図8では、差動ドライバ回路400をアンプ多段構成として、前段アンプ904および最終段アンプ905で構成している。、そして、ハイパスフィルタ特性を備えるために、最終段アンプ905の出力側から抵抗901AおよびB、キャパシタ902AおよびB、補助アンプ903を用いて入力側に帰還する差動オフセット補償回路900を組み込んである。
図8の例では、差動オフセット補償回路900は、補助アンプ903、抵抗901AおよびB、キャパシタ902AおよびBの組み合わせによって、任意の低域のカットオフ周波数を設計することが出来る。このような構成によっても、ドライバ回路にハイパスフィルタ特性を持たせることができる。なお、図8においては、マッハツェンダ光変調器410の内部構造や、終端抵抗との接続は省略している。
(第2の実施形態)
図9は、本発明の第2の実施形態による、光送信機の構成を示す平面図である。
本実施形態2の第1の実施形態(図3)との相違点は、図9の実施形態2では、第1から第4の進行波電極420〜423が終端抵抗430A〜Dを介してすべてバイアス電圧440に接続されていることである。また、位相変調部を表す等価ダイオードは、図3とは逆向きに第1の半導体極性を持つ領域がカソードであり、前記第2の半導体極性を持つ領域がアノードである点も相違する。さらに、差動ドライバ回路400の第1および第2の出力401および402の直流動作電圧をVDとし、その単相の電圧振幅の大きさをVPPSとした場合に、バイアス電圧440の電圧VBIASは下記式となるように設計されている。
BIAS ≧VD+VPPS
このように設計すれば、単一のバイアス電圧のみでも、マッハツェンダ光変調器がラテラル型のPN接合を用いた変調器を用いた場合に、PN接合は逆バイアス状態になることが無く、本発明を実施することができる。また、単一のバイアス電圧のみでも、Parallel push−pull構成の効果を得ることが出来る為、従来構成と比較してもより簡便な構成で、省スペースで信頼度が高く低電力な光送信機を実現できる。
その動作について以下に説明する。例えば、第1と第2の出力401および402における単相の出力電圧振幅VPPSが1Vであり、その直流動作電圧をVDは2Vであるとした時に、バイアス電圧441の電圧VBIASが3Vとなるように設定する。すると、第1と第2の出力401および402における単相の電圧スイングは1.5Vから2.5Vの間で遷移する。また、ノード403および404における電圧スイングは、2.5Vから3.5Vで遷移する。よって、ダイオードで図示した位相変調部415および416に与えられる遷移は、逆バイアスで1.5Vから3Vである。
以上のような構成によって、本発明の光送信機は、順バイアス状態への遷移を回避しつつParallel push−pull構成を半導体(例えばSi)型のマッハツェンダ光変調器に適用することができる。さらに、低周波数領域(カットオフ周波数fL以下の領域)での大きな出力振幅を補償するために、差動ドライバ回路にハイパスフィルタ特性を設けることもできる。それにより、信頼度が高く、高速、低消費電力で高変調効率の光送信機を実現することが出来る。
100、200、300、400 差動ドライバ回路
101、102、401、402 差動ドライバ回路の第1、第2の出力
110、410 進行波電極型マッハツェンダ光変調器
111、411 入力光カプラ
112、113、412、413 アーム光導波路
114、414 出力光カプラ
115、116、215、216、315、316、415、416 位相変調部
120、121、420、421、422、423 進行波電極
122A、122B、430A〜D 終端抵抗
123 バイアス電極
130、131、440、441 バイアス電圧
403、404 ノード
431A、431B、902A,902B キャパシタ
800 ハイパスフィルタ回路
900 差動オフセット補償回路
901A、901B 抵抗
903 補助アンプ
904 前段アンプ
905 最終段アンプ

Claims (6)

