JP2018179853A - Peak identification method unaffected by variation in elution time - Google Patents
Peak identification method unaffected by variation in elution time Download PDFInfo
- Publication number
- JP2018179853A JP2018179853A JP2017082149A JP2017082149A JP2018179853A JP 2018179853 A JP2018179853 A JP 2018179853A JP 2017082149 A JP2017082149 A JP 2017082149A JP 2017082149 A JP2017082149 A JP 2017082149A JP 2018179853 A JP2018179853 A JP 2018179853A
- Authority
- JP
- Japan
- Prior art keywords
- identification
- elution time
- identification table
- component
- specific component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Treatment Of Liquids With Adsorbents In General (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
本発明は、複数のピークが存在するクロマトグラムにおいて、各ピークの溶出時間が経時的に変化する場合であっても、正確にピーク同定を可能とする方法に関するものである。 The present invention relates to a method that enables accurate peak identification even in the case where the elution time of each peak changes with time in a chromatogram in which a plurality of peaks are present.
クロマトグラフィは複数成分を含む試料をカラムで分離定量する方法である。一般的には、各成分ピークの溶出時間から定性を行い、検出器の出力度合により定量を行う。定性分析を行うには、事前に目的の成分を含む標準試料を測定し、各成分の溶出時間を基準溶出時間として定め、それに対する許容幅を設定した同定範囲を定めた「同定テーブル」の作成を行う。 Chromatography is a method of separating and quantifying a sample containing a plurality of components on a column. In general, qualitative analysis is performed from the elution time of each component peak, and quantitative analysis is performed according to the output degree of the detector. In order to conduct qualitative analysis, a standard sample containing the target component is measured in advance, the elution time of each component is determined as the reference elution time, and an "identification table" is created with an identification range in which the tolerance range is set. I do.
未知試料の同定を行う場合は、未知試料のクロマトグラムに現れた複数の成分ピークの溶出時間と、同定テーブルとを比較して、同定範囲に収まるか否かを判断し、同定範囲に収まれば対応する成分と同定するのが一般的な手法である。 When identifying an unknown sample, compare the elution time of multiple component peaks appearing in the chromatogram of the unknown sample with the identification table to determine whether or not it falls within the identification range, and if it falls within the identification range It is a common practice to identify the corresponding component.
しかしながら、実際のクロマトグラフィでは、溶離液の組成が経時的に僅かに変動し、それに伴い溶出時間も経時的に増加または減少することがしばしば見られる。また、クロマトグラフを構成するカラムオーブンや送液ポンプも溶出時間の変動に繋がる。設置環境の要因によりカラムオーブンの温度が僅かに変動したり、ポンプの送液量が僅かに変動したりして、溶出時間を変動させることもある。 However, in actual chromatography, it is often seen that the composition of the eluent changes slightly with time, and the elution time also increases or decreases with time. In addition, the column oven and the liquid transfer pump that constitute the chromatograph also lead to fluctuations in the elution time. The temperature of the column oven may slightly fluctuate due to factors of the installation environment, or the amount of pump delivery may slightly fluctuate, which may cause the elution time to fluctuate.
図1は、未知試料の測定の際に、溶出時間が経時的に遅くなっている場合を示した図である。この場合、未知試料1は各成分の溶出時間は−3%〜+3%の範囲に収まり、それぞれ、Comp_1、Comp_2、Comp_3、Comp_4、Comp_5、Comp_6と同定できるが、未知試料2、3は各成分の溶出時間は−3%〜+3%の範囲に収まらないことから、同定できず「未知成分」と判断されてしまう。
FIG. 1 is a diagram showing the case where the elution time is delayed with time during measurement of an unknown sample. In this case, the elution time of each component of the
このような場合であっても、正しく同定できるように、同定テーブルの基準溶出時間を同定された成分の溶出時間に置き換え、許容幅もそれに合わせて再計算し、同定テーブルを更新して、次の未知試料の同定に用いるといった方法も提案されているが、図2に示すように同定テーブルに登録されている成分が、未知試料測定時に同定できない場合や、一部成分が元々含まれない場合では、同定テーブルの更新が正常に機能しなくなってしまうといった問題があった。 Even in such a case, the standard elution time of the identification table is replaced with the elution time of the identified component so that correct identification can be made, the tolerance width is recalculated accordingly, and the identification table is updated. There is also a proposal that this method is used to identify unknown samples, but when the components registered in the identification table can not be identified at the time of unknown sample measurement as shown in FIG. 2 or some components are not originally included However, there was a problem that the update of the identification table would not function properly.
