JP2018179596A - Method for measuring sulfur dioxide gas and measuring device - Google Patents

Method for measuring sulfur dioxide gas and measuring device Download PDF

Info

Publication number
JP2018179596A
JP2018179596A JP2017075541A JP2017075541A JP2018179596A JP 2018179596 A JP2018179596 A JP 2018179596A JP 2017075541 A JP2017075541 A JP 2017075541A JP 2017075541 A JP2017075541 A JP 2017075541A JP 2018179596 A JP2018179596 A JP 2018179596A
Authority
JP
Japan
Prior art keywords
test body
evaluation test
environment
resistance
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017075541A
Other languages
Japanese (ja)
Other versions
JP6866736B2 (en
Inventor
原田 佳幸
Yoshiyuki Harada
佳幸 原田
清信 菅江
Kiyonobu Sugae
清信 菅江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017075541A priority Critical patent/JP6866736B2/en
Publication of JP2018179596A publication Critical patent/JP2018179596A/en
Application granted granted Critical
Publication of JP6866736B2 publication Critical patent/JP6866736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method with which it is possible to continuously observe the state of presence of a sulfur dioxide gas, and a device therefor.SOLUTION: There is provided a method for measuring a SOgas characterized by including the steps of: determining a correlation between a ratio of PbOquantity to a total quantity of PbOquantity and PbSOquantity and electrical resistance; creating an SOevaluation test piece containing PbOon the basis of the determined correlation; installing the SOevaluation test piece in an environment of measurement object and measuring the electrical resistance of the SOevaluation test piece in the environment; and finding, from the measurement result of electrical resistance of the SOevaluation test piece in the environment, an SOabsorption quantity of the SOevaluation test piece in the environment on the basis of the correlation between the ratio of PbOquantity and the electrical resistance.SELECTED DRAWING: Figure 5

Description

本発明は、雰囲気中に存在する二酸化硫黄ガスを計測する方法及び当該方法を利用する装置に関する。   The present invention relates to a method of measuring sulfur dioxide gas present in an atmosphere and an apparatus using the method.

二酸化硫黄ガスを評価する方法としては、JIS Z 2382:1998に基づく円筒法、すなわち、曝露された二酸化鉛(PbO)の円筒を定期的に回収し、蓄積された硫酸鉛(PbSO)を化学的に定量分析することによって評価する方法がある。 As a method of evaluating sulfur dioxide gas, a cylindrical method based on JIS Z 2382: 1998, that is, a cylinder of exposed lead dioxide (PbO 2 ) is periodically recovered and accumulated lead sulfate (PbSO 4 ) There is a method to evaluate by analyzing quantitatively chemically.

特許文献1には、大気環境に所定金属を暴露した後、その金属の暴露前後の接触抵抗の変化を測定することにより、予め実測した飛来塩分量あるいは硫黄酸化物量と接触抵抗変化量との関係から、それらの環境因子を定量的に測定する方法を開示されている。具体的には、下記のA群(硫黄酸化物量用)あるいはB群(飛来塩分量用)のいずれか一種の純金属あるいは二種以上の金属元素からなる合金によって形成された金属材を用いることが開示されている。
A群:Ni、Cr、Co、Cu、Zn、Ag
B群:Fe、Al、Zr、Nb、Mo、Ta
In Patent Document 1, after a predetermined metal is exposed to the air environment, the change in contact resistance before and after the exposure of the metal is measured to determine the relationship between the amount of airborne salt or the amount of sulfur oxides and the amount of contact resistance change measured in advance. Thus, a method of quantitatively measuring those environmental factors is disclosed. Specifically, use a metal material formed of an alloy of one kind of pure metal or two or more kinds of metal elements of any of the following group A (for sulfur oxide amount) or B group (for airborne salt amount) Is disclosed.
Group A: Ni, Cr, Co, Cu, Zn, Ag
Group B: Fe, Al, Zr, Nb, Mo, Ta

特許文献2、3は、Y=AX(ただし、Y:鋼材の板厚変化量、X:経過年数)を用いることによって、大気環境で使用される鋼材の板厚変化量を予測する方法を開示している。しかし、特許文献2、3に開示された前記方法によって予測可能な板厚変化量は、年単位であって、日々の変化の程度を測定することは極めて困難である。 Patent documents 2 and 3 are methods of predicting the thickness change amount of steel materials used in the atmosphere environment by using Y = AX B (where Y: thickness change amount of steel materials, X: elapsed years). It is disclosed. However, the thickness variation that can be predicted by the methods disclosed in Patent Literatures 2 and 3 is yearly, and it is extremely difficult to measure the degree of daily variation.

特開2009−250845号公報JP, 2009-250845, A 特許第5167080号公報Patent No. 5167080 特許第5066160号公報Patent No. 5066160 gazette

しかしながら、前述した円筒法では、円筒法の曝露期間経過後の最終的な硫酸鉛の蓄積量のみを評価できるに過ぎず、曝露期間中の硫酸鉛を連続的に評価できないので、曝露期間中の二酸化硫黄ガスの存在状況を連続的に観測することはできない。   However, in the cylindrical method described above, only the final accumulation amount of lead sulfate after the exposure period of the cylindrical method can be evaluated, and lead sulfate during the exposure period can not be continuously evaluated. It is not possible to continuously monitor the presence of sulfur dioxide gas.

特許文献1には、前記A群の金属元素と同様の作用を有するものとして、Pbが例示されている。しかし、特許文献1では、硫化物等の皮膜を金属表面に形成させて、当該金属表面の暴露前後の接触抵抗の変化を測定することを基本としている。しかし、特許文献1では、暴露後の金属材の単位面積当たりの接触抵抗変化量を測定する際、曝露後の金属材を回収してから接触抵抗変化量を測定しているので、特許文献1は、経時変化する二酸化硫黄ガスの存在状況を連続的に測定することができない。   In Patent Document 1, Pb is exemplified as having the same action as the metal element of the group A. However, in patent document 1, it is based on forming films, such as a sulfide, in a metal surface, and measuring the change of the contact resistance before and behind exposure of the said metal surface. However, in Patent Document 1, when measuring the amount of change in contact resistance per unit area of the metal material after exposure, the amount of change in contact resistance is measured after recovering the metal material after exposure. It is impossible to continuously measure the state of existence of sulfur dioxide gas which changes with time.

特許文献2、3に開示された方法によって予測可能な板厚変化量は、年単位であって、日々の変化を観測することは極めて困難である。   The thickness variation that can be predicted by the methods disclosed in Patent Literatures 2 and 3 is yearly, and it is extremely difficult to observe daily variation.

本発明は、このような問題を解決するためになされたものであり、経時変化する二酸化硫黄ガスの存在状況を連続的に測定できる方法及びその装置を提供することを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a method and apparatus capable of continuously measuring the state of existence of sulfur dioxide gas which changes with time.

上記課題の解決のため、本発明者らは、PbOを用いることによって、形状を特に限定すること無く、経時変化する二酸化硫黄ガスの存在状況を連続的に測定できることを見出した。本発明は、以下に要約される。なお、PbOを用いた二酸化硫黄(SO)ガスの存在状況を評価する試験体を、本明細書においてSO評価試験体とよぶ。 In order to solve the above problems, the present inventors have found that the use of PbO 2 can continuously measure the state of existence of sulfur dioxide gas which changes with time without particularly limiting the shape. The invention is summarized below. Incidentally, the test specimens to evaluate the existing state of the sulfur dioxide (SO 2) gas with PbO 2, referred to herein as SO 2 evaluation test body.