  1. 入力光カプラと、前記入力光カプラより1対2本に分岐された第1のアーム光導波路および第2のアーム光導波路と、それらを結合する出力光カプラとを備えた進行波電極型マッハツェンダ光変調器と、差動信号対を出力する第1の出力と第2の出力とを備えた差動ドライバ回路からなる光送信機であって、
    前記第1のアーム光導波路および前記第2のアーム光導波路は、光導波路進行方向に沿って、其々、第1の半導体極性を持つ領域および第2の半導体極性を持つ領域からなる位相変調部を備えており、
    前記第1のアーム光導波路の前記第1の半導体極性を持つ領域に設けられた第1の進行波電極の、入力端が前記差動ドライバ回路の前記第1の出力とDC接続され、出力端が第1の終端抵抗を通じて第1のバイアス電圧と接続され、
    前記第1のアーム光導波路の前記第2の半導体極性を持つ領域に設けられた第2の進行波電極の、入力端が前記差動ドライバ回路の前記第2の出力と第1のキャパシタによってAC接続され、出力端が第2の終端抵抗を通じて第2のバイアス電圧と接続され、
    前記第2のアーム光導波路の前記第2の半導体極性を持つ領域に設けられた第3の進行波電極の、入力端が前記差動ドライバ回路の前記第1の出力と第2のキャパシタによってAC接続され、出力端が第3の終端抵抗を通じて前記第2のバイアス電圧と接続され、
    前記第2のアーム光導波路の前記第1の半導体極性を持つ領域に設けられた第4の進行波電極の、入力端が前記差動ドライバ回路の前記第2の出力とDC接続され、出力端が第4の終端抵抗を通じて前記第1のバイアス電圧と接続されること
    を特徴とする光送信機。
  2. 請求項1記載の光送信機であって、
    前記差動ドライバ回路がハイパスフィルタ特性を備え、
    前記第1のキャパシタと前記第2のキャパシタが同一のキャパシタンスを有し、
    前記第1の終端抵抗、前記第2の終端抵抗、前記第3の終端抵抗、そして前記第4の終端抵抗は、それぞれ同一の抵抗値を有し、
    前記ハイパスフィルタ特性H(f)が、fを周波数とし、前記第1および第2のキャパシタの有する低域のカットオフ周波数をfLとし、前記差動ドライバ回路が前記ハイパスフィルタ特性を備えない場合の、前記差動ドライバ回路の第1および第2の出力におけるゲイン特性をg(f)とし、g(fm)がg(fL)−3dBとなる周波数をfmとすると、
    H(f)< g(fL)−3dB−g(f) f<fm
    H(f)=0 f>fm
    であることを特徴とする光送信機。
  3. 請求項1または2に記載の光送信機において、
    前記第1のバイアス電圧および第2のバイアス電圧の値は等しく、前記第1の半導体極性を持つ領域が前記位相変調部のアノードであり、前記第2の半導体極性を持つ領域が前記位相変調部のカソードであり、
    前記差動ドライバ回路の前記第1および第2の出力の直流動作電圧をVDとし、その単相の電圧振幅の大きさをVPPSとした場合に、前記第1または第2のバイアス電圧の値VBIAS
    BIAS ≧VD+VPPS
    となることを特徴とする光送信機。
  4. 請求項1から3のいずれか1項に記載の光送信機において、
    前記差動ドライバ回路は、出力端子に送端抵抗を持たないこと
    を特徴とする光送信機。
  5. 請求項1から4のいずれか1項に記載の光送信機において、
    前記進行波電極型マッハツェンダ光変調器の前記第1のアーム光導波路および第2のアーム光導波路の位相変調部は、ラテラル型のPN接合であること
    を特徴とする光送信機。
  6. 請求項1から5のいずれか1項に記載の光送信機において、
    前記差動ドライバ回路は、補助アンプを用いて帰還する差動オフセット補償回路を備えたことを特徴とする光送信機。
JP2017079168A 2017-04-12 2017-04-12 光送信機 Active JP6701115B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017079168A JP6701115B2 (ja) 2017-04-12 2017-04-12 光送信機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017079168A JP6701115B2 (ja) 2017-04-12 2017-04-12 光送信機

Publications (2)

Publication Number Publication Date
JP2018180255A true JP2018180255A (ja) 2018-11-15
JP6701115B2 JP6701115B2 (ja) 2020-05-27

Family

ID=64276604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017079168A Active JP6701115B2 (ja) 2017-04-12 2017-04-12 光送信機

Country Status (1)