本発明の課題は、溶出時間に経時的な変動があっても正確に成分同定が可能であり、特に、同定テーブルに登録された成分が未検出な場合であっても、一連の同定に影響を及ぼさないピーク同定方法を提供するものである。 It is an object of the present invention to accurately identify components even if the elution time varies with time, and in particular, to affect a series of identification even when components registered in the identification table are not detected. Provides a peak identification method that does not exert
本発明は、2以上の未知試料を連続的に液体クロマトグラフィによって同定する方法に関するものであり、
1件目の未知試料は標準試料の溶出時間を基に作成された同定テーブルに基づき、前記未知試料中の特定成分を同定し、
当該同定結果に基づいて、前記同定テーブルを補正し、
補正後の同定テーブルを基に前記特定成分以外の成分を同定し、
n件目(n=2以上の整数)の未知試料は(n−1)件目で使用された補正後の同定テーブルで前記特定成分を同定し、
当該同定結果に基づいて、(n−1)件目で使用された補正後の同定テーブルを1件目と同様の方法で更に補正し、
補正後の同定テーブルを基に前記特定成分以外の成分を同定することを特徴とする。
The present invention relates to a method for continuously identifying two or more unknown samples by liquid chromatography,
The first unknown sample identifies a specific component in the unknown sample based on an identification table created based on the elution time of the standard sample,
Correcting the identification table based on the identification result;
Identify components other than the specific component based on the corrected identification table,
The n-th (n = 2 or more integer) unknown sample identifies the specific component in the corrected identification table used in the (n-1) -th sample,
Based on the identification result, the corrected identification table used in the (n-1) -th case is further corrected in the same manner as the first case,
It is characterized in that components other than the specific component are identified based on the corrected identification table.
以下に、本発明の詳細を説明する。 The details of the present invention will be described below.
図3aは標準試料、未知試料1〜3のクロマトグラム、図3bは未知試料1〜3の各成分(Comp_1〜Comp_6)の溶出時間をプロットした図である。標準試料にはComp_1〜Comp_6の6成分が含まれ、同定テーブルにも登録される。未知試料2、3は同様にComp_1〜Comp_6に相当する6成分が含まれるが、未知試料1にはComp_1〜Comp_5に相当する5成分しか含まれていない。
FIG. 3a is a chromatogram of standard samples and
まず、一般的な同定方法と同様に標準試料の各成分(Comp_1〜Comp_6)の溶出時間から、同定の基準となる溶出時間およびその同定範囲を指定する(同定テーブルの作成)。同定範囲は成分毎に絶対時間で指定しても良いが、基準となる溶出時間に対する比率で指定した方が、設定が容易に行える。 First, from the elution time of each component (Comp_1 to Comp_6) of the standard sample, as in the general identification method, the elution time serving as a reference for identification and its identification range are designated (creation of an identification table). The identification range may be specified in absolute time for each component, but setting can be performed more easily if it is specified in terms of the ratio to the standard elution time.
以下、基準となる溶出時間に対する比率で算出する方法について説明する。 Hereinafter, a method of calculating the ratio to the standard elution time will be described.
まず、標準試料および未知試料で必ず検出される成分を特定成分(以下、内部標準成分ということがある)として指定する。内部標準成分は、他の成分と完全に分離できており、含有量が比較的に高い(出力が大きい)ものを指定することが望ましいため、5番目に溶出するComp_5を内部標準成分とした。 First, a component which is necessarily detected in the standard sample and the unknown sample is designated as a specific component (hereinafter sometimes referred to as an internal standard component). The internal standard component was completely separated from the other components, and it is desirable to designate one having a relatively high content (large output), so the fifth eluting Comp_5 was used as the internal standard component.
