JP2018178976A - Compressed air storage power generator - Google Patents

Compressed air storage power generator Download PDF

Info

Publication number
JP2018178976A
JP2018178976A JP2017084716A JP2017084716A JP2018178976A JP 2018178976 A JP2018178976 A JP 2018178976A JP 2017084716 A JP2017084716 A JP 2017084716A JP 2017084716 A JP2017084716 A JP 2017084716A JP 2018178976 A JP2018178976 A JP 2018178976A
Authority
JP
Japan
Prior art keywords
heat medium
heat
opening
temperature
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017084716A
Other languages
Japanese (ja)
Other versions
JP6705770B2 (en
Inventor
洋平 久保
Yohei Kubo
洋平 久保
松隈 正樹
Masaki Matsukuma
正樹 松隈
裕治 松尾
Yuji Matsuo
裕治 松尾
佐藤 隆
Takashi Sato
隆 佐藤
亮 中道
Akira Nakamichi
亮 中道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017084716A priority Critical patent/JP6705770B2/en
Priority to US16/495,476 priority patent/US10907542B2/en
Priority to CN201880024679.4A priority patent/CN110546362A/en
Priority to PCT/JP2018/010314 priority patent/WO2018193768A1/en
Priority to EP18787981.2A priority patent/EP3613967A4/en
Publication of JP2018178976A publication Critical patent/JP2018178976A/en
Application granted granted Critical
Publication of JP6705770B2 publication Critical patent/JP6705770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/17Combinations of wind motors with apparatus storing energy storing energy in pressurised fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/211Heat transfer, e.g. cooling by intercooling, e.g. during a compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/42Storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/006Systems for storing electric energy in the form of pneumatic energy, e.g. compressed air energy storage [CAES]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

PROBLEM TO BE SOLVED: To effectively prevent temperature drop of heat medium, to stabilize a flow state of the heat medium.SOLUTION: A compressed air storage power generation includes a compressor 6, a first heat exchanger 7, a first heat storage part 10, a pressure accumulation part 5, a second heat exchanger 9, and a second heat storage part 11. The first heat storage part 10 and the second heat storage part 11 are connected by a first flow passage 24 and a second flow passage 25. The first flow passage 24 and the second flow passage 25 are connected by a third flow passage 26. In a first region of the flow passage 24, first opening/closing 29 is provided, and in a second region thereof, second opening/closing means 30 is provided. In a third region of the second flow passage 25, third opening/closing means 31 is provided, and in a fourth region thereof, a fourth opening/closing means 32 is provided. In the third flow passage 26, driving means 27 and heating means 28 are provided.SELECTED DRAWING: Figure 1

Description

本発明は、圧縮空気貯蔵発電装置に関する。   The present invention relates to a compressed air storage generator.

風力発電や太陽光発電などの再生可能エネルギーを利用した発電は、気象条件に依存するため、出力が変動し安定しないことがある。このような出力変動に対し、出力を平準化するシステムとして圧縮空気貯蔵(Compressed Air Energy Storage:CAES)システムが知られている。   Since power generation using renewable energy such as wind power and solar power depends on weather conditions, the output may fluctuate and be unstable. A compressed air energy storage (CAES) system is known as a system for leveling the output against such output fluctuations.

例えば特許文献1には、熱エネルギー貯蔵システムを利用したCAES発電装置が開示されている。   For example, Patent Document 1 discloses a CAES power generator using a thermal energy storage system.

しかしながら、特許文献1に開示されたCAES発電装置では、熱媒の温度が低下し、粘性が高まることによる不具合についての対策は何らなされていない。   However, in the CAES power generator disclosed in Patent Document 1, the temperature of the heat medium is lowered, and no countermeasure is taken against the problem caused by the increase in viscosity.

特開2016−121675号公報JP, 2016-121675, A

本発明は、熱媒の温度低下を効果的に防止して熱媒の流動状態を安定させることができる圧縮空気貯蔵発電装置を提供することを課題とする。   An object of the present invention is to provide a compressed air storage power generation device capable of stabilizing the flow state of the heat medium by effectively preventing the temperature decrease of the heat medium.

本発明は、前記課題を解決するための手段として、
空気を圧縮する圧縮機と、
前記圧縮機により圧縮された圧縮空気を蓄える蓄圧部と、
前記蓄圧部から供給される圧縮空気によって駆動される膨張機と、
前記膨張機と機械的に接続された発電機と、
前記圧縮機から前記蓄圧部に供給される圧縮空気と熱媒との間で熱交換することにより、圧縮空気を冷却し、熱媒を加熱する第1熱交換器と、
前記第1熱交換器で加熱された熱媒を蓄える第1蓄熱部と、
前記蓄圧部から前記膨張機に供給される圧縮空気と、前記第1蓄熱部から供給される熱媒との間で熱交換することにより、圧縮空気を加熱し、熱媒を冷却する第2熱交換器と、
前記第2熱交換器で冷却された熱媒を蓄えて前記第1熱交換器に供給する第2蓄熱部と、
前記第1蓄熱部と前記第2蓄熱部とを接続する第1流路及び第2流路と、
前記第1流路の中間部と前記第2流路の中間部とを接続する第3流路と、
前記第1流路のうち、前記第1蓄熱部から前記第3流路に至る第1領域で流路を開閉する第1開閉手段と、
前記第1流路のうち、前記第2蓄熱部から前記第3流路に至る第2領域で流路を開閉する第2開閉手段と、
前記第2流路のうち、前記第1蓄熱部から前記第3流路に至る第3領域で流路を開閉する第3開閉手段と、
前記第2流路のうち、前記第2蓄熱部から前記第3流路に至る第4領域で流路を開閉する第4開閉手段と、
前記第3流路に設けられ、熱媒を流動させる駆動手段と、
前記第3流路に設けられ、通過する熱媒を加熱する加熱手段と、
を備える、圧縮空気貯蔵発電装置を提供する。
The present invention, as means for solving the above problems,
A compressor for compressing air,
An accumulator, which stores compressed air compressed by the compressor;
An expander driven by compressed air supplied from the pressure accumulator;
A generator mechanically connected to the expander;
A first heat exchanger that cools compressed air and heats the heat medium by exchanging heat between the heat medium and the compressed air supplied from the compressor to the pressure accumulation unit;
A first heat storage unit for storing the heat medium heated by the first heat exchanger;
The heat exchange between the compressed air supplied from the pressure accumulator to the expander and the heat medium supplied from the first heat storage unit heats the compressed air and cools the heat medium And
A second heat storage unit which stores the heat medium cooled by the second heat exchanger and supplies the heat medium to the first heat exchanger;
First and second flow paths connecting the first heat storage portion and the second heat storage portion;
A third flow path connecting the middle portion of the first flow path and the middle portion of the second flow path;
First opening and closing means for opening and closing the flow path in a first region from the first heat storage portion to the third flow path among the first flow path;
Second opening and closing means for opening and closing the flow path in a second region from the second heat storage portion to the third flow path among the first flow path;
Third opening / closing means for opening / closing the flow path in a third region from the first heat storage portion to the third flow path among the second flow path;
Fourth opening and closing means for opening and closing the flow path in a fourth region from the second heat storage portion to the third flow path among the second flow path;
Drive means provided in the third flow path for flowing the heat medium;
A heating unit provided in the third flow path for heating the heat medium passing therethrough;
Providing a compressed air storage power generation device.

この構成により、熱媒を、第2開閉手段及び第3開閉手段を開放し、第1開閉手段及び第4開閉手段を閉鎖する第1流れと、第1開閉手段及び第3開閉手段を閉鎖し、第2開閉手段及び第4開閉手段を開放する第2流れとに切り替えることができる。また、熱媒を、第1開閉手段及び第3開閉手段を開放し、第2開閉手段及び第4開閉手段を閉鎖する第3流れと、第1開閉手段及び第4開閉手段を開放し、第2開閉手段及び第3開閉手段を閉鎖する第4流れとに切り替えることができる。この結果、暖機運転で、熱媒を温度が低いままの粘度の高い状態となることを防止でき、流動状態を安定させることが可能となる。   With this configuration, the heat medium is opened by opening the second opening / closing means and the third opening / closing means, closing the first opening / closing means and the fourth opening / closing means, and closing the first opening / closing means and the third opening / closing means. , And can be switched to a second flow that opens the second opening / closing means and the fourth opening / closing means. In the heat medium, the first flow means for opening the first opening / closing means and the third opening / closing means, the third flow for closing the second opening / closing means and the fourth opening / closing means, the first opening / closing means and the fourth opening / closing means, The second opening / closing means and the third opening / closing means can be switched to the fourth flow closing. As a result, in the warm-up operation, the heat medium can be prevented from being in a high viscosity state with a low temperature, and the fluid state can be stabilized.