(1)PbOを含有し、少なくともPbOの一部を環境中に曝露し、環境中におけるSOガスを吸収するSO評価試験体を用いて環境中におけるSOガスを計測するSOガスの計測方法であって、
前記SO評価試験体に含まれるPbO量及びPbSO量の合計量に対する前記PbO量の割合と、前記SO評価試験体の電気抵抗との相関関係を決定する工程と、
前記SO評価試験体を測定対象の環境中に設置して、前記環境中における前記SO評価試験体の電気抵抗を測定する工程と、
前記相関関係に基づいて、前記SO評価試験体の電気抵抗の測定結果から、前記環境中における前記SO評価試験体のSO吸収量を求める工程と、を含むことを特徴とするSOガスの計測方法。
(2)電気抵抗が既知である基準抵抗とSO評価試験体とを直列に接続して直列抵抗体を構成し、前記直列抵抗体に印加される電圧Eと前記基準抵抗に印加される電圧Erを測定し、前記基準抵抗の電気抵抗Rrと以下の式により前記SO評価試験体の電気抵抗Rsを求める工程を更に含むことを特徴とする(1)に記載のOガスの計測方法。

Figure 2018179596
(3)更に、JIS Z 2382:1998に基づく円筒法を用いて、前記測定対象の環境の平均のSO付着度(単位:mg/dm2/day)を測定する工程と、
前記円筒法の曝露期間と同一の期間における前記SO評価試験体のSO吸収量の経時変化及び1日当たりの平均のSO吸収量を測定する工程と、
前記平均のSO付着度と、前記1日当たりの平均のSO吸収量との関係を求める工程と、
前記平均のSO付着度と、前記1日当たりの平均のSO吸収量との関係に基づいて、前記SO評価試験体のSO吸収量の経時変化を前記円筒法によるSO付着度の経時変化としてモニタリングする工程を含むことを特徴とする、(1)又は(2)に記載のSOガスの計測方法。
(4)PbOを含有し、少なくともPbOの一部を環境中に曝露し、環境中におけるSOガスを吸収するSO評価試験体を用いて環境中におけるSOガスを計測するSOガスの計測装置であって、
前記SO評価試験体に含まれるPbO量及びPbSO量の合計量に対する前記PbO量の割合と、前記SO評価試験体の電気抵抗との相関関係に基づいて作成されたSO評価試験体と、
測定対象の環境中における前記SO評価試験体の電気抵抗を測定する電気抵抗測定装置と、
前記相関関係を記憶する相関関係保持装置と、
前記相関関係に基づいて、前記SO評価試験体の電気抵抗の測定結果から、前記環境中における前記SO評価試験体のSO吸収量を求める試験体含有率導出装置と、を含むことを特徴とするSOガスの計測装置。
(5)更に、電気抵抗が既知であり、前記SO評価試験体と直列に接続される基準抵抗と、
前記基準抵抗の電気抵抗を測定する基準抵抗用抵抗測定機とを備え、
前記電気抵抗測定装置は、前記直接に接続されたSO評価試験体及び基準抵抗からなる直列抵抗体に印加される電圧Eと前記基準抵抗に印加される電圧Erを測定し、前記基準抵抗の電気抵抗Rrと以下の式により前記SO評価試験体の電気抵抗Rsを求める機能を更に有することを特徴とする(4)に記載のOガスの計測装置。
Figure 2018179596
(6)JIS Z 2382:1998に基づく円筒法の曝露期間と同一の期間における前記SO評価試験体のSO吸収量の経時変化及び1日当たりの平均のSO吸収量を測定するSO吸収量の経時変化を測定する機能と、
前記円筒法により得られた前記測定対象の環境における平均のSO付着度(単位:mg/dm2/day)と、前記1日当たりの平均のSO吸収量とを比較し、前記SO評価試験体のSO吸収量の経時変化を前記円筒法によるSO付着度の経時変化を求める機能とを有することを特徴とする、(4)又は(5)に記載のSOガスの計測装置。 (1) containing PbO 2, SO 2 for measuring the SO 2 gas in at least part of the PbO 2 was exposed to the environment, environment with SO 2 evaluation test body to absorb SO 2 gas in the environment How to measure gas,
And determining the ratio of the PbO 2 weight relative to the total amount of the PbO 2 amount contained in the SO 2 evaluation test body and PbSO 4 amount, the correlation between the electrical resistance of the SO 2 evaluation test body,
Placing the SO 2 evaluation test body in an environment to be measured, and measuring the electrical resistance of the SO 2 evaluation test body in the environment;
On the basis of the correlation, the SO 2 to the measurement results of the electrical resistance of SO 2 evaluation test body, characterized in that it comprises a step of determining the SO 2 absorption amount of the SO 2 evaluation test body in the environment How to measure gas.
(2) A reference resistor whose electric resistance is known and an SO 2 evaluation test body are connected in series to constitute a series resistor, and a voltage E applied to the series resistor and a voltage applied to the reference resistor The method of measuring O 2 gas according to (1), further comprising the step of measuring Er, and determining the electric resistance Rs of the SO 2 evaluation test body by the electric resistance Rr of the reference resistance and the following equation. .
Figure 2018179596
(3) Furthermore, using the cylindrical method based on JIS Z 2382: 1998, measuring the average SO 2 adhesion degree (unit: mg / dm 2 / day) of the environment to be measured,
Measuring a SO 2 absorption amount of aging and 1 day average SO 2 absorption amount of the SO 2 evaluation test body in the same period and the exposure period of the cylinder method,
Determining a relationship between the average SO 2 deposition rate and the average daily SO 2 absorption amount;
And said average of SO 2 degree of adhesion, on the basis of the relationship between the average of the SO 2 absorption amount of the daily, the time course of SO 2 absorption amount of the SO 2 evaluation test of SO 2 attaching degree by the cylinder method The method for measuring SO 2 gas according to (1) or (2), comprising the step of monitoring as a change over time.
(4) containing PbO 2, SO 2 for measuring the SO 2 gas in at least part of the PbO 2 was exposed to the environment, environment with SO 2 evaluation test body to absorb SO 2 gas in the environment A gas measuring device,
The ratio of the PbO 2 weight relative to the total amount of the SO 2 Rating PbO 2 amount contained in the specimen and PbSO 4 amount, SO 2 Evaluation created based on the correlation between the electrical resistance of the SO 2 evaluation test body Test body,
An electrical resistance measuring device for measuring the electrical resistance of the SO 2 evaluation specimen in the environment to be measured,
A correlation holding device for storing the correlation;
On the basis of the correlation, from the SO 2 Evaluation of the electrical resistance of the specimen measurement results, to include a specimen content deriving device for obtaining the SO 2 absorption amount of the SO 2 evaluation test body in the environment Measurement equipment of SO 2 gas which is characterized.
(5) Furthermore, a reference resistance whose electric resistance is known and which is connected in series with the SO 2 evaluation test body,
And a resistance measuring device for reference resistance which measures the electric resistance of the reference resistance,
The electrical resistance measuring device measures a voltage E applied to a series resistor consisting of the directly connected SO 2 evaluation test body and a reference resistance and a voltage Er applied to the reference resistance, and The apparatus for measuring O 2 gas according to (4), further having a function of determining the electric resistance Rs of the SO 2 evaluation test body by the electric resistance Rr and the following equation.
Figure 2018179596
(6) JIS Z 2382: SO 2 measuring the SO 2 absorption amount of aging and 1 day average SO 2 absorption amount of the SO 2 evaluation test body in the same period and the exposure period of the cylinder method based on 1998 absorption With the ability to measure changes in volume over time,
The SO 2 evaluation was made by comparing the average SO 2 attachment degree (unit: mg / dm 2 / day) in the environment of the measurement target obtained by the cylindrical method with the average SO 2 absorption amount per day The apparatus for measuring SO 2 gas according to (4) or (5), characterized in that it has a function of determining the time-dependent change of the SO 2 deposition degree by the cylindrical method with the time-dependent change of the SO 2 absorption amount of the test body. .

本発明によれば、経時変化する二酸化硫黄ガスの存在状況を連続的に測定することができる。   According to the present invention, it is possible to continuously measure the presence of sulfur dioxide gas which changes with time.

本発明のSOガスの計測方法の第1の実施形態のフローチャートである。It is a flow chart of a first embodiment of a method for measuring the SO 2 gas of the present invention. 図1Aの計測方法を実施する計測装置1の概略構成図である。It is a schematic block diagram of the measuring device 1 which enforces the measuring method of FIG. 1A. 図1Bの計測装置1の電気抵抗測定装置3の概略構成図である。It is a schematic block diagram of the electrical resistance measuring device 3 of the measuring device 1 of FIG. 1B. (a)はSO評価試験体2の概略上面図であり、(b)はその概略断面図である。(A) is a schematic top view of a SO 2 evaluating test body 2, (b) is a schematic sectional view thereof. 無電源環境下においてSO評価試験体の電気抵抗を測定できるように構成した電気抵抗測定装置の概略構成図である。In the absence of the power supply environment is a schematic configuration diagram of an electric resistance measuring device configured so as to measure the electrical resistance of the SO 2 evaluation test body. 本発明のSOガスの計測方法を温度補償する計測装置1Aの概略図である。The measurement method of the SO 2 gas of the present invention is a schematic diagram of a measurement apparatus 1A for temperature compensation. SO評価試験体2のSO吸収量の測定例である。It is an example of measurement of SO 2 absorption amount of SO 2 evaluation test body 2. 図3から求められたSO評価試験体2の抵抗値の測定例である。An example of measurement of the resistance value of SO 2 Evaluation test material 2 obtained from FIG. PbOプレートに関する電気抵抗と、PbOのモル分率との関係の実測値と計算値を示すグラフである。And the electric resistance relates to PbO 2 plates is a graph showing measured values and calculated values of the relationship between mole fraction of PbO 2. 本発明の第3の実施形態の計測方法を実施するための概略構成図である。It is a schematic block diagram for enforcing the measuring method of a 3rd embodiment of the present invention.