各成分の同定範囲について、内部標準成分は、その他の成分より大きな値で設定することが好ましい。具体的には、内部標準の同定範囲(η%)は、その他の成分の同定範囲(γ%)の2〜5倍程度とすることが望ましい。これにより、未知試料の測定の際に、溶出時間が変動しても、内部標準成分の同定がより確実に行えることになる。図3、表1では内部標準成分(Comp_5)の同定許容幅は基準溶出時間に対して±15%、その他の成分では±3%とした。 For the identification range of each component, the internal standard component is preferably set to a larger value than the other components. Specifically, the identification range (同 定%) of the internal standard is desirably about 2 to 5 times the identification range (γ%) of the other components. This makes it possible to more reliably identify the internal standard component even when the elution time varies during measurement of an unknown sample. In FIG. 3 and Table 1, the identification tolerance range of the internal standard component (Comp — 5) was ± 15% with respect to the standard elution time, and ± 3% for the other components.
未知試料1を測定し、少なくとも各々のピークの溶出時間(表2)を検出し、前記同定テーブル(表1)と比較して、少なくとも内部標準成分の許容範囲に入るか否かにより、内部標準成分の同定を実施する。
Measure the
次に、前記で得られた未知試料1の内部標準成分の溶出時間(8.670)を前記同定テーブルに登録されている内部標準成分の基準溶出時間(8.500)で除算し、溶出時間の補正係数(f)を算出する。ここでは補正係数(f)は、8.670/8.500=1.020と算出される。
Next, the elution time (8.670) of the internal standard component of
次に、この補正係数(f)により、前記同定テーブルを更新する。
前記同定テーブル(表1)の基準溶出時間に補正係数1.020を乗じて、新たな基本溶出時間として同定テーブルを更新する。これに合わせて同定範囲も再計算し、同定テーブルを更新する(表3)。
Next, the identification table is updated with this correction coefficient (f).
The standard elution time of the identification table (Table 1) is multiplied by the correction factor 1.020 to update the identification table as a new basic elution time. In accordance with this, the identification range is recalculated and the identification table is updated (Table 3).
次に、未知試料1のPeak_1〜Peak_4の溶出時間を、前記更新された同定テーブル(表3)と比較して、許容範囲に入るか否かにより、内部標準成分以外のピークを同定する。その結果、Peak_1はComp_1、Peak_2はComp_2、Peak_3はComp_3、Peak_4はComp_4にそれぞれ該当していることが分かる。
Next, the elution times of Peak_1 to Peak_4 of the
次の未知試料を測定する場合は、前記で更新された同定テーブル(表3)を基に、まず、内部標準成分(Comp_5)を同定し、補正係数(f)を算出し、前記同定テーブルを再度更新し、内部標準成分以外のピークを同定する。 When the next unknown sample is to be measured, first, the internal standard component (Comp_5) is identified based on the identification table (Table 3) updated above, the correction coefficient (f) is calculated, and the identification table is calculated. Update again to identify peaks other than internal standard components.
本方法の同定法を使用することで、図3のように、同定テーブルに登録されている成分が未知試料で検出されない場合であっても、同定テーブルは全成分に対して更新することができ、以降の測定で、前記で検出されなかった成分が検出されても、確実に同定を行うことが可能となる。 By using the identification method of this method, as shown in FIG. 3, even if the component registered in the identification table is not detected in the unknown sample, the identification table can be updated for all the components. Even in the subsequent measurement, even if a component not detected above is detected, identification can be performed reliably.
本発明では、2以上の未知試料を連続的に液体クロマトグラフィによって同定する場合に、溶出時間に経時的な変動があっても正確に成分同定が可能であり、特に、同定テーブルに登録された成分が未検出な場合であっても、一連の同定に影響を及ぼさない。 In the present invention, when two or more unknown samples are continuously identified by liquid chromatography, accurate component identification is possible even if the elution time varies with time, and in particular, components registered in the identification table Even if not detected, it does not affect the series of identification.
