JP2018176215A - Ultrasound joint method for metallic foil and film exterior battery - Google Patents

Ultrasound joint method for metallic foil and film exterior battery Download PDF

Info

Publication number
JP2018176215A
JP2018176215A JP2017078588A JP2017078588A JP2018176215A JP 2018176215 A JP2018176215 A JP 2018176215A JP 2017078588 A JP2017078588 A JP 2017078588A JP 2017078588 A JP2017078588 A JP 2017078588A JP 2018176215 A JP2018176215 A JP 2018176215A
Authority
JP
Japan
Prior art keywords
heat
resin sheet
metal foil
reinforced resin
resistant fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017078588A
Other languages
Japanese (ja)
Other versions
JP6873798B2 (en
Inventor
悠平 土井
Yuhei Doi
悠平 土井
泰元 金
Tae-Won Kim
泰元 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2017078588A priority Critical patent/JP6873798B2/en
Publication of JP2018176215A publication Critical patent/JP2018176215A/en
Application granted granted Critical
Publication of JP6873798B2 publication Critical patent/JP6873798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress cracking and opening on current collectors 14, 15 upon ultrasound joint of the current collectors 14, 15 made of metallic foil with electrode tubs 3, 4 and to avoid problems, such as burr, due from a conventional protect metal plate.SOLUTION: Current collectors 14, 15 comprising a large number of positive electrodes and negative electrodes are respectively laminated on electrode tubs 3, 4 and jointed by ultrasound in thickness direction of the electrode tubs 3, 4 together with a heat resistance fiber reinforcement resin sheet 5. The sheet 5 is that whose fiber layer where glass fiber is woven in flat to form a grid shape is coated with PTFE and whose surface is uneven due to the fiber. Thereby, cracking and opening due to ultrasound energy on the current collectors 14, 15 are suppressed. The sheet 5 is flexible rather than the metal plate, thus no damage is provided on an inside layer of a laminate film 6 to be an outer body 2.SELECTED DRAWING: Figure 2

Description

この発明は、多数の金属箔と相対的に厚い金属板とを積層して互いに超音波接合する超音波接合方法の改良に関し、さらには、この超音波接合方法を利用して製造されるフィルム外装電池に関する。   The present invention relates to an improvement of an ultrasonic bonding method in which a large number of metal foils and a relatively thick metal plate are laminated and ultrasonically bonded to each other, and further, a film sheath manufactured using this ultrasonic bonding method It relates to the battery.

例えばリチウムイオン二次電池として、複数の正極および負極をセパレータを介して積層してなる電極積層体(発電要素とも呼ばれる)が、熱融着層を備えたラミネートフィルムからなる外装体の中に電解液とともに収容された偏平形状をなすフィルム外装電池が知られている。この種のフィルム外装電池にあっては、正極や負極の集電体を構成する金属箔の端部が活物質層から舌片状に突出しており、この舌片状部分を複数枚重ね合わせた上で、相対的に厚い金属板からなる電極タブの上に超音波接合した構成が一般的である。   For example, as a lithium ion secondary battery, an electrode laminate (also referred to as a power generation element) formed by laminating a plurality of positive electrodes and negative electrodes with a separator interposed therebetween is electrolyzed in an outer package made of a laminate film provided with a heat fusion layer. There is known a film-shaped battery having a flat shape which is accommodated with a liquid. In this type of film-clad battery, the end of the metal foil constituting the current collector of the positive electrode or the negative electrode protrudes like a tongue from the active material layer, and a plurality of such tongue-like portions are stacked. Above, the structure ultrasonically bonded on the electrode tab which consists of a relatively thick metal plate is common.

ここで、薄い金属箔は、超音波接合によって亀裂や穴空きが生じやすいため、特許文献1では、多数枚重ねた金属箔の上に、厚さが50μm〜200μm程度の同種金属からなる保護用の金属板を配して、ホーンとアンビルとの間で超音波接合を行うことが提案されている。   Here, since thin metal foils are susceptible to cracks and holes due to ultrasonic bonding, according to Patent Document 1, a protective metal layer made of similar metals having a thickness of about 50 μm to 200 μm is formed on a large number of metal foils. It is proposed to arrange the metal plate of the above and perform ultrasonic bonding between the horn and the anvil.

特開平10−244380号公報Japanese Patent Application Laid-Open No. 10-244380

上記の保護用の金属板は、例えば細長い長方形に裁断されて金属箔の上に重ねられるが、裁断した金属板をそのまま用いると、角や周縁に鋭利なバリやエッジが存在する。そのため、このバリやエッジによる新たな課題が発生し、これらに対する対策が必要となる。   The above-mentioned protective metal plate is, for example, cut into an elongated rectangular shape and stacked on a metal foil, but if the cut metal plate is used as it is, sharp burrs and edges are present at the corners and the periphery. Therefore, new problems occur due to the burrs and edges, and measures for these problems are required.

例えば、上述したフィルム外装電池にあっては、電極タブの超音波接合部の上にラミネートフィルムが重なるので、保護用の金属板のバリやエッジによってラミネートフィルムの内側面の樹脂層(通常は熱融着層である)が傷付き、ラミネートフィルム内部の金属層が電解液に触れて腐食が生じる虞がある。そのため、例えば、ラミネートフィルムの対応する部分に、ラミネートフィルム保護用の樹脂テープを局部的に貼着する、などの対策が必要となる。   For example, in the case of the film-clad battery described above, since the laminate film is superimposed on the ultrasonic bond of the electrode tab, the resin layer on the inner surface of the laminate film (usually heat) However, the metal layer inside the laminate film may come in contact with the electrolytic solution to cause corrosion. Therefore, for example, it is necessary to take measures such as sticking a resin film for protecting the laminate film locally to the corresponding part of the laminate film.

そこで、この発明は、多数の金属箔と相対的に厚い金属板とを積層して超音波接合するに際して、最外層の金属箔の上に金属板に代えて耐熱性繊維強化樹脂シートを重ねて超音波接合を行うようにした。   Therefore, in the present invention, when a large number of metal foils and relatively thick metal plates are laminated and ultrasonically bonded, a heat resistant fiber reinforced resin sheet is overlapped on the outermost metal foils instead of the metal plates. Ultrasonic bonding was performed.

