JP2018176127A - Method for removing nitrate nitrogen and nitrate nitrogen remover - Google Patents

Method for removing nitrate nitrogen and nitrate nitrogen remover Download PDF

Info

Publication number
JP2018176127A
JP2018176127A JP2017083543A JP2017083543A JP2018176127A JP 2018176127 A JP2018176127 A JP 2018176127A JP 2017083543 A JP2017083543 A JP 2017083543A JP 2017083543 A JP2017083543 A JP 2017083543A JP 2018176127 A JP2018176127 A JP 2018176127A
Authority
JP
Japan
Prior art keywords
nitrate nitrogen
nitrate
yeast
nitrogen
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017083543A
Other languages
Japanese (ja)
Other versions
JP6769615B2 (en
Inventor
正志 西田
Masashi Nishida
正志 西田
泰三 八田
Taizo Hatta
泰三 八田
岩原 正宜
Masayoshi Iwahara
正宜 岩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OFFICE YOKOO KK
Original Assignee
OFFICE YOKOO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OFFICE YOKOO KK filed Critical OFFICE YOKOO KK
Priority to JP2017083543A priority Critical patent/JP6769615B2/en
Publication of JP2018176127A publication Critical patent/JP2018176127A/en
Application granted granted Critical
Publication of JP6769615B2 publication Critical patent/JP6769615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for removing nitrate nitrogen and a nitrate nitrogen remover capable of effectively and safely and efficiently removing environmental water such as groundwater and nitrate nitrogen in soil.SOLUTION: A method for removing nitrate nitrogen includes yeast belonging to Rhodotorula graminis, Pichia capsulata or Rhodosporidium sphaerocarpum and capable of assimilating nitrate nitrogen, and contacting the culture or extract thereof with environmental water containing nitrate nitrogen or soil to remove nitrate nitrogen.SELECTED DRAWING: Figure 11

Description

本発明は、硝酸性窒素の除去方法及び硝酸性窒素除去剤に関し、特に、硝酸性窒素を含む環境水又は土壌中に含まれる硝酸性窒素を、その安全性が既に認められている菌株であるロドトルーラ属、ピヒア属又はロドスポリジウム属に属する酵母を用いて除去できる、硝酸性窒素の除去方法及び硝酸性窒素除去剤に関する。   TECHNICAL FIELD The present invention relates to a method for removing nitrate nitrogen and a nitrate nitrogen removing agent, and in particular, a strain for which the safety has already been recognized for nitrate nitrogen contained in environmental water or soil containing nitrate nitrogen. The present invention relates to a method for removing nitrate nitrogen and a nitrate nitrogen remover that can be removed using a yeast belonging to Rhodotorula, Pichia or Rhodosporidium.

近年、全国的に広がる地下水等の環境水の硝酸性窒素による汚染は、近代集約農業の副作用によるものであると言われている。
これは、不適切に処理された家畜排せつ物あるいは過剰に施用された肥料や生活用水に含まれる窒素が、アンモニア性窒素、亜硝酸性窒素や硝酸性窒素になって地下に浸透するためである。
アンモニア性窒素は、土壌に固定されやすく、亜硝酸は不安定であり、すぐに酸化されて硝酸に変化するため、主として硝酸性窒素のみが地下水に移行して、地下水の硝酸性窒素の汚染につながっている。
In recent years, the pollution of environmental water such as ground water that spreads nationwide is said to be due to the side effects of modern intensive agriculture.
This is because nitrogen contained in improperly treated livestock excrement or excessively applied fertilizer or domestic water becomes ammonia nitrogen, nitrite nitrogen or nitrate nitrogen and penetrates underground.
Ammonia nitrogen is easily fixed to the soil, nitrous acid is unstable, and it is oxidized immediately to nitric acid, so mainly only nitrate nitrogen is transferred to groundwater, causing nitrate nitrogen contamination in groundwater. linked.

具体的には、農業等で散布する施肥料の使用窒素量が土壌微生物による適正な天然の窒素循環処理能力を上回り、堆肥の流通使用の促進で過剰に蓄積した硝酸性窒素が、土壌中の浸透水に溶脱し、地下水に移行する。その結果、各地域等で設定されている環境基準値以上の硝酸性窒素が、地下水に含まれてしまい、地下水を汚染してしまう現象が起きている。   Specifically, the amount of nitrogen used by fertilizers to be sprayed in agriculture etc. exceeds the natural nitrogen recycling capacity of soil microorganisms, and nitrate nitrogen accumulated in excess in soil by promoting distribution of compost is used in the soil. It leaches into infiltrating water and shifts to groundwater. As a result, the phenomenon that the nitrate nitrogen more than the environmental standard value set in each area etc. is contained in groundwater and pollutes groundwater occurs.

また、硝酸性窒素が過剰に含まれる地下水を利用して生育された農作物や牧草等には、結果として、過剰に硝酸塩が含有されることとなり、将来の人畜等の飲食材としての安全性の低下を招く懸念となっている。
従って、地下水中の硝酸性窒素の除去対策に有効な手段を構築することの社会的意義は大きい。
In addition, as a result, agricultural products and grass grown using ground water containing excess nitrate nitrogen will contain excess nitrate as a result, and it will be safe as a food and drink material for future animals and animals, etc. It has become a concern that causes a decline.
Therefore, the social significance of constructing effective measures for the removal of nitrate nitrogen in groundwater is great.

従来から検討されている排水中に含まれる窒素の脱窒素処理法としては、イオン交換法と微生物法とに大別される。
イオン交換法による脱窒素は強塩基性イオン交換樹脂に硝酸イオンを吸着したに過ぎず、イオン交換樹脂の再生時にNO を含む高塩濃度廃液を生じるため、その処理が問題となり、環境に対する配慮が十分な方法ではなく、処理に設備等の投入が必要となる。
Methods of denitrifying nitrogen contained in waste water, which have been conventionally studied, are roughly classified into ion exchange methods and microbial methods.
Since denitrification by ion exchange only adsorbs nitrate ions to a strongly basic ion exchange resin, and generates a high salt concentration waste liquid containing NO 3 at the time of regeneration of the ion exchange resin, its treatment becomes a problem, and it is not environmentally friendly. Consideration is not enough, and it is necessary to introduce equipment for processing.

例えば、特開2003−205289号公報(特許文献1)には、被処理水の(亜)硝酸イオンを電気化学反応によって還元し、生成したアンモニアを窒素ガスに代えて被処理水から除去する一連の脱窒素処理工程を効率よく行なうことのできる方法と、当該脱窒素処理に用いる処理装置とが開示されている。   For example, in Japanese Patent Application Laid-Open No. 2003-205289 (Patent Document 1), a series of reducing (sub) nitrite ion of water to be treated by electrochemical reaction and removing generated ammonia from the water to be treated instead of nitrogen gas And a processing device used for the nitrogen removal treatment.

一方、微生物による脱窒素法は、アンモニウムイオン(NH4 )を硝酸イオン(NO )まで酸化する硝化反応を行う硝化菌と、生じた硝酸イオンを嫌気的に還元して最終的に窒素ガス(N)とする脱窒菌を組み合わせる処理プロセス、あるいはアンモニアを亜硝酸イオン(NO )の電子供与体とする嫌気的アンモニア酸化により、窒素ガスとするアナモックス菌による処理プロセスの研究が活発に行われている。
しかし、これらの方法では、NH あるいはNO の存在が必須条件であるため、地下水中の脱窒素には適用することが困難な課題を含んでいる。
これは、NH は比較的強固に土壌中に保持され、NH が酸化されたNO として地下水へ溶脱するので、地下水中の窒素は、NO に顕著に偏っているためである。
On the other hand, in the denitrification method using microorganisms, nitrifying bacteria that perform nitrification reaction that oxidizes ammonium ion (NH 4 + ) to nitrate ion (NO 3 ) and anaerobically reduce generated nitrate ion and finally nitrogen gas (N 2) and to processes combining denitrifying bacteria or ammonium nitrite ions, (NO 2 -) by anaerobic ammonium oxidation to electron donors, active research on the treatment process by anammox bacteria to nitrogen gas It has been done.
However, in these methods, since the presence of NH 4 + or NO 2 is an essential condition, it is difficult to apply to denitrification in groundwater.
This is because NH 4 + is relatively strongly retained in the soil, and NH 4 + is leached into the ground water as oxidized NO 3 , so nitrogen in the groundwater is significantly biased to NO 3 It is.

この点に鑑み、微生物による脱窒素法として、例えば、特開2016−77954号公報(特許文献2)には、アナモックス菌による嫌気的アンモニア酸化反応を阻害する物質を含むアンモニア性窒素含有廃水を処理する生物学的窒素除去方法として、アンモニア性窒素含有廃水をアンモニア酸化細菌と接触させてアンモニア性窒素の一部を亜硝酸性窒素に酸化する亜硝酸化工程で、槽内に、担体表面積あたりの生物汚泥量が1.6〜8.0g−VSS/m2である固定床又は流動床を有する亜硝酸化槽を用い、該亜硝酸化槽内で、アンモニア性窒素を亜硝酸性窒素に酸化するとともに、担体に保持された生物汚泥によって阻害物質を除去する生物学的窒素除去方法が開示されている。 In view of this point, as a nitrogen removal method by microorganisms, for example, in JP-A-2016-77954 (Patent Document 2), an ammonia nitrogen-containing wastewater containing a substance that inhibits anaerobic ammonia oxidation reaction by Anamox bacteria is treated As a biological nitrogen removal method, ammonia nitrogen-containing wastewater is brought into contact with ammonia-oxidizing bacteria to oxidize a portion of ammonia nitrogen to Ammonia nitrogen is oxidized to nitrite nitrogen in the nitrification tank using a fixed bed or fluidized bed having a biological sludge amount of 1.6 to 8.0 g-VSS / m 2 In addition, a biological nitrogen removal method is disclosed that removes inhibitory substances by biological sludge retained on a carrier.

しかし、地下水や土壌中の硝酸性窒素を有効に脱窒素あるいは脱硝酸する簡便な方法が期待されている。   However, a simple method of effectively denitrifying or denitrifying nitrate nitrogen in ground water or soil is expected.

特開2003−205289号公報Japanese Patent Application Publication No. 2003-205289 特開2016−77954号公報JP, 2016-77954, A

本発明の目的は、上記課題を解決し、地下水等の環境水中や土壌中の硝酸性窒素を有効に安全に効率良く除去することができる、硝酸性窒素の除去方法及び硝酸性窒素除去剤を提供することである。   It is an object of the present invention to solve the above problems and to effectively and safely and efficiently remove nitrate nitrogen in environmental water such as ground water and soil, a nitrate nitrogen removal method and a nitrate nitrogen remover It is to provide.