本発明の効果を、実際のクロマトグラムを用いて検証を行った。なお、本発明は以下の実施例の内容に限定されて解釈されるものではない。 The effect of the present invention was verified using an actual chromatogram. The present invention is not construed as being limited to the contents of the following examples.
(実施例1)
ノンサプレスイオンクロマトグラフィーの系で検証を実施した。図4に示す、液体クロマトグラムシステムを使用し、実際の測定を行った。システムは、溶媒脱気装置(SD−8020)2、サンプル側送液ポンプ(DP−8020)3、リファレンス側送液ポンプ(DP−8020)10、試料注入装置(AS−8020)4、カラムオーブン(CO−8020)6、電気伝導度計(CM−8020)12、及びデータ処理装置(LC−8020II)9で構成した(いずれも、東ソー(株)製)。分析カラム5としては、東ソー(株)製 TSKgel IC−Anion−PW XL(4.6mmI.D.×5cm)を使用し、陰イオン(NO2 −、Br−、NO3 −、PO4 2−、SO4 2−)の分離を行った。
その他の条件は下記の通りである。
注入量:30uL、カラム温度:40℃、サンプル側流速:0.600 mL/min、リファレンス側流速:0.3 mL/min、
溶離液:ホウ酸 (360mg)、四ホウ酸ナトリウム (575mg)、グリセリン (5.0g)、グルコン酸カリウム(350mg)、アセトニトリル(40mL)、n−ブタノール (30mL)を純水にて1Lにメスアップ
なお、本発明の効果を分かりやすくするため、流速をわずかに変化させ、測定対象の陰イオンの含有成分数を変化させて検証を実施した。陰イオン混合比率および流速は表4、5、測定の組み合わせは表6に示す通りである。
Example 1
Verification was performed on a non-suppressed ion chromatography system. The actual measurement was performed using a liquid chromatogram system as shown in FIG. The system includes a solvent degassing apparatus (SD-8020) 2, a sample side liquid feed pump (DP-8020) 3, a reference side liquid feed pump (DP-8020) 10, a sample injection unit (AS-8020) 4, a column oven (CO-8020) 6, electric conductivity meter (CM-8020) 12, and data processor (LC-8020 II) 9 (all are manufactured by Tosoh Corp.). As
Other conditions are as follows.
Injection volume: 30 uL, column temperature: 40 ° C., sample side flow rate: 0.600 mL / min, reference side flow rate: 0.3 mL / min,
Eluent: boric acid (360 mg), sodium tetraborate (575 mg), glycerin (5.0 g), potassium gluconate (350 mg), acetonitrile (40 mL), n-butanol (30 mL) in 1 L of pure water In addition, in order to make the effect of the present invention intelligible, the flow rate was slightly changed, and the number of components of the anion to be measured was changed to carry out the verification. The anion mixing ratio and the flow rate are as shown in Tables 4 and 5, and the combination of the measurements are as shown in Table 6.
図5は、前記の組み合わせで測定したクロマトグラムである。
流速の低下(A_7〜B_1)とともに、各イオンの溶出時間が経時的に遅くなり、B_7から再び初期の溶出時間に戻っている様が分かる。なお、クロマトグラム中の下矢印で示される記号はイオン成分が欠落している箇所を表している(D_4のSO4 2−成分等)。
FIG. 5 is a chromatogram measured by the above combination.
As the flow rate decreases (A_7 to B_1), it can be seen that the elution time of each ion becomes slower with time and returns from B_7 to the initial elution time again. In addition, the symbol shown by the down arrow in the chromatogram represents the location where the ion component is missing (SO 4 2- component of D_4, etc.).
まず、標準試料(A_7)の同定を行い、同定テーブル(初期値)を作成した(表7)。 First, identification of a standard sample (A_7) was performed, and an identification table (initial value) was created (Table 7).
