JP2018179663A - Permittivity measurement system, device and method - Google Patents
Permittivity measurement system, device and method Download PDFInfo
- Publication number
- JP2018179663A JP2018179663A JP2017077299A JP2017077299A JP2018179663A JP 2018179663 A JP2018179663 A JP 2018179663A JP 2017077299 A JP2017077299 A JP 2017077299A JP 2017077299 A JP2017077299 A JP 2017077299A JP 2018179663 A JP2018179663 A JP 2018179663A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- frequencies
- measured
- electromagnetic wave
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
本発明は、電磁波を用いて物体の比誘電率を測定する誘電率測定システム、装置および方法に関するものである。 The present invention relates to a dielectric constant measurement system, apparatus and method for measuring the relative dielectric constant of an object using electromagnetic waves.
近年、物品の製造メーカにおいては、製品検査の重要度が増している。特に、食品の製造メーカにおいては、加工食品への異物混入により、会社の信頼性低下や出荷停止など、業績を逼迫する状況になる場合も生じている。製品の出荷検査の段階で、製品への異物混入を検出して、異物が混入した製品の出荷を未然に防ぐことが望ましい。しかしながら、既存の検出装置であるイメージング装置は、金属の検出は可能であるが、昆虫や、製品とは異なる食品などの有機物質を高い精度で検出することはできないという問題点があった。 In recent years, the importance of product inspection has increased in the manufacture of articles. In particular, in the case of food manufacturers, contamination of processed food with foreign substances may lead to a situation in which the company's reliability may decline or shipping may be halted, resulting in tight performance. It is desirable to detect contamination of the product at the product inspection stage to prevent shipment of the product contaminated with contamination. However, although the imaging apparatus which is the existing detection apparatus can detect metals, it has a problem that it can not detect organic substances such as insects and food different from products with high accuracy.
一方、物体の比誘電率を求めることができれば、物体への異物の混入を検出することが可能になる。従来、電磁波を用いて物体の比誘電率を測定する方法として2周波CW(Continuous Wave)法が提案されている(非特許文献1参照)。測定は、図10(A)に示すように電磁波放射器100と検出器101との間に被測定物がない場合と、図10(B)に示すように被測定物102がある場合の2回行う。 On the other hand, if the relative permittivity of the object can be determined, it is possible to detect the entry of foreign matter into the object. Conventionally, a two-frequency CW (Continuous Wave) method has been proposed as a method of measuring the relative dielectric constant of an object using an electromagnetic wave (see Non-Patent Document 1). In the measurement, as shown in FIG. 10A, there is no object to be measured between the electromagnetic wave emitter 100 and the detector 101, and in the case where the object to be measured 102 is present as shown in FIG. 10B. Do it
まず、図10(A)の構成で2つの異なる周波数f1とf2の電磁波が空気を透過した後の位相θ1_airとθ2_airを測定する。次に、図10(B)の構成で2つの異なる周波数f1とf2の電磁波が被測定物102を透過した後の位相θ1_sampleとθ2_sampleを測定し、被測定物102がない場合の測定結果との位相変化θ1=θ1_sample−θ1_air、θ2=θ2_sample−θ2_airを算出する。これら位相変化θ1,θ2の差分である位相差θ2−θ1は式(1)で表される。この式(1)により被測定物102の比誘電率εrを算出することができる。式(1)におけるLは被測定物102の厚さ、cは光速である。 First, in the configuration of FIG. 10A, the phases θ 1 _ air and θ 2 _air after electromagnetic waves of two different frequencies f 1 and f 2 pass through air are measured. Next, the phases θ 1 _ sample and θ 2 _ sample after the electromagnetic waves of two different frequencies f 1 and f 2 pass through the object to be measured 102 in the configuration of FIG. The phase change θ 1 = θ 1 _ sample −θ 1 _ air , θ 2 = θ 2 _ sample −θ 2 _ air with respect to the measurement result when there is not is calculated. The phase difference θ 2 −θ 1 which is the difference between the phase changes θ 1 and θ 2 is expressed by equation (1). The relative dielectric constant ε r of the object to be measured 102 can be calculated by this equation (1). In the equation (1), L is the thickness of the object to be measured 102 and c is the speed of light.
しかしながら実際には、被測定物内部で発生する反射波が原因で位相揺れが発生するため、測定される位相変化には誤差が存在する。非特許文献1に開示された従来の方法で高精度な誘電率測定を行うためには、2周波の間隔Δf=f2−f1をできるだけ拡げる必要がある。 However, in practice, there is an error in the measured phase change because the phase fluctuation occurs due to the reflected wave generated inside the object to be measured. In order to perform high-precision dielectric constant measurement by the conventional method disclosed in Non-Patent Document 1, it is necessary to widen the interval Δf = f 2 −f 1 between two frequencies as much as possible.
図11(A)は、誘電率測定の誤差(比誘電率εrの算出誤差)が2周波の間隔Δfの増大に伴って1/Δfで減少するが、Δfの上限に達すると急激に増大することを示している。図11(B)は、2周波の間隔Δfが狭い場合を示しており、観測される電磁波の位相に、測定環境等に影響される乱れがあるため、この乱れが位相誤差になり、誘電率測定の誤差が大きくなることを示している。一方、図11(C)のように2周波の間隔Δfが拡がると、位相誤差の影響が小さくなり、誘電率測定の誤差が小さくなるが、図11(D)のように2周波間の位相差が2π以上変化すると、測定不能となってしまう(図11(A)のΔfの上限)。以上のように、非特許文献1に開示された方法では、2周波の間隔Δfに上限が存在するため、高い精度で物体の比誘電率を測定することができないという問題があった。 In FIG. 11A, the error of the dielectric constant measurement (calculation error of the relative dielectric constant ε r ) decreases by 1 / Δf with the increase of the interval Δf of two frequencies, but increases rapidly when the upper limit of Δf is reached. It shows that you do. FIG. 11 (B) shows the case where the interval Δf between the two frequencies is narrow, and the disturbance of the phase of the observed electromagnetic wave is affected by the measurement environment etc., so this disturbance becomes a phase error, and the dielectric constant It shows that the error of measurement becomes large. On the other hand, if the interval Δf of the two frequencies widens as shown in FIG. 11C, the influence of the phase error becomes smaller and the error of the dielectric constant measurement becomes smaller. However, as shown in FIG. When the phase difference changes by 2π or more, measurement becomes impossible (upper limit of Δf in FIG. 11A). As described above, the method disclosed in Non-Patent Document 1 has a problem that the relative dielectric constant of an object can not be measured with high accuracy because there is an upper limit to the two-frequency interval Δf.
このような問題を解決する方法として、発明者らは、複数周波数で位相接続を行う方法を提案した(非特許文献2参照)。非特許文献2に開示された誘電率測定方法では、隣接する周波数の間隔fsが式(2)の条件を満たす複数の周波数の電磁波で被測定物を透過した後の電磁波の位相を測定し、測定した各位相に対して位相接続を行い位相の不連続点を補償する(図12)。 As a method of solving such a problem, the inventors proposed a method of performing phase connection at a plurality of frequencies (see Non-Patent Document 2). In non-patent disclosed in reference 2 a dielectric constant measuring method, to measure the electromagnetic wave of the phase after the interval f s between adjacent frequency is transmitted through the DUT with electromagnetic waves of a plurality of frequencies satisfy the formula (2) Phase connection is performed for each of the measured phases to compensate for phase discontinuity (FIG. 12).
式(2)のεeff_maxは被測定物がとりうる実効的な比誘電率の最大値である。位相接続(アンラップ)は、隣接する2つの周波数の電磁波の位相θnとθn+1間の差分を算出し、算出した差分が0以上の場合には、θn+1以降の位相の全てに0を加算し、差分が負の場合には、θn+1以降の位相の全てに2πを加算する処理である。図12の点120は位相のサンプリング点(位相測定点)を示し、点121は位相接続後の点を示し、直線122は位相の傾きの真値を示している。 In the equation (2), 式eff _ max is the maximum value of the effective relative permittivity that can be taken by the object to be measured. The phase connection (unwrap) calculates the difference between the phases θ n and θ n + 1 of electromagnetic waves of two adjacent frequencies, and when the calculated difference is 0 or more, all phases after θ n + 1 Is a process of adding 0 to all the phases after θ n + 1 and adding 2π if the difference is negative. A point 120 in FIG. 12 indicates a phase sampling point (phase measurement point), a point 121 indicates a point after phase connection, and a straight line 122 indicates the true value of the phase slope.