このように耐熱性繊維強化樹脂シートを重ねて超音波接合することで、従来の保護用の金属板と同様に、超音波接合の際の金属箔の亀裂や穴空きを防止できる。そして、耐熱性繊維強化樹脂シートにあっては、従来の保護用の金属板に比較して遙かに柔軟なものとなるので、角や端縁によって他の部材を傷付けるようなことがない。   By superposing the heat-resistant fiber-reinforced resin sheets in this manner and ultrasonically bonding them, it is possible to prevent cracks and holes in the metal foil at the time of ultrasonic bonding, as in the case of conventional metal plates for protection. And in the heat resistant fiber reinforced resin sheet, since it becomes much more flexible as compared with the conventional metal plate for protection, it does not damage other members by the corner or the edge.

本発明の超音波接合方法は、例えば、電極積層体とラミネートフィルム製の外装体とを備えたフィルム外装電池の電極タブの接合に適用できる。この場合、電極タブの接合部において金属箔の上に重ねられた耐熱性繊維強化樹脂シートがラミネートフィルムの内側層を傷付ける虞がないので、ラミネートフィルム保護用の樹脂テープは不要であり、ラミネートフィルムの内側層が耐熱性繊維強化樹脂シートに対し露出した構成とすることができる。   The ultrasonic bonding method of the present invention can be applied to, for example, bonding of an electrode tab of a film-clad battery including an electrode laminate and an outer package made of a laminate film. In this case, there is no possibility that the heat-resistant fiber-reinforced resin sheet overlapped on the metal foil at the joint portion of the electrode tab may damage the inner layer of the laminate film, so no resin tape for laminate film protection is necessary. The inner layer of the above can be exposed to the heat resistant fiber reinforced resin sheet.

この発明によれば、超音波接合部の金属箔の保護のために、従来の保護用金属板に代えて耐熱性繊維強化樹脂シートを用いるようにしたので、保護用金属板のバリやエッジによる新たな課題の発生を回避することができる。   According to the present invention, the heat-resistant fiber reinforced resin sheet is used in place of the conventional protective metal plate to protect the metal foil of the ultrasonic bonding portion. It is possible to avoid the occurrence of new issues.

この発明に係るフィルム外装電池の斜視図。The perspective view of the film-clad battery concerning this invention. このフィルム外装電池の分解斜視図。The disassembled perspective view of this film-clad battery. このフィルム外装電池の要部の断面図。Sectional drawing of the principal part of this film-clad battery. 集電体の端部と電極タブとの接合部を示した電極積層体の要部の斜視図。The perspective view of the principal part of the electrode laminated body which showed the junction part of the edge part of an electrical power collector, and an electrode tab. 超音波接合装置を用いた接合工程を概略的に示した説明図。Explanatory drawing which showed roughly the joining process using the ultrasonic bonding apparatus. 接合部の金属組織の状態を示した図面代用写真。The drawing substitute photograph which showed the state of the metallographic structure of a junction. 電極タブの両側にそれぞれ集電体が配置された変形例を示す説明図。Explanatory drawing which shows the modification to which the collector was each arrange | positioned at the both sides of an electrode tab.

以下、この発明の接合方法をフィルム外装電池の電極タブの接合に適用した一実施例について説明する。   Hereinafter, an embodiment in which the bonding method of the present invention is applied to the bonding of electrode tabs of a film-clad battery will be described.

図1は、この発明が適用されるフィルム外装電池を示している。このフィルム外装電池は、例えば、電気自動車やハイブリッド自動車等の車両駆動用電源パックを構成する偏平形状をなすフィルム外装型リチウムイオン二次電池である。一実施例のフィルム外装電池は、特開2013−140782号公報や特開2015−37047号公報等に記載のものと基本的に同様の構成を有しており、矩形のシート状に構成した正極および負極をセパレータを介して複数積層して電極積層体1を構成し、この電極積層体1を、ラミネートフィルムからなる袋状の外装体2の中に電解液とともに収容したものである。電極積層体1は、一対の電極タブつまり正極タブ3と負極タブ4とを有し、この一対の電極タブ3,4は、外装体2を構成するラミネートフィルムの接合面から外部へ引き出されている。   FIG. 1 shows a film-clad battery to which the present invention is applied. This film-clad battery is, for example, a film-clad lithium ion secondary battery having a flat shape that constitutes a power supply pack for driving a vehicle such as an electric car or a hybrid car. The film-clad battery of one embodiment has basically the same structure as that described in JP-A-2013-140782, JP-A-2015-37047, etc., and a positive electrode formed in a rectangular sheet shape. A plurality of negative electrodes are stacked via a separator to form an electrode laminate 1, and the electrode laminate 1 is housed together with an electrolytic solution in a bag-like outer package 2 made of a laminate film. The electrode laminate 1 has a pair of electrode tabs, that is, a positive electrode tab 3 and a negative electrode tab 4, and the pair of electrode tabs 3 and 4 are drawn out from the bonding surface of the laminate film constituting the package 2. There is.

図2は、フィルム外装電池の分解斜視図、図3は、要部の断面図である。図3に示すように、電極積層体1においては、正極11と負極12とがセパレータ13を介して交互に積層されている。正極11は、集電体14となる金属箔具体的にはアルミニウム箔の両面に正極活物質をバインダを含むスラリとして塗布し、乾燥かつ圧延して所定の厚みの活物質層を形成したものである。負極12は、同様に、集電体15(図3には図示されていない)となる金属箔具体的には銅箔の両面に負極活物質をバインダを含むスラリとして塗布し、乾燥かつ圧延して所定の厚みの活物質層を形成したものである。セパレータ13は、正極11と負極12との間の短絡を防止すると同時に電解液を保持する機能を有するものであって、例えば、ポリエチレン(PE)やポリプロピレン(PP)等の熱可塑性合成樹脂の微多孔性膜あるいは不織布からなる。   FIG. 2 is an exploded perspective view of the film-clad battery, and FIG. 3 is a cross-sectional view of the main part. As shown in FIG. 3, in the electrode stack 1, the positive electrodes 11 and the negative electrodes 12 are alternately stacked via the separators 13. The positive electrode 11 is a metal foil to be the current collector 14. Specifically, a positive electrode active material is applied as a slurry containing a binder on both sides of an aluminum foil, dried and rolled to form an active material layer of a predetermined thickness. is there. Similarly, the negative electrode 12 is a metal foil that becomes the current collector 15 (not shown in FIG. 3). Specifically, a negative electrode active material is applied as a slurry containing a binder on both sides of a copper foil, dried and rolled. An active material layer having a predetermined thickness is formed. The separator 13 has a function of preventing a short circuit between the positive electrode 11 and the negative electrode 12 and at the same time holding an electrolytic solution. For example, fine particles of thermoplastic synthetic resin such as polyethylene (PE) or polypropylene (PP) are used. It consists of a porous membrane or a nonwoven fabric.