本発明者らは、鋭意研究した結果、特定の微生物菌株が、地下水等の環境水中や土壌中に含まれるNO を直接除去できることを見出し、本発明に到ったものである。 The present inventors, as a result of earnest research, have found that a specific microorganism strain can directly remove NO 3 contained in environmental water such as ground water and soil, and reached the present invention.

請求項1記載の硝酸性窒素の除去方法は、ロドトルーラ属グラミニス(Rhodotorula graminis)、ピヒア属カプシュラータ(Pichia capsulata)又はロドスポリジウム属スファエロカルパム(Rhodosporidium sphaerocarpum)に属し、硝酸性窒素を同化する能力のある酵母、その培養物又はその抽出物を、硝酸性窒素を含む環境水又は土壌と接触させて除去することを特徴とする、硝酸性窒素の除去方法である。   The method for removing nitrate nitrogen according to claim 1 belongs to Rhodotorula graminis, Pichia capsulata, or Rhodosporidium sphaerocarpum, and assimilates nitrate nitrogen. A method for removing nitrate nitrogen, which comprises removing a competent yeast, a culture thereof or an extract thereof by contacting it with environmental water or soil containing nitrate nitrogen.

請求項2記載の硝酸性窒素の除去方法は、上記硝酸性窒素の除去方法において、ロドトルーラ属グラミニスに属する酵母は、ロドトルーラ グラミニス(Rhodotorula graminis)NBRC 0190であり、ピヒア属カプシュラータに属する酵母は、ピヒア カプシュラータ(Pichia capsulata)NBRC 1770であり、ロドスポリジウム属スファエロカルパムに属する酵母は、ロドスポリジウム スファエロカルパム(Rhodosporidium sphaerocarpum)NBRC1939であることを特徴とする、硝酸性窒素の除去方法である。   The method for removing nitrate nitrogen according to claim 2 is the method for removing nitrate nitrogen according to claim 2, wherein the yeast belonging to Rhodotorula graminis is Rhodotorula graminis NBRC 0190, and the yeast belonging to Pichia capsulata is Pichia The method for removing nitrate nitrogen is characterized in that the yeast belonging to the genus Rhodosporidium sphaerocarpam is Capschulata (Pichia capsulata) NBRC 1770 and is Rhodosporidium sphaerocarpum (Rhodosporidium sphaerocarpum) NBRC 1939. is there.

請求項3記載の硝酸性窒素の除去方法は、上記硝酸性窒素の除去方法において、上記ロドトルーラ属グラミニス(Rhodotorula graminis)、ピヒア属カプシュラータ(Pichia capsulata)又はロドスポリジウム属スファエロカルパム(Rhodosporidium sphaerocarpum)に属する酵母、その培養物またはその抽出物を担体に担持させて固定化して、硝酸性窒素を含む環境水又は土壌と接触させることを特徴とする、硝酸性窒素の除去方法である。   The method for removing nitrate nitrogen according to claim 3 is the same as the method for removing nitrate nitrogen described above, wherein the Rhodotorula graminis (Rhodotorula graminis), Pichia capsulata (Pichia capsulata) or Rhodosporidium sphaerocarpum (Rhodosporidium sphaerocarpum) is used. And a culture thereof or an extract thereof is supported on a carrier and immobilized, and brought into contact with environmental water containing nitrate nitrogen or the soil, and the method for removing nitrate nitrogen.

請求項4載の硝酸性窒素の除去方法は、上記硝酸性窒素の除去方法において、硝酸性窒素を含む環境水又は土壌には、炭素がC/N比(質量比)で15〜30で含まれていることを特徴とする、硝酸性窒素の除去方法である。   The method for removing nitrate nitrogen according to claim 4 is the method for removing nitrate nitrogen, wherein the environmental water or soil containing nitrate nitrogen contains carbon at a C / N ratio (mass ratio) of 15 to 30. It is a method for removing nitrate nitrogen characterized in that

請求項5記載の硝酸性窒素除去剤は、ロドトルーラ属グラミニス(Rhodotorula graminis)、ピヒア属カプシュラータ(Pichia capsulata)又はロドスポリジウム属スファエロカルパム(Rhodosporidium sphaerocarpum)に属し、硝酸性窒素を同化する能力のある酵母、その培養物又はその抽出物からなることを特徴とする、環境水又は土壌中の硝酸性窒素除去剤である。   The nitrate nitrogen removing agent according to claim 5 belongs to Rhodotorula graminis, Pichia capsulata or Rhodosporidium sphaerocarpum, and has an ability to assimilate nitrate nitrogen. It is a nitrate nitrogen removing agent in environmental water or soil, characterized in that it comprises the following yeast, its culture or its extract.

請求項6記載の環境水又は土壌中の硝酸性窒素除去剤は、上記硝酸性窒素除去剤において、ロドトルーラ属グラミニスに属する酵母は、ロドトルーラ グラミニス(Rhodotorula graminis)NBRC 0190であり、ピヒア属カプシュラータに属する酵母は、ピヒア カプシュラータ(Pichia capsulata)NBRC 1770であり、ロドスポリジウム属スファエロカルパムに属する酵母は、ロドスポリジウム スファエロカルパム(Rhodosporidium sphaerocarpum)NBRC1939であることを特徴とする、硝酸性窒素除去剤である。   The nitrate nitrogen removing agent in environmental water or soil according to claim 6 is the nitrate nitrogen removing agent according to claim 6, wherein the yeast belonging to Rhodotorula genus Glaminis is Rhodotorula graminis NBRC 0190 and belongs to Pichia Capsulata The nitrate nitrogen is characterized in that the yeast is Pichia capsulata NBRC 1770, and the yeast belonging to the genus Rhodosporidium sphaerocarpum is Rhodosporidium sphaerocarpum NBRC 1939. It is a remover.

請求項7記載の硝酸性窒素除去剤は、上記硝酸性窒素除去剤において、上記ロドトルーラ属グラミニス(Rhodotorula graminis)、ピヒア属カプシュラータ(Pichia capsulata)又はロドスポリジウム属スファエロカルパム(Rhodosporidium sphaerocarpum)に属する酵母、その培養物またはその抽出物は、担体に担持されて固定化されていることを特徴とする、硝酸性窒素除去剤である。   The nitrate nitrogen removing agent according to claim 7 is the above-mentioned nitrate nitrogen removing agent, wherein the Rhodotorula graminis (Rhodotorula graminis), Pichia capsulata (Pichia capsulata) or Rhodosporidium sphaerocarpum is contained. The belonging yeast, a culture thereof or an extract thereof is a nitrate nitrogen removing agent characterized in that it is supported on a carrier and immobilized.

本発明の硝酸性窒素の除去方法により、地下水や河川、池、湖沼、海洋水等の環境水および土壌中に含有される硝酸性窒素を有効に除去することが可能となる。
特に、本発明による硝酸同化作用は、NO のみを直接除去できるため、地下水等の環境水等の好気性条件での脱窒素処理法として有効に機能することができる。
また、本発明においては、硝酸性窒素除去剤は、硝酸性窒素を含む酸性雨及びクヌギやスギ等の樹幹雨流とその根圏土壌中に端を発した天然由来の既知の菌であり、かつ菌体の安全性にも問題はないため、地下水中等の環境水や土壌中の硝酸性窒素の除去に極めて有効に適することができる。
According to the method for removing nitrate nitrogen of the present invention, it is possible to effectively remove nitrate nitrogen contained in environmental water such as ground water, rivers, ponds, lakes and marshes, ocean water, and soil.
In particular, since the nitric acid assimilation according to the present invention can directly remove only NO 3 , it can function effectively as a denitrification treatment under aerobic conditions such as environmental water such as ground water.
Further, in the present invention, the nitrate nitrogen removing agent is a known bacteria derived from naturally occurring acid rain which contains nitrate nitrogen, stem rain such as kuunagi and cedar and its rhizosphere soil, Also, since there is no problem with the safety of the cells, it can be extremely effectively applied to the removal of nitrate nitrogen in environmental water such as ground water and soil.

一例の培地中に含まれる塩化ナトリウム濃度を変化させた場合の、培地中の硝酸イオンの経時的な減少割合を示す線図である。It is a graph which shows the time-dependent reduction rate of the nitrate ion in a culture medium at the time of changing the sodium chloride density | concentration contained in an example culture medium. 他の一例の培地中に含まれる塩化ナトリウム濃度を変化させた場合の、培地中の硝酸イオンの経時的な減少割合を示す線図である。It is a graph which shows the time-dependent reduction rate of the nitrate ion in a culture medium at the time of changing the sodium chloride density | concentration contained in another example culture medium. 一例の培地中のpHを変化させた場合の、培地中に含まれる硝酸イオンの経時的な減少割合を示す線図である。It is a graph which shows the time-dependent decreasing rate of the nitrate ion contained in a culture medium at the time of changing pH in an example culture medium. 他の一例の培地中のpHを変化させた場合の、他の一例の培地中に含まれる硝酸イオンの経時的な減少割合を示す線図である。It is a graph which shows the time-dependent decreasing rate of the nitrate ion contained in the culture medium of another example when pH in another culture medium is changed. 培地中の炭素窒素含有量を変化させた場合の、培地中に含まれる硝酸イオンの経時的な減少割合を示す線図である。It is a graph which shows the time-dependent decreasing rate of the nitrate ion contained in a culture medium at the time of changing carbon nitrogen content in a culture medium. 3種の酵母を用いた場合の、一例の淡水中に含まれる硝酸イオンの経時的な減少割合を示す線図である。It is a graph which shows the time-dependent reduction rate of the nitrate ion contained in the example fresh water at the time of using 3 types of yeast. 3種の酵母を用いた場合の、一例の人工海水中に含まれる硝酸イオンの経時的な減少割合を示す線図である。It is a graph which shows the time-dependent decrease rate of the nitrate ion contained in artificial seawater of an example at the time of using 3 types of yeast. 培地中に含まれる硝酸性窒素の濃度を変化させた場合の、培地中に含まれる硝酸イオンの経時的な減少割合を示す線図である。It is a graph which shows the time-dependent reduction rate of the nitrate ion contained in a culture medium at the time of changing the density | concentration of the nitrate nitrogen contained in a culture medium. 培地中に含まれる硝酸性窒素の濃度を変化させた場合の、培地中に含まれる硝酸イオンの経時的な減少割合を示す線図である。It is a graph which shows the time-dependent reduction rate of the nitrate ion contained in a culture medium at the time of changing the density | concentration of the nitrate nitrogen contained in a culture medium. 固体化した硝酸性同化性酵母を担体に固定化して用いた場合の、培地中に含まれる硝酸イオンの経時的な現象を示す線図である。FIG. 6 is a diagram showing a temporal phenomenon of nitrate ions contained in a culture medium when immobilized nitric acid assimilable yeast is immobilized on a carrier and used. 地下水中に含まれる硝酸イオンの経時的な減少割合を示す線図である。It is a graph which shows the time-dependent reduction rate of the nitrate ion contained in groundwater. 地下水中に含まれる残糖濃度の経時的な減少割合を示す線図である。It is a diagram which shows the time-dependent decrease rate of the residual sugar concentration contained in groundwater.