非特許文献2に開示された方法では、位相接続を行った後に、最初の位相サンプリング点と位相接続された最後の点とから、図12の直線123で示すような位相の傾きを算出し、式(1)を用いて被測定物の比誘電率を算出する。こうして、非特許文献2に開示された方法では、2周波間隔Δfを広げることができ、比誘電率の測定誤差を低減可能である。 In the method disclosed in Non-Patent Document 2, after phase connection is performed, the inclination of the phase as shown by a straight line 123 in FIG. 12 is calculated from the first phase sampling point and the last point connected in phase; The relative dielectric constant of the object to be measured is calculated using equation (1). Thus, the method disclosed in Non-Patent Document 2 can widen the two-frequency interval Δf and can reduce the measurement error of the relative dielectric constant.
しかしながら実際には、測定に用いる送受信デバイス(例えばアンプ、発振器等)の帯域には制限がある。一般的に中心周波数300GHz付近のデバイスの帯域は300GHzの10%の30GHz程度である。そのため、非特許文献2に開示された方法では、測定に用いる送受信デバイスの帯域を超えて2周波間隔Δfを広げることはできず、更なる測定誤差の低減が難しいという課題があった。 However, in practice, there is a limit to the band of the transmission / reception device (eg, amplifier, oscillator, etc.) used for measurement. Generally, the bandwidth of the device around the center frequency of 300 GHz is about 30 GHz of 10% of 300 GHz. Therefore, the method disclosed in Non-Patent Document 2 can not widen the two-frequency interval Δf beyond the band of the transmission / reception device used for measurement, and has a problem that it is difficult to further reduce the measurement error.
本発明は、上記課題を解決するためになされたもので、複数の周波数の電磁波を用いる誘電率測定方法において、物体の比誘電率の測定誤差を従来よりも更に低減することを目的とする。 The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to further reduce the measurement error of the relative permittivity of an object in comparison with the conventional method in a permittivity measurement method using electromagnetic waves of a plurality of frequencies.
本発明の誘電率測定システムは、m個(mは3以上の整数)の周波数f1,f2,・・・,fmの電磁波を被測定物に照射する送信機と、前記被測定物を透過した電磁波を検出して前記被測定物の比誘電率を算出する受信機とを備え、前記送信機は、前記被測定物の想定される最大比誘電率をεeff_max、前記被測定物の既知の厚さをL、光速をcとしたとき、隣接する2つの周波数fn,fn+1(nは1以上(m−1)以下の整数)の間隔fsが
また、本発明の誘電率測定システムの1構成例において、前記位相測定部は、前記送信機と前記受信機のアンテナとの間に背景物質のみがあって前記被測定物がない状態と、前記背景物質と前記被測定物とがある状態のそれぞれで1回ずつ前記位相の測定を行い、前記位相差算出部は、前記背景物質のみがあって前記被測定物がない状態で測定された電磁波の位相と前記背景物質と前記被測定物とがある状態で測定された電磁波の位相との差である位相変化を周波数毎に算出し、隣接する2つの周波数fn,fn+1の電磁波の位相変化θnとθn+1との差を、これら周波数fn,fn+1の電磁波の位相差とし、前記更新処理部は、前記位相差算出部によって算出された位相差が負の場合にfn+1以降の各周波数の電磁波の位相変化θn+1,θn+2,・・・,θmのそれぞれに2πを加算して更新する処理を、n=1からn=m−1まで繰り返し、前記近似部は、m個の周波数f1,f2,・・・,fmのうちの最低の周波数f1の電磁波の位相変化θ1と、f1を除くm−1個の周波数f2,・・・,fmの電磁波の位相θ2,・・・,θmを前記更新処理部によって更新した後の位相変化φ2,・・・,φmとを直線近似することを特徴とするものである。 In one configuration example of the dielectric constant measurement system according to the present invention, the phase measurement unit includes only the background material between the transmitter and the antenna of the receiver and does not have the object to be measured. The phase measurement is performed once in each of the background substance and the object under measurement, and the phase difference calculation unit measures only the background substance and the electromagnetic wave measured without the object under measurement. Phase change, which is the difference between the phase of the electromagnetic wave measured in the presence of the background material and the object under test, is calculated for each frequency, and electromagnetic waves of two adjacent frequencies f n and f n + 1 are calculated. The difference between the phase changes θ n and θ n + 1 is the phase difference of the electromagnetic waves of these frequencies f n and f n + 1 , and the update processing unit has a negative phase difference calculated by the phase difference calculator. f n + 1 subsequent phase change theta n + 1 of the electromagnetic wave of each frequency in the case of, θ n + 2, ·· , Theta a process of updating by adding 2π to each m, repeat from n = 1 to n = m-1, the approximate unit, m pieces of frequency f 1, f 2, ···, of f m the lowest electromagnetic wave phase shift theta 1 of frequency f 1 of out, m-1 pieces of frequency f 2 with the exception of f 1, · · ·, phase theta 2 of the electromagnetic wave of f m, ···, a theta m It is characterized in that the phase changes φ 2 ,..., Φ m after being updated by the update processing unit are linearly approximated.
また、本発明の誘電率測定装置は、被測定物を透過したm個(mは3以上の整数)の周波数f1,f2,・・・,fmの電磁波を受信するアンテナと、このアンテナで受信されたm個の周波数f1,f2,・・・,fmの電磁波のそれぞれの位相を測定する位相測定部と、この位相測定部の測定結果を基に隣接する2つの周波数fn,fn+1(nは1以上(m−1)以下の整数)の電磁波の位相差を算出する位相差算出部と、この位相差算出部によって算出された位相差が負の場合にfn+1以降の各周波数の電磁波の位相のそれぞれに2πを加算して更新する処理を、n=1からn=m−1まで繰り返す更新処理部と、m個の周波数f1,f2,・・・,fmのうちの最低の周波数f1の電磁波の位相と、f1を除くm−1個の周波数f2,・・・,fmの電磁波の位相を前記更新処理部によって更新した後の位相とを直線近似する近似部と、この近似部によって得られた近似直線の傾きと前記被測定物の既知の厚さLとから、前記被測定物の比誘電率を算出する比誘電率算出部とを備え、前記m個の周波数f1,f2,・・・,fmの電磁波は、前記被測定物の想定される最大比誘電率をεeff_max、光速をcとしたとき、隣接する2つの周波数fn,fn+1の間隔fsが
また、本発明の誘電率測定方法は、被測定物の想定される最大比誘電率をεeff_max、前記被測定物の既知の厚さをL、光速をcとしたとき、隣接する2つの周波数fn,fn+1の間隔fsが
本発明によれば、隣接する2つの周波数の間隔fsを適切に設定したm個の周波数の電磁波を被測定物に照射し、被測定物を透過したm個の周波数の電磁波を受信して、電磁波のそれぞれの位相を測定し、この測定結果を基に隣接する2つの周波数fn,fn+1の電磁波の位相差を算出し、算出した位相差が負の場合にfn+1以降の各周波数の電磁波の位相のそれぞれに2πを加算して更新する処理を、n=1からn=m−1まで繰り返し、m個の周波数のうちの最低の周波数f1の電磁波の位相と、f1を除くm−1個の周波数f2,・・・,fmの電磁波の更新後の位相とを直線近似し、近似直線の傾きと被測定物の厚さLとから、被測定物の比誘電率を算出することにより、送受信デバイスによって制限される周波数間隔Δf=fm−f1の範囲内で、被測定物の比誘電率を従来よりも高い精度で検出することができる。 According to the present invention, by receiving electromagnetic waves of two adjacent m number of electromagnetic waves with a frequency appropriate set the interval f s frequency is irradiated to the measurement object, the m frequencies transmitted through the DUT The phase of each of the electromagnetic waves is measured, and the phase difference between the adjacent electromagnetic waves of the frequencies f n and f n + 1 is calculated based on the measurement result, and when the calculated phase difference is negative, f n + 1 A process of adding 2π to each of the phases of the electromagnetic waves of each frequency and updating the same is repeated from n = 1 to n = m−1, and the phase of the electromagnetic wave of the lowest frequency f 1 among m frequencies and , F 1 , m-1 pieces of the frequency of the electromagnetic wave of frequency f 2 , ..., f m after update are linearly approximated, and from the inclination of the approximate straight line and the thickness L of the object to be measured, Of the frequency interval Δf = f m −f 1 limited by the transmitting and receiving device by calculating the relative Within the range, the relative dielectric constant of the object to be measured can be detected with higher accuracy than in the past.