本発明者らは、上記課題を解決する手法について、導電性を有するPbOがSOと反応して絶縁性のPbSOを形成することに着目して、PbOとPbSOが混在する試験体のPbOとPbSOの含有率の比率との関係を調査した。その結果、PbOとPbSOが混在する試験体の抵抗値は、PbOとPbSOが直列に接続されていると仮定した抵抗値と概ね一致し、前記試験体の抵抗値Rsは、下記の式(1)で表すことができることが分かった。

Figure 2018179596
As a method for solving the above-mentioned problems, the present inventors focus on the fact that PbO 2 having conductivity reacts with SO 2 to form insulating PbSO 4 , a test in which PbO 2 and PbSO 4 are mixed The relationship between the proportion of PbO 2 and PbSO 4 in the body was investigated. As a result, the resistance value of the test body in which PbO 2 and PbSO 4 are mixed almost agrees with the resistance value assumed that PbO 2 and PbSO 4 are connected in series, and the resistance value Rs of the test body is It turned out that it can represent with Formula (1) of.
Figure 2018179596

PbSO生成前の前記試験体が100%PbOである場合、PbSO生成前の前記試験体のPbOのモル分率は1.0である。従って、PbSO生成後の前記試験体におけるPbOの含有比率をモル分率rで表すと、式(1)は、下記のように表すことができる。

Figure 2018179596
When the sample before PbSO 4 formation is 100% PbO 2 , the mole fraction of PbO 2 in the sample before PbSO 4 formation is 1.0. Therefore, when the content ratio of PbO 2 in the above-mentioned test body after PbSO 4 formation is represented by the mole fraction r, the formula (1) can be represented as follows.
Figure 2018179596

図5は、PbO(抵抗率:68Ωcm)とPbSO(抵抗率:5×10Ωcm)からなるSO評価試験体に関する電気抵抗(本明細書において、単に抵抗という場合がある。)と、PbOのモル分率との関係の実測値と計算値を示すグラフであり、当初、PbOのモル分率が1.0であった状態から減少するにつれて、すなわち、PbSOのモル分率が増加するに従って抵抗が増加していることが分かる。 FIG. 5 shows the electrical resistance (sometimes referred to simply as resistance in the present specification) for an SO 2 evaluation test body consisting of PbO 2 (resistivity: 68 Ωcm) and PbSO 4 (resistivity: 5 × 10 4 Ωcm). , A graph showing the measured value and the calculated value of the relationship with the mole fraction of PbO 2, and as the mole fraction of PbO 2 initially decreases from 1.0, ie, the mole fraction of PbSO 4 It can be seen that the resistance increases as the rate increases.

図5ではSO評価試験体として、65×36×3mmのサイズに成形されたものが用いられているが、その製造方法は特に制限されない。例えば、粉末トラガカントガム2.0gをアルコール10mlに溶解し、攪拌しながら純水190mlを加えたトラガカントガム溶液5mlに、二酸化鉛粉末8.0gを入れてガラス棒で攪拌して作成されたペースト状のPbOを用いて、型に入れ成形後乾燥して作成しても良い。 FIG as 5, SO 2 evaluation test body, but those which are molded to a size of 65 × 36 × 3 mm are used, the production method is not particularly limited. For example, paste-like PbO prepared by dissolving 8.0 g of powdered tragacanth gum in 10 ml of alcohol and adding 8.0 g of lead dioxide powder to 5 ml of tragacanth gum solution to which 190 ml of pure water was added while stirring, and stirring with a glass rod 2 with, may be prepared by drying after molding in a mold.

以下、本発明の計測方法と、当該計測方法を利用した計測装置の実施形態について説明する。同一又は類似の部分には同一又は類似の符号を付している。また、以下に示す実施形態は、本発明の技術的思想を具体化するための方法或いは装置を例示するものであって、本発明の技術的思想は、構成部品の形状、構造、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。   Hereinafter, embodiments of a measurement method of the present invention and a measurement apparatus using the measurement method will be described. The same or similar parts are given the same or similar symbols. In addition, the embodiments described below illustrate a method or apparatus for embodying the technical idea of the present invention, and the technical idea of the present invention includes the shape, structure, arrangement, and the like of components. It does not specify the following. Various changes can be added to the technical idea of the present invention within the technical scope described in the claims.

[第1の実施形態]
図1Aは、本発明のSOガスの計測方法の第1の実施形態のフローチャートである。また、図1Bは、図1Aに基づく計測方法を実施する計測装置1の概略図である。
First Embodiment
FIG. 1A is a flowchart of a first embodiment of the SO 2 gas measurement method of the present invention. Moreover, FIG. 1B is the schematic of the measuring device 1 which implements the measuring method based on FIG. 1A.

図1Bを参照して計測装置1について説明する。計測装置1は、SO評価試験体2と、電気抵抗測定装置3と、相関関係保持装置4、試験体含有率導出装置5と、出力装置6とを含む。前記SO評価試験体2は、その左右両側において電源端子7a、7bにより図示しない外部電源に接続されている。前記SO評価試験体2は、壁等の境界a1及びa2で囲まれた環境A内に設置され、その表面の少なくとも1部がSOガスの存在状況の測定対象となる環境A内の雰囲気a2と直接接触されるように露出された状態(暴露された状態)で環境A内に設置されている。 The measuring device 1 will be described with reference to FIG. 1B. The measuring device 1 includes an SO 2 evaluation test body 2, an electrical resistance measuring device 3, a correlation holding device 4, a test object content rate deriving device 5, and an output device 6. The SO 2 evaluation test body 2 is connected to an external power supply (not shown) by power supply terminals 7 a and 7 b on the left and right sides thereof. The SO 2 evaluation test body 2 is installed in an environment A surrounded by boundaries a1 and a2 such as walls, and an atmosphere in the environment A where at least a portion of the surface is a measurement target of the presence of SO 2 gas. It is installed in environment A in an exposed state (exposed state) to be in direct contact with a2.

SO評価試験体2として、例えば、図1D(a)、(b)に示すように、PbOプレート24と、前記PbOプレート24の長手方向の左右両端に設けられた電極21a及び21bと、前記電極21a及び21bを内面に備え、化学反応に対して安定な絶縁材料を用いて構成された保護ケース23とを含むように構成しても良い。ここで、「PbOプレート」とは、PbOの含有率が略100%であって、PbOが、直方体、六角柱等の断面が多角形の柱状体、又は平板状体等に成形されたものを例示できるが、その形状は特に限定されない。 As the SO 2 evaluation test body 2, for example, as shown in FIGS. 1D (a) and (b), a PbO 2 plate 24 and electrodes 21 a and 21 b provided on the left and right ends of the PbO 2 plate 24 in the longitudinal direction. The electrodes 21a and 21b may be provided on the inner surface, and may be configured to include a protective case 23 configured using an insulating material stable to a chemical reaction. Here, “PbO 2 plate” means that the content of PbO 2 is approximately 100%, and PbO 2 is formed into a rectangular parallelepiped, a hexagonal column or the like, a columnar body having a polygonal cross section, or a flat plate The shape is not particularly limited.

第1の実施形態では、SO評価試験体2は、PbOの含有率が100%の試験体を用いる。SO評価試験体2の作成方法に特に制限はないが、前述したように、例えば、粉末のトラガカントガムをアルコールに溶解し、撹拌しながら純水を加えたトラガカントガム溶液に、二酸化鉛粉末を入れてガラス棒で撹拌して作成したペースト状のPbOを成形することで作成できる。 In the first embodiment, the SO 2 evaluation test body 2 uses a test body having a PbO 2 content of 100%. The preparation method of SO 2 evaluation test body 2 is not particularly limited, but as described above, for example, lead dioxide powder is dissolved in tragacanth gum solution to which powdered tragacanth gum is dissolved in alcohol and pure water is added while stirring. It can be prepared by forming paste-like PbO 2 prepared by stirring with a glass rod.