本発明は、次の実施形態により説明するが、これらに限定されるものではない。
本発明の硝酸性窒素の除去方法は、ロドトルーラ属に属し、硝酸性窒素を同化する能力のある酵母、その培養物又はその抽出物を、硝酸性窒素を含む地下水等の環境水又は土壌と接触させて除去する、硝酸性窒素の除去方法であり、具体的には、ロドトルーラ属グラミニス、ピヒア属カプシュラータ又はロドスポリジウム属スファエロカルパムに属し、硝酸性窒素を同化する能力のある酵母、その培養物又はその抽出物を、硝酸性窒素を含む環境水又は土壌と接触させて除去する、硝酸性窒素の除去方法である。
The present invention will be described by the following embodiments, but is not limited thereto.
The method for removing nitrate nitrogen of the present invention is a yeast belonging to the genus Rhodotorula, which is capable of assimilating nitrate nitrogen, a culture thereof or an extract thereof, and contacting with soil water or other environmental water such as groundwater containing nitrate nitrogen. A method of removing nitrate nitrogen, specifically, a yeast having the ability to assimilate nitrate nitrogen, which belongs to Rhodotorula genus Graminis, Pichia genus Capsulata, or Rhodosporidium sphaerocarpam, A method for removing nitrate nitrogen, which comprises removing the culture or its extract by contacting it with environmental water or soil containing nitrate nitrogen.

本発明の硝酸性窒素を同化できる能力のある酵母としては、ロドトルーラ属グラミニス(Rhodotorula graminis)、ピヒア属カプシュラータ(Pichia capsulata)又はロドスポリジウム属スファエロカルパム(Rhodosporidium sphaerocarpum)に属する酵母であり、好適には、ロドトルーラ属グラミニスに属する酵母はとしては、ロドトルーラ グラミニスとして、ロドトルーラ グラミニス NBRC 0190、NBRC 10747、ピヒア属カプシュラータに属する酵母としては、ピヒア カプシュラータ NBRC 1770、NBRC 0721、NBRC 0974、NBRC 1768、NBRC 1769、NBRC 100352、ロドスポリジウム属スファエロカルパに属する酵母は、ロドスポリジウム スファエロカルパム NBRC1939、NBRC 1438、NBRC 1937、NBRC 1938等を例示することができる。   The yeast capable of assimilating nitrate nitrogen of the present invention is a yeast belonging to Rhodotorula graminis, Pichia capsulata or Rhodosporidium sphaerocarpum, Preferably, the yeast belonging to the genus Rhodotorula graminis is, as Rhodotorula graminis, Rhodotorula graminis NBRC 0190, NBRC 10747, the yeast belonging to the genus Pichia capschulata, Pichia capsulata NBRC 1770, NBRC 0721, NBRC 0974, NBRC 1768, NBRC 1769, NBRC 100352, the yeast belonging to Rhodosporidium sphaerocarpa, Rhodosporidium sphaerocarpam NBRC 1939, NBRC 1 38, can be exemplified NBRC 1937, NBRC 1938, or the like.

上記酵母は公知の酵母であり、独立行政法人製品評価技術基盤機構バイオテクノロジーセンター(NBRC)より分譲されることが可能で、安全性が確認されている酵母であるため、容易に入手できるとともに、好適に用いることができる。
これらの酵母は、好気性下で硝酸を取り込み、酵母のアミノ酸やたんぱく質として同化できる能力を有する酵母であるため、硝酸性窒素を有効に同化することが可能となる。
Since the above-mentioned yeast is a known yeast and can be distributed from the National Institute of Technology and Evaluation Product Technology Biotechnology Technology Center (NBRC) and has been confirmed to be safe, it can be easily obtained, It can be used suitably.
These yeasts are capable of assimilating nitrate nitrogen as they are capable of taking up nitric acid under aerobic condition and assimiling as amino acids and proteins of the yeast.

本発明においては、上記硝酸性窒素を同化する能力のある酵母、その培養物又はその抽出物(以下、「酵母」等)を、硝酸性窒素を同化する硝酸性窒素除去剤として適用することが可能である。   In the present invention, a yeast having the ability to assimilate nitrate nitrogen, a culture thereof or an extract thereof (hereinafter referred to as "yeast" etc.) may be applied as a nitrate nitrogen removing agent which assimilates nitrate nitrogen. It is possible.

上記硝酸性窒素を同化することができる酵母等を、硝酸性窒素による汚染環境水中と接触させることにより、また、硝酸性窒素による汚染土壌と混合等することにより、これらの環境水や土壌中の硝酸性窒素を低減する。   By bringing the above-mentioned yeast capable of assimilating nitrate nitrogen into contact with water contaminated with nitrate nitrogen, or mixing it with soil contaminated with nitrate nitrogen, etc. Reduce nitrate nitrogen.

本発明の硝酸性窒素の除去方法と適用する対象となる環境水としては、硝酸態窒素による汚染地下水および河川、池、湖沼、海洋水等を例示することができ、また土壌としては、農地、住宅地、山地等の土壌を対象とすることができる。   Examples of environmental water to which the method of removing nitrate nitrogen according to the present invention and the application are applied include nitrate-contaminated ground water and rivers, ponds, lakes, ocean waters, etc. Soils such as residential areas and mountains can be targeted.

本発明は、上記酵母を、硝酸性窒素の含有する地下水等の環境水と混合することにより、当該地下水等の環境水中に含有される硝酸性窒素を除去することができる方法である。
硝酸性窒素を含有する地下水等の環境水中に、酵母等をそのまま投入しても、また担体に固定化等して用いても、地下水等の環境水と十分に接触できれば、いずれの方法を適用してもよく、固定床で用いても流動状態で用いてもいずれの方法であってもよい。
The present invention is a method capable of removing nitrate nitrogen contained in environmental water such as ground water by mixing the above-mentioned yeast with environmental water such as ground water containing nitrate nitrogen.
Either method can be used as long as yeast or the like can be added as it is to environmental water such as groundwater containing nitrate nitrogen or fixed to a carrier as long as it can be sufficiently contacted with environmental water such as groundwater. It may be used in a fixed bed or in a fluidized state or in any method.

また、上記酵母等を包括又は吸着し固定化する担体としては、例えば、ポリビニルアルコール(PVA)、アルギン酸ナトリウム、カラギーナンカリウム、木炭、竹炭、ポリウレタン等の市場で入手し得る任意の各種多孔質体素材等を用いることができる。   In addition, as a carrier for covering or adsorbing and immobilizing the above-mentioned yeasts and the like, any of various porous material available on the market such as polyvinyl alcohol (PVA), sodium alginate, carrageenan potassium, charcoal, bamboo charcoal, polyurethane etc. Etc. can be used.

一例としての固体化の方法としては、高分子球状ゲル中に封入しての固定化や、多孔質体上に担持するといった公知の任意の方法を適用することが可能であるが、例えば、前者の場合の一例としては、イオン交換水に溶解して調製したアルギン酸ナトリウムの1.5w/w%水溶液(150mL)をオートクレーブ滅菌し(例えば121℃,15分間)、冷却した後に、50mLの前培養菌を加えて均一に混和し、注射筒で一定量を吸引し、別途準備した1w/w%塩化カルシウム水溶液(滅菌済み)に1滴ずつ(30〜50μL程度)滴下し、15〜30分放置してビーズ状に固化させる。この固定化ビーズを集め、滅菌水で洗浄して、付着している塩化カリウム溶液を除去することで、本発明の硝酸性窒素除去剤を固定化することが可能となる。   As a method of solidification as an example, it is possible to apply any known method such as immobilization by encapsulating in a polymer spherical gel or supporting on a porous body, for example, the former As an example of the case, a 1.5 w / w% aqueous solution (150 mL) of sodium alginate prepared by dissolving in ion-exchanged water is autoclaved (for example, 121 ° C., 15 minutes), cooled, and then 50 mL of preculture Add bacteria, mix uniformly, aspirate a fixed amount with a syringe, drop 1 drop (about 30 to 50 μL) into 1 w / w% calcium chloride aqueous solution (sterilized) prepared separately, and leave for 15 to 30 minutes And solidify into beads. The immobilized beads are collected and washed with sterile water to remove the adhering potassium chloride solution, thereby making it possible to immobilize the nitrate nitrogen removing agent of the present invention.

本発明は、硝酸性窒素を含有する地下水等の環境水や土壌であれば、通常の地下水等に適用が可能であり、そのpHとしては、約4.0〜9.0の範囲内であれば、含有される硝酸性窒素を有効に除去することができ、例えば98%以上を除去することも可能である。   The present invention is applicable to ordinary groundwater or the like if it is environmental water or soil such as groundwater containing nitrate nitrogen, and the pH thereof is within the range of about 4.0 to 9.0. For example, the contained nitrate nitrogen can be effectively removed, for example, 98% or more can be removed.

また、処理対象となる環境水には、塩化ナトリウムが含有される場合があることから、その含有濃度は0〜3.0w/w%程度であれば問題はなく、含有される硝酸性窒素を98%以上除去することも可能である。   Moreover, since environmental water to be treated may contain sodium chloride, there is no problem if the content concentration is about 0 to 3.0 w / w%, and the contained nitrate nitrogen is It is also possible to remove 98% or more.

更に硝酸性窒素を除去する上では、炭素源の存在を必須とすることが望ましく、地下水に炭素源となる有機物が含まれれば窒素と炭素との割合は、特に限定されないが、好ましくはC/Nの比が15〜30、より好ましくは18〜25、更に好ましくは約20前後で、本発明の効果を、短期間でより有効に発揮することができる。   Furthermore, in order to remove nitrate nitrogen, it is desirable to require the presence of a carbon source, and the ratio of nitrogen to carbon is not particularly limited as long as the ground water contains an organic substance that becomes a carbon source, but preferably C / When the ratio of N is 15 to 30, more preferably 18 to 25 and still more preferably about 20, the effects of the present invention can be exhibited more effectively in a short period of time.

また、本発明の硝酸性窒素剤や除去方法は、畑地、牧草地などの土壌圏における脱硝酸用の土壌改良剤としても使用することが可能である。
例えば、本発明の硝酸性窒素除去剤を、硝酸塩過剰の土壌に添加し、更に必要に応じて土壌と混合して、土壌中に含まれる硝酸性窒素を除去するものである。土壌と上記酵母とを直接散布混合しても、また担体に固定化されたものを用いても、土壌と十分に接触できれば、いずれの方法でもかまわない。
The nitrate nitrogen agent and removal method of the present invention can also be used as a soil improver for denitrification in soil zones such as upland fields and pastures.
For example, the nitrate nitrogen removing agent of the present invention is added to a soil with excess nitrate, and optionally mixed with the soil to remove nitrate nitrogen contained in the soil. Even if the soil and the above yeast are directly sprayed and mixed, or those immobilized on a carrier, any method may be used as long as the soil can be sufficiently contacted.