[発明の原理]
本発明では、図1のように隣接する周波数の間隔fs=fn+1−fnが以下の式(3)を満たす複数の周波数f1,f2,・・・,fn,fn+1,・・・,fm-1,fmの電磁波で被測定物を透過した後の電磁波の位相を測定する(mは3以上の整数、nは1以上(m−1)以下の整数)。このとき、電磁波の周波数fnにおいて検出した位相(被測定物がないときと被測定物があるときの位相変化)をθnとする。図1の白丸印は位相のサンプリング点(位相測定点)を示している。
[Principle of the invention]
In the present invention, as shown in FIG. 1, a plurality of frequencies f 1 , f 2 ,..., F n , f where the spacing between adjacent frequencies f s = f n +1 −f n satisfies the following equation (3) n + 1, ···, f m -1, an electromagnetic wave of f m to measure the electromagnetic wave of the phase after transmission through the object to be measured (m is an integer of 3 or more, n represents 1 or (m-1) or less Integer). At this time, it is assumed that the phase detected at the frequency f n of the electromagnetic wave (phase change when there is no object and when there is an object) is θ n . The white circles in FIG. 1 indicate sampling points (phase measurement points) of the phase.
式(3)におけるLは被測定物の厚さ、cは光速、εeff_maxは被測定物がとりうる実効的な比誘電率の最大値である。本発明により誘電率測定を行う場合、εeff_maxについては、予め設定した固定値を使用する。 In the equation (3), L is the thickness of the object to be measured, c is the speed of light, and ε eff — max is the maximum value of the effective relative permittivity that the object to be measured can take. When performing the dielectric constant measurement according to the present invention, a fixed value set in advance is used for ε eff _ max .
次に、従来と同様に測定した各位相に対して位相接続を行う。具体的には、隣接する2つの周波数fn,fn+1の電磁波の位相θnとθn+1間の差分を算出し、算出した差分が負の場合には、θn+1以降の位相θn+1,θn+2,・・・,θmの全てに2πを加算して更新する。差分が0以上の場合には、位相θn+1,θn+2,・・・,θmの全てに0を加算すればよい。すなわち、差分が0以上の場合には値の更新は不要である。 Next, phase connection is performed for each phase measured as in the conventional case. Specifically, the difference between the phases θ n and θ n + 1 of electromagnetic waves of two adjacent frequencies f n and f n + 1 is calculated, and if the calculated difference is negative, θ n + 1 or later phase θ n + 1, θ n + 2, ···, updated by adding 2π to all theta m. When the difference is equal to or larger than 0, the phase θ n + 1, θ n + 2, ···, it may be added to 0 for all theta m. That is, when the difference is 0 or more, updating of the value is unnecessary.
以上のような更新ステップを、n=1からn=m−1まで繰り返す。n=m−1までの更新ステップが完了した後の位相θn+1,θn+2,・・・,θmを、φn+1,φn+2,・・・,φmとする。図1の黒丸印は位相接続後の点を示している。なお、周波数f1の電磁波の位相θ1は更新の対象とならないため、φ1とせず、θ1のままとしている。 The above update steps are repeated from n = 1 to n = m-1. n = the phase theta n + 1 after the updating step has been completed up to m-1, θ n + 2 , ···, a θ m, φ n + 1, φ n + 2, ···, and phi m Do. The black circles in FIG. 1 indicate points after phase connection. Since the phase θ 1 of the electromagnetic wave of the frequency f 1 is not a target of updating, the phase θ 1 is not set to φ 1 and remains θ 1 .
続いて、位相接続後の各位相θ1,φ2,・・・,φn,φn+1,・・・,φmに対して最小二乗法による直線近似を行う。最後に、近似直線の傾きαから式(4)を用いて被測定物の比誘電率εrを算出する。 Subsequently, the linear fit according to the least square method the phase theta 1 after phase unwrapping, φ 2, ···, φ n , φ n + 1, ···, against phi m. Finally, the relative dielectric constant ε r of the object to be measured is calculated from the slope α of the approximate straight line using the equation (4).
図1の直線50は従来の位相接続で得られる直線を示し、直線51は本発明の直線近似で得られる直線を示し、直線52は位相の傾きの真値を示している。
本発明によれば、被測定物内の反射波に起因する電磁波の位相の揺れによる誤差を平均化し、送受信デバイスによって制限されたΔfの範囲内で、測定誤差をさらに低減可能である。
The straight line 50 in FIG. 1 indicates the straight line obtained by the conventional phase connection, the straight line 51 indicates the straight line obtained by the straight line approximation of the present invention, and the straight line 52 indicates the true value of the phase slope.
According to the present invention, it is possible to average the error due to the fluctuation of the phase of the electromagnetic wave caused by the reflected wave in the object to be measured and to further reduce the measurement error within the range of Δf limited by the transmitting and receiving device.
次に、式(3)の導出について説明する。図1に示す周波数軸上の位相θ1,θ2,・・・,θn,θn+1,・・・,θmの揺れは基本波(反射せずに透過する波)と反射波との干渉、そして反射波同士の干渉によって起きる。位相の揺れは各干渉波の伝搬長差に応じた周期関数の重なりで構成される。そのため、位相の揺れの1/2周期より細かい周波数間隔で1周期以上サンプリングし、直線近似することで、位相の揺れが平均化され、その影響を低減可能である。 Next, derivation of equation (3) will be described. The oscillations of the phases θ 1 , θ 2 ,..., Θ n , θ n +1 ,..., Θ m on the frequency axis shown in FIG. 1 are fundamental waves (waves transmitted without reflection) and reflected waves And interference with reflected waves, and interference between reflected waves. The phase fluctuation is formed by the overlap of periodic functions according to the propagation length difference of each interference wave. Therefore, by sampling one line or more at a frequency interval finer than a half cycle of the phase fluctuation and performing linear approximation, the phase fluctuation can be averaged and the influence thereof can be reduced.
説明のために、例として図2のような、周囲が空気(比誘電率ε1=1)で囲まれた、比誘電率ε2=3、厚さL=30mmの被測定物10を考える。被測定物10内では基本波と2回反射波のみが存在すると仮定する。なお、図2では、説明を分かり易くするために基本波と2回反射波とが位置的に離れているように記載しているが、実際には基本波と2回反射波とは同じ位置で重なって発生する波である。 For the purpose of explanation, consider an DUT 10 having a relative dielectric constant ε 2 = 3 and a thickness L = 30 mm surrounded by air (relative dielectric constant ε 1 = 1) as shown in FIG. 2 as an example . It is assumed that only the fundamental wave and the twice reflected wave exist in the DUT 10. In FIG. 2, although the fundamental wave and the twice reflected wave are described as being separated in position in order to make the description easy to understand, in practice, the fundamental wave and the twice reflected wave are the same position It is a wave generated by overlapping in
基本波と2回反射波の伝搬長差Dは式(5)のように表される。 The propagation length difference D between the fundamental wave and the twice reflected wave is expressed by equation (5).
また、基本波と2回反射波とによる電磁波の位相揺れの周期CYは式(6)のように表される(図3)。 Further, the period CY of the phase fluctuation of the electromagnetic wave due to the fundamental wave and the twice reflected wave is expressed by the equation (6) (FIG. 3).
すなわち、基本波と2回反射波の伝搬長差Dが大きいほど、図3の周波数軸上での位相θの揺れの周期CYが細かくなる。被測定物10内の反射波として、2回反射波のみが存在する場合、式(7)に示す周波数間隔fsで位相揺れの1周期以上にわたり被測定物10を透過した後の電磁波の位相θを測定し、各位相θから近似直線を求めることで、位相θの揺れの影響が軽減され、所望の位相傾きを得ることができる。 That is, as the propagation length difference D between the fundamental wave and the twice reflected wave is larger, the period CY of the swing of the phase θ on the frequency axis in FIG. 3 becomes finer. As a reflected wave in the object to be measured 10 twice when only the reflected wave is present, the electromagnetic waves after passing through the object to be measured 10 for more than one period of the phase swing at a frequency interval f s shown in Equation (7) Phase By measuring θ and obtaining an approximate straight line from each phase θ, the influence of the fluctuation of the phase θ can be reduced and a desired phase inclination can be obtained.
一方で、実際の被測定物10内では、2回反射、4回反射・・・というように無限回の反射が発生する。全ての反射波による影響を打ち消すためには、無限に細かい周波数間隔の電磁波で位相θを測定する必要がある。しかし、反射波のエネルギーEは、被測定物10内での電磁波の反射回数nに応じて、式(8)のように減衰する。 On the other hand, in the actual object to be measured 10, infinite reflections occur such as two reflections, four reflections, and so on. In order to cancel the influence of all the reflected waves, it is necessary to measure the phase θ with electromagnetic waves of infinitely fine frequency intervals. However, the energy E of the reflected wave is attenuated as shown in equation (8) according to the number n of reflections of the electromagnetic wave in the device under test 10.