前記第1蓄熱部に蓄えられる熱媒の温度を検出する第1温度検出手段と、
前記第2蓄熱部に蓄えられる熱媒の温度を検出する第2温度検出手段と、
前記第1蓄熱部に蓄えられる熱媒の容量を検出する容量検出手段と、
前記第2温度検出手段での検出温度が第2設定温度以下である場合、前記容量検出手段で検出される熱媒の容量が設定容量以上であり、かつ、前記第1温度検出手段で検出される熱媒の温度が第1設定温度以上である場合、前記第2開閉手段及び前記第3開閉手段を開放し、前記第1開閉手段及び第4開閉手段を閉鎖し、前記駆動手段を駆動することにより、前記第1蓄熱部に蓄えられた熱媒を前記第2蓄熱部に供給する一方、前記容量検出手段で検出される熱媒の容量が設定容量未満であるか、又は、前記第1温度検出手段で検出される熱媒の温度が第1設定温度未満である場合、前記第1開閉手段及び前記第3開閉手段を閉鎖し、前記第2開閉手段及び前記第4開閉手段を開放し、前記加熱手段により熱媒を加熱し、前記駆動手段を駆動することにより、前記第2蓄熱部に蓄えられた熱媒を循環させる制御手段と、
をさらに備えるのが好ましい。
First temperature detection means for detecting the temperature of the heat medium stored in the first heat storage section;
Second temperature detection means for detecting the temperature of the heat medium stored in the second heat storage section;
Capacity detection means for detecting the capacity of the heat medium stored in the first heat storage section;
When the temperature detected by the second temperature detection means is equal to or lower than the second set temperature, the capacity of the heat medium detected by the capacity detection means is equal to or greater than the set capacity, and is detected by the first temperature detection means When the temperature of the heating medium is equal to or higher than the first set temperature, the second opening / closing means and the third opening / closing means are opened, the first opening / closing means and the fourth opening / closing means are closed, and the drive means is driven. Accordingly, while the heat medium stored in the first heat storage unit is supplied to the second heat storage unit, the capacity of the heat medium detected by the capacity detection unit is less than the set capacity, or When the temperature of the heat medium detected by the temperature detection means is less than the first set temperature, the first opening / closing means and the third opening / closing means are closed, and the second opening / closing means and the fourth opening / closing means are opened. Heating the heat medium by the heating means and driving the driving means The Rukoto, and control means for circulating the heat medium stored in said second thermal storage unit,
Preferably, it further comprises

この構成により、第1蓄熱部に蓄えられた熱媒の容量が十分にあり、かつ、その温度が高い条件の場合には、この熱媒を第2蓄熱部での熱媒の昇温に利用できる。また、これらの条件を満足しない場合には、第2蓄熱部に蓄えられた熱媒を循環させながら加熱できる。これにより、暖機運転を早期に終了させて通常運転へと移行させることが可能となる。   With this configuration, when the capacity of the heat medium stored in the first heat storage section is sufficient and the temperature is high, the heat medium is used to raise the temperature of the heat medium in the second heat storage section. it can. Moreover, when these conditions are not satisfied, heating can be performed while circulating the heat medium stored in the second heat storage section. This makes it possible to end the warm-up operation early and shift to the normal operation.

前記第1蓄熱部に蓄えられる熱媒の温度を検出する第1温度検出手段と、
前記第1蓄熱部に蓄えられる熱媒の容量を検出する容量検出手段と、
前記第1温度検出手段での検出温度が第1設定温度以下である場合、前記容量検出手段での検出容量が設定容量以上であるか否かを判断し、設定容量未満であると判断された場合、前記第1開閉手段及び前記第3開閉手段を開放し、前記第2開閉手段及び前記第4開閉手段を閉鎖し、前記加熱手段により熱媒を加熱し、前記駆動手段を駆動することにより、前記第1蓄熱部に蓄えられた熱媒を循環させる一方、設定容量以上であると判断された場合、前記第1開閉手段及び前記第4開閉手段を開放し、前記第2開閉手段及び前記第3開閉手段を閉鎖し、前記加熱手段により熱媒を加熱し、前記駆動手段を駆動することにより、前記第2蓄熱部に蓄えられた熱媒を前記第1蓄熱部に供給させる制御手段と、
をさらに備えるのが好ましい。
First temperature detection means for detecting the temperature of the heat medium stored in the first heat storage section;
Capacity detection means for detecting the capacity of the heat medium stored in the first heat storage section;
If the temperature detected by the first temperature detection means is less than or equal to the first set temperature, it is determined whether the detection capacity of the capacity detection means is greater than or equal to the set capacity and determined to be less than the set capacity. In this case, the first opening / closing means and the third opening / closing means are opened, the second opening / closing means and the fourth opening / closing means are closed, the heat medium is heated by the heating means, and the drive means is driven. The heat medium stored in the first heat storage portion is circulated, and when it is determined that the capacity is equal to or more than the set capacity, the first opening / closing means and the fourth opening / closing means are opened, and the second opening / closing means Control means for closing the third opening / closing means, heating the heat medium by the heating means, and driving the drive means to supply the heat medium stored in the second heat storage portion to the first heat storage portion; ,
Preferably, it further comprises

この構成により、第1蓄熱部に蓄えられる熱媒の容量が十分にあれば、温度が低くても加熱して圧縮空気の昇温に利用できる。また、第1蓄熱部に蓄えられる熱媒の容量が十分になくても、第2蓄熱部から補給して加熱することにより、同様に、圧縮空気の昇温に利用できる。   With this configuration, if the capacity of the heat medium stored in the first heat storage section is sufficient, it can be used to heat the compressed air even if the temperature is low. In addition, even if the capacity of the heat medium stored in the first heat storage section is insufficient, it can be similarly used to raise the temperature of the compressed air by supplying and heating from the second heat storage section.

前記第2蓄熱部に蓄えられる熱媒の温度を検出する第2温度検出手段と、
前記第2蓄熱部から前記圧縮機に至る熱媒流路に設けた冷却手段と、
前記冷却手段を迂回するバイパス流路と、
前記第2温度検出手段での検出温度が第3設定温度以上である場合、前記第2蓄熱部に蓄えられた熱媒を前記冷却手段で冷却させる一方、第3設定温度未満である場合、前記冷却手段を迂回するバイパス流路から供給させる制御手段と、
をさらに備えるのが好ましい。
Second temperature detection means for detecting the temperature of the heat medium stored in the second heat storage section;
A cooling means provided in a heat medium flow path from the second heat storage section to the compressor;
A bypass channel bypassing the cooling means;
When the temperature detected by the second temperature detection means is equal to or higher than the third set temperature, the heat medium stored in the second heat storage section is cooled by the cooling means, and when it is less than the third set temperature Control means for supplying from a bypass channel bypassing the cooling means;
Preferably, it further comprises

この構成により、熱交換器に供給する熱媒の温度を簡単に所望の値に調整することができる。   With this configuration, the temperature of the heat medium supplied to the heat exchanger can be easily adjusted to a desired value.

本発明によれば、第1蓄熱部と第2蓄熱部との間の熱媒の流動形態を、各開閉手段の開閉状態を変更するだけで、熱媒の温度を適切に管理してその流動状態を安定させることが可能となる。   According to the present invention, the flow form of the heat medium between the first heat storage part and the second heat storage part can be appropriately managed by changing the open / close state of each opening / closing means, and the flow of the heat medium It becomes possible to stabilize the state.

本実施形態に係るCAES発電装置の概略を示す構成図である。It is a block diagram which shows the outline of the CAES electric power generating apparatus which concerns on this embodiment. 図1の熱媒ユニットの拡大図である。It is an enlarged view of the heat-medium unit of FIG. 図2の制御装置による第1処理を示すフローチャートである。It is a flowchart which shows the 1st process by the control apparatus of FIG. 図2の制御装置による第2処理を示すフローチャートである。It is a flowchart which shows the 2nd process by the control apparatus of FIG. 図2の制御装置による第3処理を示すフローチャートである。It is a flowchart which shows the 3rd process by the control apparatus of FIG. 図1の圧縮空気貯蔵発電装置の熱媒流路を流動させる熱媒の温度と粘度との関係を示すグラフである。It is a graph which shows the relationship of the temperature and viscosity of the heat medium which makes the heat-medium flow path of the compressed air storage electric power generating apparatus of FIG.