SO評価試験体2の形状およびサイズは、測定したい環境と期間に応じて適宜設定すればよい。暴露面の面積を大きくすることで、二酸化硫黄ガスとの反応量を多くすることができ、二酸化硫黄ガスの測定感度を高めることができる。また、暴露しない面の断面積を小さくすること等、同じ二酸化硫黄ガスとの反応量に対するSO評価試験体2の抵抗変化を大きくすることで、二酸化硫黄ガスの測定感度を高めることができる。SO評価試験体2の形状は、例えば、直方体や円柱を用いることができる。SO評価試験体2の形状を直方体にした場合におけるサイズは、例えば、厚さは0.1cm以上0.5cm以下、長さは2cm以上30cm以下、幅は2cm以上30cm以下である。なお、厚さは図1Bにおける上下方向、すなわち、抵抗測定器の測定端子3a、3bが接続されている面の一辺の長さであり、長さは図1Bにおける左右方向、すなわち、抵抗測定機の測定端子3aが接続されている面同士の距離であり、幅は図1Bにおける手前と奥行き方向、すなわち、抵抗測定器の測定端子3a、3bが接続されている面の一辺の長さである。 The shape and size of the SO 2 evaluation test body 2 may be appropriately set in accordance with the environment and period to be measured. By increasing the area of the exposed surface, the amount of reaction with sulfur dioxide gas can be increased, and the measurement sensitivity of sulfur dioxide gas can be enhanced. Also, like reducing the cross-sectional area of the surface not exposed, by increasing the resistance change of the SO 2 Evaluation test material 2 for the reaction of the same sulfur dioxide gas, it is possible to increase the measurement sensitivity of the sulfur dioxide gas. For example, a rectangular parallelepiped or a cylinder can be used as the shape of the SO 2 evaluation test body 2. For example, the thickness of the SO 2 evaluation test body 2 is 0.1 cm or more and 0.5 cm or less, the length is 2 cm or more and 30 cm or less, and the width is 2 cm or more and 30 cm or less. The thickness is the vertical direction in FIG. 1B, that is, the length of one side of the surface to which the measurement terminals 3a and 3b of the resistance measuring device are connected, and the length is the horizontal direction in FIG. Is the distance between the surfaces to which the measurement terminal 3a is connected, and the width is the length of one side of the surface to which the measurement terminals 3a and 3b of the resistance measuring device are connected. .

電気抵抗測定装置3は、SO評価試験体の抵抗を測定する装置である。SO評価試験体の抵抗を測定できれば装置構成に制約はない。第1の実施形態における電気抵抗測定装置3について、図1Cを参照して説明する。電気抵抗測定装置3は、抵抗測定機31と、当該抵抗測定機31の測定端子3a、3bと、試験体含有率導出装置5に接続される端子3cとを含む。抵抗測定機31の測定端子3a、3bはSO評価試験体2に接続されており、抵抗測定機31はSO評価試験体2の左右両端間の電圧を測定することにより電気抵抗Rsを測定するとともに、その測定結果を試験体含有率導出装置5に送信する。 The electrical resistance measuring device 3 is a device that measures the resistance of the SO 2 evaluation test body. If the resistance of the SO 2 evaluation test body can be measured, there is no restriction on the device configuration. The electrical resistance measuring device 3 in the first embodiment will be described with reference to FIG. 1C. The electrical resistance measurement device 3 includes a resistance measurement device 31, measurement terminals 3 a and 3 b of the resistance measurement device 31, and a terminal 3 c connected to the test piece content ratio deriving device 5. The measurement terminals 3a and 3b of the resistance measurement device 31 are connected to the SO 2 evaluation test body 2, and the resistance measurement device 31 measures the electric resistance Rs by measuring the voltage between the left and right ends of the SO 2 evaluation test object 2. At the same time, the measurement result is transmitted to the specimen content rate deriving device 5.

相関関係保持装置4は、SO評価試験体2におけるPbOの含有率およびPbSOの含有率の比率と、SO評価試験体の電気抵抗の相関関係が保持される装置である。測定に用いるSO評価試験体の形状等に対応する前記相関関係を予め求めておき、相関関係保持装置4に前記相関関係が保持されていれば、電気抵抗測定装置3で測定されるSO評価試験体2の電気抵抗から、SO評価試験体2のPbOの含有率およびPbSOの含有率の比率を求めることができる。相関関係保持装置4に保持される相関関係は、PbOの含有率およびPbSOの含有率の比率をいくつかの水準で変化させたサンプルについて、電気抵抗と前記含有率の比率を測定して、各データを最小二乗法で近似して求めることができる。最小二乗法の近似式は、例えば、電気抵抗を変数にもつ2次関数(式2)で表すことができる。

Figure 2018179596
ただし、a、b、cはそれぞれ係数であり、xはSO評価試験体の電気抵抗を表す。 Correlation holding device 4 is a device in which the ratio of the content of the content and PbSO 4 of PbO 2 in the SO 2 Evaluation test material 2, correlation between the electrical resistance of the SO 2 evaluation test body is held. If the correlation corresponding to the shape etc. of the SO 2 evaluation test body to be used for measurement is obtained in advance, and if the correlation holding device 4 holds the correlation, SO 2 measured by the electrical resistance measuring device 3 From the electrical resistance of the evaluation test body 2, the ratio of the content of PbO 2 and the content of PbSO 4 in the SO 2 evaluation test body 2 can be determined. The correlation held in the correlation holding device 4 is obtained by measuring the ratio of the electrical resistance to the content ratio for a sample in which the ratio of the content ratio of PbO 2 and the content ratio of PbSO 4 is changed at several levels. , And each data can be obtained by approximation using the least squares method. The approximate expression of the least squares method can be expressed, for example, by a quadratic function (Expression 2) having an electrical resistance as a variable.
Figure 2018179596
However, a, b and c are coefficients respectively and x represents the electrical resistance of the SO 2 evaluation test body.

なお、PbOの含有率およびPbSOの含有率の比率を変えたサンプルは、PbOの含有率が100%のサンプルを二酸化硫黄ガスと反応させたサンプルを用いてもよいし、予め目的とする比率となるようにPbOの含有率およびPbSOの含有率の比率を調整したサンプルを人工的に作成してもよい。SОガスを計測しようとする範囲内における前記相関関係の電気抵抗の値がほぼ同じであれば、PbOの含有率が100%のときの電気抵抗やPbSOの含有率が100%のときの電気抵抗と前記相関関係の電気抵抗の値が一致していなくてもよい。 In addition, as a sample in which the content ratio of PbO 2 and the content ratio of PbSO 4 are changed, a sample in which a content ratio of 100% of PbO 2 is reacted with sulfur dioxide gas may be used. It is possible to artificially create a sample in which the ratio of the content of PbO 2 and the content of PbSO 4 is adjusted so as to achieve the ratio. If the value of the electrical resistance of the correlation within the range where the SO 2 gas is to be measured is substantially the same, the electrical resistance when the content of PbO 2 is 100% or the content of PbSO 4 is 100% The value of the electrical resistance of the above-mentioned correlation does not need to correspond.

試験体含有率導出装置5は、電気抵抗測定装置3で測定されるSO評価試験体2の電気抵抗から、相関関係保持装置4に保持されている前記相関関係を対応させることで、SO評価試験体2のPbOの含有率およびPbSOの含有率の比率を求めることができる。 The specimens content deriving device 5, that the electric resistance measuring device the electrical resistance of the SO 2 Evaluation test material 2 to be measured at 3, to correspond to the correlation stored in the correlation holding device 4, SO 2 The ratio of the content of PbO 2 and the content of PbSO 4 in the evaluation specimen 2 can be determined.

出力装置6は、試験体含有率導出装置5にて求められた前記相関関係を出力する装置である。例えば、前記相関関係をデータロガーで電子的に記録してもよいし、ディスプレーに前記相関関係の経時変化をグラフとして表示させてもよい。   The output device 6 is a device that outputs the correlation determined by the test object content rate derivation device 5. For example, the correlation may be recorded electronically by a data logger, or a temporal change of the correlation may be displayed as a graph on a display.

本発明のSOガスの計測方法の第1の実施形態では、まず、前述した式(1)又は式(1)’に基づいて、測定環境に応じて、PbO及びPbSOの含有率の比率と、電気抵抗との相関関係が決定される(図1Aの工程S1)。決定された相関関係は、相関関係保持装置4に保存される。 In the first embodiment of the SO 2 gas measurement method of the present invention, first, based on the above-mentioned formula (1) or formula (1) ′, according to the measurement environment, the content of PbO 2 and PbSO 4 A correlation between the ratio and the electrical resistance is determined (step S1 of FIG. 1A). The determined correlation is stored in the correlation holding device 4.