本実施例では、4番目に溶出するリン酸イオン(PO4 2−)を内部標準成分とした。
内部標準成分(PO4 2−)の許容幅を基準溶出時間の±12%とし、それ以外の成分(NO2 −、Br−、NO3 −、SO4 2−)の許容幅を基準溶出時間の±4%として同定を実施した。
In this example, the phosphate ion (PO 4 2- ) eluted fourth was used as an internal standard component.
The tolerance of the internal standard component (PO 4 2-) and ± 12% of the reference elution time, other components (NO 2 -, Br -, NO 3 -, SO 4 2-) standard elution time to tolerance of Identification was performed as ± 4% of
未知試料(A_7〜C_6)の溶出時間を表8に示す。 The elution times of unknown samples (A_7 to C_6) are shown in Table 8.
まず、未知試料A_7を測定した結果、9.217分に溶出したピークは表7のリン酸イオン(PO4 2−)の同定範囲内(8.116〜10.197分)にあるため、リン酸イオン(PO4 2−)と同定される。次に、同定条件の補正係数fを算出する。前記で同定されたリン酸イオン(PO4 2−)の溶出時間(9.217分)を内部標準としたリン酸イオン(PO4 2−)の基準溶出時間(9.223分)で除算した値が補正係数fとなる。この場合、9.217/9.223=0.9993となる。前記補正係数を基本となる同定テーブル(表7)の基準溶出時間及び許容幅に乗算し、同定範囲を更新した。更新後の同定テーブルと、未知試料の溶出時間を照合し、各ピークの同定を行った。 First, as a result of measuring unknown sample A_7, the peak eluted at 9.217 minutes is within the identification range of phosphate ion (PO 4 2- ) in Table 7 (8.116 to 10.197 minutes), so It is identified as acid ion (PO 4 2- ). Next, the correction coefficient f of the identification condition is calculated. The elution time of the above-identified phosphate ion (PO 4 2- ) (9.217 minutes) was divided by the standard elution time of the phosphate ion (PO 4 2- ) (9.223 minutes). The value is the correction coefficient f. In this case, 9.217 / 9.223 = 0.9993. The reference elution time and tolerance range of the basic identification table (Table 7) were multiplied by the correction factor to update the identification range. The identification table after updating and the elution time of the unknown sample were collated to identify each peak.
上述した作業をB_6〜C_6にも同様に行っていくと、同定テーブルは表9のように更新されていく。同定テーブルを補正していった結果、確実かつ正確に同定を行うことが可能であることが分かった。 When the above-described work is similarly performed on B_6 to C_6, the identification table is updated as shown in Table 9. As a result of correcting the identification table, it was found that it is possible to perform identification reliably and accurately.
比較のために、図6に同定テーブルを更新しない方法によって同定を行った結果を示す。図中の破線が同定範囲を示しているが、これだけ流量が変化し、溶出時間が変動すると、同定範囲を超えるピークが多発し、不具合を起こしていることが分かる。 The result of having identified by the method which does not update an identification table in FIG. 6 for a comparison is shown. The broken line in the figure indicates the identification range, but if the flow rate changes and the elution time fluctuates, it can be seen that peaks exceeding the identification range occur frequently, causing a failure.
このような、溶出時間の経時的な遅れが生じ、あるタイミングで元の状態に戻ることは溶離液を再調整した場合などに良く見られる現象であり、本発明の同定法では、このような場合であっても、同定テーブルを再度1から作り直す必要がなく、続けて使用可能である。 Such a time-lapse delay of the elution time occurs, and returning to the original state at a certain timing is a phenomenon often seen when the elution solution is readjusted etc. In the identification method of the present invention, such a phenomenon Even if this is the case, the identification table does not have to be recreated from 1 and can be used subsequently.
(実施例2)
グリコヘモグロビン分析計の系で検証を実施した。
図7に示す、液体クロマトグラムシステムを使用し、実際の測定を行った。装置は自動グリコヘモグロビン分析計HLC−723GVIII(東ソー(株)製)、溶離液は同専用溶離液を使用した。検体は同専用HbA1cキャリブレータセットのLowレベル(A1c:5.4%程度)を使用した。
なお、本発明の効果を分かりやすくするため、Flow Factor(相対流速)をわずかに変化させ、検体の測定を実施した。Flow Factorは値が大きくなるにつれて絶対流速が増えるパラメータである。Flow Factorは0.960、0.980、0.990、1.000、1.010、1.020、1.0400の順に7つのパターンで検証を実施した。
まず、標準試料(Flow Factor=0.960)の同定を行い、同定テーブル(初期値)を作成した(表10)。
(Example 2)
Verification was performed on a glycated hemoglobin analyzer system.