以下、本発明に係る実施形態を添付図面に従って説明する。なお、以下の説明は、本質的に例示に過ぎず、本発明、その適用物、あるいは、その用途を制限することを意図するものではない。また、図面は模式的なものであり、各寸法の比率等は現実のものとは相違している。   Hereinafter, an embodiment according to the present invention will be described according to the attached drawings. The following description is merely illustrative in nature, and is not intended to limit the present invention, its applications, or its applications. In addition, the drawings are schematic, and ratios of respective dimensions and the like are different from actual ones.

図1は、CAES発電装置1の概略を示す構成図である。このCAES発電装置1は、充電ユニット2、熱媒ユニット3、放電ユニット4及び蓄圧タンク5を備える。充電ユニット2は、第1圧縮機6、第1熱交換器7、第2圧縮機8、及び、第2熱交換器9を備える。熱媒ユニット3は、第1蓄熱タンク10、及び、第2蓄熱タンク11を備える。放電ユニット4は、第1膨張機12、第3熱交換器13、第2膨張機14、及び、第4熱交換器15を備える。また、CAES発電装置1は、空気と熱媒の流れから、空気流路16a〜16g(実線で示す)と、熱媒流路17〜17g(一点鎖線で示す)とに分けて把握できる。以下、CAES発電装置1を、空気流路16a〜16gに関係する部材と、熱媒流路17a〜17gに関係する部材とに分けて説明する。   FIG. 1 is a schematic view showing a CAES power generator 1. The CAES power generator 1 includes a charge unit 2, a heat medium unit 3, a discharge unit 4 and a pressure accumulation tank 5. The charging unit 2 includes a first compressor 6, a first heat exchanger 7, a second compressor 8, and a second heat exchanger 9. The heat medium unit 3 includes a first heat storage tank 10 and a second heat storage tank 11. The discharge unit 4 includes a first expander 12, a third heat exchanger 13, a second expander 14, and a fourth heat exchanger 15. Moreover, the CAES electric power generating apparatus 1 can be divided and grasped | ascertained into the air flow paths 16a-16g (shown as a continuous line) and the heat medium flow paths 17-17g (shown as a dashed-dotted line) from the flow of air and a heat medium. Hereinafter, the CAES power generation device 1 will be described by being divided into members related to the air flow paths 16a to 16g and members related to the heat medium flow paths 17a to 17g.

(空気流路)
空気流路16a〜16gには、空気流れの上流側から下流側に向かって、第1圧縮機6、第1熱交換器7、第2圧縮機8、第2熱交換器9、蓄圧タンク5、第3熱交換器13、第1膨張機12、第4熱交換器15及び第2膨張機14がこの順で設けられている。第1圧縮機6、第1熱交換器7、第2圧縮機8及び第2熱交換器9は、直列に接続された1組が3組並列に設けられている。第3熱交換器13、第1膨張機12、第4熱交換器15及び第2膨張機14も、直列に接続された1組が3組並列に設けられている。
(Air flow path)
In the air flow paths 16a to 16g, the first compressor 6, the first heat exchanger 7, the second compressor 8, the second heat exchanger 9, and the pressure accumulation tank 5 are provided from the upstream side to the downstream side of the air flow. The third heat exchanger 13, the first expander 12, the fourth heat exchanger 15, and the second expander 14 are provided in this order. The first compressor 6, the first heat exchanger 7, the second compressor 8 and the second heat exchanger 9 are provided in parallel and in three sets connected in series. The third heat exchanger 13, the first expander 12, the fourth heat exchanger 15, and the second expander 14 are also provided in parallel and in three sets connected in series.

第1圧縮機6及び第2圧縮機8は、図示しないモータで駆動されることにより、吸気口より空気を吸気し、この空気を内部で圧縮して吐出口から圧縮空気として吐出する。第1圧縮機6の吐出口は、空気流路16aを介して第2圧縮機8の吸込口に接続されている。第2圧縮機8の吐出口には空気流路16bが接続されている。各第2圧縮機8から延びる空気流路16bは共通の空気流路16cを介して蓄圧タンク5に接続されている。なお、第1圧縮機6及び第2圧縮機8には、例えば、スクリュ式、スクロール式、ターボ式、レシプロ式等、種々のタイプのものを使用できる。   The first compressor 6 and the second compressor 8 are driven by a motor (not shown) to take in air from the air inlet, compress the air inside, and discharge the air as compressed air from the outlet. The discharge port of the first compressor 6 is connected to the suction port of the second compressor 8 via the air flow path 16a. An air flow passage 16 b is connected to the discharge port of the second compressor 8. An air flow passage 16 b extending from each second compressor 8 is connected to the pressure accumulation tank 5 via a common air flow passage 16 c. For the first compressor 6 and the second compressor 8, for example, various types such as a screw type, a scroll type, a turbo type, and a reciprocating type can be used.

第1熱交換器7及び第2熱交換器9は、第1圧縮機6及び第2圧縮機8で圧縮した圧縮空気を、後述する第2蓄熱タンク11からの熱媒によって冷却する。ここでは、第1熱交換器7で第1圧縮機6からの圧縮空気を冷却した後、さらに第2熱交換器9で第2圧縮機8を通過した圧縮空気を冷却する2段階での冷却が行われている。圧縮空気の冷却により、後述する第1蓄熱タンク10に貯蔵可能な圧縮空気の密度を高め、貯蔵中の放熱による熱エネルギーの損失を抑制する。   The first heat exchanger 7 and the second heat exchanger 9 cool the compressed air compressed by the first compressor 6 and the second compressor 8 by the heat medium from the second heat storage tank 11 described later. Here, after the compressed air from the first compressor 6 is cooled by the first heat exchanger 7, the compressed air that has passed through the second compressor 8 by the second heat exchanger 9 is further cooled in two stages Has been done. By cooling the compressed air, the density of the compressed air storable in the first heat storage tank 10 described later is increased, and the loss of thermal energy due to the heat radiation during storage is suppressed.

蓄圧タンク5は、圧縮空気をエネルギーとして貯蔵する。蓄圧タンク5は、共通の空気流路16dから個別の空気流路16eを介して各第1膨張機12の給気口にそれぞれ接続されている。蓄圧タンク5から送出された圧縮空気は空気流路16d及び16eを介して各第1膨張機12に供給される。   The pressure storage tank 5 stores compressed air as energy. The pressure storage tank 5 is connected to the air supply port of each first expander 12 from the common air flow path 16 d via the individual air flow path 16 e. The compressed air delivered from the pressure storage tank 5 is supplied to the first expanders 12 via the air flow paths 16d and 16e.

第3熱交換器13は空気流路16eの途中に設けられている。第4熱交換器15は、第1膨張機12の排気口と第2膨張機14の給気口とを結ぶ空気流路16fの途中に設けられている。第3熱交換器13及び第4熱交換器15は、蓄圧タンク5から送出された圧縮空気を、後述する第1蓄熱タンク10からの熱媒によって加熱する。ここでは、第3熱交換器13で蓄圧タンク5から送出された圧縮空気を加熱した後、さらに第4熱交換器15で第3熱交換器13を通過した圧縮空気を加熱する2段階での加熱が行われている。圧縮空気の加熱により、第1膨張機12及び第2膨張機14での膨張がスムーズに行われ、発電機による発電が適切に行われる。   The third heat exchanger 13 is provided in the middle of the air flow path 16e. The fourth heat exchanger 15 is provided in the middle of an air flow path 16 f connecting the exhaust port of the first expander 12 and the air supply port of the second expander 14. The third heat exchanger 13 and the fourth heat exchanger 15 heat the compressed air delivered from the pressure accumulation tank 5 with the heat medium from the first heat storage tank 10 described later. Here, after the compressed air delivered from the pressure storage tank 5 is heated by the third heat exchanger 13, the compressed air that has passed through the third heat exchanger 13 by the fourth heat exchanger 15 is further heated in two steps. Heating is taking place. By heating the compressed air, expansion in the first expander 12 and the second expander 14 is smoothly performed, and power generation by the generator is appropriately performed.

第1膨張機12及び第2膨張機14は、給気口から圧縮空気が給気され、給気された圧縮空気により作動して図示しない発電機を駆動する。また、第2膨張機14で膨張された空気は、排気口から空気流路16gを介して排気される。なお、第1膨張機12及び第2膨張機14には、例えば、スクリュ式、スクロール式、ターボ式、レシプロ式等、種々のタイプのものを使用できる。   The first expander 12 and the second expander 14 are supplied with compressed air from the air supply port and are operated by the supplied compressed air to drive a generator (not shown). The air expanded by the second expander 14 is exhausted from the exhaust port via the air flow path 16g. For the first expander 12 and the second expander 14, for example, various types such as a screw type, a scroll type, a turbo type, and a reciprocating type can be used.