次いで、前記相関関係に基づいて、測定環境に適したSO評価試験体2を作成し、当該SO評価試験体を用いてSOガスを測定するために、前記SO評価試験体2を測定対象の環境A内に配置する(図1Aの工程S2)。 Then, based on the correlation, an SO 2 evaluation test body 2 suitable for a measurement environment is prepared, and the SO 2 evaluation test body 2 is used to measure SO 2 gas using the SO 2 evaluation test body. It arrange | positions in the environment A of measurement object (process S2 of FIG. 1A).

次いで、電気抵抗測定装置3を用いて、前記環境A内における前記SO評価試験体2の電気抵抗を測定する(図1Aの工程S3)。相関関係保持装置4に保存された前記PbO量の割合と電気抵抗との前記相関関係に基づいて、試験体含有率導出装置5を用いて、前記環境中における前記SO評価試験体2の電気抵抗の測定結果を、前記環境A内における前記SO評価試験体2のPbOの含有率およびPbSOの含有率の比率に換算する(図1Aの工程S4)。 Next, the electrical resistance of the SO 2 evaluation test body 2 in the environment A is measured using the electrical resistance measuring device 3 (step S3 in FIG. 1A). Based on the correlation between the proportion of the amount of PbO 2 stored in the correlation holding device 4 and the electric resistance, the test body content deriving device 5 is used to measure the SO 2 evaluation test body 2 in the environment The measurement result of the electrical resistance is converted into the ratio of the content of PbO 2 and the content of PbSO 4 of the SO 2 evaluation test body 2 in the environment A (step S 4 in FIG. 1A).

前記環境A内における前記SO評価試験体2のSO吸収量は、測定対象の環境AにおけるSOガスの存在状況に換算される(図1Aの工程S5)。SOガスの存在状況は、モニター等の出力装置6にモニタリングしても良い。前記環境A内における前記SO評価試験体2の電気抵抗の経時変化は、本発明によって、図4に示されるようにモニタリングすることができる。また、前記環境A内における前記SO評価試験体2の電気抵抗の経時変化は、本発明によって、図4に示されるように前記環境A内における前記SO評価試験体2のSO付着度の経時変化としてモニタリングすることができる。 The SO 2 absorption amount of the SO 2 evaluation test body 2 in the environment A is converted to the existing state of SO 2 gas in the environment A to be measured (step S5 in FIG. 1A). The presence of SO 2 gas may be monitored by the output device 6 such as a monitor. The time-dependent change of the electrical resistance of the SO 2 evaluation specimen 2 in the environment A can be monitored as shown in FIG. 4 according to the present invention. Further, the change with time of the electric resistance of the SO 2 evaluation test body 2 in the environment A is the SO 2 adhesion degree of the SO 2 evaluation test body 2 in the environment A as shown in FIG. 4 according to the present invention. Can be monitored as changes over time.

尚、図1Bの計測装置1では、電気抵抗測定装置3が環境Aの外部に設置されているが、電気抵抗測定装置3は環境A内の雰囲気a2によって損傷を受けない限り、環境A内に設けても良い。また、図1Bの計測装置1では、電気抵抗測定装置3〜出力装置6間は有線で連結されているが、無線でデータの受信及び送信を行っても良い。   In the measuring device 1 of FIG. 1B, the electrical resistance measuring device 3 is installed outside the environment A, but the electrical resistance measuring device 3 is in the environment A unless it is damaged by the atmosphere a2 in the environment A. It may be provided. Moreover, in the measuring device 1 of FIG. 1B, the electrical resistance measuring device 3 to the output device 6 are connected by wire, but data may be received and transmitted wirelessly.

[第2の実施形態]
図2Aは、第1の実施形態の計測装置1の電気抵抗測定装置3が、外部からの無電源環境下において前記SO評価試験体2の電気抵抗を測定できるように構成した変形例の電気回路図である。この変形例は、計測装置1を電源供給が困難な箇所にも設置できるように構成されたものであって、前記環境A内における前記SO評価試験体2の電気抵抗を測定する際に、前記SO評価試験体2に通電する電源として市販の1.5V乾電池70を利用できることを特徴としている。
Second Embodiment
FIG. 2A shows the electric resistance of the modification in which the electric resistance measurement device 3 of the measurement device 1 of the first embodiment can measure the electric resistance of the SO 2 evaluation test body 2 in the absence of external power supply. It is a circuit diagram. This modified example is configured to be able to install the measuring device 1 also in a place where power supply is difficult, and when measuring the electrical resistance of the SO 2 evaluation test body 2 in the environment A, A commercially available 1.5 V dry cell battery 70 can be used as a power source for energizing the SO 2 evaluation test body 2.

図2Aに示すように、第2の実施形態では、電気抵抗測定装置3は、基準抵抗測定用の測定機31r、基準抵抗30、抵抗測定機31を備える。抵抗測定機31はSO評価試験体2の電気抵抗Rs(T)を測定し、この測定と同時に、基準抵抗測定用の測定機31rは基準抵抗30を測定する。 As shown in FIG. 2A, in the second embodiment, the electrical resistance measuring device 3 includes a measuring device 31r for measuring a reference resistance, a reference resistor 30, and the resistance measuring device 31. The resistance measuring device 31 measures the electric resistance Rs (T) of the SO 2 evaluation test body 2, and simultaneously with this measurement, the measuring device 31 r for reference resistance measurement measures the reference resistance 30.

前記SO評価試験体2の電気抵抗は、一般に抵抗計で測定することが好ましい。しかし、抵抗(Rr)が既知の抵抗体(基準抵抗)を前記SO評価試験体2に直列に接続し、全体抵抗に印加される電圧(E)と基準抵抗に印加される電圧(Er)の2カ所の電圧を測定することで、以下の式3により、電池のように電圧が変化する電源を用いても、前記SO評価試験体2の電気抵抗(Rs)を精度良く求めることが可能となる。

Figure 2018179596
In general, the electrical resistance of the SO 2 evaluation test body 2 is preferably measured by a resistance meter. However, a resistor (reference resistance) whose resistance (Rr) is known is connected in series to the SO 2 evaluation test body 2 and a voltage (E) applied to the entire resistance and a voltage (Er) applied to the reference resistance The electric resistance (Rs) of the SO 2 evaluation test body 2 can be accurately determined according to the following equation 3 even by using a power supply whose voltage changes like a battery by measuring two voltages of It becomes possible.
Figure 2018179596

このように、図2Aに示す電気回路を用いて前記SO評価試験体2の電気抵抗を測定することによって、電源確保が難しい測定環境中でも電池を用いて長時間測定することが可能となる。 As described above, by measuring the electric resistance of the SO 2 evaluation test body 2 using the electric circuit shown in FIG. 2A, it becomes possible to measure for a long time using a battery even in a measurement environment where it is difficult to secure a power supply.

[第3の実施形態]
本発明の計測方法及び計測装置によれば、公知の方法によって測定されたSO濃度とSO評価試験体2のPbOの含有率とPbSOの含有率の比率の相関関係を予め求めておくことで、経時的なSO濃度を測定することができる。また、前記相関関係を予め求めておくことで、当該相関関係を利用して、異なる環境のSO濃度を測定できる。
Third Embodiment
According to the measurement method and measurement apparatus of the present invention, obtained in advance the correlation between the ratio of content of the PbSO content of 4 PbO 2 of SO 2 concentration and the SO 2 evaluation test body 2 measured by a known method By setting, it is possible to measure the concentration of SO 2 over time. In addition, by previously determining the correlation, it is possible to measure the SO 2 concentration in different environments by using the correlation.

以下、JIS Z 2382:1998(以下、単に、「JIS Z 2383」という。)に基づく円筒法を用いる場合について説明する。本発明の第3の実施形態においては、前記第1の実施形態或いは前記第2の実施形態の工程に対して、JIS Z 2382に基づく円筒法を用いて、前記測定対象の環境の平均のSO付着度(単位:mg/dm2/day)を測定する工程を含むことを特徴としている。尚、図6に、本発明の第3の実施形態の計測方法を実施するための概略構成図を示す。 Hereinafter, the case of using a cylindrical method based on JIS Z 2382: 1998 (hereinafter simply referred to as “JIS Z 2383”) will be described. In the third embodiment of the present invention, the average SO of the environment to be measured is determined using the cylindrical method based on JIS Z 2382 with respect to the process of the first embodiment or the second embodiment. 2 characterized in that it includes a step of measuring adhesion (unit: mg / dm 2 / day). FIG. 6 shows a schematic configuration diagram for implementing the measuring method of the third embodiment of the present invention.

JIS Z 2382に基づく円筒法を用いて、前記測定対象の環境内に円筒100を設置し、当該円筒100の平均のSO付着度(単位:mg/dm2/day)を測定する工程によって、1日当たりの平均のSO吸収量を算出する。JIS Z 2382に基づく円筒法によって得られた1日当たりの平均のSO吸収量は、相関関係保持装置4に保存しても良い。 According to the process of setting the cylinder 100 in the environment to be measured using the cylinder method based on JIS Z 2382 and measuring the average degree of SO 2 adhesion (unit: mg / dm 2 / day) of the cylinder 100 Calculate the average amount of SO 2 absorbed per day. The average amount of SO 2 absorbed per day obtained by the cylindrical method based on JIS Z 2382 may be stored in the correlation holding device 4.

第3の実施形態は、前記円筒法の曝露期間と同一の期間における前記SO評価試験体2のSO吸収量の経時変化及び1日当たりの平均のSO吸収量を測定する工程を含む。この工程は、第1の実施形態の工程S3において行っても良い。前記SO評価試験体2のこのようなSO吸収量の経時変化を測定する装置として、図1Bの電気抵抗測定装置3を用いても良い。また、前記SO評価試験体2の1日当たりの平均のSO吸収量を測定する装置として、図1Bの電気抵抗測定装置3或いは試験体含有率導出装置5を用いても良い。 The third embodiment includes the step of measuring the time-dependent change of the SO 2 absorption amount of the SO 2 evaluation test body 2 and the average SO 2 absorption amount per day in the same period as the exposure period of the cylindrical method. This step may be performed in step S3 of the first embodiment. As a device for measuring the time-dependent change of the SO 2 absorption amount of the SO 2 evaluation test body 2, the electrical resistance measurement device 3 of FIG. 1B may be used. Further, as a device for measuring the average SO 2 absorption amount per day of the SO 2 evaluation test body 2, the electrical resistance measurement device 3 or the test body content rate derivation device 5 of FIG. 1B may be used.

また、第3の実施形態は、JIS Z 2382に基づく円筒法を用いて得られた前記測定対象の環境の平均のSO付着度と、前記SO評価試験体2のSO吸収量の経時変化から得られた1日当たりの平均のSO吸収量とを比較し、前記SO評価試験体のSO吸収量の経時変化を前記円筒法によるSO付着度の経時変化に換算する工程を含む。この工程は、図1Bの試験体含有率導出装置5等を用いて、第1の実施形態の工程S4及び/又は工程S5において行っても良い。 In the third embodiment, the average SO 2 adhesion degree of the environment to be measured obtained using the cylindrical method based on JIS Z 2382, and the SO 2 absorption amount of the SO 2 evaluation test body 2 over time The process of converting the time-dependent change of SO 2 absorption of the above-mentioned SO 2 evaluation test body into the time-dependent change of SO 2 adhesion degree by the above-mentioned cylindrical method by comparing with the average SO 2 absorption of one day obtained from change Including. This step may be performed in step S4 and / or step S5 of the first embodiment using the test object content ratio deriving device 5 or the like of FIG. 1B.

このように、本発明の第3の実施形態によれば、経過時間毎のPbOからPbSOへの変化率を観測することによって、定量的な二酸化硫黄ガスの測定値を推測することができ、また、同時間における抵抗と公知の手法によるSO濃度の関係を求めておくことで、ある時間における抵抗からSO濃度に換算することができる。 Thus, according to the third embodiment of the present invention, it is possible to estimate quantitative sulfur dioxide gas measurement values by observing the rate of change from PbO 2 to PbSO 4 at each elapsed time. Further, by obtaining the relationship between the resistance at the same time and the SO 2 concentration by a known method, the resistance at a certain time can be converted to the SO 2 concentration.

上述の実施形態では、SO評価試験体2は、PbOの含有率が100%の試験体を用いる場合について説明したが、他の導電性を有する物質を含有させることを妨げない。他の導電性を有する物質を含有させる場合は、二酸化硫黄ガスの吸収量に対する抵抗変化率を大きくして、二酸化硫黄ガスに対する感度を高くするため、SO評価試験体2は、PbOおよびPbSOの含有量に対するPbOの含有率がモル分率で80%以上95%以下にすることが好ましい。 In the above-mentioned embodiment, although the SO 2 evaluation test body 2 demonstrated the case where the content rate of PbO 2 used a test body of 100%, it does not prevent containing the substance which has another electroconductivity. When a substance having another conductivity is contained, the SO 2 evaluation test body 2 is made of PbO 2 and PbSO 2 in order to increase the resistance change rate to the amount of absorption of sulfur dioxide gas to increase sensitivity to sulfur dioxide gas. The content of PbO 2 with respect to the content of 4 is preferably 80% or more and 95% or less in molar fraction.

また、通常は環境の温度変化が計測結果に与える影響が大きくないので問題とならないが、非定常的に稼働する熱源を発する設備の近く等、温度変化が大きい環境下で計測する場合や、より正確な計測をしたい場合は、温度補償を適用することが好ましい。温度補償を適用するには、例えば、図2Bのように、SO評価試験体2の抵抗を計測する回路と環境に暴露されないように保護された温度補償用抵抗20の抵抗を計測する回路を略同じ環境下に設置し、温度補償用抵抗20を用いて補償することができる。図2Bでは、温度補償用抵抗20は端子8a、8bを介して図示しない外部電源に接続されており、電気抵抗測定装置13は、SO評価試験体2及び温度補償用抵抗20のそれぞれの抵抗値を測定し、温度補償用抵抗20の抵抗値を用いてSO評価試験体2の抵抗値の温度補償を行うように構成されている。 In addition, usually there is no problem because the temperature change of the environment does not greatly affect the measurement results, but when measuring in an environment where the temperature change is large, such as near equipment that emits a heat source that operates irregularly, If accurate measurement is desired, it is preferable to apply temperature compensation. To apply the temperature compensation, for example, as shown in FIG. 2B, a circuit for measuring the resistance of the SO 2 evaluation test body 2 and a circuit for measuring the resistance of the temperature compensation resistor 20 protected from exposure to the environment. It can be installed under substantially the same environment and compensated using the temperature compensation resistor 20. In FIG. 2B, the temperature compensating resistor 20 is connected to an external power supply (not shown) through the terminals 8a and 8b, and the electrical resistance measuring device 13 is a resistor for each of the SO 2 evaluation test body 2 and the temperature compensating resistor 20. The value is measured, and temperature compensation of the resistance value of the SO 2 evaluation test body 2 is performed using the resistance value of the temperature compensation resistor 20.

このように、本発明はここでは記載していない様々な実施の形態等を含むことはもちろんである。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   Thus, it goes without saying that the present invention includes various embodiments and the like which are not described herein. Accordingly, the technical scope of the present invention is defined only by the invention-specifying matters according to the scope of claims appropriate from the above description.

また、本発明によれば、連続測定した鋼材の腐食挙動と関連させることによって、鋼材の腐食の解明に有効であり、使用環境における土木建材の鋼材成分の適用可否判断に活用することができる。   Further, according to the present invention, by correlating with the corrosion behavior of the steel material measured continuously, it is effective for elucidating the corrosion of the steel material, and can be utilized for judging the applicability of the steel material component of the civil engineering construction material in the use environment.

[実施例1]
第1の実施形態の装置を用いて、兵庫県尼崎市において、8月の8日間の期間、百葉箱内における二酸化硫黄ガスの存在状況の経時変化を連続的に測定した。尚、SO評価試験体2として、PbOの含有率が100%の試験体を用いた。
Example 1
Using the apparatus of the first embodiment, in Amagasaki City, Hyogo Prefecture, the change over time in the presence of sulfur dioxide gas in Hyakuba box was continuously measured for a period of eight days in August. As the SO 2 evaluation test body 2, a test body having a content of 100% of PbO 2 was used.

PbOのモル分子量は239.198g(密度9.38g/cm)、PbSOのモル分子量は303.262g(密度6.29g/cm)である。前記SO評価試験体2に含有される初期のPbOが全てPbSOに変化する場合、例えば、前記SO評価試験体2のPbO含有量が8gであった場合、PbO存在比、すなわちPbO/(PbO+PbSO)の存在比変化量が1であった場合、前記SO評価試験体2は、(8×1)÷239.198=0.0334モルのSOを吸収したことになる。 The molar molecular weight of PbO 2 is 239.198 g (density 9.38 g / cm 3 ), and the molar molecular weight of PbSO 4 is 303.262 g (density 6.29 g / cm 3 ). When all the initial PbO 2 contained in the SO 2 evaluation test body 2 changes to PbSO 4 , for example, when the PbO 2 content of the SO 2 evaluation test body 2 is 8 g, the PbO 2 abundance ratio, That is, when the abundance ratio change of PbO 2 / (PbO 2 + PbSO 4 ) is 1, the above-mentioned SO 2 evaluation test body 2 is (8 × 1) ÷ 239.198 = 0.0334 mol of SO 2 It will be absorbed.

SOのモル分子量は64.06gなので、前記SO評価試験体2は、0.0334×64.06×1000=2142mgのSOを吸収したことになる。 Since the molar molecular weight of SO 2 is 64.06 g, the SO 2 evaluation test sample 2 absorbed 0.0334 × 64.06 × 1000 = 2142 mg of SO 2 .

当初のSO評価試験体2の重量とPbO/PbSOの比率が分かっていれば、PbSOが増加したモル分率を用いて、SOの吸収量を定量化できる。 If the weight of the initial SO 2 evaluation test body 2 and the ratio of PbO 2 / PbSO 4 are known, it is possible to quantify the absorbed amount of SO 2 using the molar fraction in which PbSO 4 is increased.

例えば、図3の144時間経過後では、PbO存在比が0.96である。反応式は「PbO+SO→PbSO」であり、PbOの減ったモル数分だけ、SOと反応しているといえる。従って、PbSOに反応した比率が0.04×(1−0.96)である。PbOの初期重量が8gであるため、PbOからPbSOに反応したモル数は、8(g)×0.04×1/239.198(mol/g)=0.001338(mol)である。一方、SOの質量は、8(g)×0.04×1/239.198(mol/g)=0.0857(g)である。 For example, after 144 hours in FIG. 3, the PbO 2 abundance ratio is 0.96. The reaction formula is “PbO 2 + SO 2 → PbSO 4 ”, and it can be said that the reaction is performed with SO 2 for the reduced number of moles of PbO 2 . Therefore, the ratio of reaction with PbSO 4 is 0.04 × (1−0.96). Since the initial weight of PbO 2 is 8 g, the number of moles reacted from PbO 2 to PbSO 4 is 8 (g) × 0.04 × 1/239. 198 (mol / g) = 0.001338 (mol) is there. On the other hand, the mass of SO 2 is 8 (g) × 0.04 × 1/239. 198 (mol / g) = 0.0857 (g).

よって、上の計算結果から、図3の144時間経過後のSOの反応したモル数は0.001338mol、SOの質量は0.0857gと導出できる。 Therefore, from the above calculation result, it is possible to derive 0.001338 mol of reacted mole number of SO 2 after 144 hours in FIG. 3 and 0.0857 g of mass of SO 2 .

本発明の二酸化硫黄ガスの計測方法及び計測装置によれば、経時変化する二酸化硫黄ガスの存在状況を連続的に測定することができる。二酸化硫黄ガスの経時変化を連続的に測定できるため、鋼材の腐食の解明に有効であり、使用環境における土木建材の鋼材成分の適用可否判断に活用することができる。   According to the method and apparatus for measuring sulfur dioxide gas of the present invention, it is possible to continuously measure the state of existence of sulfur dioxide gas which changes with time. Since the time-dependent change of sulfur dioxide gas can be measured continuously, it is effective in elucidation of corrosion of steel materials, and it can utilize for judgment of the applicability of steel materials of civil engineering and construction materials in a use environment.

1:二酸化硫黄ガスの計測装置
1A:二酸化硫黄ガスの計測装置
2:SO評価試験体
3:電気抵抗測定装置
4:相関関係保持装置
5:試験体含有率導出装置
6:出力装置
13:電気抵抗測定装置
20:温度補償用抵抗
21a、21b:電極
23:保護ケース
24:PbOプレート
31:抵抗測定機
70:乾電池
100:円筒
131a:抵抗測定機
131b:温度補償用抵抗の電気抵抗測定用の抵抗測定機
A:測定対象の環境
a1:測定対象の環境の境界
a2:測定対象の環境内の雰囲気
1: sulfur dioxide gas measuring device 1A: sulfur dioxide gas measuring device 2: SO 2 evaluation test body 3: electrical resistance measuring device 4: correlation holding device 5: specimen content ratio deriving device 6: output device 13: electricity Resistance measuring device 20: Resistance for temperature compensation 21a, 21b: Electrode 23: Protective case 24: PbO 2 plate 31: Resistance measuring device 70: Dry cell 100: Cylindrical 131a: Resistance measuring device 131b: For measuring electric resistance of resistance for temperature compensation Resistance measuring machine A: Environment to be measured a1: Boundary of environment to be measured a2: Atmosphere in environment to be measured

Claims (6)