本発明の硝酸性窒素除去剤を硝酸塩過剰の土壌に添加して、経時的に土壌中の硝酸態窒素の減少量を測定し、農耕地の土壌中の過剰の硝酸性窒素が低減化されれば、安心に農作物を栽培することが可能となる。このように、土壌改質剤として機能することで、地下水等の環境水の硝酸態窒素汚濁の根源を防止することが可能となる。   The nitrate nitrogen removal agent of the present invention is added to the soil with excess nitrate to measure the reduction of nitrate nitrogen in the soil over time, and the excess nitrate nitrogen in the agricultural land is reduced. For example, it will be possible to grow crops safely. Thus, by functioning as a soil modifying agent, it becomes possible to prevent the source of nitrate nitrogen contamination of environmental water such as ground water.

本発明を次の実施例及び試験例により具体的に説明する。
(使用試薬)
・Glucose(式量=180.16)和光純薬工業(株)
・Peptone 和光純薬工業(株)
・Yeast extract 和光純薬工業(株)
・Malt extract 和光純薬工業(株)
・硫酸マグネシウム(式量=246.47)(試薬) 片山化学工業(株)
・塩化カリウム(式量=74.55)(試薬)片山化学工業(株)
・硫酸第一鉄・7水塩(式量=278.02)(試薬) 関東化学(株)
・硫酸マグネシウム・7水塩 (式量=246.47)(試薬)片山化学工業(株)
・塩化ナトリウム (式量=58.44)(試薬)ナカライテスク(株)
・硝酸ナトリウム (式量=84.99)(試薬)和光純薬工業(株)
・リン酸二水素カリウム(式量=141.96)(試薬)ナカライテスク(株)
・リン酸水素二カリウム(式量=174.18)(試薬)和光純薬工業(株)
・ソモギー銅液 和光純薬工業(株)
・ネルソン液 和光純薬工業(株)
・滅菌イオン交換水(CPW−200 アドバンテック(株)製)
・アクアリウム用人工海水の素(製品名 レッドシーソルト、レッドシー(株)製)
・ポリビニルアルコール(PVA) 和光純薬工業(株) [160-11485](ケン化度;約98%、重合度;1600〜1800)
The present invention is specifically described by the following examples and test examples.
(Use reagent)
・ Glucose (formula weight = 180.16) Wako Pure Chemical Industries, Ltd.
・ Peptone Wako Pure Chemical Industries, Ltd.
・ Yeast extract Wako Pure Chemical Industries, Ltd.
・ Malt extract Wako Pure Chemical Industries, Ltd.
-Magnesium sulfate (formula weight = 246.47) (reagent) Katayama Chemical Industry Co., Ltd.
-Potassium chloride (formula weight = 74.55) (reagent) Katayama Chemical Industry Co., Ltd.
· Ferrous sulfate · heptahydrate (formula weight = 278.02) (reagent) Kanto Chemical Co., Ltd.
· Magnesium sulfate · heptahydrate (formula weight = 246.47) (reagent) Katayama Chemical Industry Co., Ltd.
Sodium chloride (formula weight = 58.44) (reagent) Nacalai Tesque, Inc.
-Sodium nitrate (formula weight = 84.99) (reagent) Wako Pure Chemical Industries, Ltd.
-Potassium dihydrogen phosphate (formula weight = 141.96) (reagent) Nacalai Tesque, Inc.
-Dipotassium hydrogen phosphate (formula weight = 174.18) (reagent) Wako Pure Chemical Industries, Ltd.
・ Somogie copper liquid Wako Pure Chemical Industries, Ltd.
・ Nelson liquid Wako Pure Chemical Industries Ltd.
-Sterilized ion exchange water (CPW-200 made by Advantec Co., Ltd.)
・ Aquarium artificial sea water element (product name Red Sea Salt, made by Red Sea Co., Ltd.)
-Polyvinyl alcohol (PVA) Wako Pure Chemical Industries, Ltd. [160-11485] (Saponification degree: about 98%, polymerization degree: 1600 to 1800)

(使用菌株)
酵母:ロドトルーラ属グラミニス(Rhodotorula graminis)NBRC 0190
酵母:ロドスポリジウム属スファエロカルパム(Rhodosporidium sphaerocarpum)
NBRC 1939
酵母:ピヒア属カプシュラータ(Pichia capsulata)NBRC 1770
(Used strain)
Yeast: Rhodotorula graminis NBRC 0190
Yeast: Rhodosporidium sphaerocarpam (Rhodosporidium sphaerocarpum)
NBRC 1939
Yeast: Pichia capsulata NBRC 1770

(硝酸イオン濃度の測定)
各実施例中、硝酸イオン濃度は、イオン分析計(IA−100、東亜DKK(株)製またはIA−200、東亜DKK(株)製)を用い、イオンクロマトグラフ法により測定した。
まず、[NO-]=1、2、5、10、20ppmの各標準溶液を調製し、サンプル注入量が20μLになるようイオン分析計に注入し、得られるクロマトグラムの硝酸イオンの保持時間における導電率値より検量線を作成した。
(Measurement of nitrate ion concentration)
In each example, the nitrate ion concentration was measured by ion chromatography using an ion analyzer (IA-100, manufactured by Toa DKK Co., Ltd., or IA-200, manufactured by Toa DKK Co., Ltd.).
First, prepare each standard solution of [NO 3- ] = 1, 2, 5, 10, 20 ppm, inject it into the ion analyzer so that the sample injection amount is 20 μL, and hold the nitrate ion retention time of the obtained chromatogram. A calibration curve was created from the conductivity values at.

次いで、評価対象の培養液中の硝酸イオン濃度の測定を、前記検量線を用いて評価した。
具体的には、評価対象の培養液サンプルをメンブレンフィルターでろ過後、注射器で適量分取し、上記イオン分析計に上記と同様に注入した。
硝酸イオンの保持時間における導電率値と前記作成した検量線より、培養液サンプル中の硝酸イオン濃度を求めた。
Subsequently, the measurement of the nitrate ion concentration in the culture solution to be evaluated was evaluated using the calibration curve.
Specifically, the culture solution sample to be evaluated was filtered through a membrane filter, an appropriate amount was taken using a syringe, and the mixture was injected into the above-described ion analyzer in the same manner as described above.
The nitrate ion concentration in the culture solution sample was determined from the conductivity value at the retention time of nitrate ion and the calibration curve prepared above.

(残糖(グルコース)濃度測定)
培養液に含まれるグルコース(残糖)濃度の測定は、吸光光度計(UVmini 1240 島津製作所(株))を用い、ソモギー・ネルソン法による吸光光度分析法にて測定した。具体的には、以下のとおりである。
まず、グルコース濃度が0.01、0.05、0.10、0.15、0.20g/Lの各標準溶液を調製し、前記各溶液1mLをそれぞれ試験管に入れ、ソモギー銅液1mLを添加してビー玉で蓋をし、沸騰水浴中で10分間加熱した。
次いで、流水で5分間急冷し、ネルソン液を1mL添加して発色させ、8分間静置した後、メスフラスコを用いて全量で25mLとなるよう希釈し、15分間静置した。
前記吸光光度計を用いて、波長:660nm、対照液:イオン交換水、光路長:1cmにおける吸光度を測定し、各グルコース濃度に対する吸光度の値にて検量線を作成した。
(Measurement of residual sugar (glucose) concentration)
The measurement of the glucose (residue sugar) concentration contained in the culture solution was measured by an absorptiometric analysis method by the somogie-Nelson method using an absorptiometer (UV mini 1240 Shimadzu Corp.). Specifically, it is as follows.
First, prepare standard solutions with glucose concentrations of 0.01, 0.05, 0.10, 0.15, 0.20 g / L, put 1 mL of each solution in a test tube, and add 1 mL of somogyous copper solution. Add and cap with marbles and heat in a boiling water bath for 10 minutes.
Then, it was quenched with running water for 5 minutes, developed color by adding 1 mL of Nelson solution, allowed to stand for 8 minutes, diluted to a total volume of 25 mL using a measuring flask, and allowed to stand for 15 minutes.
The absorbance at a wavelength of 660 nm, control solution: ion-exchanged water, optical path length: 1 cm was measured using the absorptiometer, and a calibration curve was prepared using the values of absorbance for each glucose concentration.

各評価対象の培養液中のグルコース濃度の測定は、作成した検量線を用いて評価した。
具体的には、評価対象の培養液サンプルをメンブレンフィルターでろ過し、ろ液をグルコース濃度が検量線濃度範囲内になるよう滅菌イオン交換水で希釈した。
この希釈サンプル1mLを、上記標準溶液と同様に発色させ、吸光度測定を行った。
得られた吸光度の値を前記作成した検量線に照らし合わせると共に希釈倍率を乗じて、培養液サンプル中のグルコース(残糖)濃度を求めた。
The measurement of the glucose concentration in the culture solution to be evaluated was evaluated using the prepared calibration curve.
Specifically, the culture solution sample to be evaluated was filtered through a membrane filter, and the filtrate was diluted with sterile ion exchange water so that the glucose concentration was within the calibration curve concentration range.
One mL of this diluted sample was developed in the same manner as the above standard solution, and absorbance was measured.
The obtained absorbance value was compared with the calibration curve prepared above and multiplied by a dilution factor to determine the glucose (residual sugar) concentration in the culture solution sample.

(1)酵母の復元
独立行政法人製品評価技術基盤機構バイオテクノロジーセンター(NBRC)より分譲された上記3種の酵母(酵母:ロドトルーラ属グラミニス NBRC 0190、酵母:ロドスポリジウム属スファエロカルパム NBRC1939、酵母:ピヒア属カプシュラータ NBRC1770)の凍結乾燥標品を復元して用いた。
復元方法は、公知の方法を適用して復元することができるが、具体的には例えば、以下のようにして復元した。
(1) Regeneration of yeast The above three types of yeast (Yeast: Rhodotorula genus Glaminis NBRC 0190, Yeast: Rhodosporidium sphaerocarpam NBRC 1939, distributed by the National Institute of Technology and Product Technology, Biotech Center (NBRC)) A lyophilized preparation of yeast: Pichia sp. Capsulata NBRC 1770) was recovered and used.
The restoration method can be restored by applying a known method, and specifically, for example, it was restored as follows.