(熱媒流路)
熱媒流路17a〜17gには、第1熱交換器7及び第2熱交換器9、第1蓄熱タンク10、第3熱交換器13及び第4熱交換器15、第2蓄熱タンク11が、環状に流動する熱媒の流動方向に対してこの順で設けられている。第1熱交換器7及び第2熱交換器9は、並列に接続された1組が3組並列に設けられている。第3熱交換器13及び第4熱交換器15も、並列に接続された1組が3組並列に設けられている。第2蓄熱タンク11から延びる熱媒流路17aには第1ポンプ18が設けられ、第1熱交換器7と第2熱交換器9とに分岐した各熱媒流路17b及び17cには開閉バルブ19a及び19bがそれぞれ設けられている。第1蓄熱タンク10から延びる熱媒流路17dには第2ポンプ20が設けられ、第3熱交換器13と第4熱交換器15とに分岐した各熱媒流路17e及び17fにも開閉バルブ19c及び19dがそれぞれ設けられている。なお、熱媒には、例えば、鉱物油系、グリコール系等の種々のものを使用できる。
(Heat transfer channel)
The first heat exchanger 7 and the second heat exchanger 9, the first heat storage tank 10, the third heat exchanger 13 and the fourth heat exchanger 15, and the second heat storage tank 11 are provided in the heat medium flow paths 17a to 17g. , In the order of the flow direction of the heat medium flowing annularly. The first heat exchanger 7 and the second heat exchanger 9 are provided in parallel and in three pairs connected in parallel. The third heat exchanger 13 and the fourth heat exchanger 15 are also provided in parallel in three pairs connected in parallel. A first pump 18 is provided in the heat medium passage 17a extending from the second heat storage tank 11, and the heat medium passages 17b and 17c branched into the first heat exchanger 7 and the second heat exchanger 9 are opened and closed. Valves 19a and 19b are provided respectively. The second pump 20 is provided in the heat medium flow passage 17 d extending from the first heat storage tank 10, and is opened and closed in the respective heat medium flow passages 17 e and 17 f branched into the third heat exchanger 13 and the fourth heat exchanger 15. Valves 19c and 19d are provided respectively. In addition, various things, such as mineral oil type and glycol type, can be used for a heat medium, for example.

第1熱交換器7及び第2熱交換器9は、第1ポンプ18の駆動によって第2蓄熱タンク11から供給された熱媒に、第1圧縮機6及び第2圧縮機8で圧縮した圧縮空気から吸熱させる。吸熱されて高温となった熱媒は第1蓄熱タンク10へと流動する。   The first heat exchanger 7 and the second heat exchanger 9 are compressed by the first compressor 6 and the second compressor 8 in the heat medium supplied from the second heat storage tank 11 by the driving of the first pump 18. Absorb heat from the air. The heat medium which has been absorbed heat and becomes high temperature flows to the first heat storage tank 10.

第3熱交換器13及び第4熱交換器15は、第2ポンプ20の駆動によって第1蓄熱タンク10から供給された熱媒から、第1膨張機12及び第2膨張機14へと供給する圧縮空気に放熱させる。放熱されて低温となった熱媒は、第2蓄熱タンク11へと流動する。   The third heat exchanger 13 and the fourth heat exchanger 15 supply the first expander 12 and the second expander 14 from the heat medium supplied from the first heat storage tank 10 by driving the second pump 20. Heat the compressed air. The heat medium which has been released to a low temperature flows to the second heat storage tank 11.

第1蓄熱タンク10及び第2蓄熱タンク11は断熱構造を有している。第1蓄熱タンク10は、第1熱交換器7及び第2熱交換器9によって圧縮空気から吸熱して高温となった熱媒が蓄えられる。図2に示すように、第1蓄熱タンク10の入口近傍に接続される熱媒流路17gには加熱ヒータ10aが設けられている。加熱ヒータ10aは、充電ユニット2から回収される熱媒の温度がそれほど上昇していない場合の補助加熱用である。第1蓄熱タンク10には第1温度検出センサ21及び水位検出センサ22が設けられている。第1温度検出センサ21で検出される第1蓄熱タンク10内の熱媒の温度と、水位検出センサ22で検出される熱媒の水位とは制御装置38に入力される。第2蓄熱タンク11は、第3熱交換器13及び第4熱交換器15によって圧縮空気に放熱して低温となった熱媒が蓄えられる。第2蓄熱タンク11には、第2温度検出センサ23が設けられている。第2温度検出センサ23で検出される第2蓄熱タンク11内の熱媒の温度は制御装置38に入力される。   The first heat storage tank 10 and the second heat storage tank 11 have a heat insulating structure. In the first heat storage tank 10, a heat medium which absorbs heat from the compressed air by the first heat exchanger 7 and the second heat exchanger 9 and becomes high temperature is stored. As shown in FIG. 2, a heater 10 a is provided in the heat medium passage 17 g connected in the vicinity of the inlet of the first heat storage tank 10. The heater 10a is for auxiliary heating when the temperature of the heat medium collected from the charging unit 2 has not risen so much. The first heat storage tank 10 is provided with a first temperature detection sensor 21 and a water level detection sensor 22. The temperature of the heat medium in the first heat storage tank 10 detected by the first temperature detection sensor 21 and the water level of the heat medium detected by the water level detection sensor 22 are input to the control device 38. In the second heat storage tank 11, the heat medium which has released heat to the compressed air by the third heat exchanger 13 and the fourth heat exchanger 15 and stored a low temperature is stored. The second heat storage tank 11 is provided with a second temperature detection sensor 23. The temperature of the heat medium in the second heat storage tank 11 detected by the second temperature detection sensor 23 is input to the control device 38.

第1蓄熱タンク10と第2蓄熱タンク11とは、第1熱媒流路を構成する第1配管24と、第2熱媒流路を構成する第2配管25とで接続されている。また、第1配管24と第2配管25の中間部は第3熱媒流路を構成する第3配管26で接続されている。第3配管26の途中には、第3ポンプ27と電気ヒータ28とが設けられている。電気ヒータ28により通過する熱媒を加熱可能となっている。第1配管24には、第3配管26の接続部分から第1蓄熱タンク10側及び第2蓄熱タンク11側に第1開閉バルブ29及び第2開閉バルブ30がそれぞれ設けられている。第2配管25にも、第3配管26の接続部分から第1蓄熱タンク10側及び第2蓄熱タンク11側に第3開閉バルブ31及び第4開閉バルブ32がそれぞれ設けられている。   The first heat storage tank 10 and the second heat storage tank 11 are connected by a first pipe 24 that constitutes a first heat medium channel and a second pipe 25 that constitutes a second heat medium channel. Further, an intermediate portion between the first pipe 24 and the second pipe 25 is connected by a third pipe 26 which constitutes a third heat medium flow path. A third pump 27 and an electric heater 28 are provided in the middle of the third pipe 26. The heating medium passing through the electric heater 28 can be heated. The first pipe 24 is provided with a first on-off valve 29 and a second on-off valve 30 on the side of the first heat storage tank 10 and the side of the second heat storage tank 11 from the connection portion of the third pipe 26. Also in the second pipe 25, a third on-off valve 31 and a fourth on-off valve 32 are provided on the side of the first heat storage tank 10 and the side of the second heat storage tank 11 from the connection portion of the third pipe 26.

第2蓄熱タンク11から3組の第1熱交換器7及び第2熱交換器9に分岐する手前の熱媒流路17の途中には、冷却手段である冷却水クーラ33と第5開閉バルブ34が設けられている。冷却水クーラ33には、第4ポンプ35の駆動により流量を制御された冷却水が供給され、通過する熱媒を冷却可能となっている。また、第2蓄熱タンク11からは冷却水クーラ33を迂回するバイパス流路36が接続されている。バイパス流路36には第6開閉バルブ37が設けられている。第5開閉バルブ34及び第6開閉バルブ37のいずれか一方を閉鎖し、残る他方を開放することにより、冷却水クーラ33を通過する熱媒流路17を流動する第1ルート、又は、冷却水クーラ33を迂回して流動する第2ルートのいずれかを選択できるようになっている。   In the middle of the heat medium flow path 17 before branching from the second heat storage tank 11 to the three sets of the first heat exchanger 7 and the second heat exchanger 9, the cooling water cooler 33 as a cooling means and the fifth on-off valve 34 are provided. The cooling water cooler 33 is supplied with cooling water whose flow rate is controlled by the drive of the fourth pump 35, and can cool the heat medium passing therethrough. Further, a bypass flow passage 36 bypassing the cooling water cooler 33 is connected from the second heat storage tank 11. The bypass flow path 36 is provided with a sixth on-off valve 37. A first route for flowing the heat medium channel 17 passing through the cooling water cooler 33 by closing any one of the fifth opening / closing valve 34 and the sixth opening / closing valve 37 and opening the other, or cooling water It is possible to select one of the second routes flowing around the cooler 33.