The actual measurement was performed using a liquid chromatogram system as shown in FIG. The device used was an automatic glycohemoglobin analyzer HLC-723GVIII (manufactured by Tosoh Corp.), and the eluent used was the same dedicated eluent. The sample used was the Low level (A1c: about 5.4%) of the same dedicated HbA1c calibrator set.
In addition, in order to make the effect of this invention intelligible, the flow factor (relative flow velocity) was changed slightly, and the measurement of the sample was implemented. Flow Factor is a parameter in which the absolute flow velocity increases as the value increases. The flow factor was verified in seven patterns in the order of 0.960, 0.980, 0.990, 1.000, 1.010, 1.020 and 1.0400.
First, identification of a standard sample (Flow Factor = 0.960) was performed, and an identification table (initial value) was created (Table 10).
本実施例では、内部標準ピークとして、最も多く含まれるA0ピークとし、同定の許容範囲は、A0ピークで基準溶出時間に対して±10%、その他のピークで5%とした。 In this example, the A0 peak contained most as an internal standard peak, and the allowable range of identification was ± 10% to the reference elution time for the A0 peak, and 5% for the other peaks.
各Flow Factorにおける溶出時間の結果を表11に示す。 The results of elution time for each flow factor are shown in Table 11.
まず、Flow Factor=0.980の条件で測定した結果、0.800分に溶出したピークは表10のA0の同定範囲内(0.7350〜0.8983分)にあるため、A0と同定される。次に、同定条件の補正係数fを算出する。前記で同定されたA0の溶出時間(0.8000分)を内部標準としたA0の基準溶出時間(0.8167分)で除算した値が補正係数fとなる。この場合、0.800/0.8167=0.9796となる。前記補正係数を基本となる同定テーブル(初期値)の基準溶出時間及び許容幅に乗算し、同定範囲を更新した。更新後の同定テーブルと、未知試料の溶出時間を照合し、各ピークの同定を行った。 First, as a result of measurement under the condition of Flow Factor = 0.980, the peak eluted at 0.800 minutes is in the identification range of A0 in Table 10 (0.7350 to 0.8983 minutes), so it is identified as A0. Ru. Next, the correction coefficient f of the identification condition is calculated. A value obtained by dividing the elution time of A0 identified above (0.8000 minutes) by the standard elution time of A0 (0.8167 minutes) with the internal standard as a correction coefficient is f. In this case, 0.800 / 0.8167 = 0.9796. The reference elution time and the tolerance range of the basic identification table (initial value) were multiplied by the correction factor to update the identification range. The identification table after updating and the elution time of the unknown sample were collated to identify each peak.
上述した作業を同様に行っていくと、同定テーブルは表12のように更新されていく。同定テーブルを補正していった結果、確実にかつ正確に同定を行うことが可能であることが分かった。 If the above-described work is similarly performed, the identification table is updated as shown in Table 12. As a result of correcting the identification table, it was found that it is possible to perform identification reliably and accurately.
図8は内部標準となるピークの溶出時間を基にした同定テーブルを更新する本発明の方法による同定の様を示した図である。図8から分かるように、Flow Factorが大きくなるにつれて、各ピークの溶出時間は早まる。 FIG. 8 is a diagram showing the identification by the method of the present invention for updating the identification table based on the elution time of the peak serving as the internal standard. As can be seen from FIG. 8, the elution time of each peak is earlier as the Flow Factor is larger.
このような状態でも、内部標準ピークA0の許容幅を他の成分より大きく設定していることから、A0ピークは確実の同定が行え、得られた補正係数による同定テーブルを更新することで他のピークも全て同定することができている。 Even in such a state, the allowable range of the internal standard peak A0 is set larger than other components, so that the A0 peak can be identified with certainty, and the identification table based on the obtained correction coefficient is updated to the other All peaks can also be identified.