各凍結乾燥標品アンプルに封入された綿栓の中央部に両刃平型ヤスリで傷をつけ、傷をつけたアンプルを75w/w%アルコールを含んだガーゼで消毒した後、滅菌ガーゼに包み、アンプルを折って開封した。
開封後直ちに滅菌したパスツールピペットを用いて、下記表1に示す復水液(下記表1の各試薬を添加してイオン交換水で1Lとなるように希釈し、121℃で15分間オートクレーブ滅菌後に放冷したYM液体培地)約0.2mLを、各アンプルに添加した。
その後十分に攪拌して、各菌体を懸濁させた後、YM培養基(下記表2中の粉末寒天を除いた各試薬を添加してイオン交換水で1Lとなるように希釈して調製したYM液体培地)、またはYM寒天斜面培地及びYM寒天平板培地(下記表2の各試薬を添加してイオン交換水で1Lとなるように希釈して調製)に接種し、25℃の水浴中80rpmの条件で振とう(液体の場合)又は静置して、一定期間(2〜7日程度)培養し、該菌の増殖を確認後5〜8℃の冷蔵庫内に保存した。
The central part of a cotton plug enclosed in each freeze-dried preparation ampoule is scratched with a double-edged flat file, and the scratched ampoule is disinfected with gauze containing 75 w / w% alcohol and then wrapped in sterile gauze, I broke the ampoule and opened it.
Immediately after opening, using a Pasteur pipette, add the reagents shown in Table 1 below (add each reagent shown in Table 1 below and dilute to 1 L with ion-exchanged water, autoclave sterilize at 121 ° C for 15 minutes About 0.2 mL of the post-cooled YM liquid medium) was added to each ampoule.
Thereafter, the cells were sufficiently stirred to suspend each cell, and then YM culture medium (each reagent except for powder agar in Table 2 below was added and diluted to 1 L with ion-exchanged water and prepared) Inoculate into YM liquid medium), or YM agar slant medium and YM agar plate medium (prepared by adding each reagent in Table 2 below and diluting to 1 L with ion exchange water), 80 rpm in a 25 ° C water bath After shaking (in the case of a liquid) or standing for a fixed period (about 2 to 7 days) under the following conditions, the growth of the bacteria was confirmed and stored in a refrigerator at 5 to 8 ° C.

Figure 2018176127
Figure 2018176127

Figure 2018176127
Figure 2018176127

(2)本培養に用いる種菌酵母
前培養培地として、上記(1)で調製したYM液体培地又は、滅菌イオン交換水1Lあたり下記表3に示す無機塩とグルコースとを溶解させ、オートクレーブ滅菌(121℃、15分)と放冷を行ったツァペック液体培地を用い、これらの培地に、上記(1)で復元された各酵母をそれぞれ適量(液体であれば1%体積量程度)接種し、25℃で数日間、80rpmで振とう培養した各培養液を3000rpmで15分間遠心分離して、上澄み液を除去し、沈殿した菌体を滅菌イオン交換水で懸濁させた。
遠心分離による液相の除去と滅菌イオン交換水による懸濁の操作を、更に1回から2回程度繰り返して、培地の除去と菌体の洗浄を行った。得られた最終懸濁液を本培養の種菌(酵母)として用いた。
(2) Seed yeast used for main culture As a pre-culture medium, dissolve YM liquid medium prepared in the above (1) or mineral salt and glucose shown in the following Table 3 per liter of sterile ion-exchanged water, and autoclave sterilization (121 Using Tzapeck's liquid medium, which has been allowed to cool down for 15 minutes, and inoculating appropriate amounts (approximately 1% volume if liquid) of each of the yeasts restored in (1) into these mediums, Each culture broth cultured with shaking at 80 rpm for several days at .degree. C. was centrifuged at 3000 rpm for 15 minutes, the supernatant was removed, and the precipitated cells were suspended in sterile ion-exchanged water.
The removal of the liquid phase by centrifugation and the operation of suspension with sterile ion-exchanged water were repeated about one to two more times to remove the medium and wash the cells. The obtained final suspension was used as an inoculum (yeast) of the main culture.

Figure 2018176127
Figure 2018176127

(3)塩化ナトリウム濃度の影響
下記表6に示すように、イオン交換水1Lあたりに各種無機塩を溶解して調製した(炭素及び窒素を含まない)ツァペック液体培地を模した液体培地に、硝酸態窒素濃度([NO ‐N])が25.5ppm又は99.8ppmとなるように硝酸ナトリウムを添加し、更にC/N比が20となるように炭素源となるグルコースを添加するとともに、塩化ナトリウム濃度が0〜3.0w/w%となるように塩化ナトリウムをそれぞれ添加して、各液体培地を調製した。
(3) Influence of Sodium Chloride Concentration As shown in Table 6 below, a liquid medium simulating a Tzapek liquid medium (containing neither carbon nor nitrogen) prepared by dissolving various inorganic salts per liter of ion-exchanged water Sodium nitrate so that the nitrogen concentration ([NO 3 -- N]) is 25.5 ppm or 99.8 ppm, and further adding glucose as a carbon source so that the C / N ratio is 20 Each liquid medium was prepared by adding sodium chloride such that the sodium chloride concentration was 0 to 3.0 w / w%.

塩化ナトリウム濃度がそれぞれ異なる前記各液体培地60mLに、上記(2)で得られたロドトルーラ(Rhodotorula)属酵母の種菌懸濁液を、各液体培地の1%体積量でそれぞれ植菌し、約20℃、65rpmで振とう培養すると共に、各液体培地中の硝酸イオンを上記イオン分析計を用いて分析し、硝酸イオン除去能を評価した。
その結果を図1及び図2に示す。
The seed suspension of Rhodotorula yeast obtained in the above (2) is inoculated into 60 mL of each liquid culture medium having different sodium chloride concentrations, each at a volume of 1% of each liquid culture medium. The shaking culture was carried out at 65 rpm and the nitrate ion in each liquid medium was analyzed using the above ion analyzer to evaluate the nitrate ion removing ability.
The results are shown in FIG. 1 and FIG.

図1では当初、[NO ‐N]が25.5ppmであったのが、全ての塩濃度で速やかに低下し、3日間でイオンクロマトグラフの定量限界である0.5ppm未満になった。
また図2より、[NO ‐N]が高濃度の112ppmの場合では、海水レベルの塩濃度である塩化ナトリウム濃度が3.0w/w%であっても除去速度は緩やかであるが硝酸イオンが低下することが認められ、他の濃度においては9日目において硝酸イオン除去率は95%以上となり、本菌が広い塩濃度の環境水中で硝酸イオン除去能を発現することが明らかとなった。
In Fig. 1, [NO 3 -- N] was initially 25.5 ppm, but it decreased rapidly at all salt concentrations, and became less than 0.5 ppm which is the quantitation limit of ion chromatograph in 3 days .
Also, as shown in FIG. 2, when [NO 3 -- N] is a high concentration of 112 ppm, the removal rate is slow even though the sodium chloride concentration which is the salt concentration of seawater is 3.0 w / w% It is found that the ion concentration decreases, and the nitrate ion removal rate is 95% or more at day 9 at other concentrations, and it becomes clear that this bacterium expresses nitrate ion removal ability in environmental water with a wide salt concentration. The

(4)pHの影響
下記表6のようにイオン交換水1Lあたりに各種無機塩を溶解して調製した(炭素及び窒素を含まない)ツァペック液体培地を模した液体培地に、硝酸性窒素濃度([NO ‐N])が25.5ppm又は99.8ppmとなるように硝酸ナトリウムを添加し、更にC/N比が20となるように炭素源となるグルコースを添加し、各培地のpHが4.5〜8.5となるようにリン酸二水素カリウムとリン酸水素二カリウムより調製したpH緩衝溶液を添加して、各液体培地を調製した。
(4) Influence of pH As shown in Table 6 below, nitrate nitrogen concentration (in a liquid culture medium imitating a Tzapek liquid culture medium (containing neither carbon nor nitrogen) prepared by dissolving various inorganic salts per liter of ion-exchanged water) Sodium nitrate is added so that [NO 3 -- N]) is 25.5 ppm or 99.8 ppm, and glucose which is a carbon source is further added so that the C / N ratio is 20, and pH of each culture medium is added. Each liquid culture medium was prepared by adding a pH buffer solution prepared from potassium dihydrogenphosphate and dipotassium hydrogenphosphate to a pH of 4.5 to 8.5.

pHがそれぞれ異なる前記液体培地60mLに、上記(2)で得られたロドトルーラ(Rhodotorula)属酵母の種菌懸濁液を、各液体培地の1%体積量でそれぞれ植菌し、約20℃、65rpmで振とう培養すると共に、各液体培地中の硝酸イオンを上記イオン分析計を用いて分析し、硝酸イオン除去能を評価した。
その結果を図3及び図4に示す。
Inoculate the seed suspension of Rhodotorula genus yeast obtained in the above (2) into 60 mL of the liquid culture medium having different pH from each at a volume of 1% of each liquid culture medium, and adjust the temperature to about 20 ° C, 65 rpm The shaking culture was carried out at the same time, and the nitrate ion in each liquid medium was analyzed using the above ion analyzer to evaluate the nitrate ion removing ability.
The results are shown in FIG. 3 and FIG.

図3及び図4より、当初[NO ‐N]が25.5ppmである場合では3日間、[NO ‐N]が112ppmの高濃度の場合でも8日間で、検討した全ての範囲のpHにおいて、硝酸イオンの除去率が98%以上となっており、一般的な環境水として想定される幅広いpHで、硝酸イオン除去能が有効に発揮されることが明らかとなった。 3 and 4 than initially - 3 days in the case [NO 3 -N] is 25.5 ppm, - at 8 days even when [NO 3 -N] is a high concentration of 112 ppm, all ranges discussed It was found that the removal rate of nitrate ion is 98% or more at a pH of 1, and the nitrate ion removing ability is effectively exhibited at a wide pH assumed as general environmental water.

(5)炭素窒素(C/N)比(質量比)の影響
下記表6のようにイオン交換水1Lあたりに各種無機塩を溶解して調製した(炭素及び窒素を含まない)ツァペック液体培地を模した液体培地に、硝酸性窒素濃度([NO ‐N])が25、50、100、200ppmとなるように硝酸ナトリウムを、炭素濃度が500、1000、2000、4000ppmとなるようにグルコースを添加して、各液体培地を調製した。
(5) Influence of carbon nitrogen (C / N) ratio (mass ratio) As shown in Table 6 below, Tzapek liquid culture medium (containing neither carbon nor nitrogen) prepared by dissolving various inorganic salts per liter of ion-exchanged water The simulated liquid medium contains sodium nitrate so that the nitrate nitrogen concentration ([NO 3 -- N]) is 25, 50, 100 and 200 ppm, and glucose so that the carbon concentration is 500, 1000, 2000 and 4000 ppm. Was added to prepare each liquid medium.