正極11の集電体14の一端部には、正極タブ3との溶接部となる舌片部14aが設けられている。この舌片部14aは、活物質層を具備せずに露出している。同様に、負極12の集電体15の一端部には、負極タブ4との溶接部となる舌片部15aが設けられている。この舌片部15aは、活物質層を具備せずに露出している。正極11側の舌片部14aと負極12側の舌片部15aは、図2に示すように、電極積層体1の一つの辺において、互いに重ならないようにそれぞれ片寄って配置されている。   At one end portion of the current collector 14 of the positive electrode 11, a tongue piece portion 14 a to be welded to the positive electrode tab 3 is provided. The tongue portion 14 a is exposed without the active material layer. Similarly, at one end of the current collector 15 of the negative electrode 12, a tongue piece portion 15 a to be welded to the negative electrode tab 4 is provided. The tongue piece 15a is exposed without the active material layer. The tongue piece 14a on the positive electrode 11 side and the tongue piece 15a on the negative electrode 12 side are disposed so as not to overlap each other on one side of the electrode stack 1, as shown in FIG.

そして、互いに重なる位置にある複数の舌片部14aは、正極タブ3の上に積層され、超音波接合により正極タブ3の厚さ方向に一体に接合されている。この超音波接合の際に、薄い金属箔からなる舌片部14aの上には、金属箔の亀裂や穴空きを防止するために、細長い長方形をなす耐熱性繊維強化樹脂シート5が重ねられており、この耐熱性繊維強化樹脂シート5と複数の舌片部14aと正極タブ3とが一体に超音波接合されている。負極12側についても同様であり、互いに重なる位置にある複数の舌片部15aが、負極タブ4の上に積層され、かつ最上部に細長い長方形をなす耐熱性繊維強化樹脂シート5を重ねた上で、超音波接合により負極タブ4の厚さ方向に一体に接合されている。   Then, the plurality of tongue pieces 14 a located at mutually overlapping positions are stacked on the positive electrode tab 3 and integrally joined in the thickness direction of the positive electrode tab 3 by ultrasonic bonding. At the time of this ultrasonic bonding, a heat-resistant fiber-reinforced resin sheet 5 in the form of an elongated rectangle is superimposed on the tongue piece portion 14a made of a thin metal foil in order to prevent cracks and holes in the metal foil. The heat-resistant fiber-reinforced resin sheet 5, the tongue portions 14a, and the positive electrode tab 3 are integrally ultrasonically bonded. The same applies to the negative electrode 12 side, and a plurality of tongue pieces 15a at mutually overlapping positions are stacked on the negative electrode tab 4, and a heat-resistant fiber-reinforced resin sheet 5 in an elongated rectangular shape is stacked on the top. Then, they are integrally joined in the thickness direction of the negative electrode tab 4 by ultrasonic bonding.

正極タブ3は、薄いアルミニウム板からなり、負極タブ4は、薄い銅板からなる。つまり、それぞれ集電体14,15と同種の金属から構成されている。これらの正極タブ3および負極タブ4は、金属箔からなる集電体14,15に比較して相対的に厚い。例えば、正極11側の集電体14となるアルミニウム箔は、15μm程度の厚さを有し、負極12側の集電体15となる銅箔は、8μm程度の厚さを有する。これに対し、アルミニウム板からなる正極タブ3は、400μm程度の厚さを有し、銅板からなる負極タブ4は、200μm程度の厚さを有する。   The positive electrode tab 3 is made of a thin aluminum plate, and the negative electrode tab 4 is made of a thin copper plate. That is, they are made of the same kind of metal as the current collectors 14 and 15, respectively. The positive electrode tab 3 and the negative electrode tab 4 are relatively thick as compared to the current collectors 14 and 15 made of metal foil. For example, the aluminum foil serving as the current collector 14 on the positive electrode 11 side has a thickness of about 15 μm, and the copper foil serving as the current collector 15 on the negative electrode 12 side has a thickness of about 8 μm. On the other hand, the positive electrode tab 3 made of an aluminum plate has a thickness of about 400 μm, and the negative electrode tab 4 made of a copper plate has a thickness of about 200 μm.

外装体2は、図2に示すように、上下2枚のシート状のラミネートフィルム6,7から構成されており、周縁の四辺を加熱融着することで袋状に構成される。より詳しくは、電極積層体1を収容した状態で一辺の注液口を残す形で3辺の加熱シールが行われ、注液後に注液口が封止される。図2に示した例では、電極積層体1の外形に対応した凹部が予めラミネートフィルム6,7にカップ成形されている。なお、1枚の大きなラミネートフィルムを用い、これを2つ折りとして3辺を加熱溶着するようにしてもよい。外装体2となるラミネートフィルム6,7は、例えば、アルミニウム箔の内側にポリプロピレンからなる熱融着層をラミネートするとともに、外側にポリアミド樹脂層およびポリエチレンテレフタレート樹脂層を保護層としてラミネートしてなる四層構造を有している。   As shown in FIG. 2, the exterior body 2 is composed of upper and lower two sheet-like laminate films 6, 7 and is formed into a bag shape by heat-sealing four sides of the peripheral edge. In more detail, the heat sealing of 3 sides is performed in the form which leaves the injection port of one side in the state which accommodated the electrode laminated body 1, and an injection port is sealed after injection. In the example shown in FIG. 2, the recessed part corresponding to the external shape of the electrode laminated body 1 is cup-shaped in advance in the laminate films 6 and 7. As shown in FIG. Note that one large laminate film may be used, and this may be folded in two, and the three sides may be heat-welded. The laminate films 6 and 7 to be the outer package 2 are, for example, a laminate of a heat seal layer made of polypropylene on the inside of aluminum foil and a laminate of a polyamide resin layer and a polyethylene terephthalate resin layer on the outside as a protective layer. It has a layered structure.