(制御方法)
次に、前記構成からなるCAES発電装置1の動作を説明する。ここでは、制御装置38による制御内容を中心に説明する。具体的には、暖機運転で実行する、第2蓄熱タンク11内での熱媒の温度を上昇させる必要がある第1処理と、第1蓄熱タンク10内での熱媒の温度を上昇させる必要がある第2処理と、運転が開始されてから行う、系内の熱媒の温度を低下させる必要がある第3処理とに分けて説明する。
(Control method)
Next, the operation of the CAES power generation device 1 configured as described above will be described. Here, the control contents by the control device 38 will be mainly described. Specifically, the temperature of the heat medium in the first heat storage tank 10 is raised, and the first process which is performed in the warm-up operation, which needs to raise the temperature of the heat medium in the second heat storage tank 11. The second process which is necessary and the third process which is performed after the start of the operation and which needs to lower the temperature of the heat medium in the system will be separately described.

なお、熱媒は温度の違いによって粘度が変化し、例えば、図6のグラフに示すように、所定温度(例えば、50℃)以下となることにより粘度が急激に大きくなるという性質がある。そして、熱媒の粘度が大きくなって流動状態が悪化すると、第2熱交換器7での熱交換性能が低下する。この結果、膨張機8に給気させる圧縮空気の温度を十分に上昇させることができず、発電性能が悪化する。また、発電出力が小さい場合、圧縮空気の流量が減少するが、その場合でも熱媒との熱交換が適切に行われるように定格流量を確保しなければならず、いわゆる熱媒ロスが発生する。そこで、このような不具合の発生を防止すべく、以下の第1処理及び第2処理を実行している。   The heat medium has a property that its viscosity changes depending on the temperature, and, for example, as shown in the graph of FIG. Then, when the viscosity of the heat medium increases and the fluid state deteriorates, the heat exchange performance in the second heat exchanger 7 decreases. As a result, the temperature of the compressed air to be supplied to the expander 8 can not be sufficiently raised, and the power generation performance is degraded. In addition, when the power generation output is small, the flow rate of compressed air decreases, but even in that case, the rated flow rate must be secured so that heat exchange with the heat medium is appropriately performed, so-called heat medium loss occurs. . Therefore, the following first processing and second processing are performed in order to prevent the occurrence of such a failure.

(第1処理:ステップS1)
図3に示すように、第1処理では、第2温度検出センサ23で検出される第2蓄熱タンク11内の熱媒の温度t2を読み込み(ステップS1−1)、読み込んだ熱媒温度t2が予め設定した第2設定温度T2以下であるか否かを判断する(ステップS1−2)。熱媒温度t2が第2設定温度T2を超えている場合、第2蓄熱タンク11内の熱媒をそのまま第1熱交換器7及び第2熱交換器9に供給し、第1圧縮機6及び第2圧縮機8の駆動を開始する(ステップS1−3)。これにより、第1圧縮機6で圧縮されて高温となった圧縮空気が第1熱交換器7で熱媒と熱交換されて低温となる。そして、第1熱交換器7を通過した圧縮空気は、第2圧縮機8でさらに圧縮されて再び高温となった後、第2熱交換器9で熱媒と熱交換されて低温となる。
(First Process: Step S1)
As shown in FIG. 3, in the first process, the temperature t2 of the heat medium in the second heat storage tank 11 detected by the second temperature detection sensor 23 is read (step S1-1), and the read-in heat medium temperature t2 is It is judged whether it is below the 2nd preset temperature T2 set up beforehand (Step S1-2). When the heat medium temperature t2 exceeds the second set temperature T2, the heat medium in the second heat storage tank 11 is supplied as it is to the first heat exchanger 7 and the second heat exchanger 9, and the first compressor 6 and Driving of the second compressor 8 is started (step S1-3). As a result, the compressed air that has been compressed by the first compressor 6 to a high temperature is heat-exchanged with the heat medium in the first heat exchanger 7 to a low temperature. Then, the compressed air having passed through the first heat exchanger 7 is further compressed by the second compressor 8 to become high temperature again, and then is heat exchanged with the heat medium by the second heat exchanger 9 to become low temperature.

第2温度検出センサ23での検出温度t2が第2設定温度T2以下である場合(ステップS1−2:YES)、水位検出センサ23で検出される第1蓄熱タンク10内の熱媒の水位を読み込む(ステップS1−4)。そして、読み込んだ熱媒の水位に基づいて、第1蓄熱タンク10内に収容される熱媒の容量vが設定容量Vs以上であるか否かを判断する(ステップS1−5)。設定容量Vs以上であれば、第1温度検出センサ21で検出される第1蓄熱タンク10内の熱媒の温度t1が第1設定温度T1以上であるか否かを判断する(ステップS1−6)。   When the detected temperature t2 by the second temperature detection sensor 23 is equal to or lower than the second set temperature T2 (step S1-2: YES), the water level of the heat medium in the first heat storage tank 10 detected by the water level detection sensor 23 Read (step S1-4). Then, based on the read water level of the heat medium, it is determined whether the volume v of the heat medium contained in the first heat storage tank 10 is equal to or greater than the set volume Vs (step S1-5). If it is the set volume Vs or more, it is determined whether the temperature t1 of the heat medium in the first heat storage tank 10 detected by the first temperature detection sensor 21 is the first set temperature T1 or more (step S1-6) ).

第1蓄熱タンク10内に収容される熱媒の容量vが設定容量Vs以上で、かつ、この熱媒の温度t1が第1設定温度T1以上であれば、第2開閉バルブ30と第3開閉バルブ31を開放し、第1開閉バルブ29と第4開閉バルブ32を閉鎖する(ステップS1−7)。そして、第3ポンプ27の駆動を開始する(ステップS1−8)。また、第1圧縮機6及び第2圧縮機8の駆動を開始する(ステップS1−3)。これにより、第1蓄熱タンク10内の高温の熱媒を第2蓄熱タンク11へと供給し、第2蓄熱タンク11内の熱媒を昇温できる。第2熱媒タンク内の熱媒を昇温させることで、粘度が高くなることを防止し、スムーズな流れを確保する。   If the volume v of the heat medium contained in the first heat storage tank 10 is equal to or greater than the set volume Vs and the temperature t1 of the heat medium is equal to or greater than the first set temperature T1, the second on-off valve 30 and the third open / close valve 30 The valve 31 is opened, and the first on-off valve 29 and the fourth on-off valve 32 are closed (step S1-7). Then, driving of the third pump 27 is started (step S1-8). Also, driving of the first compressor 6 and the second compressor 8 is started (step S1-3). Thereby, the high-temperature heat medium in the first heat storage tank 10 can be supplied to the second heat storage tank 11, and the heat medium in the second heat storage tank 11 can be heated. By raising the temperature of the heat medium in the second heat medium tank, it is possible to prevent the viscosity from increasing and ensure a smooth flow.

第1蓄熱タンク10内に収容される熱媒の容量vが設定容量Vs未満、又は、この熱媒の温度t1が第1設定温度T1未満であれば、第1開閉バルブ29と第3開閉バルブ31を閉鎖し、第2開閉バルブ30と第4開閉バルブ32を閉鎖する(ステップS1−9)。そして、電気ヒータ28に通電し(ステップS1−10)、第3ポンプ27の駆動を開始する(ステップS1−8)。第1蓄熱タンク10内の熱媒による加熱を期待できない場合、第2蓄熱タンク11内の熱媒を循環させて電気ヒータ28によって強制的に加熱することにより、前記同様、熱媒の温度低下に伴って粘度が高くなることを防止できる。   If the capacity v of the heat medium stored in the first heat storage tank 10 is less than the set capacity Vs or the temperature t1 of the heat medium is less than the first set temperature T1, the first on-off valve 29 and the third on-off valve 31 is closed, and the second on-off valve 30 and the fourth on-off valve 32 are closed (step S1-9). Then, the electric heater 28 is energized (step S1-10), and the driving of the third pump 27 is started (step S1-8). If heating by the heat medium in the first heat storage tank 10 can not be expected, the heat medium in the second heat storage tank 11 is circulated and forcedly heated by the electric heater 28 to reduce the temperature of the heat medium as described above. Accordingly, the viscosity can be prevented from increasing.