Country Link
JP (1) JP6701115B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635851A (zh) * 2018-11-19 2019-12-31 科大国盾量子技术股份有限公司 适用于量子态随机光信号的调制器驱动方法及系统
GB2580163A (en) * 2018-12-21 2020-07-15 Lumentum Tech Uk Limited Biasing method for InP Mach-Zehnder modulators directly coupled to RF driver circuits
US11479423B2 (en) 2019-08-26 2022-10-25 Canon Kabushiki Kaisha Sheet feeding apparatus and image forming apparatus
CN116107102A (zh) * 2023-04-04 2023-05-12 众瑞速联(武汉)科技有限公司 一种低功耗差分调制器及光芯片
US11940708B2 (en) 2019-03-29 2024-03-26 Sumitomo Osaka Cement Co., Ltd. Optical modulator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004037695A (ja) * 2002-07-02 2004-02-05 Sumitomo Osaka Cement Co Ltd 光変調器
WO2012073447A1 (ja) * 2010-12-01 2012-06-07 日本電気株式会社 光強度減算器、光a/d変換器及び光強度減算方法
US20160050020A1 (en) * 2007-10-02 2016-02-18 Luxtera, Inc. Method and system for split voltage domain transmitter circuits
WO2017159782A1 (ja) * 2016-03-18 2017-09-21 日本電信電話株式会社 光変調器
US9939667B1 (en) * 2017-04-17 2018-04-10 Inphi Corporation Mach-Zehnder modulator driver
US20190324345A1 (en) * 2018-04-24 2019-10-24 Elenion Technologies, Llc Optical waveguide modulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004037695A (ja) * 2002-07-02 2004-02-05 Sumitomo Osaka Cement Co Ltd 光変調器
US20160050020A1 (en) * 2007-10-02 2016-02-18 Luxtera, Inc. Method and system for split voltage domain transmitter circuits
WO2012073447A1 (ja) * 2010-12-01 2012-06-07 日本電気株式会社 光強度減算器、光a/d変換器及び光強度減算方法
WO2017159782A1 (ja) * 2016-03-18 2017-09-21 日本電信電話株式会社 光変調器
US9939667B1 (en) * 2017-04-17 2018-04-10 Inphi Corporation Mach-Zehnder modulator driver
US20190324345A1 (en) * 2018-04-24 2019-10-24 Elenion Technologies, Llc Optical waveguide modulator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635851A (zh) * 2018-11-19 2019-12-31 科大国盾量子技术股份有限公司 适用于量子态随机光信号的调制器驱动方法及系统
GB2580163A (en) * 2018-12-21 2020-07-15 Lumentum Tech Uk Limited Biasing method for InP Mach-Zehnder modulators directly coupled to RF driver circuits
US10996537B2 (en) 2018-12-21 2021-05-04 Lumentum Technology Uk Limited Biasing method for InP Mach-Zehnder modulators directly coupled to RF driver circuits
GB2580163B (en) * 2018-12-21 2023-01-04 Lumentum Tech Uk Limited Biasing method for InP Mach-Zehnder modulators directly coupled to RF driver circuits
US11630370B2 (en) 2018-12-21 2023-04-18 Lumentum Technology Uk Limited Biasing method for InP Mach-Zehnder modulators directly coupled to RF driver circuits
US11940708B2 (en) 2019-03-29 2024-03-26 Sumitomo Osaka Cement Co., Ltd. Optical modulator
US11479423B2 (en) 2019-08-26 2022-10-25 Canon Kabushiki Kaisha Sheet feeding apparatus and image forming apparatus
CN116107102A (zh) * 2023-04-04 2023-05-12 众瑞速联(武汉)科技有限公司 一种低功耗差分调制器及光芯片
CN116107102B (zh) * 2023-04-04 2023-08-01 众瑞速联(武汉)科技有限公司 一种低功耗差分调制器及光芯片

Also Published As

Publication number Publication date
JP6701115B2 (ja) 2020-05-27

Similar Documents

Publication Publication Date Title
US11599005B2 (en) Optical waveguide modulator
JP6701115B2 (ja) 光送信機
US10164713B2 (en) Optical transmitter, optical modulator module, and optical transmission system
US10831081B2 (en) Optical waveguide modulator
Webster et al. Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers
US7515775B1 (en) Distributed amplifier optical modulator
US10678112B2 (en) Fully differential traveling wave series push-pull mach-zehnder modulator
US9069223B2 (en) Mach-Zehnder optical modulator using a balanced coplanar stripline with lateral ground planes
WO2017208526A1 (ja) 光変調器
US9482925B2 (en) Mach-Zehnder optical modulator with embedded active elements
US10048519B1 (en) Mach-zehnder modulator driver
US20180356654A1 (en) Drive circuit
US10942377B2 (en) High swing AC-coupled Mach-Zehnder interferometer (MZI) driver
US20220404680A1 (en) Providing drive signals for a differential drive modulator
JP2018092100A (ja) 光送信器
EP3909129A1 (en) Electrical amplifier and electro-optical device comprising an electrical amplifier
CN116107102B (zh) 一种低功耗差分调制器及光芯片
US9018984B2 (en) Driver for high speed electrical-optical modulator interface
EP4080272A1 (en) Segmented optical waveguide modulator
JP4526767B2 (ja) 光半導体装置および光伝送装置
WO2023248490A1 (ja) 光変調器
US20230358955A1 (en) Silicon photonics-based optical modulation device with two metal layers
TW202409665A (zh) 矽光子調變器的平衡差分調變方案
Dupuy et al. A 6 VPP, 52 dB, 30-dB dynamic range, 43 Gb/s InP DHBT differential limiting amplifier
JP2017219587A (ja) 光送信機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200501

R150 Certificate of patent or registration of utility model

Ref document number: 6701115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150