図2に示すように、正極タブ3および負極タブ4が接する下側のラミネートフィルム7の対応部位には、これら正極タブ3および負極タブ4の鋭利なエッジから熱融着層を保護するために、ポリアミド樹脂等の比較的強度の高い樹脂からなる保護テープ17が貼着されている。   As shown in FIG. 2, in order to protect the heat fusion layer from the sharp edges of the positive electrode tab 3 and the negative electrode tab 4 at the corresponding portions of the lower laminate film 7 in contact with the positive electrode tab 3 and the negative electrode tab 4. A protective tape 17 made of a relatively strong resin such as a polyamide resin is attached.

また、ラミネートフィルム6,7の接合面に挟み込まれる電極タブ3,4の表面には、加熱シール時のシール線が横切る部分に対応して、「先付け樹脂」と呼ばれる合成樹脂層18が予め帯状に設けられている。ラミネートフィルム6,7の周縁が電極タブ3,4と交差する部位では、この合成樹脂層18の上にラミネートフィルム6,7の熱融着層が接合されている。例えば、2枚の帯状のポリプロピレンフィルムを電極タブ3,4の両面に貼着することで、電極タブ3,4を挟み込むような形に合成樹脂層18が形成されている。   In addition, on the surfaces of the electrode tabs 3 and 4 sandwiched by the bonding surfaces of the laminate films 6 and 7, a synthetic resin layer 18 called “first attached resin” is band-shaped in advance corresponding to the portion crossed by the seal line at the time of heat sealing. Provided in Where the peripheral edges of the laminate films 6 and 7 intersect the electrode tabs 3 and 4, the heat seal layer of the laminate films 6 and 7 is bonded onto the synthetic resin layer 18. For example, by sticking two strip-like polypropylene films on both surfaces of the electrode tabs 3 and 4, the synthetic resin layer 18 is formed in such a shape as to sandwich the electrode tabs 3 and 4.

なお、図3は、正極タブ3の部分における断面の構成を模式的に示している。負極タブ4の部分においても基本的に同様の構成となる。この図3においては、各部の寸法関係や正極11および負極12の数、等は必ずしも正確なものではない。例えば一例においては、20枚程度の正極11と20枚程度の負極12とが交互に積層されている。   In addition, FIG. 3 has shown the structure of the cross section in the part of the positive electrode tab 3 typically. The configuration of the negative electrode tab 4 is basically the same. In FIG. 3, the dimensional relationship of each part, the number of positive electrodes 11 and negative electrodes 12, etc. are not necessarily accurate. For example, in one example, about 20 positive electrodes 11 and about 20 negative electrodes 12 are alternately stacked.

図4は、超音波接合により集電体14,15の舌片部14a,15aに接合された正極タブ3および負極タブ4の接合部分を示している。符号21で示す細長い長方形部分が超音波接合による溶接部であり、電極タブ3,4の幅方向に沿ってそれぞれ3個の溶接部21が間隔を置いて一直線上に配置されている。耐熱性繊維強化樹脂シート5は、3個の溶接部21の全体を覆いうる長さを有する細長い長方形に裁断されている。   FIG. 4 shows the joint portion of the positive electrode tab 3 and the negative electrode tab 4 joined to the tongue piece portions 14a and 15a of the current collectors 14 and 15 by ultrasonic bonding. An elongated rectangular portion indicated by reference numeral 21 is a welded portion by ultrasonic bonding, and three welded portions 21 are respectively disposed on a straight line at intervals along the width direction of the electrode tabs 3 and 4. The heat-resistant fiber-reinforced resin sheet 5 is cut into an elongated rectangular shape having a length that can cover the entire three welds 21.

図5は、超音波接合を行う超音波接合装置25の一例を示している。超音波接合装置25は、溶接部21の下面側に配置されるアンビル26と、図示せぬ加振装置に連結されたホーン27と、を備え、ホーン27の先端には、超音波接合用工具つまりチップ28が設けられている。ホーン27は、略水平方向に延びた丸棒状をなし、その長手方向(図の左右方向)に沿って図示せぬ加振装置により加振される。そして、ホーン27の振動の腹となる位置に、ワークと接触する実質的な加工部となるチップ28が配置されている。図5では、ホーン27とアンビル26とが互いに開いた位置で描かれているが、加工時には、アンビル26が所定の高さ位置まで上昇し、かつホーン27が図示せぬ加圧機構によりアンビル26へ向かって所定の荷重でもって加圧される。つまり、超音波接合装置25は、ワークをホーン27とアンビル26との間で加圧しながら超音波振動を与える。   FIG. 5 shows an example of an ultrasonic bonding apparatus 25 that performs ultrasonic bonding. The ultrasonic bonding device 25 includes an anvil 26 disposed on the lower surface side of the welding portion 21 and a horn 27 connected to a vibration device (not shown), and the tip of the horn 27 is a tool for ultrasonic bonding. That is, the chip 28 is provided. The horn 27 is in the form of a substantially horizontally extending round rod, and is vibrated by a vibration device (not shown) along its longitudinal direction (left and right direction in the figure). And, at a position that is the antinode of the vibration of the horn 27, a tip 28 which is to be a substantially processed portion in contact with the work is disposed. In FIG. 5, the horn 27 and the anvil 26 are drawn in the mutually open position, but at the time of processing, the anvil 26 ascends to a predetermined height position, and the horn 27 is anvil 26 by a pressing mechanism (not shown). It is pressurized with a predetermined load toward the end. That is, the ultrasonic bonding apparatus 25 applies ultrasonic vibration while pressing the workpiece between the horn 27 and the anvil 26.