その後、読み込んだ熱媒温度t2が予め設定した第2設定温度T2を超えれば、第1圧縮機6及び第2圧縮機8の駆動を開始する(ステップS1−3)。熱媒の流動を良好な状態としているので、第3ポンプ27への負荷が増大したり、熱媒の各部材への分配不良等が発生したりすることがなくなる。   Thereafter, when the heat medium temperature t2 read in exceeds the second preset temperature T2 set in advance, driving of the first compressor 6 and the second compressor 8 is started (step S1-3). Since the flow of the heat medium is in a good state, the load on the third pump 27 does not increase, and the distribution failure of the heat medium to the respective members does not occur.

(第2処理:ステップS2)
図4に示すように、第2処理では、第1温度検出センサ21で第1蓄熱タンク10内の熱媒の温度t1を読み込み(ステップS2−1)、読み込んだ熱媒温度t1が予め設定した第1設定温度T1以下であるか否かを判断する(ステップS2−2)。熱媒温度t1が第1設定温度T1を超えている場合、第3熱交換器13及び第4熱交換器15で圧縮空気に対して十分な熱量を付与できると判断し、第1膨張機12及び第2膨張機14の運転を開始する(ステップS2−3)。これにより、圧縮空気を十分に加熱して、第1膨張機12及び第2膨張機14での膨張をスムーズに行わせることが可能となる。
(Second Process: Step S2)
As shown in FIG. 4, in the second process, the temperature t1 of the heat medium in the first heat storage tank 10 is read by the first temperature detection sensor 21 (step S2-1), and the read-in heat medium temperature t1 is preset. It is judged whether it is below 1st preset temperature T1 (step S2-2). When the heat medium temperature t1 exceeds the first set temperature T1, it is determined that the third heat exchanger 13 and the fourth heat exchanger 15 can apply a sufficient amount of heat to the compressed air, and the first expander 12 And operation of the second expander 14 is started (step S2-3). As a result, the compressed air can be sufficiently heated, and expansion in the first expander 12 and the second expander 14 can be smoothly performed.

第1温度検出センサ21での検出温度t1が第1設定温度T1を超えている場合、水位検出センサ23で検出される熱媒の水位を読み込む(ステップS2−4)。そして、読み込んだ熱媒の水位に基づいて、第1蓄熱タンク10内の熱媒の容量vを演算し、この容量vが設定容量Vsを超えているか否かを判断する(ステップS2−5)。熱媒の容量vが設定容量Vsを超えていると判断すれば、第1開閉バルブ29及び第3開閉バルブ31を開放し、第2開閉バルブ30及び第4開閉バルブ32を閉鎖する(ステップS2−6)。そして、電気ヒータ28に通電すると共に(ステップS2−7)、第3ポンプ27の駆動を開始する(ステップS2−8)。これにより、第1蓄熱タンク10内の熱媒を循環させて電気ヒータ28によって強制的に加熱することにより、第1膨張機12及び第2膨張機14に供給する圧縮空気を十分に昇温できる。   If the detected temperature t1 by the first temperature detection sensor 21 exceeds the first set temperature T1, the water level of the heat medium detected by the water level detection sensor 23 is read (step S2-4). Then, the volume v of the heat medium in the first heat storage tank 10 is calculated based on the read water level of the heat medium, and it is determined whether this volume v exceeds the set volume Vs (step S2-5) . If it is determined that the volume v of the heat medium exceeds the set volume Vs, the first on-off valve 29 and the third on-off valve 31 are opened, and the second on-off valve 30 and the fourth on-off valve 32 are closed (step S2). -6). Then, the electric heater 28 is energized (step S2-7), and the driving of the third pump 27 is started (step S2-8). As a result, by circulating the heat medium in the first heat storage tank 10 and forcibly heating it by the electric heater 28, the temperature of the compressed air supplied to the first expander 12 and the second expander 14 can be sufficiently raised. .

第1蓄熱タンク10内の熱媒の容量vが設定容量Vs以下であると判断すれば(ステップS2−5:NO)、第1開閉バルブ29及び第4開閉バルブ32を開放し、第2開閉バルブ30及び第3開閉バルブ31を閉鎖する(ステップS2−9)。そして、電気ヒータ28に通電すると共に(ステップS2−7)、第3ポンプ27の駆動を開始する(ステップS2−8)。これにより、第2蓄熱タンク11内の熱媒を電気ヒータ28で加熱して第1蓄熱タンク10内に供給できる。この結果、第1蓄熱タンク10内の熱媒の容量及び温度を十分なものとして、前記同様、第1膨張機12及び第2膨張機14に供給する圧縮空気を十分に昇温可能となる。   If it is determined that the capacity v of the heat medium in the first heat storage tank 10 is less than or equal to the set capacity Vs (step S2-5: NO), the first on-off valve 29 and the fourth on-off valve 32 are opened, and the second on-off The valve 30 and the third on-off valve 31 are closed (step S2-9). Then, the electric heater 28 is energized (step S2-7), and the driving of the third pump 27 is started (step S2-8). Accordingly, the heat medium in the second heat storage tank 11 can be heated by the electric heater 28 and supplied into the first heat storage tank 10. As a result, with sufficient capacity and temperature of the heat medium in the first heat storage tank 10, the temperature of the compressed air supplied to the first expander 12 and the second expander 14 can be sufficiently raised as described above.

その後、読み込んだ熱媒温度t1が予め設定した第2設定温度T1を超えれば、第1圧縮機6及び第2圧縮機8の駆動を開始する(ステップS2−3)。熱媒の流動を良好な状態としているので、第3ポンプ27への負荷が増大したり、熱媒の各部材への分配不良等が発生したりすることがなくなる。   Thereafter, when the heat medium temperature t1 read in exceeds the second preset temperature T1 set in advance, driving of the first compressor 6 and the second compressor 8 is started (step S2-3). Since the flow of the heat medium is in a good state, the load on the third pump 27 does not increase, and the distribution failure of the heat medium to the respective members does not occur.

(第3処理:ステップS3)
図5に示すように、第3処理では、第2温度検出センサ23での検出温度t2を読み込み(ステップS3−1)、読み込んだ熱媒温度t2が予め設定した第3設定温度T3以上であるか否かを判断する(ステップS3−2)。熱媒温度が第3設定温度以上であれば、第5開閉バルブ34を開放し、第6開閉バルブ37を閉鎖する(ステップS3−3)。そして、第4ポンプ35を駆動することにより(ステップS3−4)、第2蓄熱タンク11から吐出される熱媒を冷却水クーラ33で冷却し、第1圧縮機6及び第2圧縮機8で高温となり過ぎることを防止できる。一方、熱媒温度が第3設定温度未満であれば(ステップS3−2:NO)、第5開閉バルブ34を閉鎖し、第6開閉バルブ37を開放する(ステップS3−5)。このとき、第4ポンプ35は駆動しない。これにより、それ程高温とはなっていない第2蓄熱タンク11内の熱媒をそのまま第1圧縮機6及び第2圧縮機8へと供給して通常通りの運転を行うことができる。
(Third Process: Step S3)
As shown in FIG. 5, in the third process, the detected temperature t2 of the second temperature detection sensor 23 is read (step S3-1), and the read-in heat medium temperature t2 is equal to or higher than the third set temperature T3 set in advance. It is determined whether or not (step S3-2). If the heat medium temperature is equal to or higher than the third set temperature, the fifth on-off valve 34 is opened and the sixth on-off valve 37 is closed (step S3-3). Then, by driving the fourth pump 35 (step S3-4), the heat medium discharged from the second heat storage tank 11 is cooled by the cooling water cooler 33 and the first compressor 6 and the second compressor 8 It can prevent the temperature from becoming too high. On the other hand, if the heat medium temperature is less than the third set temperature (step S3-2: NO), the fifth on-off valve 34 is closed and the sixth on-off valve 37 is opened (step S3-5). At this time, the fourth pump 35 is not driven. As a result, the heat medium in the second heat storage tank 11, which is not so high temperature, can be supplied as it is to the first compressor 6 and the second compressor 8 to perform normal operation.