つまり、4回反射以降の反射波のエネルギーは大きく減衰するため、2回反射波が位相θの揺れに一番影響する。そのため、2回反射の中で基本波との伝搬長差Dが一番長い場合(位相θの揺れが一番細かい場合)に合わせて、測定に用いる電磁波の周波数の間隔fsを選ぶことが望ましい。
被測定物10の実効誘電率の最大値がεeff_maxの場合、2回反射の中で基本波との一番大きい伝搬長差Dmaxは式(9)のように表される。
That is, since the energy of the reflected wave after the four reflections is greatly attenuated, the two reflection waves most affect the fluctuation of the phase θ. Therefore, the interval f s of the frequency of the electromagnetic wave used for measurement should be selected according to the case where the propagation length difference D with the fundamental wave is the longest among the two reflections (when the fluctuation of the phase θ is the smallest) desirable.
When the maximum value of the effective dielectric constant of the device under test 10 is ε eff _ max , the largest propagation length difference D max from the fundamental wave in the double reflection is expressed by equation (9).
したがって、位相θの揺れの1周期以上の周波数範囲にわたって、周波数間隔fsが式(3)を満たす複数の周波数の電磁波で位相θを測定し、各位相θに対して直線近似を行うことで、伝搬長差Dmaxによる位相θの揺れの影響およびDmaxよりも短い伝搬長差Dによる位相θの揺れの影響を低減することができる。 Therefore, by measuring the phase θ with electromagnetic waves of a plurality of frequencies at which the frequency interval f s satisfies the equation (3) over the frequency range of one period or more of the fluctuation of the phase θ, linear approximation is performed for each phase θ. The influence of the fluctuation of the phase θ due to the propagation length difference D max and the influence of the fluctuation of the phase θ due to the propagation length difference D shorter than D max can be reduced.
[実施例]
以下、本発明の実施例について図面を参照して説明する。図4は本発明の実施例に係る誘電率測定システムの構成を示すブロック図である。誘電率測定システムは、m個(mは3以上の整数)の周波数f1,f2,・・・,fmの電磁波を被測定物10に照射する送信機1と、被測定物10を透過した電磁波を検出して被測定物10の比誘電率εrを算出する受信機2(誘電率測定装置)とから構成される。
受信機2は、アンテナ20と、位相測定部21と、位相差算出部22と、更新処理部23と、近似部24と、比誘電率算出部25と、算出結果出力部26とを備えている。
[Example]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 4 is a block diagram showing the configuration of a dielectric constant measurement system according to an embodiment of the present invention. The dielectric constant measurement system includes a transmitter 1 for irradiating the electromagnetic wave of m (m is an integer of 3 or more) frequencies f 1 , f 2 ,. It comprises the receiver 2 (dielectric constant measuring device) which detects the transmitted electromagnetic waves and calculates the relative dielectric constant ε r of the device under test 10.
The receiver 2 includes an antenna 20, a phase measurement unit 21, a phase difference calculation unit 22, an update processing unit 23, an approximation unit 24, a relative dielectric constant calculation unit 25, and a calculation result output unit 26. There is.
図5は本実施例の誘電率測定システムの動作を説明するフローチャートである。まず、比誘電率ε1が既知の背景物質11(例えば空気)のみがあって被測定物10がない状態で送信機1は、m個の周波数f1,f2,・・・,fmの電磁波を背景物質11に照射する(図5ステップS100)。 FIG. 5 is a flow chart for explaining the operation of the dielectric constant measurement system of this embodiment. First, in the state where there is only the background material 11 (for example, air) whose relative dielectric constant ε 1 is known (for example, air) and the DUT 10 is not present, the transmitter 1 has m frequencies f 1 , f 2 ,. The electromagnetic wave of is applied to the background material 11 (step S100 in FIG. 5).
上記のとおり、隣接する2つの周波数の間隔fs=fn+1−fnは式(3)を満たしている。本実施例では、食品における異物混入検出などの用途を想定しているので、実効的な比誘電率の最大値εeff_maxについては、異物の最大誘電率を考慮して、想定される値を予め設定しておけばよい。また、本実施例では、送信機1からアンテナ20への方向の被測定物10の厚さLは既知の値である。なお、送信機1は、例えばGHzオーダーの複数の周波数の電磁波を物体に照射できるものであればよい。 As described above, the interval f s = f n + 1 -f n between two adjacent frequencies satisfies the equation (3). In this embodiment, applications such as detection of foreign matter contamination in food are assumed. Therefore, regarding the effective dielectric constant maximum value ε eff _ max , an estimated value taking into consideration the maximum dielectric constant of foreign matter. Should be set in advance. In the present embodiment, the thickness L of the device under test 10 in the direction from the transmitter 1 to the antenna 20 is a known value. In addition, the transmitter 1 should just be what can irradiate the electromagnetic wave of the several frequency of GHz order to an object, for example.
受信機2のアンテナ20は、背景物質11を透過したm個の周波数f1,f2,・・・,fmの電磁波を受信する(図5ステップS101)。
受信機2の位相測定部21は、アンテナ20で受信されたm個の周波数f1,f2,・・・,fmの電磁波のそれぞれの位相を測定する(図5ステップS102)。なお、電磁波の位相(正確には送信機1側の基準の信号に対する受信機2で受信した信号の位相の変化量)を測定する技術は、例えばネットワークアナライザー(VNA:Network Analyzer)などの既存の測定器を使用して実現できる周知の技術である。
The antenna 20 of the receiver 2 receives the electromagnetic waves of m frequencies f 1 , f 2 ,..., F m transmitted through the background material 11 (step S101 in FIG. 5).
The phase measurement unit 21 of the receiver 2 measures the phases of the electromagnetic waves of m frequencies f 1 , f 2 ,..., F m received by the antenna 20 (step S102 in FIG. 5). The technique for measuring the phase of the electromagnetic wave (more precisely, the amount of change in the phase of the signal received by the receiver 2 with respect to the reference signal on the transmitter 1 side) is, for example, an existing network analyzer (VNA). It is a known technique that can be realized using a measuring instrument.
次に、誘電率測定システムを使用するユーザは、背景物質11の内部、またはその上部に、厚さLが既知で、比誘電率εrが未知の被測定物10を配置する。
送信機1は、このように被測定物10が配置された状態で、背景物質11および被測定物10にm個の周波数f1,f2,・・・,fmの電磁波を照射する(図5ステップS103)。
Next, a user who uses the dielectric constant measurement system places the DUT 10 having a known thickness L and an unknown relative dielectric constant ε r inside or on the background material 11.
The transmitter 1 irradiates the background material 11 and the object 10 with electromagnetic waves of m frequencies f 1 , f 2 ,..., F m while the object 10 is disposed in this manner ( FIG. 5 step S103).
受信機2のアンテナ20は、背景物質11および被測定物10を透過したm個の周波数f1,f2,・・・,fmの電磁波を受信する(図5ステップS104)。
受信機2の位相測定部21は、アンテナ20で受信されたm個の周波数f1,f2,・・・,fmの電磁波のそれぞれの位相を測定する(図5ステップS105)。
The antenna 20 of the receiver 2 receives the electromagnetic waves of m frequencies f 1 , f 2 ,..., F m transmitted through the background material 11 and the object to be measured 10 (step S104 in FIG. 5).
The phase measurement unit 21 of the receiver 2 measures the phases of the electromagnetic waves of m frequencies f 1 , f 2 ,..., F m received by the antenna 20 (step S105 in FIG. 5).
続いて、受信機2の位相差算出部22は、ステップS102で得られた電磁波の位相とステップS105で得られた電磁波の位相との差である位相変化θを電磁波の周波数毎に算出し、隣接する2つの周波数fn,fn+1(nは1以上(m−1)以下の整数)の電磁波の位相変化θnとθn+1との差θn+1−θnを、2つの周波数fn,fn+1の電磁波の位相差Δθとする(図5ステップS106)。このように、本実施例では、2回の位相の測定結果の差分をとることで得られる被測定物10による正味の位相変化をθとする。位相差算出部22は、以上のような位相差Δθの算出をn=1からn=m−1までのそれぞれについて行う。 Subsequently, the phase difference calculation unit 22 of the receiver 2 calculates, for each frequency of the electromagnetic wave, the phase change θ that is the difference between the phase of the electromagnetic wave obtained in step S102 and the phase of the electromagnetic wave obtained in step S105. two adjacent frequencies f n, the f n + 1 (n is 1 or more (m-1) an integer) difference θ n + 1 -θ n of the phase change theta n and theta n + 1 of an electromagnetic wave, The phase difference Δθ between electromagnetic waves of two frequencies f n and f n + 1 is obtained (step S106 in FIG. 5). As described above, in this embodiment, the net phase change due to the DUT 10 obtained by taking the difference between the measurement results of the phase twice is assumed to be θ. The phase difference calculation unit 22 calculates the phase difference Δθ as described above for each of n = 1 to n = m−1.