図9は同定テーブルを更新しないで、同定を行った結果を示したものである。なお、同定範囲は、基準溶出時間に対して±5%とした。 Flow Factorが0.960〜1.000までは全てのピークで正しく同定できているが、Flow Factorが1.010では、LA1C+のピークが、Flow Factorが1.020以上では全てのピークが同定範囲を超えるため同定できなくなる。 FIG. 9 shows the result of identification without updating the identification table. The identification range was ± 5% with respect to the standard elution time. With Flow Factor of 0.960 to 1.000, all peaks were correctly identified, but at Flow Factor of 1.010, the peak of LA1C + is identified, and at Flow Factor of 1.020 or more, all peaks are in the identification range Can not be identified because
1.溶離液
2.脱気装置
3.送液ポンプ
4.試料注入バルブ
5.分析カラム
6.カラム恒温槽
7.電気伝導度計
8.廃液
9.システム制御及びデータ処理装置
10.溶離液A
11.溶離液B
12.溶離液C
13.洗浄液/溶血液
14.開閉バルブ
15.可視検出器
16.ラインフィルタ
1.
11. Eluent B
12. Eluent C
13. Washing solution /
Claims (3)
1件目の未知試料は
標準試料の溶出時間を基に作成された同定テーブルに基づき、前記未知試料中の特定成分を同定し、
当該同定結果に基づいて、前記同定テーブルを補正し、
補正後の同定テーブルを基に前記特定成分以外の成分を同定し、
n件目(n=2以上の整数)の未知試料は
(n−1)件目で使用された補正後の同定テーブルで前記特定成分を同定し、
当該同定結果に基づいて、(n−1)件目で使用された補正後の同定テーブルを1件目と同様の方法で更に補正し、
補正後の同定テーブルを基に前記特定成分以外の成分を同定することを特徴とする方法。 A method of continuously identifying two or more unknown samples by liquid chromatography, comprising:
The first unknown sample identifies a specific component in the unknown sample based on an identification table created based on the elution time of the standard sample,
Correcting the identification table based on the identification result;
Identify components other than the specific component based on the corrected identification table,
The n-th (n = 2 or more integer) unknown sample identifies the specific component in the corrected identification table used in the (n-1) -th sample,
Based on the identification result, the corrected identification table used in the (n-1) -th case is further corrected in the same manner as the first case,
A method characterized by identifying components other than the specific component based on the corrected identification table.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017082149A JP6897267B2 (en) | 2017-04-18 | 2017-04-18 | Peak identification method that is not affected by fluctuations in elution time |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017082149A JP6897267B2 (en) | 2017-04-18 | 2017-04-18 | Peak identification method that is not affected by fluctuations in elution time |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018179853A true JP2018179853A (en) | 2018-11-15 |
JP6897267B2 JP6897267B2 (en) | 2021-06-30 |
Family
ID=64275169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017082149A Active JP6897267B2 (en) | 2017-04-18 | 2017-04-18 | Peak identification method that is not affected by fluctuations in elution time |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6897267B2 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0373849A (en) * | 1989-08-14 | 1991-03-28 | Cosmo Sogo Kenkyusho:Kk | Method and device for analyzing property of liquid mixture |
JPH085625A (en) * | 1994-06-16 | 1996-01-12 | Shimadzu Corp | Chromatograph analyzer |
JPH09297197A (en) * | 1996-05-08 | 1997-11-18 | Taisei Corp | Piping cutting method |
US5987959A (en) * | 1996-10-10 | 1999-11-23 | Hewlett-Packard Company | Automated retention time locking |
JPH11344482A (en) * | 1998-06-02 | 1999-12-14 | Jeol Ltd | Mass spectrometer system |
JP2002267646A (en) * | 2001-03-08 | 2002-09-18 | Sekisui Chem Co Ltd | Peak detection method for chromatograph and chromatographic apparatus |
JP2006322842A (en) * | 2005-05-19 | 2006-11-30 | Shimadzu Corp | Chromatograph analyzer |
CN105051529A (en) * | 2013-03-15 | 2015-11-11 | 戴安公司 | Method of calibrating a chromatography system |
-
2017
- 2017-04-18 JP JP2017082149A patent/JP6897267B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0373849A (en) * | 1989-08-14 | 1991-03-28 | Cosmo Sogo Kenkyusho:Kk | Method and device for analyzing property of liquid mixture |