上記の硝酸性窒素濃度およびグルコース炭素濃度が各種異なる液体培地100mLに、上記(2)で得られたロドトルーラ(Rhodotorula)属酵母の種菌懸濁液を、各液体培地の1%体積量でそれぞれ植菌し、約20℃、65rpmで振とう培養すると共に、各液体培地中の硝酸イオンを上記イオン分析計を用いて分析し、硝酸イオン除去能を評価した。
その結果を図5に示す。
Inoculate 100 mL of the liquid medium with different nitrate nitrogen concentration and glucose carbon concentration as described above with the inoculum suspension of Rhodotorula genus yeast obtained in the above (2) in 1% volume of each liquid medium. The strain was cultured at about 20 ° C. with shaking at 65 rpm, and nitrate ions in each liquid medium were analyzed using the above ion analyzer to evaluate the nitrate ion removing ability.
The results are shown in FIG.

図5より、全ての炭素・窒素の含有範囲において、硝酸イオン除去能が有効に発揮されること、硝酸性窒素濃度が同じ場合でもグルコース濃度が高く硝酸イオンに対して大過剰に用いる方が本菌の初期増殖度が高まるために硝酸イオンの初期低下は高まる傾向が認められる。ただし増殖密度に上限があるので硝酸イオン濃度が高い所では、炭素窒素比の差ほどには硝酸イオン除去効果が向上しないことがわかった。   From FIG. 5, it is shown that the nitrate ion removing ability is effectively exhibited in all the carbon and nitrogen content ranges, and even if the concentration of nitrate nitrogen is the same, the glucose concentration is high and it is better to use a large excess to nitrate ions. The initial decrease of nitrate ion tends to increase because the initial growth rate of bacteria increases. However, since there is an upper limit to the growth density, it was found that the nitrate ion removing effect was not improved as much as the difference in carbon nitrogen ratio where the nitrate ion concentration was high.

これらの結果に基づき、当初培地中に含まれた硝酸性窒素濃度とグルコース炭素濃度と、硝酸イオン除去率90%前後を達成した点での硝酸性窒素濃度とグルコース炭素濃度との差から、同化窒素量と消費炭素量およびこれらの炭素窒素質量比(C/N比)のそれぞれを表4に示した。C/N比はほぼ20前後に収束していることから、硝酸同化反応に必要な有機炭素量としてC/N比が好ましくは18〜30、特に20前後とすることが好適であることがわかる。   Based on these results, the difference between nitrate nitrogen concentration and glucose carbon concentration, and nitrate nitrogen concentration and glucose carbon concentration at the point at which the nitrate ion removal rate was around 90% was initially included in the medium. The amount of nitrogen, the amount of carbon consumed, and the carbon / nitrogen mass ratio (C / N ratio) thereof are shown in Table 4. Since the C / N ratio converges to about 20, it is understood that the C / N ratio is preferably about 18 to 30, particularly about 20 as the amount of organic carbon necessary for the nitric acid assimilation reaction. .

Figure 2018176127
Figure 2018176127

(6)上記ロドトルーラ(Rhodotorula)属、上記ロドスポリジウム属 (Rhodosporidium)及び上記ピヒア属 (Pichia)硝酸同化性酵母を用いた淡水および人工海水中の硝酸イオンの同化
滅菌イオン交換水1Lに、上記(2)で調製した表3のツァペック改変液体培地(C/N比=32、pH≒6.9)を調製し、これを淡水培地とした。
(6) Assimilation of nitrate ion in fresh water and artificial seawater using the above-mentioned Rhodotorula, Rhodosporidium and Pichia nitrate assimilation yeast. The Tzapek modified liquid medium (C / N ratio = 32, pH ≒ 6.9) of Table 3 prepared in (2) was prepared and used as a fresh water medium.

アクアリウム用人工海水の素33.4gを、滅菌イオン交換水に溶解した溶液1Lに、下記表5に示すように硝酸ナトリウムとグルコースを溶解させ、これを人工海水培地(C/N比=32、pH≒6.9)とした。   Sodium nitrate and glucose are dissolved in 1 L of a solution of 33.4 g of artificial seawater for aquarium dissolved in sterile ion-exchanged water as shown in Table 5 below, and this is used as an artificial seawater medium (C / N ratio = 32, pHpH6.9).

Figure 2018176127
Figure 2018176127

上記淡水培地及び人工海水培地の各液体培地60mLをオートクレーブ滅菌し、次いで放冷した後、滅菌イオン交換水で洗浄した上記(2)で得られた各種酵母懸濁液600μLを、それぞれ植菌した。
次いで、25℃、65rpmで振とう培養すると共に、培地の硝酸イオン濃度の経時変化を上記イオン分析計を用いてイオンクロマトグラフで分析した。
これらの結果を、淡水培地の場合を図6に、また人工海水培地の場合を図7にそれぞれ示す。
After autoclave sterilization of 60 mL of each liquid culture medium of the above-mentioned fresh water culture medium and artificial seawater culture medium, then it was allowed to cool, 600 μL of various yeast suspensions obtained in the above (2) washed with sterile ion exchange water were inoculated respectively .
Subsequently, while shaking culture was performed at 25 ° C. and 65 rpm, the time-dependent change of the nitrate ion concentration of the culture medium was analyzed by the ion chromatograph using the above-mentioned ion analyzer.
These results are shown in FIG. 6 for the fresh water medium and in FIG. 7 for the artificial seawater medium, respectively.

図6及び図7より、3種の酵母ともに高い硝酸同化性を示すことがわかる。
特にRhodosporidium属は淡水中での硝酸同化速度が優れており、Rhodotorula属では硝酸同化速度の変化が淡水及び海水でほとんど差はない。また、Pichia属は、淡水及び海水でも硝酸同化能を発現することが可能であるが、Rhodotorula属のほうが、より硝酸同化速度に優れ、かつ硝酸イオン除去する程度も高いことがわかる。
It can be seen from FIGS. 6 and 7 that all three types of yeast show high nitrate assimilation.
In particular, Rhodosporidium sp. Is excellent in nitrate assimilation rate in fresh water, and in Rhodotorula sp. No change in nitrate assimilation rate is found between freshwater and seawater. In addition, Pichia can express nitrate assimilation ability in fresh water and seawater, but it is understood that Rhodotorula is more excellent in nitrate assimilation rate and higher in removing nitrate ion.

これらの結果より、地下水中の硝酸性窒素の同化に、上記3種の酵母を用いることが可能であることがわかった。
特にRhodotorula属のRhodotorula graminis NBRC 0190の適用が好適である。
From these results, it was found that the above three types of yeast can be used for assimilation of nitrate nitrogen in ground water.
In particular, the application of Rhodotorula graminis NBRC 0190 of the genus Rhodotorula is preferred.

(7)上記ロドトルーラ(Rhodotorula)属硝酸同化性酵母を用いた硝酸イオンの同化
i)ツァペック液体培地の組成
イオン交換水1Lに下記表6のように無機塩を溶解し、硝酸イオン、有機成分および寒天質を含まない液体培地を調製した。この液体培地に、硝酸イオン濃度が所望の濃度([NO ]=885、443、221、111、44.3、22.1ppm)となるようにそれぞれNaNOを添加し、さらに硝酸性窒素と有機体炭素のモル比が、C/N=20となるようにグルコースを添加して、各ツァペック培地を調製した(pH≒6.7〜7.0)。
(7) Assimilation of nitrate ion using the above-mentioned Rhodotorula (Rhodotorula) nitrate assimilable yeast
i) Composition of Tzapek liquid medium Inorganic salts were dissolved in 1 L of ion-exchanged water as shown in Table 6 below to prepare a liquid medium containing no nitrate ion, organic component and agar. NaNO 3 is added to this liquid culture medium so that the nitrate ion concentration becomes a desired concentration ([NO 3 ] = 885, 443, 221, 111, 44.3, 22.1 ppm), and nitrate nitrogen is further added. Glucose was added so that the molar ratio of organic carbon to organic carbon was C / N = 20 to prepare each tzapeck medium (pH ≒ 6.7 to 7.0).

Figure 2018176127
Figure 2018176127

ii)このようにして調製した各ツァペック培地60mLをオートクレーブ滅菌し、次いで放冷した後、滅菌イオン交換水で洗浄した上記(2)で得られたロドトルーラ(Rhodotorula)属酵母懸濁液600μLを植菌した。
25℃、65rpmで振とう培養すると共に、培地の硝酸イオン濃度の経時変化を、上記イオン分析計を用いて分析した。
その結果を図8及び図9に示す。
ii) After autoclave sterilization of 60 mL of each Tzapek medium prepared in this way and then allowing to cool, 600 μL of Rhodotorula yeast suspension obtained in the above (2) was washed with sterile ion exchange water and planted Fungus.
While shaking culture was carried out at 25 ° C. and 65 rpm, the time course of the nitrate ion concentration of the culture medium was analyzed using the above-mentioned ion analyzer.
The results are shown in FIG. 8 and FIG.

図8及び9より、上記ロドトルーラ(Rhodotorula)属酵母は、汚濁廃水レベルの高硝酸イオン濃度から汚濁地下水レベルを想定した低硝酸イオン濃度においても99%以上の除去率で高度に硝酸イオンを除去できたことがわかる。   As shown in FIGS. 8 and 9, the above-mentioned Rhodotorula yeast can highly remove nitrate ions with a removal rate of 99% or more even at a low nitrate ion concentration assuming a polluted groundwater level from the high nitrate ion concentration of the polluted wastewater level I understand that.

(8)ロドトルーラ(Rhodotorula)属固定化硝酸同化性酵母による硝酸イオンの同化
i)ツァペック液体培地の組成
上記(2)で調製した表3と同様のツァペック液体培地を調製した。
(8) Assimilation of nitrate ion by Rhodotorula (Rhodotorula) immobilized nitrate assimilable yeast
i) Composition of Tzapek liquid medium Tzapek liquid medium similar to Table 3 prepared in the above (2) was prepared.

ii)酵母を固定化する担体
上記(2)で得られたロドトルーラ(Rhodotorula)属酵母を固定化するための担体として、ポリビニルアルコール(PVA)を用いた。
ii) Carrier for Immobilizing Yeast As a carrier for immobilizing the Rhodotorula genus yeast obtained in (2) above, polyvinyl alcohol (PVA) was used.

iii)固定化PVAディスクの製造と硝酸イオンの同化
上記(2)で得られたロドトルーラ(Rhodotorula)属酵母懸濁液を、上記表3のツァペック液体培地に添加して、振とう培養(25℃、100rpm)した。
115℃で15分間、オートクレーブ滅菌したPVAの10w/w%水溶液に、培養したRhodotorula属酵母懸濁液を、前記PVA水溶液の20v/v%量で添加して混和した後、96穴マイクロプレート(well径5mm)に200μLずつ分注した。
iii) Preparation of immobilized PVA disc and assimilation of nitrate ion The Rhodotorula yeast suspension obtained in (2) above is added to the Tzapek liquid culture medium in Table 3 above, and shake culture (25 ° C.) , 100 rpm).
A 10 w / w% aqueous solution of autoclaved PVA at a temperature of 115 ° C. for 15 minutes was added and mixed with a 20 v / v% amount of the aqueous PVA solution, and the 96-well microplate ( 200 μL of each was dispensed into wells of 5 mm in diameter.