また、超音波接合装置25は、ワークとなる電極タブ3,4と複数の集電体14,15(舌片部14a,15a)と耐熱性繊維強化樹脂シート5とを互いに積層した状態で保持するクランプ機構29を備えている。このクランプ機構29は、アンビル26およびホーン27と干渉しない位置でワークを保持している。   The ultrasonic bonding device 25 holds the electrode tabs 3 and 4 as work pieces, the plurality of current collectors 14 and 15 (the tongues 14a and 15a), and the heat resistant fiber reinforced resin sheet 5 in a mutually laminated state. Clamp mechanism 29 is provided. The clamp mechanism 29 holds the work at a position not interfering with the anvil 26 and the horn 27.

一実施例においては、アンビル26の上に電極タブ3,4が位置し、ホーン27が接する最上部に耐熱性繊維強化樹脂シート5が配置される。なお、ホーン27が電極タブ3,4に接するように逆に配置し、集電体14,15とアンビル26との間に耐熱性繊維強化樹脂シート5を配置するようにしてもよい。   In one embodiment, the electrode tabs 3 and 4 are located on the anvil 26, and the heat-resistant fiber reinforced resin sheet 5 is disposed on the top where the horn 27 contacts. Alternatively, the horn 27 may be reversely disposed so as to be in contact with the electrode tabs 3 and 4, and the heat resistant fiber reinforced resin sheet 5 may be disposed between the current collectors 14 and 15 and the anvil 26.

チップ28は、個々の溶接部21の大きさに対応した細長い長方形の板状をなしている。チップ28は、例えば、工具鋼等を用いてホーン27とは別の部品として形成し、ホーン27に取り付けて用いることができる。あるいは、ホーン27の一部として、ホーン27に直接に形成するようにしてもよい。図5の例では、ホーン27の振動方向は、チップ28の幅方向(チップ28の長手方向と直交する方向)に沿ったものとなる。   The tips 28 are in the form of elongated rectangular plates corresponding to the size of the individual welds 21. The tip 28 can be formed as a component separate from the horn 27 using, for example, tool steel or the like, and can be attached to the horn 27 and used. Alternatively, it may be formed directly on the horn 27 as a part of the horn 27. In the example of FIG. 5, the vibration direction of the horn 27 is along the width direction of the chip 28 (the direction orthogonal to the longitudinal direction of the chip 28).

チップ28の加工面は、図示は省略するが、規則的に配列された複数のピラミッド状(つまり四角錐形状)の凸部を備えており、いわゆるローレット状の構成となっている。一つの実施例では、各々の凸部は、四角錐の底辺がチップ28の長辺および短辺と平行をなすように、縦横に配列されている。四角錐の底辺がチップ28の長辺および短辺に対し45°程度で傾斜した配置としてもよい。   The machined surface of the chip 28 is provided with a plurality of regularly arranged pyramidal (i.e., quadrangular pyramidal) convex portions (not shown), and has a so-called knurled configuration. In one embodiment, the convexes are arranged vertically and horizontally so that the base of the quadrangular pyramid is parallel to the long and short sides of the chip 28. The base of the quadrangular pyramid may be inclined at about 45 ° with respect to the long side and the short side of the tip 28.

また、アンビル26の加工面は、一実施例においては、チップ28の加工面と同様に、規則的に配列された複数のピラミッド状(つまり四角錐形状)の凸部を備えている。アンビル26は、平坦な加工面を有するものであってもよい。   Further, in one embodiment, the machining surface of the anvil 26 is provided with a plurality of pyramid-shaped (that is, quadrangular pyramidal) convex portions regularly arranged in the same manner as the machining surface of the tip 28. The anvil 26 may have a flat processing surface.

集電体14,15とホーン27との間に配置される耐熱性繊維強化樹脂シート5は、耐熱性に優れた合成樹脂例えばフッ素樹脂の層の中に、強化用の繊維としてガラス繊維やセラミックス繊維を含み、薄いシート状に構成されたものである。合成樹脂としては、フッ素樹脂以外の耐熱性樹脂を用いてもよい。好ましい実施例においては、ガラス繊維が適宜な大きさの目を有する格子状の織布(換言すれば平織りの織布)として構成されており、この織布の両面ないし片面に、耐熱性樹脂としてポリテトラフルオロエチレン(PTFE)がコーティングされている。このシート5の厚さは、一例では、75μm程度であり、耐熱性樹脂が比較的薄くコーティングされていることから、平織り状のガラス繊維による凹凸がシート5の表面に出現している。つまり、シート5の表面は平滑面ではなく粗面となっている。格子状をなす目の大きさは、例えば、数十μm〜数百μm程度に設定される。   The heat-resistant fiber-reinforced resin sheet 5 disposed between the current collectors 14 and 15 and the horn 27 is made of glass fibers or ceramics as reinforcing fibers in a layer of synthetic resin having excellent heat resistance such as fluorocarbon resin. It contains fibers and is configured in a thin sheet. As a synthetic resin, you may use heat resistant resins other than a fluorine resin. In a preferred embodiment, the glass fibers are configured as a grid-like woven fabric (in other words plain woven fabric) with appropriately sized eyes, and on both sides or one side of this woven fabric as a heat resistant resin It is coated with polytetrafluoroethylene (PTFE). The thickness of the sheet 5 is about 75 μm in one example, and since the heat resistant resin is coated relatively thinly, unevenness due to the plain weave glass fiber appears on the surface of the sheet 5. That is, the surface of the sheet 5 is not smooth but rough. The size of the grid-like eye is set to, for example, about several tens of μm to several hundreds of μm.

なお、耐熱性繊維強化樹脂シート5としては、上記の織布の形態のもののほか、繊維をそのままあるいは糸状とした上で合成樹脂層内に不規則に配合した構成のものであってもよい。   The heat-resistant fiber-reinforced resin sheet 5 may have a configuration in which the fibers are mixed as they are or in the form of threads and irregularly mixed in the synthetic resin layer, in addition to the above-mentioned form of the woven fabric.

このような耐熱性繊維強化樹脂シート5をアンビル26との間に配置して超音波接合を行うと、超音波振動によりチップ28の加工面から加えられるエネルギによってシート5の合成樹脂部分が局部的に軟化ないし溶融するが、シート5に含まれる繊維層が軟化溶融した合成樹脂とともに金属箔(集電体14,15)を保護し、金属箔の亀裂や穴空きが抑制される。また、耐熱性繊維強化樹脂シート5は、下層の金属箔への振動エネルギの伝達を損なうことがなく、従来技術における保護用の金属板を重ねる場合と同様の供給エネルギおよび加工時間でもって超音波接合が可能である。シート5の表面の凹凸は、シート5表面での滑りを抑制し、チップ28から下層の金属箔への振動エネルギの効率のよい伝達に寄与する。   When such heat-resistant fiber-reinforced resin sheet 5 is disposed between it and the anvil 26 and ultrasonic bonding is performed, the synthetic resin portion of the sheet 5 is locally localized by the energy applied from the processing surface of the tip 28 by ultrasonic vibration. Although the fiber layer contained in the sheet 5 protects the metal foil (current collectors 14 and 15) together with the softened and melted synthetic resin, cracks and holes in the metal foil are suppressed. In addition, the heat-resistant fiber-reinforced resin sheet 5 does not impair the transmission of vibrational energy to the metal foil in the lower layer, and ultrasonic waves are supplied with the same energy and processing time as in the case of stacking metal plates for protection in the prior art. Bonding is possible. The unevenness on the surface of the sheet 5 suppresses slippage on the surface of the sheet 5 and contributes to the efficient transfer of vibrational energy from the chip 28 to the metal foil in the lower layer.

図6は、実際の超音波接合による溶接部21を耐熱性繊維強化樹脂シート5側から見た写真である。この例は、厚さ15μmのアルミニウム箔からなる正極11側の集電体14を20枚積層し、厚さ400μmの正極タブ3の上に重ね、集電体14の最上部に上述した例の耐熱性繊維強化樹脂シート5を配して、超音波接合を行ったものである。超音波接合の加工条件としては、加圧力を700N、振幅を45μm、供給エネルギを100J、とした。図示するように、ホーン27のチップ28が備えるピラミッド状の凸部に対応してピラミッド状に窪んだ圧痕が生じているが、個々の圧痕の周囲にもガラス繊維が合成樹脂とともに存在する。集電体14には、亀裂や穴空きは認められない。   FIG. 6 is a photograph of the actual welded portion 21 by ultrasonic bonding as viewed from the heat resistant fiber reinforced resin sheet 5 side. In this example, 20 current collectors 14 on the side of positive electrode 11 made of aluminum foil with a thickness of 15 μm are laminated, stacked on positive electrode tab 3 with a thickness of 400 μm, and the top of current collector 14 The heat-resistant fiber reinforced resin sheet 5 is disposed, and ultrasonic bonding is performed. As processing conditions for ultrasonic bonding, a pressure of 700 N, an amplitude of 45 μm, and a supplied energy of 100 J were used. As shown in the drawing, pyramidal depressions are produced corresponding to the pyramidal projections of the tips 28 of the horn 27. However, glass fibers are also present around the individual indentations together with the synthetic resin. The current collector 14 does not have any cracks or holes.

なお、発明者の実験によれば、繊維層を含まない合成樹脂シートであると、超音波エネルギによって樹脂が軟化溶融して拡がってしまい、金属箔を保護する作用は得られなかった。また、逆に、合成樹脂を含まないガラス繊維の織布であると、超音波エネルギによって繊維が粉となって拡散するに過ぎず、やはり金属箔を保護する作用は得られなかった。   According to the inventor's experiments, if the synthetic resin sheet does not contain the fiber layer, the resin is softened and melted by ultrasonic energy and spreads, and the effect of protecting the metal foil is not obtained. Also, conversely, if the woven fabric is a glass fiber that does not contain a synthetic resin, the fiber is only dispersed as powder by ultrasonic energy, and the effect of protecting the metal foil is not obtained.

このように、超音波接合時の集電体14,15の保護のために耐熱性繊維強化樹脂シート5を用いる本発明によれば、特許文献1に開示された従来の保護用金属板と同様に集電体14,15の亀裂や穴空きの抑制が達成できる。   Thus, according to the present invention using the heat resistant fiber reinforced resin sheet 5 for protecting the current collectors 14 and 15 at the time of ultrasonic bonding, it is similar to the conventional protective metal plate disclosed in Patent Document 1 It is possible to achieve suppression of cracks and holes in the current collectors 14 and 15.

そして、耐熱性繊維強化樹脂シート5においては、特許文献に開示された保護用金属板に比較して遙かに柔軟であるため、周囲の端縁や角によって他の部材を傷付けることがない。より具体的には、電極タブ3,4の溶接部21に重なるラミネートフィルム6の内側層つまり熱融着層を傷付ける虞がない。そのため、熱融着層の保護のためにラミネートフィルム6の内側面に保護テープを貼着する必要がない。図3に示すように、電極積層体1が外装体2内に収容された状態では、ラミネートフィルム6の内側面(熱融着層)は耐熱性繊維強化樹脂シート5に対し露出している。   And in the heat resistant fiber reinforced resin sheet 5, since it is much softer compared with the metal plate for protection disclosed in patent documents, other members will not be damaged by the peripheral edge or corner. More specifically, there is no risk of damaging the inner layer of the laminate film 6, that is, the heat seal layer, which overlaps the welds 21 of the electrode tabs 3 and 4. Therefore, it is not necessary to apply a protective tape to the inner surface of the laminate film 6 to protect the heat seal layer. As shown in FIG. 3, in the state where the electrode laminate 1 is accommodated in the exterior body 2, the inner side surface (heat fusion layer) of the laminate film 6 is exposed to the heat resistant fiber reinforced resin sheet 5.