1…CAES発電装置
2…充電ユニット
3…熱媒ユニット
4…放電ユニット
5…蓄圧タンク
6…第1圧縮機
7…第1熱交換器
8…第2圧縮機
9…第2熱交換器
10…第1蓄熱タンク
10a…加熱ヒータ
11…第2蓄熱タンク
12…第1膨張機
13…第3熱交換器
14…第2膨張機
15…第4熱交換器
16a〜16g…空気流路
17a〜17g…熱媒流路
18…第1ポンプ
19a〜19d…開閉バルブ
20…第2ポンプ
21…第1温度検出センサ
22…水位検出センサ
23…第2温度検出センサ
24…第1配管
25…第2配管
26…第3配管
27…第3ポンプ
28…電気ヒータ
29…第1開閉バルブ
30…第2開閉バルブ
31…第3開閉バルブ
32…第4開閉バルブ
33…冷却水クーラ
34…第5開閉バルブ
35…第4ポンプ
36…バイパス流路
37…第6開閉バルブ
38…制御装置
DESCRIPTION OF SYMBOLS 1 ... CAES electric power generating apparatus 2 ... Charging unit 3 ... Heat-medium unit 4 ... Discharge unit 5 ... Accumulation tank 6 ... 1st compressor 7 ... 1st heat exchanger 8 ... 2nd compressor 9 ... 2nd heat exchanger 10 ... 1st thermal storage tank 10a ... heating heater 11 ... 2nd thermal storage tank 12 ... 1st expansion machine 13 ... 3rd heat exchanger 14 ... 2nd expansion machine 15 ... 4th heat exchanger 16a-16g ... air flow path 17a-17g ... Heat medium flow path 18 ... 1st pump 19a-19d ... On-off valve 20 ... 2nd pump 21 ... 1st temperature detection sensor 22 ... Water level detection sensor 23 ... 2nd temperature detection sensor 24 ... 1st piping 25 ... 2nd piping 26 ... third piping 27 ... third pump 28 ... electric heater 29 ... first on-off valve 30 ... second on-off valve 31 ... third on-off valve 32 ... fourth on-off valve 33 ... cooling water cooler 34 ... fifth on-off valve 35 ... second Pump 36 ... bypass channel 37 ... sixth closing valve 38 ... controller

Claims (4)

空気を圧縮する圧縮機と、
前記圧縮機により圧縮された圧縮空気を蓄える蓄圧部と、
前記蓄圧部から供給される圧縮空気によって駆動される膨張機と、
前記膨張機と機械的に接続された発電機と、
前記圧縮機から前記蓄圧部に供給される圧縮空気と熱媒との間で熱交換することにより、圧縮空気を冷却し、熱媒を加熱する第1熱交換器と、
前記第1熱交換器で加熱された熱媒を蓄える第1蓄熱部と、
前記蓄圧部から前記膨張機に供給される圧縮空気と、前記第1蓄熱部から供給される熱媒との間で熱交換することにより、圧縮空気を加熱し、熱媒を冷却する第2熱交換器と、
前記第2熱交換器で冷却された熱媒を蓄えて前記第1熱交換器に供給する第2蓄熱部と、
前記第1蓄熱部と前記第2蓄熱部とを接続する第1熱媒流路及び第2熱媒流路と、
前記第1熱媒流路の中間部と前記第2熱媒流路の中間部とを接続する第3熱媒流路と、
前記第1熱媒流路のうち、前記第1蓄熱部から前記第3熱媒流路に至る第1領域で流路を開閉する第1開閉手段と、
前記第1熱媒流路のうち、前記第2蓄熱部から前記第3熱媒流路に至る第2領域で流路を開閉する第2開閉手段と、
前記第2熱媒流路のうち、前記第1蓄熱部から前記第3熱媒流路に至る第3領域で流路を開閉する第3開閉手段と、
前記第2熱媒流路のうち、前記第2蓄熱部から前記第3熱媒流路に至る第4領域で流路を開閉する第4開閉手段と、
前記第3熱媒流路に設けられ、熱媒を流動させる駆動手段と、
前記第3熱媒流路に設けられ、通過する熱媒を加熱する加熱手段と、
を備える、圧縮空気貯蔵発電装置。
A compressor for compressing air,
An accumulator, which stores compressed air compressed by the compressor;
An expander driven by compressed air supplied from the pressure accumulator;
A generator mechanically connected to the expander;
A first heat exchanger that cools compressed air and heats the heat medium by exchanging heat between the heat medium and the compressed air supplied from the compressor to the pressure accumulation unit;
A first heat storage unit for storing the heat medium heated by the first heat exchanger;
The heat exchange between the compressed air supplied from the pressure accumulator to the expander and the heat medium supplied from the first heat storage unit heats the compressed air and cools the heat medium And
A second heat storage unit which stores the heat medium cooled by the second heat exchanger and supplies the heat medium to the first heat exchanger;
A first heat medium flow path and a second heat medium flow path connecting the first heat storage unit and the second heat storage unit;
A third heat medium flow path connecting an intermediate portion of the first heat medium flow path and an intermediate portion of the second heat medium flow path;
First opening and closing means for opening and closing a flow passage in a first region of the first heat medium flow passage from the first heat storage section to the third heat medium flow passage;
Second opening / closing means for opening / closing a flow passage in a second region extending from the second heat storage portion to the third heat medium passage among the first heat medium passage;
Third opening / closing means for opening / closing a flow passage in a third region extending from the first heat storage portion to the third heat medium passage among the second heat medium passage;
Fourth opening and closing means for opening and closing a flow passage in a fourth region of the second heat medium flow passage from the second heat storage portion to the third heat medium flow passage;
Drive means provided in the third heat medium flow channel for flowing the heat medium;
A heating unit provided in the third heat medium channel and heating the passing heat medium;
A compressed air storage power plant comprising:
前記第1蓄熱部に蓄えられる熱媒の温度を検出する第1温度検出手段と、
前記第2蓄熱部に蓄えられる熱媒の温度を検出する第2温度検出手段と、
前記第1蓄熱部に蓄えられる熱媒の容量を検出する容量検出手段と、
前記第2温度検出手段での検出温度が第2設定温度以下である場合、前記容量検出手段で検出される熱媒の容量が設定容量以上であり、かつ、前記第1温度検出手段で検出される熱媒の温度が第1設定温度以上である場合、前記第2開閉手段及び前記第3開閉手段を開放し、前記第1開閉手段及び第4開閉手段を閉鎖し、前記駆動手段を駆動することにより、前記第1蓄熱部に蓄えられた熱媒を前記第2蓄熱部に供給する一方、前記容量検出手段で検出される熱媒の容量が設定容量未満であるか、又は、前記第1温度検出手段で検出される熱媒の温度が第1設定温度未満である場合、前記第1開閉手段及び前記第3開閉手段を閉鎖し、前記第2開閉手段及び前記第4開閉手段を開放し、前記加熱手段により熱媒を加熱し、前記駆動手段を駆動することにより、前記第2蓄熱部に蓄えられた熱媒を循環させる制御手段と、
をさらに備える、請求項1に記載の圧縮空気貯蔵発電装置。
First temperature detection means for detecting the temperature of the heat medium stored in the first heat storage section;
Second temperature detection means for detecting the temperature of the heat medium stored in the second heat storage section;
Capacity detection means for detecting the capacity of the heat medium stored in the first heat storage section;
When the temperature detected by the second temperature detection means is equal to or lower than the second set temperature, the capacity of the heat medium detected by the capacity detection means is equal to or greater than the set capacity, and is detected by the first temperature detection means When the temperature of the heating medium is equal to or higher than the first set temperature, the second opening / closing means and the third opening / closing means are opened, the first opening / closing means and the fourth opening / closing means are closed, and the drive means is driven. Accordingly, while the heat medium stored in the first heat storage unit is supplied to the second heat storage unit, the capacity of the heat medium detected by the capacity detection unit is less than the set capacity, or When the temperature of the heat medium detected by the temperature detection means is less than the first set temperature, the first opening / closing means and the third opening / closing means are closed, and the second opening / closing means and the fourth opening / closing means are opened. Heating the heat medium by the heating means and driving the driving means The Rukoto, and control means for circulating the heat medium stored in said second thermal storage unit,
The compressed air storage generator according to claim 1, further comprising:
前記第1蓄熱部に蓄えられる熱媒の温度を検出する第1温度検出手段と、
前記第1蓄熱部に蓄えられる熱媒の容量を検出する容量検出手段と、
前記第1温度検出手段での検出温度が第1設定温度以下である場合、前記容量検出手段での検出容量が設定容量以上であるか否かを判断し、設定容量未満であると判断された場合、前記第1開閉手段及び前記第3開閉手段を開放し、前記第2開閉手段及び前記第4開閉手段を閉鎖し、前記加熱手段により熱媒を加熱し、前記駆動手段を駆動することにより、前記第1蓄熱部に蓄えられた熱媒を循環させる一方、設定容量以上であると判断された場合、前記第1開閉手段及び前記第4開閉手段を開放し、前記第2開閉手段及び前記第3開閉手段を閉鎖し、前記加熱手段により熱媒を加熱し、前記駆動手段を駆動することにより、前記第2蓄熱部に蓄えられた熱媒を前記第1蓄熱部に供給させる制御手段と、
をさらに備える、請求項1に記載の圧縮空気貯蔵発電装置。
First temperature detection means for detecting the temperature of the heat medium stored in the first heat storage section;
Capacity detection means for detecting the capacity of the heat medium stored in the first heat storage section;
If the temperature detected by the first temperature detection means is less than or equal to the first set temperature, it is determined whether the detection capacity of the capacity detection means is greater than or equal to the set capacity and determined to be less than the set capacity. In this case, the first opening / closing means and the third opening / closing means are opened, the second opening / closing means and the fourth opening / closing means are closed, the heat medium is heated by the heating means, and the drive means is driven. The heat medium stored in the first heat storage portion is circulated, and when it is determined that the capacity is equal to or more than the set capacity, the first opening / closing means and the fourth opening / closing means are opened, and the second opening / closing means Control means for closing the third opening / closing means, heating the heat medium by the heating means, and driving the drive means to supply the heat medium stored in the second heat storage portion to the first heat storage portion; ,
The compressed air storage generator according to claim 1, further comprising:
前記第2蓄熱部に蓄えられる熱媒の温度を検出する第2温度検出手段と、
前記第2蓄熱部から前記圧縮機に至る熱媒流路に設けた冷却手段と、
前記冷却手段を迂回するバイパス流路と、
前記第2温度検出手段での検出温度が第3設定温度以上である場合、前記第2蓄熱部に蓄えられた熱媒を前記冷却手段で冷却させる一方、第3設定温度未満である場合、前記冷却手段を迂回するバイパス流路から供給させる制御手段と、
をさらに備える、請求項1に記載の圧縮空気貯蔵発電装置。
Second temperature detection means for detecting the temperature of the heat medium stored in the second heat storage section;
A cooling means provided in a heat medium flow path from the second heat storage section to the compressor;
A bypass channel bypassing the cooling means;
When the temperature detected by the second temperature detection means is equal to or higher than the third set temperature, the heat medium stored in the second heat storage section is cooled by the cooling means, and when it is less than the third set temperature Control means for supplying from a bypass channel bypassing the cooling means;
The compressed air storage generator according to claim 1, further comprising:
JP2017084716A 2017-04-21 2017-04-21 Compressed air storage power generator Active JP6705770B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017084716A JP6705770B2 (en) 2017-04-21 2017-04-21 Compressed air storage power generator
US16/495,476 US10907542B2 (en) 2017-04-21 2018-03-15 Compressed air energy storage power generation device
CN201880024679.4A CN110546362A (en) 2017-04-21 2018-03-15 Compressed air energy storage power generation device
PCT/JP2018/010314 WO2018193768A1 (en) 2017-04-21 2018-03-15 Compressed-air storage power generation device
EP18787981.2A EP3613967A4 (en) 2017-04-21 2018-03-15 Compressed-air storage power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017084716A JP6705770B2 (en) 2017-04-21 2017-04-21 Compressed air storage power generator

Publications (2)

Publication Number Publication Date
JP2018178976A true JP2018178976A (en) 2018-11-15
JP6705770B2 JP6705770B2 (en) 2020-06-03

Family

ID=63857001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017084716A Active JP6705770B2 (en) 2017-04-21 2017-04-21 Compressed air storage power generator

Country Status (5)

Country Link
US (1) US10907542B2 (en)
EP (1) EP3613967A4 (en)
JP (1) JP6705770B2 (en)
CN (1) CN110546362A (en)
WO (1) WO2018193768A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614878B2 (en) * 2014-12-25 2019-12-04 株式会社神戸製鋼所 Compressed air storage power generation apparatus and compressed air storage power generation method
US11428445B2 (en) * 2019-09-05 2022-08-30 Gridworthy Technologies LLC System and method of pumped heat energy storage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277436A (en) * 1987-05-06 1988-11-15 Nippon Steel Corp Buffer storage system for power generation gas
JP2016121675A (en) * 2014-12-25 2016-07-07 株式会社神戸製鋼所 Compressed air energy storage power plant and compressed air energy storage power generation method
JP2016211464A (en) * 2015-05-11 2016-12-15 株式会社神戸製鋼所 Compressed air energy storage power generation device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8261552B2 (en) * 2007-01-25 2012-09-11 Dresser Rand Company Advanced adiabatic compressed air energy storage system
WO2010125568A2 (en) * 2009-04-28 2010-11-04 Technion- Research And Development Foundation Ltd. A system for wind energy harvesting and storage wising compressed air and hot water
US20110100010A1 (en) 2009-10-30 2011-05-05 Freund Sebastian W Adiabatic compressed air energy storage system with liquid thermal energy storage
US8739522B2 (en) * 2010-10-29 2014-06-03 Nuovo Pignone S.P.A. Systems and methods for pre-heating compressed air in advanced adiabatic compressed air energy storage systems
ES2423973B1 (en) * 2012-02-23 2014-09-08 Prextor Systems, S.L. Technology fall combined cycle (CCC)
EP2687702A1 (en) * 2012-07-20 2014-01-22 Alstom Technology Ltd Energy storage system and method for energy storage
JP6452450B2 (en) * 2014-09-25 2019-01-16 株式会社神戸製鋼所 Container type compressed air storage power generator
WO2016104222A1 (en) * 2014-12-25 2016-06-30 株式会社神戸製鋼所 Compressed-air-storing power generation device and compressed-air-storing power generation method
JP6510876B2 (en) * 2015-05-01 2019-05-08 株式会社神戸製鋼所 Compressed air storage power generation method and compressed air storage power generation device
JP6373794B2 (en) * 2015-05-08 2018-08-15 株式会社神戸製鋼所 Compressed air storage power generation apparatus and compressed air storage power generation method
JP6456236B2 (en) * 2015-05-11 2019-01-23 株式会社神戸製鋼所 Compressed air storage generator
JP6358981B2 (en) * 2015-05-13 2018-07-18 株式会社神戸製鋼所 Compressed air storage power generation apparatus and compressed air storage power generation method
JP6343587B2 (en) * 2015-05-18 2018-06-13 株式会社神戸製鋼所 Compressed air storage power generation method and compressed air storage power generation apparatus
JP6475107B2 (en) * 2015-06-25 2019-02-27 株式会社神戸製鋼所 Compressed air storage power generation apparatus and compressed air storage power generation method
JP6419058B2 (en) * 2015-11-06 2018-11-07 株式会社神戸製鋼所 Compressed air storage power generation apparatus and compressed air storage power generation method
CN105863751B (en) * 2016-06-01 2017-09-22 中国科学院工程热物理研究所 A kind of enclosed low temperature compressed air energy-storage system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277436A (en) * 1987-05-06 1988-11-15 Nippon Steel Corp Buffer storage system for power generation gas
JP2016121675A (en) * 2014-12-25 2016-07-07 株式会社神戸製鋼所 Compressed air energy storage power plant and compressed air energy storage power generation method
JP2016211464A (en) * 2015-05-11 2016-12-15 株式会社神戸製鋼所 Compressed air energy storage power generation device

Also Published As

Publication number Publication date
US10907542B2 (en) 2021-02-02
CN110546362A (en) 2019-12-06
US20200088095A1 (en) 2020-03-19
EP3613967A1 (en) 2020-02-26
JP6705770B2 (en) 2020-06-03
WO2018193768A1 (en) 2018-10-25
EP3613967A4 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP5985746B2 (en) Brayton cycle refrigerator
EP3296546B1 (en) Compressed air energy storage and power generation device
JP6571491B2 (en) heat pump
US10794278B2 (en) Compressed air storage power generation device
US11047302B2 (en) Compressed air energy storage power generation apparatus
EP3758190A1 (en) Compressed air energy storage and power generation device
US20180283222A1 (en) Device for controlling supply of working fluid
JP6796577B2 (en) Compressed air storage power generation device and compressed air storage power generation method
JP6705770B2 (en) Compressed air storage power generator
JP6689616B2 (en) Compressed air storage power generation device and compressed air storage power generation method
JP6731377B2 (en) Compressed air storage power generation device and compressed air storage power generation method
WO2018193769A1 (en) Compressed-air storage power generation device
JP6817908B2 (en) Compressed air storage power generation equipment and method
JP5572116B2 (en) Heat source system
JP6906013B2 (en) heat pump
JP6826962B2 (en) Compressed air storage power generation device and compressed air storage power generation method
JP2019027363A (en) Compressed air storage power generation device
JP6826155B2 (en) Exhaust heat recovery system
JP2022184621A (en) Compressed air storage and power generation system
JP2020122428A (en) Compressed air storage power generation apparatus and compressed air storage power generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200514

R151 Written notification of patent or utility model registration

Ref document number: 6705770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151