次いで、マイクロプレートの酵母懸濁液含有上記PVA溶液を、96穴マイクロプレートに分注したまま−20℃で2時間凍結した後、1時間かけて室温で解凍した。
凍結と解凍の操作を5回反復して、弾力性のある上記Rhodotorula属酵母固定化PVAディスク(約φ5mm×8mm,円柱状)を製造した。
Next, the above-mentioned PVA solution containing yeast suspension in a microplate was frozen at -20 ° C for 2 hours while being dispensed to a 96-well microplate, and then thawed at room temperature for 1 hour.
The procedure of freezing and thawing was repeated five times to produce the above-mentioned Rhodotorula yeast-immobilized PVA disc (about φ5 mm × 8 mm, cylindrical) having elasticity.

かかるPVAディスク25個を、上記i)のツァペック液体培地100mLを入れた300mL容三角フラスコに投入し、振とう培養(25℃、100rpm)して、当該培地(C/N比=32、pH≒6.9)中の硝酸イオン濃度の経時変化を、イオン分析計を用いて測定した。
その結果を図10に示す。
Twenty-five such PVA disks are placed in a 300 mL Erlenmeyer flask containing 100 mL of the above-mentioned i) Tzapek liquid medium, shake cultured (25 ° C., 100 rpm), and the medium (C / N ratio = 32, pH ≒). The time course of nitrate ion concentration in 6.9) was measured using an ion analyzer.
The results are shown in FIG.

図10より、Rhodotorula属酵母はPVAに固定されていることが確認できるとともに、硝酸性窒素の低減に有効であり、95%以上の除去率が得られた。   From FIG. 10, it can be confirmed that Rhodotorula yeast is fixed to PVA, and it is effective for reduction of nitrate nitrogen, and a removal rate of 95% or more was obtained.

(9)地下水中の硝酸性窒素の同化
地下水(熊本県、井戸水)を2種類採取して、地下水中に含まれる硝酸性窒素の除去試験を行った。
(9) Assimilation of Nitrate Nitrogen in Groundwater Two types of groundwater (Kumamoto Prefecture, well water) were collected, and a removal test of nitrate nitrogen contained in the ground water was conducted.

地下水2種類(地下水A、地下水B)の水質は以下の表7に示すとおりである。
なお、各地下水のpHは、ガラス電極pH計(D−71 堀場製作所(株)製)を用いて測定し、陽イオン濃度は原子吸光分析装置(AA−6200 島津製作所(株)製)を、陰イオン濃度はイオン分析計(IA−100、東亜DKK(株)製)用いて測定した。またTOC(有機体炭素)はTOC計(TOC−5000A 島津製作所(株)製)を用いて測定した。
The water quality of two types of groundwater (groundwater A and groundwater B) is as shown in Table 7 below.
The pH of each sewage is measured using a glass electrode pH meter (D-71 manufactured by Horiba, Ltd.), and the cation concentration is measured by an atomic absorption spectrometer (AA-6200 manufactured by Shimadzu Corporation), The anion concentration was measured using an ion analyzer (IA-100, manufactured by Toa DKK Co., Ltd.). Also, TOC (organic carbon) was measured using a TOC meter (TOC-5000A, manufactured by Shimadzu Corporation).

Figure 2018176127
Figure 2018176127

硝酸性窒素を同化する酵母として、ロドトルーラ(Rhodotorula)属酵母を用いた。
前培養培地としては上記表3のツァペック液体培地に、上記(2)で得られたロドトルーラ(Rhodotorula)属酵母懸濁液を、当該培地の1%体積量で接種し、20℃で4日間程度振とう培養した培養液を3000rpmで15分間遠心分離した。次いで、上澄み液を除去し、沈殿した菌体を滅菌イオン交換水に懸濁した。遠心分離による液相の除去と滅菌イオン交換水による懸濁の操作を、1乃至2回繰り返して、培地の除去と菌体の洗浄を行った。その最終懸濁菌液を本培養の種菌として用いた。
本培養においては、地下水Aと地下水Bの100mLに、以下の1)〜3)の処理を行った後、種菌懸濁液1mLをそれぞれ植菌した。
Rhodotorula (Rhodotorula) yeast was used as a yeast that assimilates nitrate nitrogen.
As a pre-culture medium, the Todopec liquid culture medium of Table 3 above is inoculated with the Rhodotorula genus yeast suspension obtained in the above (2) at a volume of 1% of the culture medium, and it is about 4 days at 20 ° C. The shaking culture was centrifuged at 3000 rpm for 15 minutes. Then, the supernatant was removed, and the precipitated cells were suspended in sterile ion-exchanged water. The removal of the liquid phase by centrifugation and the operation of suspension with sterile ion-exchanged water were repeated once or twice to remove the medium and wash the cells. The final suspension was used as an inoculum for the main culture.
In the main culture, 100 mL of groundwater A and groundwater B were treated with the following 1) to 3), and then 1 mL of inoculum suspension was inoculated respectively.

1)各地下水をオートクレーブ滅菌(121℃,15分間)して、その後放冷した。
2)グルコースを各地下水の硝酸イオン濃度に対して、C/N=20となるように量り入れた後、オートクレーブ滅菌(121℃,15分間)し、その後放冷した。
3)他方、グルコースを各地下水の硝酸イオン濃度に対してC/N=20となるように量り入れ、滅菌せずに、解放状態とした。
1) Each sewage was autoclaved (121 ° C, 15 minutes) and then allowed to cool.
2) After weighing in glucose so that C / N = 20 with respect to nitrate concentration in each sewage, autoclave sterilization (121 ° C., 15 minutes) was performed, and then allowed to cool.
3) On the other hand, glucose was weighed in so that C / N = 20 with respect to nitrate concentration in each sewage, and it was in a released state without sterilization.

上記1)〜3)の処理を行った各地下水A及びB100mLについて、ロドトルーラ(Rhodotorula)属酵母種菌懸濁液1mLをそれぞれ植菌して、約20℃、65rpmで振とう培養すると共に、各地下水中の硝酸イオン濃度の経時変化を、上記イオン分析計で分析した。その結果を表8(数値はppm)及び図11に示す。
また、ソモギー・ネルソン法で残糖濃度を分析し、その結果を表9(数値はppm)及び図12に示す。
About 100 mL of regional sewage A and B treated with the above 1) to 3), 1 mL of Rhodotorula yeast seed suspension is inoculated respectively, and shake culture is carried out at about 20 ° C. and 65 rpm. The time course of nitrate ion concentration in the medium was analyzed by the above ion analyzer. The results are shown in Table 8 (the numerical values are in ppm) and in FIG.
In addition, the residual sugar concentration was analyzed by the Somogyi-Nelson method, and the results are shown in Table 9 (the numerical values are ppm) and FIG.

Figure 2018176127
Figure 2018176127

Figure 2018176127
Figure 2018176127

表8及び図11より、A−1及びB−1で示されるように、炭素源であるグルコースを積極的に添加しない場合であっても、前培養時における菌体内部の炭素源の持ち越し分が若干存在するため、硝酸イオン濃度の低下は起こるが、結果として炭素源が徐々に不足してくるため、硝酸イオン除去速度は遅くなってくる。
一方、C/N=20の割合でグルコースを添加することで、1〜2日間で硝酸イオン濃度が0.5ppm未満まで低減していることがわかる。
From Table 8 and FIG. 11, as shown by A-1 and B-1, even when the carbon source glucose is not positively added, the carryover component of the carbon source inside the cells at the time of preculture is obtained. Although the concentration of nitrate ions decreases due to the presence of a slight amount of nitrate, the rate of nitrate ions removal slows down as the carbon source gradually becomes insufficient as a result.
On the other hand, it is understood that the nitrate ion concentration is reduced to less than 0.5 ppm in 1 to 2 days by adding glucose at a ratio of C / N = 20.

更に本菌の硝酸同化は好気性反応であるので、無滅菌の解放状態でも遜色ない効果を示しており、地下水浄化システムへの転用が簡易になるものである。
また、表9及び図12より、C/N=20で仕込んだグルコースも硝酸イオンの除去に伴いほぼ消費され、残糖濃度を有機体炭素濃度(TOC値)に換算しても3ppm未満になっていることがわかる。
Furthermore, since the nitrate assimilation of this bacterium is an aerobic reaction, it shows an effect comparable to that in the non-sterile release state, which makes it easy to divert to a groundwater purification system.
Also, according to Table 9 and FIG. 12, glucose charged at C / N = 20 is also almost consumed as the nitrate ion is removed, and the residual sugar concentration becomes less than 3 ppm even when converted to the organic carbon concentration (TOC value). Know that

本発明は、硝酸態窒素による汚染地下水および河川、池、湖沼、海洋水等の浄化に有効に使用することができるとともに、硝酸態窒素により汚染された土壌中への散布により土壌中の硝酸態窒素の低減にも適用することが可能である。

The present invention can be effectively used for the purification of nitrate nitrogen-contaminated ground water and rivers, ponds, lakes, ocean waters, etc., and it can be applied to soils polluted with nitrate nitrogen, thereby causing nitrate in the soil. It is possible to apply also to the reduction of nitrogen.

Claims (7)

ロドトルーラ属グラミニス(Rhodotorula graminis)、ピヒア属カプシュラータ(Pichia capsulata)又はロドスポリジウム属スファエロカルパム(Rhodosporidium sphaerocarpum)に属し、硝酸性窒素を同化する能力のある酵母、その培養物又はその抽出物を、硝酸性窒素を含む環境水又は土壌と接触させて、硝酸性窒素を除去することを特徴とする、硝酸性窒素の除去方法。   A yeast having the ability to assimilate nitrate nitrogen, a culture thereof or an extract thereof belonging to Rhodotorula graminis, Pichia capsulata or Rhodosporidium sphaerocarpum, and capable of assimilating nitrate nitrogen A method for removing nitrate nitrogen, which comprises contacting nitrate nitrogen with environmental water or soil containing nitrate nitrogen to remove nitrate nitrogen. 請求項1記載の硝酸性窒素の除去方法において、ロドトルーラ グラミニス(Rhodotorula graminis)に属する酵母はロドトルーラ グラミニス NBRC 0190であり、ピヒア カプシュラータ(Pichia capsulata)の属する酵母はピヒア カプシュラータ NBRC 1770であり、ロドスポリジウム スファエロカルパ(Rhodosporidium sphaerocarpum)はロドスポリジウム スファエロカルパム NBRC1939であることを特徴とする、硝酸性窒素の除去方法。   In the method for removing nitrate nitrogen according to claim 1, the yeast belonging to Rhodotorula graminis is Rhodotorula graminis NBRC 0190, and the yeast to which Pichia capsulata belongs is Pichia capsulata NBRC 1770, which is Rhodosporium. A method for removing nitrate nitrogen, wherein Sphaerocarpa (Rhodosporidium sphaerocarpum) is Rhodosporidium sphaerocarpam NBRC 1939. 請求項1又は2記載の硝酸性窒素の除去方法において、上記ロドトルーラ属グラミニス(Rhodotorula graminis)、ピヒア属カプシュラータ(Pichia capsulata)又はロドスポリジウム属スファエロカルパム(Rhodosporidium sphaerocarpum)に属する酵母、その培養物またはその抽出物を担体に固定化させて、硝酸性窒素を含む環境水又は土壌と接触させることを特徴とする、硝酸性窒素の除去方法。   3. The method for removing nitrate nitrogen according to claim 1, wherein the yeast belonging to Rhodotorula graminis, Pichia capsulata or Rhodosporidium sphaerocarpum, and a culture thereof A method for removing nitrate nitrogen, which comprises immobilizing the substance or its extract on a carrier and bringing it into contact with environmental water or soil containing nitrate nitrogen. 請求項1乃至3いずれかの項記載の硝酸性窒素の除去方法において、硝酸性窒素を含む環境水又は土壌には、炭素がC/N比(質量比)で15〜30で含まれていることを特徴とする、硝酸性窒素の除去方法。   The method for removing nitrate nitrogen according to any one of claims 1 to 3, wherein environmental water or soil containing nitrate nitrogen contains carbon at a C / N ratio (mass ratio) of 15 to 30. A method of removing nitrate nitrogen, characterized in that ロドトルーラ属グラミニス(Rhodotorula graminis)、ピヒア属カプシュラータ(Pichia capsulata)又はロドスポリジウム属スファエロカルパム(Rhodosporidium sphaerocarpum)に属し、硝酸性窒素を同化する能力のある酵母、その培養物又はその抽出物からなることを特徴とする、環境水又は土壌用硝酸性窒素除去剤。   A yeast belonging to the genus Rhodotorula graminis, a genus Pichia capsulata or a genus Rhodosporidium sphaerocarpum and capable of assimilating nitrate nitrogen, a culture thereof or an extract thereof A nitrate nitrogen remover for environmental water or soil characterized in that 請求項5記載の硝酸性窒素除去剤において、ロドトルーラ属グラミニス(Rhodotorula graminis)に属する酵母はロドトルーラ グラミニス NBRC 0190であり、ピヒア属カプシュラータ(Pichia capsulata)に属する酵母はピヒア カプシュラータ NBRC 1770であり、ロドスポリジウム属スファエロカルパム(Rhodosporidium sphaerocarpum)に属する酵母はロドスポリジウム スファエロカルパム(Rhodosporidium sphaerocarpum)NBRC1939であることを特徴とする、環境水又は土壌用硝酸性窒素除去剤。   The nitrate nitrogen-removing agent according to claim 5, wherein the yeast belonging to Rhodotorula graminis is Rhodotorula graminis NBRC 0190, and the yeast belonging to Pichia capsulata is Pichia capsulata NBRC 1770, A nitrate nitrogen remover for environmental water or soil, characterized in that the yeast belonging to the genus Rhodosporidium sphaerocarpum is Rhodosporidium sphaerocarpum NBRC 1939. 請求項5又は6記載の硝酸性窒素除去剤において、上記ロドトルーラ属グラミニス(Rhodotorula graminis)、ピヒア属カプシュラータ(Pichia capsulata)又はロドスポリジウム属スファエロカルパム(Rhodosporidium sphaerocarpum)に属する酵母、その培養物またはその抽出物は、担体に担持されて固定化されていることを特徴とする、環境水又は土壌用硝酸性窒素除去剤。

The nitrate nitrogen-removing agent according to claim 5 or 6, which is a yeast belonging to Rhodotorula graminis, Pichia capsulata or Rhodosporidium sphaerocarpum, and a culture thereof. Alternatively, a nitrate nitrogen removing agent for environmental water or soil characterized in that the extract is supported on a carrier and immobilized.

JP2017083543A 2017-04-20 2017-04-20 Nitrate nitrogen removal method and nitrate nitrogen remover Active JP6769615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017083543A JP6769615B2 (en) 2017-04-20 2017-04-20 Nitrate nitrogen removal method and nitrate nitrogen remover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017083543A JP6769615B2 (en) 2017-04-20 2017-04-20 Nitrate nitrogen removal method and nitrate nitrogen remover

Publications (2)

Publication Number Publication Date
JP2018176127A true JP2018176127A (en) 2018-11-15
JP6769615B2 JP6769615B2 (en) 2020-10-14

Family

ID=64282047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017083543A Active JP6769615B2 (en) 2017-04-20 2017-04-20 Nitrate nitrogen removal method and nitrate nitrogen remover

Country Status (1)

Country Link
JP (1) JP6769615B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021159923A1 (en) * 2020-06-12 2021-08-19 中国科学院南海海洋研究所 Sinking-type rhodosporidium sphaerocarpum microbial preparation, and preparation method and use therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122255A (en) * 1977-04-01 1978-10-25 Kokuzeicho Japan Device for purifying liquor brewing waste water
JPS53129445A (en) * 1977-04-18 1978-11-11 Kokuzeicho Japan Method of purifying food waste water containing starch
JPH01218698A (en) * 1988-02-29 1989-08-31 Nippon Mining Co Ltd Denitrifying method
JPH04176395A (en) * 1990-11-08 1992-06-24 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water incorporating organic substance having low concentration and equipment
JPH04207160A (en) * 1990-11-30 1992-07-29 Norin Suisansyo Chikusan Shikenjo Method for removing nitrate nitrogen in crude feed, horticultural food or the like
JP2008245597A (en) * 2007-03-30 2008-10-16 Cosmo Oil Co Ltd Method for promoting proliferation of and improving activity of microorganism
JP2012071255A (en) * 2010-09-28 2012-04-12 Ritsumeikan Soil cleaning method
JP2013046610A (en) * 2011-07-28 2013-03-07 Toyobo Co Ltd Modified peroxidase enzyme gene which exhibits improved expression property, and method for producing peroxidase using the same
CN104845894A (en) * 2015-05-18 2015-08-19 中国农业科学院饲料研究所 Pichia farinosa NHG and application of Pichia farinosa to in degradation of ammonia nitrogen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122255A (en) * 1977-04-01 1978-10-25 Kokuzeicho Japan Device for purifying liquor brewing waste water
JPS53129445A (en) * 1977-04-18 1978-11-11 Kokuzeicho Japan Method of purifying food waste water containing starch
JPH01218698A (en) * 1988-02-29 1989-08-31 Nippon Mining Co Ltd Denitrifying method
JPH04176395A (en) * 1990-11-08 1992-06-24 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water incorporating organic substance having low concentration and equipment
JPH04207160A (en) * 1990-11-30 1992-07-29 Norin Suisansyo Chikusan Shikenjo Method for removing nitrate nitrogen in crude feed, horticultural food or the like
JP2008245597A (en) * 2007-03-30 2008-10-16 Cosmo Oil Co Ltd Method for promoting proliferation of and improving activity of microorganism
JP2012071255A (en) * 2010-09-28 2012-04-12 Ritsumeikan Soil cleaning method
JP2013046610A (en) * 2011-07-28 2013-03-07 Toyobo Co Ltd Modified peroxidase enzyme gene which exhibits improved expression property, and method for producing peroxidase using the same
CN104845894A (en) * 2015-05-18 2015-08-19 中国农业科学院饲料研究所 Pichia farinosa NHG and application of Pichia farinosa to in degradation of ammonia nitrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021159923A1 (en) * 2020-06-12 2021-08-19 中国科学院南海海洋研究所 Sinking-type rhodosporidium sphaerocarpum microbial preparation, and preparation method and use therefor

Also Published As

Publication number Publication date
JP6769615B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
Heidarpour et al. Bio-removal of Zn from contaminated water by using green algae isolates
Kumlanghan et al. Microbial BOD sensor for monitoring treatment of wastewater from a rubber latex industry
Ji et al. Effect of different preservation conditions on the reactivation performance of anammox sludge
CN101691569B (en) Bacillus cereus microbial preparation and method for treating nitrogenous waste water by using microbial preparation
Shelton et al. Response of coliform populations in streambed sediment and water column to changes in nutrient concentrations in water
CN111117914B (en) Salt-tolerant heterotrophic aerobic nitrobacteria strain, culture method, bacterial liquid and application
Dendooven et al. Maintenance of denitrification potential in pasture soil following anaerobic events
CN103436519A (en) Composite microbial preparation for watershed bioremediation as well as preparation method and application thereof
Zhang et al. A mainstream anammox fixed-film membrane bioreactor with novel sandwich-structured carriers for fast start-up, effective sludge retention and membrane fouling mitigation
CN102586160A (en) Stenotrophomonas maltophilia DS4
CN102583780A (en) Application of Stenotrophomonas maltophilia DS4 for degrading organic pollutants in saponin waste water
Zhang et al. A novel magnetic microparticles as biocarriers for promoting enrichment of nitrifying bacteria
Zafar et al. Performance of immobilized microalgal strains for biodesalination of real seawater
CN106701632A (en) Cold-resistant pseudomonas herbaceum and application thereof in sewage treatment
CN109355206A (en) Complex microorganism denitrogenates microbial inoculum
Shahrokh et al. The impact of nano-silver on bacterial aerobic nitrate reductase
CN103805591A (en) Method for co-immobilization of nitrite bacteria-denitrifying bacteria
JP6769615B2 (en) Nitrate nitrogen removal method and nitrate nitrogen remover
Yee et al. Development of a treatment solution for reductive dechlorination of hexachloro-1, 3-butadiene in vadose zone soil
Wang et al. Using graphene oxide to reactivate the anaerobic ammonium oxidizers after long-term storage
JP5481846B2 (en) Method for purifying contaminated soil or groundwater
Ansari et al. Phytoremediation of eutrophic waters
Van den Berg et al. Technical note The formulation of synthetic domestic wastewater sludge medium to study anaerobic biological treatment of acid mine drainage in the laboratory
JPH09308494A (en) Production of lactic acid
Sherr et al. The effect of sewage sludge on salt-marsh denitrifying bacteria

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R150 Certificate of patent or registration of utility model

Ref document number: 6769615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250