次に、受信機2の更新処理部23は、隣接する2つの周波数fn,fn+1の電磁波の位相差Δθが負かどうかを判定し(図5ステップS108)、位相差Δθが負の場合には、θn+1以降の位相変化θn+1,θn+2,・・・,θmのそれぞれに2πを加算して更新する(図5ステップS109)。上記のとおり、位相差Δθが0以上の場合には、位相変化θn+1,θn+2,・・・,θmのそれぞれに0を加算することになるので、位相差Δθが0以上の場合には位相変化の更新は不要である。このような更新ステップを、n=1から開始して、nを1ずつ増やしながら繰り返し行い(図5ステップS107〜S110)、n=m−1まで処理を終えた時点で(図5ステップS111においてYES)、更新処理部23の動作が終了する。上記のとおり、n=m−1までの更新ステップが完了した後の位相変化θn+1,θn+2,・・・,θmを、φn+1,φn+2,・・・,φmとする。 Next, the update processing unit 23 of the receiver 2 determines whether or not the phase difference Δθ of the two adjacent electromagnetic waves of the frequencies f n and f n + 1 is negative (step S108 in FIG. 5), and the phase difference Δθ is negative. in the case of, θ n + 1 and subsequent phase change θ n + 1, θ n + 2, ···, and updates by adding 2π to each theta m (Fig. 5 step S109). As described above, when the phase difference [Delta] [theta] of 0 or more, the phase change θ n + 1, θ n + 2, ···, it means that adds 0 to the respective theta m, the phase difference [Delta] [theta] 0 In the above case, updating of the phase change is not necessary. Such an update step is repeated starting from n = 1 and incrementing n one by one (FIG. 5, steps S107 to S110), and when processing is completed up to n = m-1 (FIG. 5, step S111). YES), the operation of the update processing unit 23 ends. As described above, the phase changes θ n + 1 , θ n + 2 ,..., Θ m after the update steps up to n = m−1 are completed are φ n + 1 , φ n + 2 ,. ·, Φ m .
なお、ステップS109の処理を繰り返すことにより、位相変化θn+1,θn+2,・・・,θmが増大していくが、ステップS109の処理後においても隣接する2つの周波数fn,fn+1の電磁波の位相差Δθは変化しない。したがって、ステップS109の処理を1回行う度に位相差Δθを計算し直す必要はなく、位相差算出部22の算出結果を基にステップS108の判定処理を行うようにすればよい。 Although the phase changes θ n + 1 , θ n +2 ,..., Θ m increase by repeating the process of step S109, the two adjacent frequencies f n also after the process of step S109. , F n + 1 do not change. Therefore, it is not necessary to recalculate the phase difference Δθ every time the process of step S109 is performed once, and the determination process of step S108 may be performed based on the calculation result of the phase difference calculation unit 22.
受信機2の近似部24は、m個の周波数f1,f2,・・・,fmのうちの最低の周波数f1の電磁波の位相変化θ1とf1を除くm−1個の周波数f2,・・・,fmの電磁波の更新後の位相変化φ2,・・・,φmとを最小二乗法により直線近似する(図5ステップS112)。 The approximation unit 24 of the receiver 2 has m-1 pieces of phase changes θ 1 and f 1 excluding the electromagnetic wave with the lowest frequency f 1 among the m frequencies f 1 , f 2 ,. frequency f 2, ···, phase change phi 2 after update of an electromagnetic wave f m, ···, and phi m is linearly approximated by the least squares method (Fig. 5 step S112).
受信機2の比誘電率算出部25は、近似部24によって得られた近似直線の傾きαと、被測定物10の既知の厚さLとを用いて、式(4)により被測定物10の比誘電率εrを算出する(図5ステップS113)。 The relative dielectric constant calculation unit 25 of the receiver 2 uses the slope α of the approximate straight line obtained by the approximation unit 24 and the known thickness L of the device under test 10 to obtain the device under test 10 according to equation (4). The relative dielectric constant ε r of is calculated (step S113 in FIG. 5).
受信機2の算出結果出力部26は、比誘電率算出部25の算出結果を出力する(図5ステップS114)。具体的には、算出結果出力部26は、例えば比誘電率算出部25が算出した被測定物10の比誘電率εrを表示したり、比誘電率εrの情報を外部に送信したりする。以上のようにして、本実施例の誘電率測定システムの動作が終了する。 The calculation result output unit 26 of the receiver 2 outputs the calculation result of the relative dielectric constant calculation unit 25 (step S114 in FIG. 5). Specifically, the calculation result output unit 26, and transmits for example, specific to view the relative dielectric constant epsilon r of the object to be measured 10 a dielectric constant calculator 25 has calculated, the information of the relative permittivity epsilon r to the outside Do. As described above, the operation of the dielectric constant measurement system of the present embodiment is completed.
本実施例では、従来との比較のため、1例として図6に示すような比誘電率ε1=3、厚さL1=30mmの背景物質11の中に比誘電率εr=10で厚さL=2〜10mmの範囲の被測定物10が入っている場合について本実施例の効果を説明する。この条件の場合、実効誘電率の最大値εeff_maxは4.88である。式(3)から計算される、本実施例で必要な周波数間隔fsは1.2GHzより小さい値とする必要がある。 In the present embodiment, for comparison with the prior art, the relative dielectric constant ε r = 10 in the background material 11 having a relative dielectric constant ε 1 = 3 and a thickness L 1 = 30 mm as shown in FIG. 6 as an example The effect of the present embodiment will be described for the case where the object to be measured 10 in the range of thickness L = 2 to 10 mm is contained. Under this condition, the maximum value of effective dielectric constant ε eff _ max is 4.88. The frequency interval f s required in the present embodiment, which is calculated from the equation (3), needs to be a value smaller than 1.2 GHz.
非特許文献1に開示された従来の方法において、f1=300GHzとf2=308GHzの2周波を用いた場合の誘電率測定誤差(比誘電率εrの算出誤差)のシミュレーション結果を図7に示す。この場合、2周波の間隔は8GHzとなる。図7の点線70が非特許文献1に開示された方法で被測定物10の比誘電率εrを算出した場合の誤差を示している。最大誤差は14.5%であった。 In the conventional method disclosed in Non-Patent Document 1, the simulation result of the dielectric constant measurement error (calculation error of the relative dielectric constant ε r ) when using two frequencies of f 1 = 300 GHz and f 2 = 308 GHz is shown in FIG. Shown in. In this case, the interval between two frequencies is 8 GHz. A dotted line 70 in FIG. 7 indicates an error when the relative dielectric constant ε r of the DUT 10 is calculated by the method disclosed in Non-Patent Document 1. The maximum error was 14.5%.
図7の一点鎖線71は非特許文献2に開示された従来の方法で被測定物10の比誘電率εrを算出した場合の誤差を示している。ここでは、f1=300GHz、f2=308GHz、f3=316GHz、f4=324GHz、f5=330GHzの5つの周波を用いて、電磁波の最低周波数と最高周波数の周波数間隔Δfを30GHzまで拡張した。この方法の場合の最大誤差は3.7%であった。 An alternate long and short dash line 71 in FIG. 7 indicates an error when the relative dielectric constant ε r of the device under test 10 is calculated by the conventional method disclosed in Non-Patent Document 2. Here, using the five frequencies f 1 = 300 GHz, f 2 = 308 GHz, f 3 = 316 GHz, f 4 = 324 GHz, f 5 = 330 GHz, the frequency interval Δf of the lowest frequency and the highest frequency of the electromagnetic wave is extended to 30 GHz did. The maximum error for this method was 3.7%.
一方、図7の実線72は本実施例の方法で被測定物11の比誘電率εrを算出した場合の誤差を示している。この例では、f1=300GHzからf31=330GHzまでの1GHz間隔の31周波を用いた。シミュレーションの結果、最大誤差を0.86%まで低減可能なことが分かった。 On the other hand, a solid line 72 in FIG. 7 indicates an error when the relative dielectric constant ε r of the object to be measured 11 is calculated by the method of the present embodiment. In this example, 31 frequencies at 1 GHz intervals from f 1 = 300 GHz to f 31 = 330 GHz were used. Simulation results show that the maximum error can be reduced to 0.86%.