また、上記の耐熱性繊維強化樹脂シート5においては、超音波接合装置25による加工時に粉塵の発生が抑制される。すなわち、金属箔などの金属製のワークに対しチップ28が超音波振動を加えると、微細な金属粉が発生し飛散する。この金属粉がフィルム外装電池内に侵入することは好ましくなく、何らかの手段で除去する必要が生じる。これに対し、耐熱性繊維強化樹脂シート5を金属箔の上に重ねた上記実施例においては、加工時に溶融した合成樹脂がチップ28と金属面との接触点付近に介在するので、金属粉の発生自体が少なくなるとともに、仮に発生しても溶融樹脂に包み込まれて飛散しないため、粉塵の発生が抑制される。   Further, in the heat-resistant fiber-reinforced resin sheet 5 described above, generation of dust is suppressed at the time of processing by the ultrasonic bonding device 25. That is, when the tip 28 applies ultrasonic vibration to a metal work such as metal foil, fine metal powder is generated and scattered. It is not desirable for the metal powder to intrude into the film-clad battery, and it needs to be removed by some means. On the other hand, in the above embodiment in which the heat-resistant fiber reinforced resin sheet 5 is stacked on the metal foil, the synthetic resin melted at the time of processing intervenes near the contact point between the chip 28 and the metal surface. While the generation itself is reduced, the generation of dust is suppressed because it is encased in the molten resin and does not scatter even if it occurs temporarily.

さらに、自動化したラインにおいて、超音波接合後に耐熱性繊維強化樹脂シート5の位置を画像検査により確認する場合に、耐熱性繊維強化樹脂シート5は周囲の金属箔や電極タブ3,4と反射率が大きく異なることから、位置検出が確実かつ容易であり、誤検出が少ない。例えば特許文献1に開示されるように集電体となる金属箔や電極タブと同種の金属からなる保護用金属板を用いた場合には、保護用金属板と周囲との反射率の差や色の差がないので、画像検査による保護用金属板の位置検出に際し、誤検出が生じやすい。   Furthermore, in the automated line, when the position of the heat-resistant fiber-reinforced resin sheet 5 is confirmed by image inspection after ultrasonic bonding, the heat-resistant fiber-reinforced resin sheet 5 reflects the surrounding metal foil and the electrode tabs 3, 4 The position detection is reliable and easy, and there are few false detections. For example, in the case of using a protective metal plate made of the same kind of metal as the metal foil or electrode tab as a collector as disclosed in Patent Document 1, the difference in reflectance between the protective metal plate and the surroundings, Since there is no color difference, erroneous detection is likely to occur when detecting the position of the protective metal plate by image inspection.

以上、この発明の一実施例を説明したが、本発明の超音波接合方法は、上記実施例に限定されず、電池以外の分野においても、多数の金属箔と相対的に厚い金属板とを積層して超音波接合する種々の用途に適用することができる。なお、ホーンやアンビルの加工面が平坦である場合にも、本発明は適用が可能であり、上述した実施例と同様の作用効果を得ることができる。   As mentioned above, although one Example of this invention was described, the ultrasonic bonding method of this invention is not limited to the said Example, Also in the field | area other than a battery, many metal foil and a relatively thick metal plate It can be applied to various applications of laminating and ultrasonic bonding. The present invention is applicable even when the processing surfaces of the horn and the anvil are flat, and the same effects as those of the above-described embodiment can be obtained.

また、図7に例示するように、相対的に厚い金属板51の両側に多数の金属箔52を積層して金属板51の厚さ方向に一体に超音波接合する場合にも、本発明は適用が可能である。この場合は、ホーン側およびアンビル側の双方に耐熱性繊維強化樹脂シート53が重ねられることとなる。   Further, as illustrated in FIG. 7, the present invention is also applicable to the case where multiple metal foils 52 are laminated on both sides of a relatively thick metal plate 51 and ultrasonic bonding is integrally performed in the thickness direction of the metal plate 51. It is applicable. In this case, the heat resistant fiber reinforced resin sheet 53 is overlapped on both the horn side and the anvil side.

1…電極積層体
2…外装体
3,4…電極タブ
5…耐熱性繊維強化樹脂シート
11…正極
12…負極
13…セパレータ
14,15…集電体
21…溶接部
25…超音波接合装置
26…アンビル
27…ホーン
51…金属板
52…金属箔
53…耐熱性繊維強化樹脂シート
DESCRIPTION OF SYMBOLS 1 ... Electrode laminated body 2 ... Exterior body 3, 4 ... Electrode tab 5 ... Heat resistant fiber reinforced resin sheet 11 ... Positive electrode 12 ... Negative electrode 13 ... Separator 14, 15 ... Current collector 21 ... Welding part 25 ... Ultrasonic bonding apparatus 26 ... anvil 27 ... horn 51 ... metal plate 52 ... metal foil 53 ... heat resistant fiber reinforced resin sheet

Claims (6)

多数の金属箔と相対的に厚い金属板とを積層し、超音波接合装置のホーンとアンビルとの間で加圧しつつ超音波振動を加えて接合する接合方法において、
ホーン側もしくはアンビル側となる最外層の金属箔と当該ホーンもしくはアンビルとの間に、耐熱性繊維強化樹脂シートを重ねて超音波接合を行う、ことを特徴とする金属箔の超音波接合方法。
In a bonding method in which a large number of metal foils and a relatively thick metal plate are laminated, and ultrasonic vibration is applied while bonding between a horn and an anvil of an ultrasonic bonding device to bond them.
A method of ultrasonically bonding a metal foil, comprising superposing a heat resistant fiber reinforced resin sheet between the horn or anvil and the outermost metal foil on the horn side or the anvil side.
上記耐熱性繊維強化樹脂シートは、繊維による凹凸を表面に有する、ことを特徴とする請求項1に記載の金属箔の超音波接合方法。   The said heat-resistant fiber reinforced resin sheet has the unevenness | corrugation by a fiber on the surface, The ultrasonic bonding method of metal foil of Claim 1 characterized by the above-mentioned. 上記耐熱性繊維強化樹脂シートは、ガラス繊維の織物に耐熱性合成樹脂をコーティングした構成を有する、ことを特徴とする請求項1または2に記載の金属箔の超音波接合方法。   The ultrasonic bonding method of metal foil according to claim 1 or 2, wherein the heat-resistant fiber-reinforced resin sheet has a structure in which a glass fiber woven fabric is coated with a heat-resistant synthetic resin. 上記耐熱性繊維強化樹脂シートは、合成樹脂としてフッ素樹脂を用いている、ことを特徴とする請求項1〜3のいずれかに記載の金属箔の超音波接合方法。   The said heat-resistant fiber reinforced resin sheet is using the fluororesin as a synthetic resin, The ultrasonic bonding method of the metal foil in any one of the Claims 1-3 characterized by the above-mentioned. 上記ホーンおよび上記アンビルの少なくとも一方の加工面には、ピラミッド状の複数の凸部が並んで設けられている、ことを特徴とする請求項1〜4のいずれかに記載の金属箔の超音波接合方法。   The ultrasonic wave of the metal foil according to any one of claims 1 to 4, wherein a plurality of pyramidal convex portions are provided side by side on at least one of the processing surfaces of the horn and the anvil. Bonding method. シート状に裁断された正・負の電極がセパレータを介して複数積層され、かつこれら電極の金属箔からなる集電体の端部に、相対的に厚い金属板からなる電極タブが接合されてなる電極積層体と、
この電極積層体を電解液とともに収容するとともに、上記電極タブが接合面から引き出されたラミネートフィルムからなる外装体と、
を備えたフィルム外装電池において、
上記集電体の端部と上記電極タブとは、複数の集電体の端部が電極タブとともに重ね合わされているとともに、最外面の集電体の上に耐熱性繊維強化樹脂シートを備え、これらが電極タブの厚さ方向に一体化されており、
上記外装体のラミネートフィルムの内側層は上記耐熱性繊維強化樹脂シートに対し露出している、ことを特徴とするフィルム外装電池。
A plurality of positive and negative electrodes cut into a sheet are laminated via a separator, and an electrode tab made of a relatively thick metal plate is joined to an end of a current collector made of a metal foil of these electrodes. An electrode stack,
An exterior body made of a laminated film in which the electrode stack is accommodated together with an electrolytic solution and the electrode tab is pulled out from the bonding surface;
In a film-clad battery provided with
The end portions of the current collector and the electrode tab are provided with a heat resistant fiber reinforced resin sheet on the outermost surface of the current collector, while the ends of the plurality of current collectors are stacked together with the electrode tab. These are integrated in the thickness direction of the electrode tab,
An inner layer of a laminate film of the outer package is exposed to the heat resistant fiber reinforced resin sheet, A film outer battery characterized in that:
JP2017078588A 2017-04-12 2017-04-12 Manufacturing method of film exterior battery and film exterior battery Active JP6873798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017078588A JP6873798B2 (en) 2017-04-12 2017-04-12 Manufacturing method of film exterior battery and film exterior battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017078588A JP6873798B2 (en) 2017-04-12 2017-04-12 Manufacturing method of film exterior battery and film exterior battery

Publications (2)

Publication Number Publication Date
JP2018176215A true JP2018176215A (en) 2018-11-15
JP6873798B2 JP6873798B2 (en) 2021-05-19

Family

ID=64280522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017078588A Active JP6873798B2 (en) 2017-04-12 2017-04-12 Manufacturing method of film exterior battery and film exterior battery

Country Status (1)

Country Link
JP (1) JP6873798B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020170639A (en) * 2019-04-03 2020-10-15 積水化学工業株式会社 Laminated battery
CN113263252A (en) * 2021-04-27 2021-08-17 昆山聚创新能源科技有限公司 Welding method of lithium battery tab
CN113519086A (en) * 2019-03-12 2021-10-19 日本汽车能源株式会社 Bus bar and battery module using same
CN116727826A (en) * 2023-05-24 2023-09-12 广东东博智能装备股份有限公司 Ultrasonic welding equipment for battery cell electrode lugs

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113519086A (en) * 2019-03-12 2021-10-19 日本汽车能源株式会社 Bus bar and battery module using same
CN113519086B (en) * 2019-03-12 2024-05-10 日本汽车能源株式会社 Bus bar and battery module using same
JP2020170639A (en) * 2019-04-03 2020-10-15 積水化学工業株式会社 Laminated battery
CN113263252A (en) * 2021-04-27 2021-08-17 昆山聚创新能源科技有限公司 Welding method of lithium battery tab
CN116727826A (en) * 2023-05-24 2023-09-12 广东东博智能装备股份有限公司 Ultrasonic welding equipment for battery cell electrode lugs
CN116727826B (en) * 2023-05-24 2024-01-09 广东东博智能装备股份有限公司 Ultrasonic welding equipment for battery cell electrode lugs

Also Published As

Publication number Publication date
JP6873798B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
JP5899938B2 (en) Secondary battery manufacturing method, secondary battery
JP2018176215A (en) Ultrasound joint method for metallic foil and film exterior battery
CN105364295B (en) Ultrasonic welding device, method of manufacturing rechargeable battery, and rechargeable battery
EP2804240A1 (en) Method for manufacturing packed electrode, packed electrode, secondary battery, and heat sealing machine
WO2017149949A1 (en) Method for manufacturing electrode body, and method for manufacturing nonaqueous electrolyte secondary battery
JP6232849B2 (en) Electricity storage element
JP5851785B2 (en) Battery and manufacturing method thereof
EP3738704A1 (en) Electrode assembly having different-sized pressure-welded portions of electrode tab-welded joint and ultrasonic welding device for manufacturing same
JP6163847B2 (en) Secondary battery
JP6342231B2 (en) Battery negative terminal
WO2013047778A1 (en) Battery and method for manufacturing same
JP2007250310A (en) Film-armored electric device, and method of manufacturing same
JP6491548B2 (en) Secondary battery manufacturing method and manufacturing apparatus
JP3997430B2 (en) Film-clad battery and method for producing film-clad battery
JP2017091614A (en) Film outer package battery
KR102186301B1 (en) Ultrasonic welding tool and ultrasonic welding method
JP2003257409A (en) Terminal connecting structure for polymer secondary battery and its terminal connecting method
JP6342192B2 (en) Negative electrode terminal for battery and manufacturing method thereof
JP2009187674A (en) Method of welding sheet-like electrode in laminated state to tab with ultrasonic wave
JP6227756B2 (en) Battery terminals and batteries
JP2018195393A (en) Manufacturing method of film sheathing battery and film sheathing battery
JP2019003842A (en) Film sheathing battery and manufacturing method therefor
JP7048356B2 (en) Joining device between electrode current collector and electrode tab
JP2018120803A (en) Method for manufacturing film package battery and film package battery
US11276897B2 (en) Stacked battery and battery module

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210224

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210421

R150 Certificate of patent or registration of utility model

Ref document number: 6873798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250