JPH085625A (en) * | 1994-06-16 | 1996-01-12 | Shimadzu Corp | Chromatograph analyzer |
JPH09297197A (en) * | 1996-05-08 | 1997-11-18 | Taisei Corp | Piping cutting method |
US5987959A (en) * | 1996-10-10 | 1999-11-23 | Hewlett-Packard Company | Automated retention time locking |
JPH11344482A (en) * | 1998-06-02 | 1999-12-14 | Jeol Ltd | Mass spectrometer system |
JP2002267646A (en) * | 2001-03-08 | 2002-09-18 | Sekisui Chem Co Ltd | Peak detection method for chromatograph and chromatographic apparatus |
JP2006322842A (en) * | 2005-05-19 | 2006-11-30 | Shimadzu Corp | Chromatograph analyzer |
CN105051529A (en) * | 2013-03-15 | 2015-11-11 | 戴安公司 | Method of calibrating a chromatography system |
JP2016510900A (en) * | 2013-03-15 | 2016-04-11 | ダイオネックス コーポレイション | Chromatography system calibration method |
Also Published As
Publication number | Publication date |
---|---|
JP6897267B2 (en) | 2021-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7070014B2 (en) | Peak signal processing method in chromatogram | |
Rozet et al. | Advances in validation, risk and uncertainty assessment of bioanalytical methods | |
Sharaf et al. | Quantitative resolution of fused chromatographic peaks in gas chromatography/mass spectrometry | |
US20160266074A1 (en) | Multicomponent quantitative analysis method using chromatography | |
Malý et al. | Determination of thermodynamic acidity constants and limiting ionic mobilities of weak electrolytes by capillary electrophoresis using a new free software AnglerFish | |
Asnin | Peak measurement and calibration in chromatographic analysis | |
Oyaert et al. | Evaluation of the S ebia M inicap F lex P iercing capillary electrophoresis for hemoglobinopathy testing | |
EP3803940A1 (en) | Systems and methods for reducing lab- to-lab and/or instrument-to-instrument varibility of multi-attribute method (mam) by run-time signal intensity calibrations | |
Krska et al. | Mycotoxin testing: From Multi-toxin analysis to metabolomics | |
JP4434026B2 (en) | Isotope ratio analysis method using plasma ion source mass spectrometer | |
JP2018179853A (en) | Peak identification method unaffected by variation in elution time | |
JP7081385B2 (en) | How to calculate the similarity of chromatograms | |
JP7119602B2 (en) | How to calculate chromatogram similarity | |
JP2017187319A (en) | Background correction method by section division | |
JP6926628B2 (en) | Automatic method for determining the peak detection sensitivity of the chromatogram | |
CN109682907B (en) | Method for solving first-dimension chromatographic peak in full two-dimension chromatography by two modulation peaks | |
JP7135689B2 (en) | Peak detection method that is immune to negative peaks | |
JP7067189B2 (en) | Data processing method in glycohemoglobin analysis | |
JP7517123B2 (en) | Method and apparatus for quantifying glycated hemoglobin using a single calibration curve method in affinity chromatography | |
JP6938901B2 (en) | Peak identification method based on the peak center of gravity | |
US20060166370A1 (en) | Managing semiconductor process solutions using in-process mass spectrometry | |
JP7070137B2 (en) | How to calculate the similarity of chromatograms | |
JP2019132619A (en) | Method for computing concentration using calibration curve | |
CN110954637A (en) | Chromatograph and quantitative method of chromatographic analysis | |
Leito | Recovery/bias evaluation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200310 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210511 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210524 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6897267 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |