JP2018179260A - Manufacturing method of laminated rubber bearing - Google Patents

Manufacturing method of laminated rubber bearing Download PDF

Info

Publication number
JP2018179260A
JP2018179260A JP2017083882A JP2017083882A JP2018179260A JP 2018179260 A JP2018179260 A JP 2018179260A JP 2017083882 A JP2017083882 A JP 2017083882A JP 2017083882 A JP2017083882 A JP 2017083882A JP 2018179260 A JP2018179260 A JP 2018179260A
Authority
JP
Japan
Prior art keywords
rubber
laminated
laminated rubber
plate
rubber bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017083882A
Other languages
Japanese (ja)
Inventor
俊茂 井上
Toshishige Inoue
俊茂 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2017083882A priority Critical patent/JP2018179260A/en
Publication of JP2018179260A publication Critical patent/JP2018179260A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress an internal rubber of a laminate from being exposed due to rubber flow in vulcanization, without deteriorating productivity.SOLUTION: A manufacturing method of a laminated rubber bearing comprises: a step S1 of coating the whole outer periphery of a raw laminate 4N with an unvulcanized protective rubber 5N, to form a raw laminated rubber bearing 1N; a step S2 of pasting and attaching a corner plate 9 with an L-shaped cross section, to each corner portion P on an outer peripheral side of the raw laminated rubber bearing 1N; a step S3 of vulcanization-molding the raw laminated rubber bearing 1N with the corner plate in a mold 10; and a step S4 of removing the corner plate 9 from the laminated rubber bearing 1 after vulcanization molding.SELECTED DRAWING: Figure 3

Description

本発明は、加硫時のゴム流れに起因する内部ゴムの露出を抑制しうる積層ゴム支承の製造方法に関する。   The present invention relates to a method of manufacturing a laminated rubber bearing capable of suppressing the exposure of internal rubber caused by rubber flow during vulcanization.

積層ゴム支承の耐久性を高めるため、硬質板とゴム弾性板とからなる積層体の外周を、耐候性に優れる保護ゴム層で被覆した構造のものが多用されている。   In order to enhance the durability of the laminated rubber bearing, the one having a structure in which the outer periphery of a laminate composed of a hard plate and a rubber elastic plate is covered with a protective rubber layer having excellent weather resistance is widely used.

この積層ゴム支承では、加硫成形時、積層体内のエアーを十分に排出することが重要である。もしエアーの排出が不充分な場合、残留エアーによって硬質板とゴム弾性板との接着力が減じ、免震性能の低下を招く可能性がある。   In this laminated rubber bearing, it is important to sufficiently discharge the air in the laminate during vulcanization molding. If the air is not sufficiently discharged, the residual air may reduce the adhesion between the hard plate and the rubber elastic plate, resulting in a decrease in the seismic isolation performance.

そのため、積層ゴム支承が角柱状をなす場合、図5(A)に示すように、積層体aの外周を保護ゴムbで被覆する際、積層体aのコーナ部分では、保護ゴムbに途切れ部dを設けている。これにより、図5(B)に示すように、加硫時、積層体a内のエアーeを、積層体aと保護ゴムbとの間を通って、途切れ部dに逃がすことができる。このエアーeは、金型fの割面fsを通って金型外に排気される。   Therefore, when the laminated rubber support has a prismatic shape, as shown in FIG. 5A, when covering the outer periphery of the laminated body a with the protective rubber b, the protective rubber b is interrupted at the corner portion of the laminated body a. d is provided. Thereby, as shown in FIG. 5 (B), at the time of vulcanization, the air e in the laminate a can be released between the laminate a and the protective rubber b to the discontinuous part d. The air e is exhausted to the outside of the mold through the split surface fs of the mold f.

又図5(C)に示すように、加硫時には、前記エアーeの排気とともに、積層体aの内部ゴムa1(ゴム弾性板のゴム)及び保護ゴムbにゴム流れが生じ、前記途切れ部dが充填される。しかしこのとき、内部ゴムa1の一部が金型面に先に到達してしまい、積層ゴム支承の外面で露出する場合がある。この場合、内部ゴムa1の露出部分が劣化し、耐久性を低下させる恐れを招く。   Further, as shown in FIG. 5C, at the time of vulcanization, a rubber flow is generated in the internal rubber a1 (rubber of the rubber elastic plate) and the protective rubber b of the laminate a with the exhaust of the air e. Is filled. At this time, however, part of the inner rubber a1 may reach the mold surface first and be exposed at the outer surface of the laminated rubber bearing. In this case, the exposed portion of the internal rubber a1 is deteriorated, which may lower the durability.

なお下記の特許文献1、2には、保護ゴムで被覆する前に、積層体自体を加硫することが記載されている(特許文献1、2参照。)。しかしこの場合、2回の加硫工程が必要となり、生産性の低下を招く。   The following Patent Documents 1 and 2 disclose that the laminate itself is vulcanized before coating with a protective rubber (see Patent Documents 1 and 2). However, in this case, two vulcanization steps are required, leading to a decrease in productivity.

特開平11−344075号公報Unexamined-Japanese-Patent No. 11-344075 特開平09−239855号公報Unexamined-Japanese-Patent No. 09-239855 gazette

そこで本発明は、生産性の低下を招くことなく、加硫時のゴム流れに起因する積層体の内部ゴムの露出を抑制しうる積層ゴム支承の製造方法を提供することを課題としている。   Then, this invention makes it a subject to provide the manufacturing method of the laminated rubber bearing which can suppress the exposure of the internal rubber of the laminated body resulting from the rubber flow at the time of vulcanization, without causing the fall of productivity.

本発明は、複数の硬質板とゴム弾性板とが交互に積層された角柱状の積層体と、この積層体の外周を被覆する保護ゴム層とを具えた積層ゴム支承の製造方法であって、
硬質板と未加硫のゴム弾性板が交互に積層された生の積層体の外周全体を、未加硫の保護ゴムよって被覆することにより生の積層ゴム支承を形成する工程、
前記生の積層ゴム支承の外周側の各コーナ部分に、断面L字状のコーナ板を粘着して取り付ける工程、
前記コーナ板付きの生の積層ゴム支承を、金型内で加硫成形する工程、
及び、加硫成形後に前記コーナ板を積層ゴム支承から取り外す工程を具えることを特徴としている。
The present invention is a method of manufacturing a laminated rubber bearing comprising: a prismatic laminate in which a plurality of hard plates and rubber elastic plates are alternately laminated; and a protective rubber layer covering the outer periphery of the laminate. ,
Forming a green laminated rubber support by covering the entire outer periphery of a green laminate in which hard plates and unvulcanized rubber elastic plates are alternately laminated with unvulcanized protective rubber;
Adhesively attaching a corner plate having an L-shaped cross section to each corner portion on the outer peripheral side of the green laminated rubber support;
Vulcanizing the green laminated rubber bearing with the corner plate in a mold;
And the step of removing the corner plate from the laminated rubber bearing after vulcanization molding.

本発明に係る積層ゴム支承の製造方法では、前記コーナ板が金属板からなることが好ましい。   In the method of manufacturing a laminated rubber bearing according to the present invention, the corner plate is preferably made of a metal plate.

本発明に係る積層ゴム支承の製造方法では、前記コーナ板の厚さが0.5〜1.0mmであることが好ましい。   In the method of manufacturing a laminated rubber bearing according to the present invention, the corner plate preferably has a thickness of 0.5 to 1.0 mm.

本発明に係る積層ゴム支承の製造方法では、前記コーナ板の一辺の長さLaが加硫後の積層ゴム支承の一辺の長さL0の6〜14%であることが好ましい。   In the method of manufacturing a laminated rubber bearing according to the present invention, it is preferable that a length La of one side of the corner plate is 6 to 14% of a length L0 of one side of the laminated rubber bearing after vulcanization.

本発明に係る積層ゴム支承の製造方法では、前記コーナ板の高さHaが加硫後の積層ゴム支承の高さH0の90〜100%であることが好ましい。   In the method of manufacturing a laminated rubber bearing according to the present invention, the height Ha of the corner plate is preferably 90 to 100% of the height H0 of the laminated rubber bearing after vulcanization.

本発明は叙上の如く、生の積層体の外周全体を、未加硫の保護ゴムよって被覆した後、その外周側の各コーナ部分に、断面L字状のコーナ板を粘着している。   In the present invention, after covering the entire outer periphery of the green laminate with unvulcanized protective rubber as in the case of the above, a corner plate having an L-shaped cross section is adhered to each corner portion on the outer peripheral side.

このコーナ板は、金型の割面を塞ぐため、加硫時、前記割面からゴムが逃げる向きの横方向のゴム流れを抑制することができる。しかも、生の積層体の外周全体が保護ゴムよって覆われるため、積層体の内部ゴム(ゴム弾性板のゴム)が、金型面側に流れて露出するのを抑制できる。   The corner plate closes the mold cut surface, so that it is possible to suppress the lateral rubber flow in the direction in which the rubber escapes from the cut surface during vulcanization. In addition, since the entire outer periphery of the green laminate is covered with the protective rubber, it is possible to suppress the internal rubber of the laminate (rubber of the rubber elastic plate) from flowing to the mold surface side and being exposed.

又積層体内のエアーは、積層体と保護ゴムとの間を通って上下に流れ、積層体の上端側或いは下端側から、金型の割面をへて排気されうる。従って残留エアーによる免震性能の低下も防止できる。   Further, air in the laminate can flow up and down through between the laminate and the protective rubber, and can be exhausted from the upper end side or the lower end side of the laminate through the split surface of the mold. Therefore, the decrease in seismic isolation performance due to residual air can be prevented.

本発明の製造方法により形成される積層ゴム支承の一実施例を示す斜視図である。It is a perspective view which shows one Example of the laminated rubber bearing formed by the manufacturing method of this invention. (A)は、生の積層ゴム支承を形成する工程を示す平面図、(B)はそのAA断面図である。(A) is a top view which shows the process of forming a green laminated rubber bearing, (B) is the AA sectional view. (A)、(B)は、コーナ板を粘着して取り付ける工程を示す平面図及び側面図である。(A), (B) is the top view and side view which show the process of adhesively attaching a corner plate. (A)、(B)は、コーナ板付きの生の積層ゴム支承を加硫成形する工程を示す平面図及び断面図である。(A) and (B) are the top view and sectional drawing which show the process of vulcanizing and forming the green laminated rubber bearing with a corner plate. (A)は従来の生の積層ゴム支承を示す斜視図、(B)、(C)は加硫時のエアー流れ及びゴム流れを示す部分断面図である。(A) is a perspective view showing a conventional green rubber bearing, (B), (C) is a partial sectional view showing air flow and rubber flow at the time of vulcanization.

以下、本発明の実施の形態について、詳細に説明する。
図1に示すように、本発明の製造方法によって形成される積層ゴム支承1は、角柱状の積層体4と、この積層体4の外周を被覆する保護ゴム層5とを具える。
Hereinafter, embodiments of the present invention will be described in detail.
As shown in FIG. 1, a laminated rubber bearing 1 formed by the manufacturing method of the present invention comprises a prismatic laminated body 4 and a protective rubber layer 5 covering the outer periphery of the laminated body 4.

前記積層体4は、交互に積層される複数の硬質板2及びゴム弾性板3を具え、硬質板2とゴム弾性板3との間は、加硫接着によって強固に接合される。前記複数の硬質板2のうち、最下段の硬質板2L及び最上段の硬質板2Uは、その間に配される硬質板2Mに比して厚さが大に形成される。   The laminate 4 includes a plurality of hard plates 2 and a rubber elastic plate 3 stacked alternately, and the hard plate 2 and the rubber elastic plate 3 are firmly joined by vulcanization bonding. Among the plurality of hard plates 2, the lowermost hard plate 2L and the uppermost hard plate 2U are formed to have a larger thickness than the hard plates 2M disposed therebetween.

最下段の硬質板2Lには、積層ゴム支承1を基礎に固定するための下の固定プレート(図示省略)が取り付けられる。又最上段の硬質板2Uには、積層ゴム支承1を構造物に固定するための上の固定プレート(図示省略)が取り付けられる。本例では、最上段の硬質板2U及び最下段の硬質板2Lには、それぞれ固定プレートを位置決めするための嵌合凹部7、及び固定プレートをボルト固定するためのネジ孔8が形成される。   A lower fixing plate (not shown) for fixing the laminated rubber bearing 1 to the foundation is attached to the lowermost hard plate 2L. Further, an upper fixing plate (not shown) is attached to the uppermost hard plate 2U for fixing the laminated rubber bearing 1 to the structure. In the present embodiment, in the uppermost hard plate 2U and the lowermost hard plate 2L, fitting recesses 7 for positioning the fixing plate and screw holes 8 for bolting the fixing plate are formed.

硬質板2としては、ゴム弾性板3よりも高剛性の非ゴム材、例えば鋼板などの金属製板が好適である。しかし金属製板と略同程度の剛性及び強度を有するものであるならば、例えばセラミックス、合成樹脂等の種々の材料が使用できる。   As the hard plate 2, a non-rubber material higher in rigidity than the rubber elastic plate 3, for example, a metal plate such as a steel plate is suitable. However, various materials such as ceramics and synthetic resins can be used as long as they have the same rigidity and strength as the metal plate.

又ゴム弾性板3としては、各種のゴム弾性材が使用できるが、機械的強度、弾性率の長期安定性、変形能力の長期安定性、耐クリープ性などに優れることが必要であり、例えば天然ゴム(NR)、クロロプレンゴム(CR)などが好ましく使用できる。特に天然ゴムは、耐候性以外の特性でクロロプレンゴムより優れているため、この天然ゴムを90phr以上配合した天然ゴム系材料を用いることがさらに好ましい。   Although various rubber elastic materials can be used as the rubber elastic plate 3, it is necessary to be excellent in mechanical strength, long-term stability of elastic modulus, long-term stability of deformability, creep resistance, etc. Rubber (NR), chloroprene rubber (CR) and the like can be preferably used. In particular, natural rubber is superior to chloroprene rubber in properties other than weather resistance, so it is more preferable to use a natural rubber material containing 90 phr or more of this natural rubber.

硬質板2とゴム弾性板3とは、互いに同形な矩形板をなす。硬質板2及びゴム弾性板3の各厚さについては特に規制されることがなく、従来の範囲が好適に採用される。本例では、ゴム弾性板3の厚さは、例えば3〜7mm程度であり、硬質板2Mの厚さは、例えばゴム弾性板3の厚さの0.5〜1.0倍程度である。   The hard plate 2 and the rubber elastic plate 3 form rectangular plates having the same shape. The respective thicknesses of the hard plate 2 and the rubber elastic plate 3 are not particularly limited, and the conventional range is suitably adopted. In this example, the thickness of the rubber elastic plate 3 is, for example, about 3 to 7 mm, and the thickness of the hard plate 2M is, for example, about 0.5 to 1.0 times the thickness of the rubber elastic plate 3.

また保護ゴム層5は、耐候性に優れる保護ゴムからなり、積層体4を腐食損傷から保護する。この保護ゴムとして、例えば、クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X-IIR)、エチレンプロピレンゴム(EPM、EPDM)、ウレタンゴム(U) 、シリコンゴム(Q) 、フッ素ゴム(FKM) 、多硫化ゴム(T) 、クロロスルホン化ポリエチレン(CSM) 、塩素化ポリエチレン(CM)、エチレン酢酸ビニルゴム(EVM) 、エピクロルヒドリンゴム(ECO) 等の合成ゴム材料が好適に採用しうる。特には、耐候性の観点から、クロロプレンゴム(CR)、ブチルゴム(IIR) 、ハロゲン化ブチルゴム(X-IIR)、エチレンプロピレンゴム(EPM、EPDM)が、好適に採用しうる。   The protective rubber layer 5 is made of a protective rubber having excellent weather resistance, and protects the laminate 4 from corrosion damage. As this protective rubber, for example, chloroprene rubber (CR), butyl rubber (IIR), halogenated butyl rubber (X-IIR), ethylene propylene rubber (EPM, EPDM), urethane rubber (U), silicone rubber (Q), fluoro rubber Synthetic rubber materials such as (FKM), polysulfide rubber (T), chlorosulfonated polyethylene (CSM), chlorinated polyethylene (CM), ethylene vinyl acetate rubber (EVM), and epichlorohydrin rubber (ECO) can be suitably adopted. In particular, chloroprene rubber (CR), butyl rubber (IIR), halogenated butyl rubber (X-IIR), ethylene propylene rubber (EPM, EPDM) can be suitably adopted from the viewpoint of weather resistance.

保護ゴム層5は、ゴム弾性板3とは、加硫接着により一体に接合される。この保護ゴム層5の厚さも、特に規制されることがなく、本例では例えば8〜12mm程度に設定される。   The protective rubber layer 5 and the rubber elastic plate 3 are integrally joined by vulcanization bonding. The thickness of the protective rubber layer 5 is also not particularly limited, and is set to, for example, about 8 to 12 mm in this example.

次に、この積層ゴム支承1の製造方法を説明する。本発明の製造方法は、生の積層ゴム支承1Nを形成する工程S1(図2)、コーナ板9を粘着して取り付ける工程S2(図3)、加硫成形する工程S3(図4)、コーナ板9を取り外す工程S4(図示省略)を具える。   Next, a method of manufacturing the laminated rubber bearing 1 will be described. In the manufacturing method of the present invention, the step S1 (FIG. 2) of forming the green laminated rubber bearing 1N, the step S2 of adhering the corner plate 9 (FIG. 3), the step S3 of vulcanizing and forming (FIG. 4) A step S4 (not shown) of removing the plate 9 is included.

詳しくは、図2(A)、(B)に示すように、前記工程S1では、硬質板2と未加硫のゴム弾性板3Nが交互に積層された生の積層体4Nの外周全体を、未加硫の保護ゴム5Nによって被覆する。これにより、生の積層ゴム支承1Nが形成される。本例では、保護ゴム5Nからなるゴム板材20を、生の積層体4Nの各側面に粘着させることにより、コーナ部分に途切れ部を設けることなく、外周全体を被覆する。   Specifically, as shown in FIGS. 2A and 2B, in the step S1, the entire outer periphery of the green laminate 4N in which the hard plate 2 and the non-vulcanized rubber elastic plate 3N are alternately stacked, Cover with unvulcanized protective rubber 5N. Thereby, a raw laminated rubber bearing 1N is formed. In this example, the entire outer periphery is covered without providing a break in the corner portion by adhering the rubber plate material 20 made of the protective rubber 5N to each side surface of the green laminate 4N.

図3(A)、(B)に示すように、前記工程S2では、生の積層ゴム支承1Nの外周側の各コーナ部分Pに、断面L字状のコーナ板9を粘着して取り付ける。コーナ板9の内面9s間の角度αは、前記コーナ部分Pの外面Ps間の角度βと実質的に等しく、これにより、内面9sと外面Psとを密着させる。本例では、角度α、βは90°である。   As shown in FIGS. 3A and 3B, in the step S2, a corner plate 9 having an L-shaped cross section is adhesively attached to each corner portion P on the outer peripheral side of the green laminated rubber support 1N. The angle α between the inner surfaces 9s of the corner plates 9 is substantially equal to the angle β between the outer surfaces Ps of the corner portions P, thereby bringing the inner surfaces 9s and the outer surfaces Ps into close contact. In the present example, the angles α and β are 90 °.

図4(A)、(B)に示すように、前記工程S3では、コーナ板付きの生の積層ゴム支承1Nを、金型10内で加硫成形する。   As shown in FIGS. 4A and 4B, in step S3, the green laminated rubber bearing 1N with a corner plate is vulcanized and formed in the mold 10.

本例の金型10は、内面が成形面となる内金型11と、その周囲を囲む周囲枠12とを含む。内金型11は、互いに平行なブロック状の一対の第1の金型部11Aと、この第1の金型部11Aとは直交する向きに配されるブロック状の一対の第2の金型部11Bとを具える。   The mold 10 of this example includes an inner mold 11 whose inner surface is a molding surface, and a peripheral frame 12 surrounding the periphery thereof. The inner mold 11 includes a pair of block-shaped second molds disposed in a direction orthogonal to the pair of block-shaped first mold parts 11A parallel to each other and the first mold part 11A. It comprises the part 11B.

第1の金型部11Aは、コーナ板付きの生の積層ゴム支承1Nの側面と、実質的に同長さである。又第2の金型部11Bは、第1の金型部11Aの外側端間を跨って配される。従って、第1の金型部11Aの外側端と第2の金型部11Bとの間に、内金型11の割面Daが形成される。又金型10は、図4(B)に示すように、上部プレート13U及び下部プレート13Lを含み、前記内金型11の上端と上部プレート13Uとの間、及び内金型11の下端と下部プレート13Lの間に、上下の割面Db、Dcが形成される。   The first mold portion 11A has substantially the same length as the side surface of the green laminated rubber bearing 1N with a corner plate. The second mold portion 11B is disposed across the outer ends of the first mold portion 11A. Accordingly, the split surface Da of the inner mold 11 is formed between the outer end of the first mold portion 11A and the second mold portion 11B. Further, as shown in FIG. 4B, the mold 10 includes an upper plate 13U and a lower plate 13L, and between the upper end of the inner mold 11 and the upper plate 13U, and the lower end and lower part of the inner mold 11. Upper and lower split surfaces Db, Dc are formed between the plates 13L.

従って、コーナ板9を設けることにより、加硫時、割面Daからゴムが逃げる向きの横方向のゴム流れを抑制しうる。しかも、生の積層体4Nの外周全体が保護ゴム5Nよって覆われるため、積層体4Bの内部ゴム(ゴム弾性板3Nのゴム)が、内金型11の内面(成形面)側に流れて露出するのを抑制できる。   Therefore, by providing the corner plate 9, it is possible to suppress the lateral rubber flow in the direction in which the rubber escapes from the fractured surface Da at the time of vulcanization. Moreover, since the entire outer periphery of the green laminate 4N is covered with the protective rubber 5N, the inner rubber (rubber of the rubber elastic plate 3N) of the laminate 4B flows toward the inner surface (molding surface) of the inner mold 11 and is exposed. You can suppress it.

又積層体4N内のエアーeは、積層体4Nと保護ゴム5Nとの間を通って上下に流れ、前記上下の割面Db、Dcをへて金型外に排気される。従って、残留エアーによる免震性能の低下も防止できる。なお余剰ゴムは、前記エアーと同様、上下の割面Db、Dcから逃がすことができる。   The air e in the laminate 4N flows up and down through the space between the laminate 4N and the protective rubber 5N, and is exhausted to the outside of the mold through the upper and lower split surfaces Db and Dc. Therefore, the fall of the seismic isolation performance by residual air can also be prevented. The excess rubber can escape from the upper and lower split surfaces Db, Dc, as with the air.

又工程S4(図示省略)では、加硫成形後に、積層ゴム支承1からコーナ板9を取り外す。コーナ板9は、繰り返して使用するために、積層ゴム支承1からの取り外しによっても変形や損傷しないことが必要である。そのために、コーナ板9は、金属板、特にはステンレス鋼板で形成するのが好ましい。   In step S4 (not shown), the corner plate 9 is removed from the laminated rubber support 1 after vulcanization molding. The corner plate 9 needs not to be deformed or damaged by removal from the laminated rubber bearing 1 in order to be used repeatedly. Therefore, the corner plate 9 is preferably formed of a metal plate, in particular, a stainless steel plate.

図1に誇張して示すように、コーナ板9の取り外しにより、積層ゴム支承1の外側面には、段差21が必然的に形成される。従って、コーナ板9が厚過ぎる場合、前記段差21が大きくなって応力が集中し、前記段差21を起点とした損傷を招く恐れが生じる。そのため前記コーナ板9の厚さt(図3に示す)は0.5〜1.0mmの範囲が好ましい。   As shown in an exaggerated manner in FIG. 1, a step 21 is inevitably formed on the outer surface of the laminated rubber bearing 1 by removing the corner plate 9. Therefore, when the corner plate 9 is too thick, the step 21 becomes large and the stress is concentrated, which may cause damage starting from the step 21. Therefore, the thickness t (shown in FIG. 3) of the corner plate 9 is preferably in the range of 0.5 to 1.0 mm.

又前記コーナ板9の一辺の長さLa(図3(A)に示す)が短すぎると、コーナ板9によるゴム流れの抑制効果が十分発揮されない。又長さLa(図3に示す)が長すぎると、前記段差21に、せん断変形時の応力が集中しやすくなって、耐久性に不利となる。そのため前記長さLaは、加硫後の積層ゴム支承1の一辺の長さL0(図1に示す)の6〜14%の範囲が好ましい。   If the length La (shown in FIG. 3A) of one side of the corner plate 9 is too short, the effect of suppressing the rubber flow by the corner plate 9 is not sufficiently exhibited. If the length La (shown in FIG. 3) is too long, the stress at the time of shear deformation tends to be concentrated on the step 21, which is disadvantageous to the durability. Therefore, the length La is preferably in the range of 6 to 14% of the length L0 (shown in FIG. 1) of one side of the laminated rubber bearing 1 after vulcanization.

又コーナ板9の高さHa(図3(B)に示す)が小さすぎる場合、コーナ板9の上端と生の積層ゴム支承1Nの上端との間の領域、及び/又はコーナ板9の下端と生の積層ゴム支承1Nの下端との間の領域を通って、積層体4Bの内部ゴム(ゴム弾性板3Nのゴム)が、内金型11の内面(成形面)側に流れる恐れ招く。そのために、前記高さHaは、加硫後の積層ゴム支承1の高さH0(図1に示す)の90〜100%の範囲が好ましい。   If the height Ha (shown in FIG. 3B) of the corner plate 9 is too small, the area between the upper end of the corner plate 9 and the upper end of the green laminated rubber support 1N and / or the lower end of the corner plate 9 The inner rubber of the laminate 4B (rubber of the rubber elastic plate 3N) may flow to the inner surface (the molding surface) of the inner mold 11 through the region between the lower end of the green laminated rubber bearing 1N and the green rubber bearing 1N. Therefore, the height Ha is preferably in the range of 90 to 100% of the height H0 (shown in FIG. 1) of the laminated rubber bearing 1 after vulcanization.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although the especially preferable embodiment of this invention was explained in full detail, this invention can be deform | transformed into a various aspect, and can be implemented, without being limited to embodiment of illustration.

図1に示す構造の積層ゴム支承を、表1の仕様にて試作し、積層ゴム支承の外表面への内部ゴムの露出の有無、及びエアーの排気不足に起因する免震性能の低下の有無をテストした。   The laminated rubber bearing with the structure shown in Fig. 1 was made as an experiment according to the specifications in Table 1, and the presence or absence of exposure of the internal rubber to the outer surface of the laminated rubber bearing and the presence or absence of deterioration in seismic isolation performance due to insufficient exhaust of air. Tested.

従来例では、図5(A)に示すように、工程S1において、生の積層体のコーナ部分では、未加硫の保護ゴムに途切れ部を設けている。又比較例及び実施例では、図3に示すように、工程S1において、生の積層体の外周全体が、未加硫の保護ゴムよって被覆されている。又比較例1では、コーナ板が使用されず、従って工程S2、S4は行われていない。又従来例、比較例、実施例とも、工程S3においては同じ金型が使用される。   In the conventional example, as shown in FIG. 5A, in the corner portion of the green laminate in the step S1, a non-vulcanized protective rubber is provided with a discontinuous portion. In the comparative example and the example, as shown in FIG. 3, the entire outer periphery of the green laminate is covered with unvulcanized protective rubber in step S1. Further, in Comparative Example 1, no corner plate is used, and therefore steps S2 and S4 are not performed. In the conventional example, the comparative example, and the example, the same mold is used in step S3.

製造される積層ゴム支承の共通仕様は、以下の通りである。
形状;四角柱(一片の長さL0=420mm、高さH0=134mm)
保護ゴムの厚さ:10mm
The common specifications of the laminated rubber bearing to be manufactured are as follows.
Shape; square pole (one piece length L0 = 420 mm, height H0 = 134 mm)
Protective rubber thickness: 10 mm

(1)内部ゴムの露出の有無:
14個の積層ゴム支承を試作し、その外面を目視検査することにより判断した。
(1) Existence of internal rubber exposure:
14 laminated rubber bearings were made by trial and judged by visually inspecting the outer surface.

(2)免震性能:
試作した14個の積層ゴム支承について、それぞれ剪断剛性、及び破壊時の剪断変形量を測定し、その平均値を比較した。剪断剛性及び破壊時の剪断変形量が高いほど、積層体内のエアーの排気が十分に行われており、残留エアーによる硬質板とゴム弾性板との接着力の低下が抑制されていると考えられる。
(2) Seismic isolation performance:
The shear stiffness and the amount of shear deformation at break were measured for each of the 14 laminated rubber bearings made on trial, and their average values were compared. The higher the shear rigidity and the amount of shear deformation at the time of breakage, the more exhaust of the air in the laminate is considered, and it is considered that the reduction in the adhesion between the hard plate and the rubber elastic plate due to the residual air is suppressed. .

Figure 2018179260
Figure 2018179260

表に示すように、実施例では、積層体内のエアーの排気を確保しながら、加硫時のゴム流れに起因する内部ゴムの露出を抑制しうるのが確認できる。   As shown in the table, in the example, it can be confirmed that the exposure of the internal rubber due to the rubber flow at the time of vulcanization can be suppressed while securing the exhaust of the air in the laminate.

1 積層ゴム支承
1N 生の積層ゴム支承
2 硬質板
3 ゴム弾性板
3N 未加硫のゴム弾性板
4 積層体
4N 生の積層体
5 保護ゴム層
5N 未加硫の保護ゴム
9 コーナ板
10 金型
P コーナ部分
S1〜S4 工程
DESCRIPTION OF SYMBOLS 1 Laminated rubber bearing 1N Raw laminated rubber bearing 2 Hard plate 3 Rubber elastic plate 3N Unvulcanized rubber elastic plate 4 Laminated body 4N Raw laminated body 5 Protective rubber layer 5N Unvulcanized protective rubber 9 Corner plate 10 Mold P corner portion S1 to S4 process

Claims (5)

複数の硬質板とゴム弾性板とが交互に積層された角柱状の積層体と、この積層体の外周を被覆する保護ゴム層とを具えた積層ゴム支承の製造方法であって、
硬質板と未加硫のゴム弾性板が交互に積層された生の積層体の外周全体を、未加硫の保護ゴムよって被覆することにより生の積層ゴム支承を形成する工程、
前記生の積層ゴム支承の外周側の各コーナ部分に、断面L字状のコーナ板を粘着して取り付ける工程、
前記コーナ板付きの生の積層ゴム支承を、金型内で加硫成形する工程、
及び、加硫成形後に前記コーナ板を積層ゴム支承から取り外す工程を具えることを特徴とする積層ゴム支承の製造方法。
A method of manufacturing a laminated rubber bearing comprising: a prismatic laminated body in which a plurality of hard plates and a rubber elastic plate are alternately laminated; and a protective rubber layer covering the outer periphery of the laminated body,
Forming a green laminated rubber support by covering the entire outer periphery of a green laminate in which hard plates and unvulcanized rubber elastic plates are alternately laminated with unvulcanized protective rubber;
Adhesively attaching a corner plate having an L-shaped cross section to each corner portion on the outer peripheral side of the green laminated rubber support;
Vulcanizing the green laminated rubber bearing with the corner plate in a mold;
And a step of removing the corner plate from the laminated rubber support after vulcanization molding.
前記コーナ板は、金属板からなることを特徴とする請求項1記載の積層ゴム支承の製造方法。   The method for producing a laminated rubber bearing according to claim 1, wherein the corner plate is made of a metal plate. 前記コーナ板の厚さは、0.5〜1.0mmであることを特徴とする請求項1又は2記載の積層ゴム支承の製造方法。   The thickness of the said corner plate is 0.5-1.0 mm, The manufacturing method of the laminated rubber bearing of Claim 1 or 2 characterized by the above-mentioned. 前記コーナ板の一辺の長さLaは、加硫後の積層ゴム支承の一辺の長さL0の6〜14%であることを特徴とする請求項1〜3の何れかに記載の積層ゴム支承の製造方法。   The laminated rubber support according to any one of claims 1 to 3, wherein a length La of one side of the corner plate is 6 to 14% of a length L0 of one side of the laminated rubber support after vulcanization. Manufacturing method. 前記コーナ板の高さHaは、加硫後の積層ゴム支承の高さH0の90〜100%であることを特徴とする請求項1〜4の何れかに記載の積層ゴム支承の製造方法。   The method for manufacturing a laminated rubber bearing according to any one of claims 1 to 4, wherein the height Ha of the corner plate is 90 to 100% of the height H0 of the laminated rubber bearing after vulcanization.
JP2017083882A 2017-04-20 2017-04-20 Manufacturing method of laminated rubber bearing Pending JP2018179260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017083882A JP2018179260A (en) 2017-04-20 2017-04-20 Manufacturing method of laminated rubber bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017083882A JP2018179260A (en) 2017-04-20 2017-04-20 Manufacturing method of laminated rubber bearing

Publications (1)

Publication Number Publication Date
JP2018179260A true JP2018179260A (en) 2018-11-15

Family

ID=64282812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017083882A Pending JP2018179260A (en) 2017-04-20 2017-04-20 Manufacturing method of laminated rubber bearing

Country Status (1)

Country Link
JP (1) JP2018179260A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066557A1 (en) 2018-09-25 2020-04-02 日本メジフィジックス株式会社 Target conveyance system, target body, and target transport method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066557A1 (en) 2018-09-25 2020-04-02 日本メジフィジックス株式会社 Target conveyance system, target body, and target transport method

Similar Documents

Publication Publication Date Title
EP2123490B1 (en) Tire noise reduction device and pneumatic tire provided therewith
JP4529956B2 (en) Multi-layer glass spacer, multi-layer glass, and method for manufacturing multi-layer glass spacer
JP6104927B2 (en) Composite seal
US20170151839A1 (en) Noise-reducing apparatus for tire and tire having same
JP2022066554A (en) Pneumatic tire
JP2018179260A (en) Manufacturing method of laminated rubber bearing
CO2022001347A2 (en) Elastomeric glove and manufacturing method
JPWO2020022159A1 (en) Pneumatic tires
JP2001140977A (en) Base isolation support body
JP6954122B2 (en) Pneumatic tires and their manufacturing methods
JP5378437B2 (en) Method for producing heavy duty pneumatic tire
JP6776598B2 (en) Side cover for rubber bearings and how to protect the rubber bearings
JP6078462B2 (en) Flap for tube tire
JP5763981B2 (en) Laminated rubber bearing
JP2013044416A (en) Laminated rubber bearing body
JP2623585B2 (en) Seismic isolation structure
KR101251424B1 (en) Manufacturing Method For Pneumatic Tire And The Pneumatic Tire Thereof
JP6482974B2 (en) Laminated rubber bearing
KR101807770B1 (en) Cover apparatus for honeycomb sandwich panel and method for manufacturing therof
EP4007044A1 (en) Method for manufacturing pouch-type battery cell by using retaining jig, and pouch-type battery cell manufactured using same
JP6884205B2 (en) Film integrated gasket
WO2019050030A1 (en) Pneumatic tire and method for producing same
JP2891174B2 (en) Seismic isolation structure
TW201829890A (en) Vibration damper and method for manufacturing vibration damper
JP2003148557A (en) Base-isolation device