次に、被測定物10の別の例として、図8に示すように縦横50mm、厚さL=21mmのチョコレート10aの中に合成樹脂からなる異物10bが入った被測定物10の場合について本実施例の効果を説明する。 Next, as another example of the object to be measured 10, as shown in FIG. 8, in the case of the object to be measured 10 in which the foreign object 10b made of a synthetic resin is contained in chocolate 10a of 50 mm in length and width L = 21 mm. The effects of the embodiment will be described.
図9(A)は非特許文献1に開示された方法により図8の被測定物10の比誘電率εrを測定した結果を示す図、図9(B)は非特許文献2に開示された方法により被測定物10の比誘電率εrを測定した結果を示す図、図9(C)は本実施例の方法により被測定物10の比誘電率εrを測定した結果を示す図である。図9(A)、図9(B)、図9(C)では、被測定物10の面内の比誘電率εrの分布を色分けで示している。ここで、非特許文献1に開示された方法については、f1=280GHzとf2=288GHzの2周波を用いた。非特許文献2および本実施例の方法については、f1=280GHzからf6=310GHzまでの6GHz間隔の6周波を用いた。 FIG. 9 (A) shows the result of measuring the relative dielectric constant ε r of the device under test 10 of FIG. 8 by the method disclosed in Non-Patent Document 1, and FIG. 9 (B) is disclosed in Non-Patent Document 2 shows the results of measuring the relative dielectric constant epsilon r of the object to be measured 10 by methods, shows the FIG. 9 (C) is the result of the measurement of the relative dielectric constant epsilon r of the object to be measured 10 by the method of the present embodiment It is. In FIG. 9A, FIG. 9B, and FIG. 9C, the distribution of the relative dielectric constant ε r in the plane of the device under test 10 is shown by color coding. Here, as the method disclosed in Non-Patent Document 1, two frequencies of f 1 = 280 GHz and f 2 = 288 GHz were used. For the method of Non-Patent Document 2 and this example, six frequencies at 6 GHz intervals from f 1 = 280 GHz to f 6 = 310 GHz were used.
図9(D)、図9(E)、図9(F)はそれぞれ図9(A)、図9(B)、図9(C)の直線Aの位置の比誘電率εrを示す図である。図9(D)、図9(E)、図9(F)の90は比誘電率εrの理論値を示し、91は非特許文献1に開示された方法による測定結果を示し、92は非特許文献2に開示された方法による測定結果を示し、93は本実施例の方法による測定結果を示している。異物10bの位置の比誘電率εrの測定誤差は、非特許文献1に開示された方法の場合で3.6%、非特許文献2に開示された方法の場合で1.3%、本実施例の方法の場合で0.29%であった。 9 (D), 9 (E) and 9 (F) show the relative dielectric constant ε r at the position of the straight line A in FIGS. 9 (A), 9 (B) and 9 (C) respectively. It is. In FIG. 9 (D), FIG. 9 (E), and FIG. 9 (F), 90 indicates the theoretical value of the relative dielectric constant ε r , 91 indicates the measurement result by the method disclosed in Non-Patent Document 1, and 92 indicates The measurement result by the method disclosed by the nonpatent literature 2 is shown, 93 shows the measurement result by the method of a present Example. The measurement error of the relative dielectric constant ε r at the position of the foreign object 10 b is 3.6% in the case of the method disclosed in Non-patent document 1, 1.3% in the case of the method disclosed in Non-patent document 2 In the case of the method of the example, it was 0.29%.
本実施例で説明した位相測定部21と位相差算出部22と更新処理部23と近似部24と比誘電率算出部25と算出結果出力部26とは、CPU(Central Processing Unit)、記憶装置及びインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。本発明の誘電率測定方法を実現させるためのプログラムは、フレキシブルディスク、CD−ROM、DVD−ROM、メモリカードなどの記録媒体に記録された状態で提供され、記憶装置に格納される。コンピュータのCPUは、記憶装置に格納されたプログラムに従って本実施例で説明した処理を実行する。 The phase measurement unit 21, the phase difference calculation unit 22, the update processing unit 23, the approximation unit 24, the relative dielectric constant calculation unit 25, and the calculation result output unit 26 described in this embodiment are a central processing unit (CPU) and a storage device. And an interface, and a program for controlling these hardware resources. A program for realizing the dielectric constant measurement method of the present invention is provided in the state of being recorded on a recording medium such as a flexible disk, a CD-ROM, a DVD-ROM, a memory card, and stored in a storage device. The CPU of the computer executes the processing described in the present embodiment in accordance with the program stored in the storage device.
本発明は、電磁波を用いて物体の比誘電率を測定する技術に適用することができる。 The present invention can be applied to a technique for measuring the relative permittivity of an object using an electromagnetic wave.
1…送信機、2…受信機、10…被測定物、11…背景物質、20…アンテナ、21…位相測定部、22…位相差算出部、23…更新処理部、24…近似部、25…比誘電率算出部、26…算出結果出力部。 DESCRIPTION OF SYMBOLS 1 ... Transmitter, 2 ... Receiver, 10 ... Object to be measured, 11 ... Background material, 20 ... Antenna, 21 ... Phase measurement part, 22 ... Phase difference calculation part, 23 ... Update processing part, 24 ... Approximate part, 25 ... relative permittivity calculation unit, 26 ... calculation result output unit.
Claims (6)
前記被測定物を透過した電磁波を検出して前記被測定物の比誘電率を算出する受信機とを備え、
前記送信機は、前記被測定物の想定される最大比誘電率をεeff_max、前記被測定物の既知の厚さをL、光速をcとしたとき、隣接する2つの周波数fn,fn+1(nは1以上(m−1)以下の整数)の間隔fsが
前記受信機は、
前記被測定物を透過したm個の周波数f1,f2,・・・,fmの電磁波を受信するアンテナと、
このアンテナで受信されたm個の周波数f1,f2,・・・,fmの電磁波のそれぞれの位相を測定する位相測定部と、
この位相測定部の測定結果を基に隣接する2つの周波数fn,fn+1の電磁波の位相差を算出する位相差算出部と、
この位相差算出部によって算出された位相差が負の場合にfn+1以降の各周波数の電磁波の位相のそれぞれに2πを加算して更新する処理を、n=1からn=m−1まで繰り返す更新処理部と、
m個の周波数f1,f2,・・・,fmのうちの最低の周波数f1の電磁波の位相と、f1を除くm−1個の周波数f2,・・・,fmの電磁波の位相を前記更新処理部によって更新した後の位相とを直線近似する近似部と、
この近似部によって得られた近似直線の傾きと前記被測定物の厚さLとから、前記被測定物の比誘電率を算出する比誘電率算出部とから構成されることを特徴とする誘電率測定システム。 and m pieces (m is an integer of 3 or more) transmitters irradiating frequency f 1, f 2 of, ..., an electromagnetic wave of f m to the measurement object,
A receiver for detecting an electromagnetic wave transmitted through the object to be measured to calculate a relative dielectric constant of the object to be measured;
The transmitter sets the assumed maximum relative dielectric constant of the object to be measured as ε eff _ max , the known thickness of the object to be measured as L, and the speed of light as c, two adjacent frequencies f n , The interval f s of f n + 1 (n is an integer of 1 or more and (m−1) or less) is
The receiver is
An antenna for receiving the electromagnetic waves of m frequencies f 1 , f 2 ,..., F m transmitted through the object to be measured;
A phase measurement unit that measures the phase of each of the m electromagnetic waves of frequencies f 1 , f 2 ,..., F m received by the antenna;
A phase difference calculating unit that calculates a phase difference between two adjacent electromagnetic waves having frequencies f n and f n + 1 based on the measurement result of the phase measuring unit;
When the phase difference calculated by the phase difference calculation unit is negative, the process of adding 2π to each of the phases of the electromagnetic wave of each frequency after f n + 1 and updating is performed, n = 1 to n = m−1 The update processing unit that repeats up to
m pieces of frequency f 1, f 2, ···, and the phase of the lowest of the electromagnetic waves of frequency f 1 of the f m, m-1 pieces of frequency f 2 with the exception of f 1, ···, of f m An approximation unit that linearly approximates the phase of the electromagnetic wave after being updated by the update processing unit;
A dielectric comprising: a relative dielectric constant calculation unit for calculating a relative dielectric constant of the object to be measured from the inclination of the approximate line obtained by the approximation unit and the thickness L of the object to be measured Rate measurement system.