PbOを含有し、少なくともPbOの一部を環境中に曝露し、環境中におけるSOガスを吸収するSO評価試験体を用いて環境中におけるSOガスを計測するSOガスの計測方法であって、
前記SO評価試験体に含まれるPbO量及びPbSO量の合計量に対する前記PbO量の割合と、前記SO評価試験体の電気抵抗との相関関係を決定する工程と、
前記SO評価試験体を測定対象の環境中に設置して、前記環境中における前記SO評価試験体の電気抵抗を測定する工程と、
前記相関関係に基づいて、前記SO評価試験体の電気抵抗の測定結果から、前記環境中における前記SO評価試験体のSO吸収量を求める工程と、を含むことを特徴とするSOガスの計測方法。
Containing PbO 2, at least a portion of PbO 2 was exposed to the environment, the measurement of SO 2 gas to measure the SO 2 gas in the environment by using SO 2 evaluation test body to absorb SO 2 gas in the environment Method,
And determining the ratio of the PbO 2 weight relative to the total amount of the PbO 2 amount contained in the SO 2 evaluation test body and PbSO 4 amount, the correlation between the electrical resistance of the SO 2 evaluation test body,
Placing the SO 2 evaluation test body in an environment to be measured, and measuring the electrical resistance of the SO 2 evaluation test body in the environment;
On the basis of the correlation, the SO 2 to the measurement results of the electrical resistance of SO 2 evaluation test body, characterized in that it comprises a step of determining the SO 2 absorption amount of the SO 2 evaluation test body in the environment How to measure gas.
電気抵抗が既知である基準抵抗とSO評価試験体とを直列に接続して直列抵抗体を構成し、前記直列抵抗体に印加される電圧Eと前記基準抵抗に印加される電圧Erを測定し、前記基準抵抗の電気抵抗Rrと以下の式により前記SO評価試験体の電気抵抗Rsを求める工程を更に含むことを特徴とする請求項1に記載のOガスの計測方法。
Figure 2018179596
A series resistor is configured by connecting in series a reference resistor whose electric resistance is known and an SO 2 evaluation test body, and the voltage E applied to the series resistor and the voltage Er applied to the reference resistor are measured. The method of measuring O 2 gas according to claim 1, further comprising the step of obtaining the electric resistance Rs of the SO 2 evaluation test body by the electric resistance Rr of the reference resistance and the following equation.
Figure 2018179596
更に、JIS Z 2382:1998に基づく円筒法を用いて、前記測定対象の環境での平均のSO付着度(単位:mg/dm2/day)を測定する工程と、
前記円筒法の曝露期間と同一の期間における前記SO評価試験体のSO吸収量の1日当たりの平均のSO吸収量を測定する工程と、
前記平均のSO付着度と、前記1日当たりの平均のSO吸収量との関係を求める工程と、
前記平均のSO付着度と、前記1日当たりの平均のSO吸収量との関係に基づいて、前記SO評価試験体のSO吸収量の経時変化を前記円筒法によるSO付着度の経時変化として求める工程を含むことを特徴とする、請求項1又は2に記載のSOガスの計測方法。
Further, a step of measuring an average SO 2 adhesion degree (unit: mg / dm 2 / day) in the environment to be measured using a cylindrical method based on JIS Z 2382: 1998,
Measuring a SO 2 absorption amount of daily average SO 2 absorption amount of the SO 2 evaluation test body in the exposure period the same period and of the cylindrical method,
Determining a relationship between the average SO 2 deposition rate and the average daily SO 2 absorption amount;
And said average of SO 2 degree of adhesion, on the basis of the relationship between the average of the SO 2 absorption amount of the daily, the time course of SO 2 absorption amount of the SO 2 evaluation test of SO 2 attaching degree by the cylinder method characterized in that it comprises a step of determining a change over time, measurement method of SO 2 gas according to claim 1 or 2.
PbOを含有し、少なくともPbOの一部を環境中に曝露し、環境中におけるSOガスを吸収するSO評価試験体を用いて環境中におけるSOガスを計測するSOガスの計測装置であって、
前記SO評価試験体に含まれるPbO量及びPbSO量の合計量に対する前記PbO量の割合と、前記SO評価試験体の電気抵抗との相関関係に基づいて作成されたSO評価試験体と、
測定対象の環境中における前記SO評価試験体の電気抵抗を測定する電気抵抗測定装置と、
前記相関関係を記憶する相関関係保持装置と、
前記相関関係に基づいて、前記SO評価試験体の電気抵抗の測定結果から、前記環境中における前記SO評価試験体のSO吸収量を求める試験体含有率導出装置と、を含むことを特徴とするSOガスの計測装置。
Containing PbO 2, at least a portion of PbO 2 was exposed to the environment, the measurement of SO 2 gas to measure the SO 2 gas in the environment by using SO 2 evaluation test body to absorb SO 2 gas in the environment A device,
The ratio of the PbO 2 weight relative to the total amount of the SO 2 Rating PbO 2 amount contained in the specimen and PbSO 4 amount, SO 2 Evaluation created based on the correlation between the electrical resistance of the SO 2 evaluation test body Test body,
An electrical resistance measuring device for measuring the electrical resistance of the SO 2 evaluation specimen in the environment to be measured,
A correlation holding device for storing the correlation;
On the basis of the correlation, from the SO 2 Evaluation of the electrical resistance of the specimen measurement results, to include a specimen content deriving device for obtaining the SO 2 absorption amount of the SO 2 evaluation test body in the environment Measurement equipment of SO 2 gas which is characterized.
更に、電気抵抗が既知であり、前記SO評価試験体と直列に接続される基準抵抗と、
前記基準抵抗の電気抵抗を測定する基準抵抗用抵抗測定機とを備え、
前記電気抵抗測定装置は、前記直接に接続されたSO評価試験体及び基準抵抗からなる直列抵抗体に印加される電圧Eと前記基準抵抗に印加される電圧Erを測定し、前記基準抵抗の電気抵抗Rrと以下の式により前記SO評価試験体の電気抵抗Rsを求める機能を更に有することを特徴とする請求項4に記載のOガスの計測装置。
Figure 2018179596
Furthermore, a reference resistance whose electrical resistance is known and connected in series with the SO 2 evaluation test body,
And a resistance measuring device for reference resistance which measures the electric resistance of the reference resistance,
The electrical resistance measuring device measures a voltage E applied to a series resistor consisting of the directly connected SO 2 evaluation test body and a reference resistance and a voltage Er applied to the reference resistance, and 5. The apparatus for measuring O 2 gas according to claim 4, further having a function of determining the electric resistance Rs of the SO 2 evaluation test body by the electric resistance Rr and the following equation.
Figure 2018179596
JIS Z 2382:1998に基づく円筒法の曝露期間と同一の期間における前記SO評価試験体のSO吸収量の経時変化及び1日当たりの平均のSO吸収量を測定するSO吸収量の経時変化を測定する機能と、
前記円筒法により得られた前記測定対象の環境における平均のSO付着度(単位:mg/dm2/day)と、前記1日当たりの平均のSO吸収量とを比較し、前記SO評価試験体のSO吸収量の経時変化を前記円筒法によるSO付着度の経時変化を求める機能とを有することを特徴とする、請求項5又は6に記載のSOガスの計測装置。
JIS Z 2382: measuring the SO 2 absorption amount of aging and 1 day average SO 2 absorption amount of the SO 2 evaluation test body in the same period and the exposure period of the cylinder method based on 1998 SO 2 absorption amount of time With the ability to measure changes,
The SO 2 evaluation was made by comparing the average SO 2 attachment degree (unit: mg / dm 2 / day) in the environment of the measurement target obtained by the cylindrical method with the average SO 2 absorption amount per day The apparatus for measuring SO 2 gas according to claim 5 or 6, further comprising: a function of determining a change with time of the SO 2 absorption amount of the test body with the change with time of the SO 2 adhesion degree by the cylindrical method.
JP2017075541A 2017-04-05 2017-04-05 Sulfur dioxide gas measurement method and measuring device Active JP6866736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017075541A JP6866736B2 (en) 2017-04-05 2017-04-05 Sulfur dioxide gas measurement method and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017075541A JP6866736B2 (en) 2017-04-05 2017-04-05 Sulfur dioxide gas measurement method and measuring device

Publications (2)

Publication Number Publication Date
JP2018179596A true JP2018179596A (en) 2018-11-15
JP6866736B2 JP6866736B2 (en) 2021-04-28

Family

ID=64275000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017075541A Active JP6866736B2 (en) 2017-04-05 2017-04-05 Sulfur dioxide gas measurement method and measuring device

Country Status (1)

Country Link
JP (1) JP6866736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109902972A (en) * 2019-03-31 2019-06-18 深圳广田集团股份有限公司 The pre-evaluation method of content of formaldehyde in a kind of indoor environment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223617A (en) * 1997-12-01 1999-08-17 Ngk Insulators Ltd Sulfur dioxide gas sensor
JP2009250845A (en) * 2008-04-08 2009-10-29 Kobe Steel Ltd Environmental factor measuring method, thickness decrease prediction method of steel material, and selection method of steel material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223617A (en) * 1997-12-01 1999-08-17 Ngk Insulators Ltd Sulfur dioxide gas sensor
JP2009250845A (en) * 2008-04-08 2009-10-29 Kobe Steel Ltd Environmental factor measuring method, thickness decrease prediction method of steel material, and selection method of steel material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本工業標準調査会: "大気環境の腐食性を評価するための環境汚染因子の測定", JIS Z 2382:1998, JPN6020035589, 20 June 1998 (1998-06-20), JP, ISSN: 0004348230 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109902972A (en) * 2019-03-31 2019-06-18 深圳广田集团股份有限公司 The pre-evaluation method of content of formaldehyde in a kind of indoor environment

Also Published As

Publication number Publication date
JP6866736B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
Toghill et al. Electroanalytical determination of cadmium (II) and lead (II) using an antimony nanoparticle modified boron‐doped diamond electrode
JP4724649B2 (en) Method for estimating corrosion rate of structures using ACM sensor
US9625403B1 (en) Method of ascertaining fully grown passive film formation on steel rebar embedded in concrete
JP6163433B2 (en) Crevice corrosion test method and crevice corrosion test equipment
Xiong et al. Investigation of the optimal transient times for chronoamperometric analysis of diffusion coefficients and concentrations in non-aqueous solvents and ionic liquids
JP5066160B2 (en) Method for predicting steel sheet thickness reduction
JP6623329B2 (en) Corrosion sensor
JP2018179596A (en) Method for measuring sulfur dioxide gas and measuring device
JP7205126B2 (en) Corrosion sensors and corrosion evaluation systems
JP2019007851A (en) Method for predicting corrosion of weather-resistant steel and method for predicting corrosion of steel structure
Xiong et al. Fabrication of disposable gold macrodisc and platinum microband electrodes for use in room-temperature ionic liquids
Eichler et al. Investigations on the re‐passivation of carbon steel in chloride containing concrete in consequence of cathodic polarisation
CN108369205A (en) Reference electrode for electrochemical measurement at high temperature
JP6871497B2 (en) Electrical corrosion protection status grasping system and status grasping method
JP6544402B2 (en) Method of predicting corrosion of metals by numerical analysis
JP6540596B2 (en) Method of measuring intruding hydrogen amount and intruding hydrogen amount measuring device
JP6264311B2 (en) Method for predicting corrosion products
CN101221144A (en) Method of monitoring an electrochemical half-cell
JP2010281687A (en) Method for predicting amount of corrosion of metal material in contact state of different metal
El-Hallag et al. Data analysis and evaluation of the electrochemical parameters for the et process via convolutive voltammetry and digital simulation
JP5327178B2 (en) Metal corrosion rate prediction method and metal corrosion life prediction system
JP7172103B2 (en) Hydrogen filling method and hydrogen embrittlement property evaluation method
Noor et al. Determination of linear Tafel region from piecewise linear regression analysis
JP2018054607A (en) Method for estimating corrosion of metal by numerical analysis
Liu et al. A Combined Numerical and Experimental Approach to Study the Effect of Water Layer Thickness on the Electrochemical and Corrosion Distributions in the Galvanic Coupling between UNS A97050 and UNS S31600

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210322

R151 Written notification of patent or utility model registration

Ref document number: 6866736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151