前記位相測定部は、前記送信機と前記受信機のアンテナとの間に背景物質のみがあって前記被測定物がない状態と、前記背景物質と前記被測定物とがある状態のそれぞれで1回ずつ前記位相の測定を行い、
前記位相差算出部は、前記背景物質のみがあって前記被測定物がない状態で測定された電磁波の位相と前記背景物質と前記被測定物とがある状態で測定された電磁波の位相との差である位相変化を周波数毎に算出し、隣接する2つの周波数fn,fn+1の電磁波の位相変化θnとθn+1との差を、これら周波数fn,fn+1の電磁波の位相差とし、
前記更新処理部は、前記位相差算出部によって算出された位相差が負の場合にfn+1以降の各周波数の電磁波の位相変化θn+1,θn+2,・・・,θmのそれぞれに2πを加算して更新する処理を、n=1からn=m−1まで繰り返し、
前記近似部は、m個の周波数f1,f2,・・・,fmのうちの最低の周波数f1の電磁波の位相変化θ1と、f1を除くm−1個の周波数f2,・・・,fmの電磁波の位相θ2,・・・,θmを前記更新処理部によって更新した後の位相変化φ2,・・・,φmとを直線近似することを特徴とする誘電率測定システム。 In the dielectric constant measurement system according to claim 1,
The phase measurement unit has only the background material between the transmitter and the antenna of the receiver and does not have the object under measurement, and the phase material has one or more of the background material and the object under measurement. Measure the phase several times
The phase difference calculation unit may be configured such that the phase of the electromagnetic wave measured in the state where there is only the background material and there is no object under measurement, and the phase of the electromagnetic wave measured in the state where the background material and the object under measurement exist. The phase change which is the difference is calculated for each frequency, and the difference between the phase changes θ n and θ n + 1 of two adjacent electromagnetic waves having frequencies f n and f n + 1 can be calculated as these frequencies f n and f n + 1 And the phase difference of the
The update processing unit is configured to adjust the phase change θ n + 1 , θ n + 2 ,..., Θ of the electromagnetic wave of each frequency after f n + 1 when the phase difference calculated by the phase difference calculation unit is negative. The process of updating by adding 2π to each of m is repeated from n = 1 to n = m−1,
The approximating unit includes a phase change θ 1 of the electromagnetic wave of the lowest frequency f 1 among the m frequencies f 1 , f 2 ,..., F m and m−1 frequencies f 2 excluding f 1. a feature., phase theta 2 of the electromagnetic wave of f m, ..., theta phase change after the m updated by the update processing unit phi 2, ..., to linear approximation and phi m Dielectric constant measurement system.
このアンテナで受信されたm個の周波数f1,f2,・・・,fmの電磁波のそれぞれの位相を測定する位相測定部と、
この位相測定部の測定結果を基に隣接する2つの周波数fn,fn+1(nは1以上(m−1)以下の整数)の電磁波の位相差を算出する位相差算出部と、
この位相差算出部によって算出された位相差が負の場合にfn+1以降の各周波数の電磁波の位相のそれぞれに2πを加算して更新する処理を、n=1からn=m−1まで繰り返す更新処理部と、
m個の周波数f1,f2,・・・,fmのうちの最低の周波数f1の電磁波の位相と、f1を除くm−1個の周波数f2,・・・,fmの電磁波の位相を前記更新処理部によって更新した後の位相とを直線近似する近似部と、
この近似部によって得られた近似直線の傾きと前記被測定物の既知の厚さLとから、前記被測定物の比誘電率を算出する比誘電率算出部とを備え、
前記m個の周波数f1,f2,・・・,fmの電磁波は、前記被測定物の想定される最大比誘電率をεeff_max、光速をcとしたとき、隣接する2つの周波数fn,fn+1の間隔fsが
A phase measurement unit that measures the phase of each of the m electromagnetic waves of frequencies f 1 , f 2 ,..., F m received by the antenna;
A phase difference calculation unit that calculates the phase difference between two adjacent electromagnetic waves having frequencies f n and f n + 1 (n is an integer of 1 or more and (m−1) or less) based on the measurement result of the phase measurement unit;
When the phase difference calculated by the phase difference calculation unit is negative, the process of adding 2π to each of the phases of the electromagnetic wave of each frequency after f n + 1 and updating is performed, n = 1 to n = m−1 The update processing unit that repeats up to
m pieces of frequency f 1, f 2, ···, and the phase of the lowest of the electromagnetic waves of frequency f 1 of the f m, m-1 pieces of frequency f 2 with the exception of f 1, ···, of f m An approximation unit that linearly approximates the phase of the electromagnetic wave after being updated by the update processing unit;
A relative dielectric constant calculation unit that calculates the relative dielectric constant of the object to be measured from the slope of the approximate straight line obtained by the approximation unit and the known thickness L of the object to be measured;
The electromagnetic waves having m frequencies f 1 , f 2 ,..., F m are adjacent to each other when the maximum relative permittivity assumed for the object to be measured is ε eff _ max and the speed of light is c. The interval f s between the frequencies f n and f n + 1 is
前記位相測定部は、前記電磁波の到来方向に背景物質のみがあって前記被測定物がない状態と、前記背景物質と前記被測定物とがある状態のそれぞれで1回ずつ前記位相の測定を行い、
前記位相差算出部は、前記背景物質のみがあって前記被測定物がない状態で測定された電磁波の位相と前記背景物質と前記被測定物とがある状態で測定された電磁波の位相との差である位相変化を周波数毎に算出し、隣接する2つの周波数fn,fn+1の電磁波の位相変化θnとθn+1との差を、これら周波数fn,fn+1の電磁波の位相差とし、
前記更新処理部は、前記位相差算出部によって算出された位相差が負の場合にfn+1以降の各周波数の電磁波の位相変化θn+1,θn+2,・・・,θmのそれぞれに2πを加算して更新する処理を、n=1からn=m−1まで繰り返し、
前記近似部は、m個の周波数f1,f2,・・・,fmのうちの最低の周波数f1の電磁波の位相変化θ1と、f1を除くm−1個の周波数f2,・・・,fmの電磁波の位相θ2,・・・,θmを前記更新処理部によって更新した後の位相変化φ2,・・・,φmとを直線近似することを特徴とする誘電率測定装置。 In the dielectric constant measurement device according to claim 3,
The phase measurement unit measures the phase once in each of a state in which only the background material is present in the incoming direction of the electromagnetic wave and the object is not present, and a state in which the background material and the object are present. Do,
The phase difference calculation unit may be configured such that the phase of the electromagnetic wave measured in the state where there is only the background material and there is no object under measurement, and the phase of the electromagnetic wave measured in the state where the background material and the object under measurement exist. The phase change which is the difference is calculated for each frequency, and the difference between the phase changes θ n and θ n + 1 of two adjacent electromagnetic waves having frequencies f n and f n + 1 can be calculated as these frequencies f n and f n + 1 And the phase difference of the
The update processing unit is configured to adjust the phase change θ n + 1 , θ n + 2 ,..., Θ of the electromagnetic wave of each frequency after f n + 1 when the phase difference calculated by the phase difference calculation unit is negative. The process of updating by adding 2π to each of m is repeated from n = 1 to n = m−1,
The approximating unit includes a phase change θ 1 of the electromagnetic wave of the lowest frequency f 1 among the m frequencies f 1 , f 2 ,..., F m and m−1 frequencies f 2 excluding f 1. a feature., phase theta 2 of the electromagnetic wave of f m, ..., theta phase change after the m updated by the update processing unit phi 2, ..., to linear approximation and phi m Dielectric constant measuring device.
前記被測定物を透過したm個の周波数f1,f2,・・・,fmの電磁波を受信する第2のステップと、
この第2のステップで受信したm個の周波数f1,f2,・・・,fmの電磁波のそれぞれの位相を測定する第3のステップと、
この第3のステップの測定結果を基に隣接する2つの周波数fn,fn+1の電磁波の位相差を算出する第4のステップと、
この第4のステップで算出した位相差が負の場合にfn+1以降の各周波数の電磁波の位相のそれぞれに2πを加算して更新する処理を、n=1からn=m−1まで繰り返す第5のステップと、
m個の周波数f1,f2,・・・,fmのうちの最低の周波数f1の電磁波の位相と、f1を除くm−1個の周波数f2,・・・,fmの電磁波の位相を前記第5のステップによって更新した後の位相とを直線近似する第6のステップと、
この第6のステップによって得られた近似直線の傾きと前記被測定物の厚さLとから、前記被測定物の比誘電率を算出する第7のステップとを含むことを特徴とする誘電率測定方法。 Assuming that the assumed maximum relative dielectric constant of the object to be measured is ε eff _ max , the known thickness of the object to be measured is L, and the speed of light is c, the distance between two adjacent frequencies f n and f n + 1 f s is
A second step of receiving the electromagnetic waves of m frequencies f 1 , f 2 ,..., F m transmitted through the object to be measured;
A third step of measuring the phase of each of the m electromagnetic waves of frequencies f 1 , f 2 ,..., F m received in the second step;
A fourth step of calculating the phase difference between two adjacent electromagnetic waves of frequencies f n and f n + 1 based on the measurement result of the third step;
A process of adding 2π to each of the phases of electromagnetic waves of frequencies after f n + 1 and updating the phase when the phase difference calculated in the fourth step is negative, from n = 1 to n = m-1 The fifth step to repeat
m pieces of frequency f 1, f 2, ···, and the phase of the lowest of the electromagnetic waves of frequency f 1 of the f m, m-1 pieces of frequency f 2 with the exception of f 1, ···, of f m A sixth step of linearly approximating the phase of the electromagnetic wave after the phase of the electromagnetic wave is updated by the fifth step;
And a seventh step of calculating the relative dielectric constant of the object to be measured from the slope of the approximate line obtained in the sixth step and the thickness L of the object to be measured. Measuring method.
背景物質のみがあって前記被測定物がない状態と、前記背景物質と前記被測定物とがある状態のそれぞれで1回ずつ前記第3のステップを行い、
前記第4のステップは、前記背景物質のみがあって前記被測定物がない状態で測定された電磁波の位相と前記背景物質と前記被測定物とがある状態で測定された電磁波の位相との差である位相変化を周波数毎に算出し、隣接する2つの周波数fn,fn+1の電磁波の位相変化θnとθn+1との差を、これら周波数fn,fn+1の電磁波の位相差とするステップを含み、
前記第5のステップは、前記第4のステップで算出した位相差が負の場合にfn+1以降の各周波数の電磁波の位相変化θn+1,θn+2,・・・,θmのそれぞれに2πを加算して更新する処理を、n=1からn=m−1まで繰り返すステップを含み、
前記第6のステップは、m個の周波数f1,f2,・・・,fmのうちの最低の周波数f1の電磁波の位相変化θ1と、f1を除くm−1個の周波数f2,・・・,fmの電磁波の位相θ2,・・・,θmを前記更新処理部によって更新した後の位相変化φ2,・・・,φmとを直線近似するステップを含むことを特徴とする誘電率測定方法。 In the dielectric constant measurement method according to claim 5,
Performing the third step once each in a state in which there is only the background material and there is no said object, and in a state in which the background material and the object are present,
In the fourth step, the phase of the electromagnetic wave measured with the background material alone and without the object to be measured, and the phase of the electromagnetic wave measured with the background material and the object to be measured The phase change which is the difference is calculated for each frequency, and the difference between the phase changes θ n and θ n + 1 of two adjacent electromagnetic waves having frequencies f n and f n + 1 can be calculated as these frequencies f n and f n + 1 Step of phase difference of the electromagnetic waves of
The fifth step, the f n + 1 subsequent phase change theta n + 1 of the electromagnetic wave of the frequency when the phase difference calculated by the fourth step is negative, θ n + 2, ···, θ including the step of repeating the process of adding 2π to each of m and updating, from n = 1 to n = m−1,
In the sixth step, the phase change θ 1 of the electromagnetic wave of the lowest frequency f 1 among the m frequencies f 1 , f 2 ,..., F m and m−1 frequencies excluding f 1 f 2, ..., the phase theta 2 of the electromagnetic wave of f m, ..., theta phase change phi 2 after updating the m by the update processing unit, ..., the step of linearly approximating the phi m A method of measuring dielectric constant, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017077299A JP6787834B2 (en) | 2017-04-10 | 2017-04-10 | Permittivity measurement systems, equipment and methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017077299A JP6787834B2 (en) | 2017-04-10 | 2017-04-10 | Permittivity measurement systems, equipment and methods |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018179663A true JP2018179663A (en) | 2018-11-15 |
JP6787834B2 JP6787834B2 (en) | 2020-11-18 |
Family
ID=64274992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017077299A Active JP6787834B2 (en) | 2017-04-10 | 2017-04-10 | Permittivity measurement systems, equipment and methods |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6787834B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230236005A1 (en) * | 2020-04-22 | 2023-07-27 | Nippon Telegraph And Telephone Corporation | Permittivity measuring device and thickness measuring device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4507602A (en) * | 1982-08-13 | 1985-03-26 | The United States Of America As Represented By The Secretary Of The Air Force | Measurement of permittivity and permeability of microwave materials |
JP2000162158A (en) * | 1998-09-25 | 2000-06-16 | Oji Paper Co Ltd | Dielectric constant measuring method and device |
JP2005156188A (en) * | 2003-11-20 | 2005-06-16 | National Institute Of Advanced Industrial & Technology | Method and apparatus for measuring flatness of sample and complex dielectric constant by measuring transmission of light |
-
2017
- 2017-04-10 JP JP2017077299A patent/JP6787834B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4507602A (en) * | 1982-08-13 | 1985-03-26 | The United States Of America As Represented By The Secretary Of The Air Force | Measurement of permittivity and permeability of microwave materials |
JP2000162158A (en) * | 1998-09-25 | 2000-06-16 | Oji Paper Co Ltd | Dielectric constant measuring method and device |
JP2005156188A (en) * | 2003-11-20 | 2005-06-16 | National Institute Of Advanced Industrial & Technology | Method and apparatus for measuring flatness of sample and complex dielectric constant by measuring transmission of light |
Non-Patent Citations (2)
Title |
---|
TERUO JYO ET AL.: ""THz Permittivity Imaging Using Multi-tone Unwrapped Phase Slope Method"", 41ST INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), JPN7020002049, September 2016 (2016-09-01), pages 345 - 346, ISSN: 0004308337 * |
巨 陽, 細井 厚志: "「マイクロ波を利用した探傷技術と材料評価への適用」", 検査技術, vol. 14, no. 12, JPN6018049140, 1 December 2009 (2009-12-01), pages 1 - 7, ISSN: 0004308336 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230236005A1 (en) * | 2020-04-22 | 2023-07-27 | Nippon Telegraph And Telephone Corporation | Permittivity measuring device and thickness measuring device |
US12117285B2 (en) * | 2020-04-22 | 2024-10-15 | Nippon Telegraph And Telephone Corporation | Permittivity measuring device and thickness measuring device |
Also Published As
Publication number | Publication date |
---|---|
JP6787834B2 (en) | 2020-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108027272B (en) | Method for testing the functionality of a radar-based fill level measuring device | |
JP6639782B2 (en) | Doppler radar test system | |
JP2020518789A (en) | Radar system for monitoring the frequency condition of continuous transmission signals of the same type | |
JP5197461B2 (en) | Dielectric constant calculation apparatus and dielectric constant calculation method in object | |
JP5932746B2 (en) | Media boundary position measurement system | |
WO2020113671A1 (en) | System and method for detecting electromagnetic characteristic of object by using terahertz electromagnetic wave | |
Hasar | Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies | |
WO2017149582A1 (en) | Data processing method and measurement device | |
JP6533187B2 (en) | Dielectric constant evaluation method | |
Barowski et al. | Millimeter wave material characterization using FMCW-transceivers | |
JP5773951B2 (en) | Liquid level measuring device and its VCO predistortion method | |
JP2018179663A (en) | Permittivity measurement system, device and method | |
US8639462B2 (en) | Method and system for determining the time-of-flight of a signal | |
JP6350242B2 (en) | Radar device and radar output adjustment system | |
US10145719B2 (en) | Echo curve determination at a resolution that differs on area-by-area basis | |
RU2434242C1 (en) | Method of measuring distance and radio range finder with frequency modulation of probing radio waves (versions) | |
RU2423723C1 (en) | Method of measuring distance using radio range finder with frequency modulation of probing radio waves (versions) | |
JP7396630B2 (en) | Distance measuring device and method | |
KR102154228B1 (en) | Apparatus and method for measuring phase in microwave tomography system | |
RU2579644C2 (en) | Method of contactless measurement of deviation from the nominal value of the internal dimensions of metal and device for implementation | |
RU2551260C1 (en) | Non-contact radio-wave measurement method of liquid level in reservoir | |
RU2654215C1 (en) | Method of measuring distance by range finder with frequency modulation | |
RU2655746C1 (en) | Method of level measurement and radio range station with frequency modulation | |
RU2658558C1 (en) | Method for measuring a distance to a controlled environment with a waveguide lfm radar | |
RU124812U1 (en) | DEVICE FOR MEASURING RESONANCE STRUCTURE CHARACTERISTICS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190625 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200625 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200728 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200908 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201027 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201029 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6787834 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |