JP2018176123A - Method for manufacturing fine coal - Google Patents

Method for manufacturing fine coal Download PDF

Info

Publication number
JP2018176123A
JP2018176123A JP2017083294A JP2017083294A JP2018176123A JP 2018176123 A JP2018176123 A JP 2018176123A JP 2017083294 A JP2017083294 A JP 2017083294A JP 2017083294 A JP2017083294 A JP 2017083294A JP 2018176123 A JP2018176123 A JP 2018176123A
Authority
JP
Japan
Prior art keywords
coal
moisture value
mill
hopper
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017083294A
Other languages
Japanese (ja)
Other versions
JP6798407B2 (en
Inventor
恭平 鈴木
Kyohei Suzuki
恭平 鈴木
佐藤 寛之
Hiroyuki Sato
寛之 佐藤
公治 柳野
Kimiharu Yanagino
公治 柳野
山本 耕司
Koji Yamamoto
耕司 山本
長谷川 伸二
Shinji Hasegawa
伸二 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017083294A priority Critical patent/JP6798407B2/en
Publication of JP2018176123A publication Critical patent/JP2018176123A/en
Application granted granted Critical
Publication of JP6798407B2 publication Critical patent/JP6798407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for stably manufacturing fine coals by controlling drying conditions when pulverizing coals by a pulverization mill.SOLUTION: A method for manufacturing fine coals, in which firstly, a moisture value of a coal 6, which is inputted into a coal hopper 2, is determined, a moisture value of a coal to be supplied to a pulverization mill 1 is estimated from the determined moisture value, and a supply amount of coals from the coal hopper 2 to the pulverization mill 1 is determined by a load cell 10. A fuel gas amount of a gas burner 3 is feed-forward controlled based on the estimated moisture value and the supply coal amount, and on the other hand, a temperature of an exhaust gas discharged from the pulverization mill 1 is determined by a thermometer 11, and the fuel gas amount of the gas burner 3 is feedback-controlled so that the determined temperature of the exhaust gas falls within a prescribed temperature range.SELECTED DRAWING: Figure 1

Description

本発明は、粉砕ミルにより石炭を粉砕して微粉炭を製造する微粉炭の製造方法に関する。   The present invention relates to a method for producing pulverized coal in which coal is pulverized by a pulverizing mill to produce pulverized coal.

微粉炭は、気流輸送法により搬送が容易であり、流量も制御しやすいという特徴がある。そのため、この微粉炭は、高炉の羽口から吹込んで燃料および還元材として使用されたり、発電プラントのボイラ等の燃料として使用されたりする等、様々な用途で有効に使用されている。   Pulverized coal is characterized in that it can be easily transported by an air flow transportation method and the flow rate can be easily controlled. Therefore, this pulverized coal is effectively used in various applications, such as blowing it from the tuyere of a blast furnace and using it as a fuel and a reducing agent, or using it as a fuel for a boiler or the like of a power plant.

従来、このような微粉炭の製造方法としては、例えば特許文献1に開示されているようなものが知られている。この開示技術は、発電プラントのボイラ等に供給する微粉炭を製造するための石炭粉砕装置の制御装置とその方法に関するものであり、熱風を石炭が供給される粉砕ミルに送り、粉砕ミルで得られた微粉炭を、熱風を使って乾燥したのち、集塵機を用いて気固分離し、最終的に微粉炭とする方法を提案している。   Conventionally, as a method for producing such pulverized coal, for example, a method as disclosed in Patent Document 1 is known. The disclosed technology relates to a control device and method of a coal crushing apparatus for producing pulverized coal to be supplied to a boiler or the like of a power plant, and hot air is sent to a crushing mill to which coal is supplied and obtained by the crushing mill. The proposed pulverized coal is dried using hot air, and then it is separated by gas-solid separation using a dust collector.

一般に、このような粉砕装置で石炭を粉砕して微粉炭を得ようとする場合、製造された微粉炭の水分値を所定値以下にすることが重要である。しかしながら、従来、粉砕装置の構成上、集塵機で捕集された微粉炭の水分値を直接的に計測する方法はなく、また、微粉炭を定期的にサンプリングして水分値を計測しても、水分値が求まるまでに時間がかかっている。そのため、実際に測定した微粉炭の水分値を、粉砕装置での熱風の温度や量の制御に有効に使えないという問題があった。   In general, when it is intended to pulverize coal with such a pulverizer to obtain pulverized coal, it is important to make the moisture value of the manufactured pulverized coal equal to or less than a predetermined value. However, conventionally, there is no method for directly measuring the moisture value of the pulverized coal collected by the dust collector because of the configuration of the pulverizing apparatus, and even if the pulverized coal is periodically sampled to measure the moisture value, It takes time to determine the water content. Therefore, there is a problem that the moisture value of the pulverized coal actually measured can not be effectively used to control the temperature and amount of the hot air in the pulverizing apparatus.

そこで、特許文献1では、石炭を粉砕する粉砕ミルにおける各種のプロセス値から出炭される微粉炭の水分値を算出し、この出炭水分値を用いてミル温度指令値の補正を行う制御方法がとられている。具体的には、微粉炭の乾燥不足を抑止するために、粉砕ミルの出口温度(以後、ミル出口温度と記載)が一定になるように、ガスバーナーへの燃焼ガス、エアーの流量を変化させることで制御しているのである。   Therefore, in Patent Document 1, a control method of calculating the moisture value of pulverized coal to be discharged from various process values in a pulverizing mill for pulverizing coal, and correcting a mill temperature command value using this extracted moisture value of coal Is taken. Specifically, in order to suppress the insufficient drying of pulverized coal, the flow rates of combustion gas and air to the gas burner are changed so that the outlet temperature of the pulverizing mill (hereinafter referred to as mill outlet temperature) becomes constant. Control.

特開2014−117657号公報JP, 2014-117657, A

微粉炭製造に使用される石炭は、一般に、銘柄により水分値が異なる。そのため、粉砕ミルへ供給される石炭の水分値は、石炭の銘柄の変更や配合の変更に応じて変動するのが普通である。それに加えて、石炭を露天のヤードへ野積みして、これを粉砕乾燥する場合、ヤードにおいて野積みした山の頂部と裾部とでは水分値が異なり、また、降雨や天日乾燥による水分値の変動が生じ、特に降雨が続いたとき等には、急激な水分値の変動が生じるといった現象が見られる。   Coal used for pulverized coal production generally has different moisture values depending on the brand. Therefore, the moisture value of coal supplied to the grinding mill usually fluctuates according to the change of the brand of coal and the change of the blending. In addition to that, when coal is piled in the open yard and crushed and dried, the water value differs between the top and the bottom of the pile piled in the yard, and the water value due to rainfall or sun drying In particular, when rainfall continues, a phenomenon such as a rapid change in water value is observed.

図5(a)、(b)は、それぞれ、粉砕ミル出口温度を一定に保つようにガスバーナーでの燃料ガスの流量をPID制御(フィードバック制御)したときの、降雨時と晴天時それぞれの1日分のミル出口温度のトレンドの一例を示したものである。晴天時(図5(b))には、目標温度設定値の93℃に対して4℃程度の振れ幅で制御ができているが、降雨時(図5(a))には、振幅が大きくなり、最大で10℃程度の振れ幅となっている。これは、石炭ホッパーから供給される石炭の水分値が大きく変動したため、ミル出口温度に基づき燃料ガス量を制御するフィードバック制御では、十分な応答ができなかったためと考えられる。   5 (a) and 5 (b) respectively show one during rainfall and during fine weather when the flow rate of the fuel gas at the gas burner is subjected to PID control (feedback control) so as to keep the mill mill outlet temperature constant. An example of the trend of the mill outlet temperature for a day is shown. In fine weather (Fig. 5 (b)), control can be performed with a swing width of about 4 ° C against the target temperature set value of 93 ° C, but when it is raining (Fig. 5 (a)) It becomes large and has a fluctuation range of about 10 ° C at the maximum. This is considered to be because the feedback control for controlling the amount of fuel gas based on the mill outlet temperature could not sufficiently respond because the moisture value of the coal supplied from the coal hopper fluctuated significantly.

同様の制御を行っている特許文献1に開示されている微粉炭の製造方法では、各種のプロセス値から出炭水分値の演算を行い、ミル温度指令値を演算した出炭水分値で補正を行っている。しかし、この方法は、粉砕ミルへ供給される石炭を実際に測定して求めた水分値を補正に使用しているわけではない。しかも、この技術の場合、粉砕ミル出口温度を一定に保つようにガスバーナーでの燃料ガスの流量をPID制御(フィードバック制御)しているため、粉砕ミルに供給する石炭の水分値が急激に上昇した時などに、演算した出炭水分値に基づくミル温度指令値の補正が時間的に間に合わず、ミル出口温度が急激に低下するという問題があった。   In the method of manufacturing pulverized coal disclosed in Patent Document 1 which performs the same control, the moisture content of coal is calculated from various process values, and correction is performed using the moisture content of coal obtained by calculating the mill temperature command value. Is going. However, this method does not use the water value obtained by actually measuring the coal supplied to the grinding mill for correction. Moreover, in the case of this technology, the flow rate of the fuel gas in the gas burner is PID-controlled (feedback control) so as to keep the temperature at the milling mill outlet constant, so the moisture value of coal supplied to the milling mill rises sharply When this happens, there is a problem that the correction of the mill temperature command value based on the calculated moisture content of coal can not be made in time, and the mill outlet temperature will drop sharply.

本発明の目的は、粉砕ミルによる石炭の粉砕時に乾燥条件を制御することで、安定した微粉炭の製造方法を提案することにある。   An object of the present invention is to propose a method for producing a stable pulverized coal by controlling drying conditions at the time of grinding of coal by a grinding mill.

従来技術が抱えている前述の課題を解決し、前記の目的を実現するために鋭意研究した結果、発明者らは、以下に述べる新規な微粉炭の製造方法を開発するに到った。即ち、本発明は、石炭ホッパー、ガスバーナーおよび集塵機を備える粉砕ミルを使用して、石炭ホッパーから供給される石炭を、ガスバーナーからの高温ガスにより乾燥すると共に粉砕ミルにより粉砕して微粉炭を生成し、生成した微粉炭を高温ガスの排気ガスに随伴させて集塵機に運び、集塵機により微粉炭を排気ガスから分離して得る、微粉炭の製造方法において、まず、石炭ホッパーへ投入される石炭の水分値を求め、求めた水分値から粉砕ミルへ供給する石炭の水分値を推定すると共に、石炭ホッパーから粉砕ミルへの給炭量を求め、推定した水分値および給炭量に基づきガスバーナーの燃料ガス量をフィードフォワード制御する一方、粉砕ミルから排出される排気ガスの温度が所定の温度範囲になるように、ガスバーナーの燃料ガス量をフィードバック制御することを特徴とする、微粉炭の製造方法である。   As a result of solving the above-mentioned problems of the prior art and earnestly researching to achieve the above object, the inventors have developed a novel method for producing pulverized coal described below. That is, according to the present invention, using a grinding mill equipped with a coal hopper, a gas burner and a dust collector, the coal supplied from the coal hopper is dried by high temperature gas from the gas burner and crushed by a grinding mill to obtain pulverized coal. In the method of producing pulverized coal obtained by forming and mixing the produced pulverized coal with the exhaust gas of high temperature gas and carrying it to a dust collector and separating the pulverized coal from the exhaust gas by the dust collector, first, coal fed to the coal hopper The water content of the coal is determined from the determined water content, the water content of the coal supplied to the grinding mill is estimated, and the amount of coal supply from the coal hopper to the grinding mill is determined, and the gas burner is Feed forward control of the amount of fuel gas, while the temperature of the exhaust gas discharged from the grinding mill is within a predetermined temperature range. Wherein the feedback control of the amount, is a manufacturing method of the pulverized coal.

なお、前記のように構成される本発明に係る微粉炭の製造方法においては、
(1)前記粉砕ミルへ供給される石炭の水分値の推定は、前記求めた石炭ホッパーへ投入される石炭の水分値に基づき、石炭ホッパーへ投入される石炭の石炭ホッパー内での移動をトラッキングし、粉砕ミルへの石炭供給時点の石炭の水分値を推定することにより行うこと、
がより好ましい解決手段となるものと考えられる。
In the method of producing pulverized coal according to the present invention configured as described above,
(1) The estimation of the moisture value of coal supplied to the grinding mill is based on the obtained moisture value of coal input to the coal hopper, tracking the movement of the coal input to the coal hopper within the coal hopper And by estimating the moisture value of the coal at the time of coal supply to the grinding mill,
Is considered to be a more preferable solution.

本発明に係る微粉炭の製造方法は、石炭ホッパーへ投入される石炭の水分値を求め、求めた水分値から粉砕ミルへ供給する石炭の水分値を推定すると共に、石炭ホッパーから粉砕ミルへの給炭量を求め、推定した水分値および給炭量に基づきガスバーナーの燃料ガス量をフィードフォワード制御する一方、粉砕ミルから排出される排気ガスの温度が所定の温度範囲になるように、ガスバーナーの燃料ガス量をフィードバック制御する方法であることから、粉砕ミルへ供給する石炭の水分値が増減した場合でも、ミル出口温度の急激な低下を抑止でき、安定的に微粉炭の製造を行うことができる。   In the method of producing pulverized coal according to the present invention, the moisture value of coal fed to the coal hopper is determined, and the moisture value of coal to be fed to the pulverizing mill is estimated from the determined moisture value, and the coal hopper to the pulverizing mill The feed amount is determined, and feedforward control is performed on the fuel gas amount of the gas burner based on the estimated moisture value and the feed amount, while the temperature of the exhaust gas discharged from the grinding mill is in a predetermined temperature range. Since the method of feedback control the amount of fuel gas in the burner, even if the moisture value of the coal supplied to the pulverizing mill increases or decreases, it is possible to suppress the rapid decrease of the mill outlet temperature and stably produce pulverized coal. be able to.

また、本発明は、微粉炭の気流輸送を前提とする方法であるから、微粉炭輸送配管への付着抑止、輸送量低下を抑止できるという効果もある。   Moreover, since the present invention is a method based on air flow transportation of pulverized coal, there is also an effect that adhesion to the pulverized coal transport piping can be suppressed, and a reduction in the amount of transportation can be suppressed.

本発明の微粉炭の製造方法を実施する粉砕ミルの一例の構成を説明するための図である。It is a figure for demonstrating the structure of an example of the grinding mill which enforces the manufacturing method of the pulverized coal of this invention. 本発明の微粉炭の製造方法における、粉砕ミルに供給する石炭水分値を考慮した制御方法の一例を説明するためのブロック図である。It is a block diagram for demonstrating an example of the control method which considered the coal moisture value supplied to a crushing mill in the manufacturing method of the pulverized coal of this invention. 本発明の微粉炭の製造方法において、石炭ホッパー出口から供給される石炭の水分値のトラッキングを説明するための図である。In the manufacturing method of the pulverized coal of the present invention, it is a figure for explaining the tracking of the moisture value of the coal supplied from the coal hopper exit. (a)〜(d)は、それぞれ、本発明の微粉炭の製造方法における、粉砕ミルに供給する石炭水分値を考慮した制御方法の効果を先行例と比較して示すグラフである。(A)-(d) is a graph which respectively shows the effect of the control method which considered the coal moisture value supplied to a grinding mill in the manufacturing method of pulverized coal of this invention compared with a prior art example. (a)、(b)は、それぞれ、従来の微粉炭の製造方法における制御方法において、晴天時と降雨時にけるミル出口温度を比較して示すグラフである。(A), (b) is a graph which compares and shows the mill exit temperature in the time of fine weather and rainfall, respectively in the control method in the conventional manufacturing method of pulverized coal.

<本発明を実施する粉砕ミルについて>
図1は、本発明の微粉炭の製造方法を実施する粉砕ミルの一例の構成を説明するための図である。図1に示す例において、粉砕ミル1は、石炭ホッパー2、ガスバーナー3および集塵機4を備えている。また、図示の5は石炭6を輸送するベルトコンベア、図示の7は石炭6の水分値を測定する水分計である。さらに、図示の8は石炭ホッパー2から粉砕ミル1へ石炭6を供給する給炭機である。さらにまた、図示の9は製造すべき微粉炭であり、図示の10はロードセルであり、図示の11は温度計である。
<About the grinding mill which carries out the present invention>
FIG. 1 is a figure for demonstrating the structure of an example of the grinding mill which enforces the manufacturing method of the pulverized coal of this invention. In the example shown in FIG. 1, the grinding mill 1 is provided with a coal hopper 2, a gas burner 3 and a dust collector 4. Further, 5 in the figure is a belt conveyor for transporting the coal 6, and 7 in the figure is a moisture meter for measuring the moisture value of the coal 6. Furthermore, 8 in the figure is a feeder which supplies coal 6 from the coal hopper 2 to the grinding mill 1. Furthermore, 9 in the figure is pulverized coal to be manufactured, 10 in the figure is a load cell, and 11 in the figure is a thermometer.

図1に示す粉砕ミル1において、原料である石炭6は、ベルトコンベア5にて、石炭ホッパー2内へ投入される。その際、ベルトコンベア5の途中で石炭6の水分値を水分計7により測定する。水分計7は、赤外線水分計等の非接触型の水分計が好適に用いられる。   In the grinding mill 1 shown in FIG. 1, coal 6 which is a raw material is introduced into the coal hopper 2 by the belt conveyor 5. At that time, the moisture value of the coal 6 is measured by the moisture meter 7 in the middle of the belt conveyor 5. The moisture meter 7 is preferably a non-contact moisture meter such as an infrared moisture meter.

石炭ホッパー2へ投入された石炭6の重量(給炭量)は、石炭ホッパー2に設置されたロードセル10により計測することができる。また、給炭量は、石炭ホッパー2へ石炭6を輸送するベルトコンベア5にコンベアスケールを設置して計測してもよい。   The weight (the amount of coal supply) of the coal 6 input to the coal hopper 2 can be measured by the load cell 10 installed in the coal hopper 2. Further, the amount of coal supply may be measured by installing a conveyor scale on the belt conveyor 5 that transports the coal 6 to the coal hopper 2.

石炭ホッパー2の下部には、給炭機8が設置されており、石炭6は石炭ホッパー2から該給炭機8を介して粉砕ミル1へ供給される。その給炭機8としては、チェーンコンベア、スクリューコンベア等の、石炭6の粉砕ミル1への供給量を調整できる装置を用いることができる。粉砕ミル1へは、ガスバーナー3から高温ガスが送気されており、その排ガスは乾燥された微粉炭9と共に集塵機4へ送られ、その集塵機4により微粉炭が分離回収される。そのため、給炭機8は密閉形式のものを使うことが好ましい。   At the lower part of the coal hopper 2, a coal feeder 8 is installed, and coal 6 is supplied from the coal hopper 2 to the grinding mill 1 via the coal feeder 8. As the coal feeder 8, an apparatus such as a chain conveyor or a screw conveyor that can adjust the supply amount of the coal 6 to the grinding mill 1 can be used. The high temperature gas is supplied from the gas burner 3 to the pulverizing mill 1, and the exhaust gas is sent to the dust collector 4 together with the dried pulverized coal 9, and the dust collector 4 separates and recovers the pulverized coal. Therefore, it is preferable to use a closed type coal feeder 8.

ローラミル等の使用が好適な粉砕ミル1では、供給された石炭6の粉砕が行われる。このとき、粉砕ミル1内には、同時に、ガスバーナー3の高温ガスが供給される。そのため、石炭6は粉砕ミル1により粉砕されながら高温ガスにより乾燥されることで、粉砕、乾燥される。乾燥後の微粉炭9は、粉砕ミル1内から上方へ、高温ガスの排ガスに随伴された状態で排出される。この微粉炭9と排ガスとは集塵機4で気固分離され、微粉炭9は集塵機4の下方に設置される微粉炭ホッパーへ送られる。排ガスはその後大気放散される。   In the grinding mill 1 where the use of a roller mill or the like is preferable, grinding of the supplied coal 6 is performed. At this time, the high temperature gas of the gas burner 3 is simultaneously supplied into the pulverizing mill 1. Therefore, the coal 6 is crushed and dried by being dried by the high-temperature gas while being crushed by the crushing mill 1. The pulverized coal 9 after drying is discharged upward from the inside of the grinding mill 1 in a state accompanied by the exhaust gas of the high temperature gas. The pulverized coal 9 and the exhaust gas are gas-solid separated by the dust collector 4, and the pulverized coal 9 is sent to a pulverized coal hopper installed below the dust collector 4. The exhaust gases are then dissipated to the atmosphere.

<粉砕ミルにおける本発明の制御方法について>
本発明の微粉炭の製造方法では、まず、粉砕ミルにおいて石炭ホッパー2へ投入される石炭6の水分値を求める。そして、求めたその水分値に基づき粉砕ミル1内へ供給される石炭の水分値を推定する。一方、石炭ホッパー2から粉砕ミル1へ供給する石炭量をロードセル10により給炭量として求め、推定した前記水分値および求めた前記給炭量に基づき、ガスバーナー3の燃料ガス量をフィードフォワード制御する。それと同時に、粉砕ミル1から排出される排気ガスの温度を温度計11で求め、求めた排気ガスの温度が所定の範囲内の温度になるように、ガスバーナー3の燃料ガス量をフィードバック制御する。
<About the control method of the present invention in a grinding mill>
In the method for producing pulverized coal according to the present invention, first, the moisture value of the coal 6 to be fed to the coal hopper 2 in the grinding mill is determined. Then, the moisture value of the coal supplied into the pulverizing mill 1 is estimated based on the determined moisture value. On the other hand, the amount of coal supplied from the coal hopper 2 to the crushing mill 1 is determined as the amount of coal supply by the load cell 10, and the amount of fuel gas of the gas burner 3 is feedforward controlled based on the estimated water value and the determined amount of coal supply. Do. At the same time, the temperature of the exhaust gas discharged from the pulverizing mill 1 is determined by the thermometer 11, and the amount of fuel gas of the gas burner 3 is feedback controlled so that the determined temperature of the exhaust gas falls within the predetermined range. .

本発明の特徴は、粉砕ミル1から排出される排気ガスの温度を求め、求めた排気ガスの温度を所定の温度範囲に維持するように、ガスバーナー3の燃料ガス量をフィードバック制御に加えて、石炭ホッパー2へ投入される石炭6の水分値を求め、求めた水分値から粉砕ミル1へ供給される石炭の水分値を推定すると共に、石炭ホッパー2から粉砕ミル1へ供給する石炭量を給炭量として求め、推定した水分値および求めた給炭量に基づき、ガスバーナー3の燃料ガス量をフィードフォワード制御する点にある。   The feature of the present invention is to calculate the temperature of the exhaust gas discharged from the pulverizing mill 1 and add the amount of fuel gas of the gas burner 3 to feedback control so as to maintain the calculated temperature of the exhaust gas within a predetermined temperature range. The moisture value of the coal 6 fed to the coal hopper 2 is determined, the moisture value of the coal supplied to the pulverizing mill 1 is estimated from the determined moisture value, and the amount of coal supplied from the coal hopper 2 to the pulverizing mill 1 The point is that feedforward control is performed on the fuel gas amount of the gas burner 3 based on the estimated water content and the determined coal feed amount.

なお、本発明において、フィードフォワード制御に使用する石炭の水分値として、石炭ホッパー2へ投入される石炭6の水分値のデータをそのまま使用するのではなく、石炭ホッパー2へ投入される石炭6の水分値を求め、求めた水分値から粉砕ミル1へ供給される石炭の水分値を推定した水分値を使用する。その理由は、本来、粉砕ミル1に供給する直前の石炭6の水分量を測定できれば、正確な制御が可能である。しかし、石炭ホッパー2、給炭機8、粉砕ミル1はいずれも、構造上、密閉されているため、個別に測定できない。そこで、実際に測定できる、石炭ホッパー2へ投入される石炭6の水分値を求めることにしたのである。そして、本発明では、求めた水分値から、粉砕ミル1へ供給される石炭の水分値を推定し、推定したその水分値に基づきフィードフォワード制御し、水分値の補正を試みているのである。   In the present invention, as the moisture value of coal used for feed forward control, the data of the moisture value of coal 6 fed to the coal hopper 2 is not used as it is, but the coal 6 fed to the coal hopper 2 The moisture value is determined, and the moisture value obtained by estimating the moisture value of the coal supplied to the grinding mill 1 from the determined moisture value is used. The reason is that if the water content of the coal 6 just before being supplied to the grinding mill 1 can be measured, accurate control is possible. However, since the coal hopper 2, the coal feeder 8 and the grinding mill 1 are all sealed in structure, they can not be measured individually. Therefore, the water value of the coal 6 to be fed to the coal hopper 2 that can be actually measured is determined. And in this invention, the moisture value of coal supplied to the grinding mill 1 is estimated from the calculated | required moisture value, feedforward control is performed based on the estimated moisture value, and correction | amendment of a moisture value is tried.

<具体的な制御方法について>
以下、本発明の微粉炭の製造方法における具体的な制御方法について説明する。
図2は、本発明の微粉炭の製造方法における、粉砕ミルに供給する石炭水分値を考慮した制御方法の一例を説明するためのブロック図である。図2において、粉砕ミル1へ供給される石炭6の給炭量と、石炭ホッパー2に装入される石炭6の実際に測定した水分値に基づき推定した石炭6の水分量とから、これを乾燥するための補正すべき燃料ガス流量を求め(フィードフォワード制御)、一方、粉砕ミル1からの排ガスのミル出口温度の目標値を温度設定器で設定し、これに対して実績のミル出口温度を測定し、その差分を0にするべくPID制御(フィードバック制御)を行う。このことにより、ガスへ供給する目標燃料ガス流量を求めることができる。それに加えて、この実績の燃料ガス流量を流量計により測定し、これが目標燃料ガス流量と一致するように、燃料ガス流量調節弁の弁開度を制御する。
<Concrete control method>
Hereinafter, a specific control method in the method for producing pulverized coal of the present invention will be described.
FIG. 2 is a block diagram for explaining an example of a control method in consideration of a coal moisture value supplied to a grinding mill in the method for producing pulverized coal according to the present invention. In FIG. 2, the amount of coal supplied from the coal 6 supplied to the grinding mill 1 and the water content of the coal 6 estimated based on the actually measured water value of the coal 6 charged to the coal hopper 2 The fuel gas flow rate to be corrected for drying is determined (feed forward control), while the target value of the mill outlet temperature of the exhaust gas from the grinding mill 1 is set by the temperature setting device, in contrast to the actual mill outlet temperature Is measured, and PID control (feedback control) is performed to make the difference 0. This makes it possible to determine the target fuel gas flow rate supplied to the gas. In addition, the actual fuel gas flow rate is measured by a flow meter, and the opening degree of the fuel gas flow control valve is controlled so that this matches the target fuel gas flow rate.

このような制御を行うことで、粉砕ミル1へ供給される石炭6の給炭量が同じでも、石炭6の水分値が変化したときに、これに応じた燃料ガス量の変更をフィードフォワードすることができ、ひいてはミル出口温度が変化を起こす前に必要な燃料ガスの補正を行うことができる。   By performing such control, even if the coal supply amount of coal 6 supplied to the pulverizing mill 1 is the same, when the water value of the coal 6 changes, the change of the fuel gas amount according to this is feed forward The required fuel gas correction can then be made before the mill outlet temperature changes.

この点、従来は、石炭6の水分値を測定していなかったために、同じ給炭量でも水分値が異なることによる必要燃料ガス量の変化を正確に制御できず、粉砕ミル内での乾燥状態が不安定となっていた。即ち、従来は、ミル出口温度が変化したことを検知してから燃料ガス流量の補正を行っていたため、どうしてもタイムラグが生じていた。この点、本発明の適用により、石炭供給時に燃料ガス流量を補正することができ、粉砕ミル内での乾燥状況の変化を最小限に抑えることが可能となった。   In this point, conventionally, since the moisture value of coal 6 was not measured, it is not possible to accurately control the change of the required fuel gas amount due to the difference in moisture value even with the same amount of coal feeding, and the dry state in the grinding mill Was unstable. That is, conventionally, since the fuel gas flow rate was corrected after detecting that the mill outlet temperature has changed, a time lag has necessarily occurred. In this respect, the application of the present invention makes it possible to correct the fuel gas flow rate at the time of coal supply, and to minimize the change in the drying condition in the grinding mill.

<石炭の水分値のトラッキングによる推定方法について>
上述したように、石炭6の水分値は、石炭ホッパー2から粉砕ミル1へ供給する給炭機8から粉砕ミル1の間で測定することが望ましい。しかし、この部分は、前記したように密閉構造にする必要があるため、そのような部位で水分値を精度よく連続的に計測することは困難である。そこで、本発明では、石炭ホッパー2へ投入される石炭6を所定量毎に順次に計測し、その所定量の石炭6が石炭ホッパー2内で移動する過程をトラッキングして、石炭ホッパー2から給炭機8を通して粉砕ミル1へ供給される時点の水分値を推定し、その水分の推定値をフィードフォワード制御に使用するようにしている。
<About estimation method by tracking of moisture value of coal>
As described above, it is desirable to measure the moisture value of the coal 6 between the feeding machine 8 supplied from the coal hopper 2 to the grinding mill 1 to the grinding mill 1. However, since this part needs to be in a sealed structure as described above, it is difficult to continuously measure the moisture value accurately at such a part. Therefore, in the present invention, the coal 6 input to the coal hopper 2 is sequentially measured for each predetermined amount, and the process of moving the predetermined amount of coal 6 in the coal hopper 2 is tracked, and the supply from the coal hopper 2 is performed. The water value at the time of being supplied to the grinding mill 1 through the coal machine 8 is estimated, and the estimated value of the water is used for feedforward control.

図3は、本発明の微粉炭の製造方法において、石炭ホッパー出口から供給される石炭の水分値のトラッキングを説明するための図である。以下、図3を参照して、本発明における、石炭ホッパー2へ投入される石炭6の水分値を求め、求めた水分値から粉砕ミル1へ供給される石炭の水分値を推定する方法について説明する。   FIG. 3 is a view for explaining tracking of a moisture value of coal supplied from a coal hopper outlet in the method for producing pulverized coal of the present invention. Hereinafter, with reference to FIG. 3, the method of determining the moisture value of coal 6 to be fed to the coal hopper 2 in the present invention and estimating the moisture value of coal supplied to the grinding mill 1 from the determined moisture value will be described. Do.

図3に示すように、石炭ホッパー2内へ所定量ずつ投入された石炭6は、石炭ホッパー2の下部から順次a,b,c・・・の水分値の石炭として堆積する。ここで、この石炭ホッパー2の下部から給炭機8で石炭6を粉砕ミル1へ供給していったとき、最初に供給される石炭6は水分値はaであり、次の石炭の水分値はbであり、以下は同様である。ただし、石炭ホッパー2内に投入された石炭6は、図3のような平面的に層状には堆積はせず、投入位置をピークとした山形形状に堆積することが予想される。一方、石炭ホッパー2の下部から給炭機8により排出される石炭6も、給炭機8の直上の石炭6がファンネルフローで下降して排出することが考えられる。そこで、石炭ホッパー2から排出する石炭6の水分値Mとして、以下の数式(1)に示すように、計算できる。   As shown in FIG. 3, the coal 6 which has been fed into the coal hopper 2 by a predetermined amount sequentially deposits from the lower part of the coal hopper 2 as coal having a moisture value of a, b, c. Here, when the coal 6 is supplied to the grinding mill 1 by the coal feeder 8 from the lower part of the coal hopper 2, the water value of the coal 6 supplied first is a, and the water value of the next coal is Is b, and so on. However, it is expected that the coal 6 fed into the coal hopper 2 will not deposit in a flat layer form as shown in FIG. 3 but will deposit in a chevron shape with a peak at the feeding position. On the other hand, it is conceivable that the coal 6 directly above the feeder 8 also descends and is discharged by funnel flow from the lower part of the coal hopper 2 by the feeder 8. Therefore, the moisture value M of the coal 6 discharged from the coal hopper 2 can be calculated as shown in the following formula (1).

Figure 2018176123
Figure 2018176123

なお、当該時点で石炭ホッパー2の下部に移動している所定量の石炭6のn個分の水分値に係数をかけたものを推定水分値として考える。   In addition, what multiplied the coefficient to the moisture value for n pieces of coal 6 of the predetermined amount which has moved to the lower part of the coal hopper 2 at the time is considered as an estimated moisture value.

ここで上記の所定量は、石炭ホッパー2の大きさにより適宜に設定できるが、石炭ホッパー2の容量の2〜8%程度に設定するとよい。例えば、石炭ホッパー2の容量が20tであれば、400kg〜1.6t程度とする。また、nの値は、3〜8程度、すなわち石炭ホッパー2の最下部へ移動した所定量の石炭を1個目として、それ以降n個目までの所定量の石炭までを対象として、それぞれの所定量の石炭水分値に係数ka〜knをそれぞれ掛けた値の総和を、現在石炭ホッパー2から粉砕ミル1へ供給している石炭6の水分値Mと計算して推定する。このとき、kaからknまでの係数の総和は1となるように係数を与える。   Here, the above-mentioned predetermined amount can be appropriately set according to the size of the coal hopper 2 but may be set to about 2 to 8% of the capacity of the coal hopper 2. For example, if the capacity of the coal hopper 2 is 20 t, it is about 400 kg to 1.6 t. In addition, the value of n is about 3 to 8, that is, the predetermined amount of coal moved to the lowermost part of the coal hopper 2 is taken as the first piece, and thereafter to the predetermined amount of coal up to the n th The sum of the values obtained by multiplying the coal moisture value of the predetermined amount by the coefficients ka to kn is calculated and estimated as the moisture value M of the coal 6 currently supplied from the coal hopper 2 to the grinding mill 1. At this time, the coefficients are given such that the sum of the coefficients from ka to kn is 1.

この係数は、石炭ホッパー2の大きさ、形状、給炭機8へ排出する開口部の位置、形状等により適宜決定できるが、簡便には、オフラインで石炭ホッパー2への石炭6の投入、給炭機8からの排出を行い、排出される石炭6の水分値を測定して、投入石炭の水分値と排出される石炭の水分値とから決定することができる。   This coefficient can be determined as appropriate depending on the size and shape of the coal hopper 2 and the position and shape of the opening to be discharged to the coal feeder 8, but for convenience, charging of the coal 6 to the coal hopper 2 and feeding can be performed offline. It is possible to discharge from the coal machine 8 and measure the moisture value of the discharged coal 6 to determine it from the moisture value of the input coal and the moisture value of the discharged coal.

<本発明の効果について>
図4(a)〜(d)は、それぞれ、本発明の微粉炭の製造方法における、粉砕ミルに供給する石炭水分値を考慮した制御方法の効果を先行例と比較して示すグラフである。図4(a)〜(d)のそれぞれに示すグラフにおいて、先行例に従って石炭水分値を用いたミル出口温度の制御を実施しない場合の1日間のデータの変化を左半分に示すと共に、本発明例に従って石炭水分値を考慮したミル出口温度の制御を実施した場合の1日間のデータの変化を右半分に示す。なお、本例では、図4(d)に示すように、粉砕ミル1に供給する給炭量は1日を通じて変化しないものとする。
<About the effect of the present invention>
FIGS. 4 (a) to 4 (d) are graphs showing the effects of the control method in consideration of the moisture content of coal supplied to the pulverizing mill in the method of producing pulverized coal according to the present invention in comparison with the prior art. In the graphs shown in each of FIGS. 4 (a) to 4 (d), the change in the data for one day when control of the mill outlet temperature using coal moisture value is not performed according to the prior example is shown in the left half. The change in one day's data is shown in the right half when control of the mill outlet temperature is performed in consideration of the coal moisture value according to the example. In the present embodiment, as shown in FIG. 4D, the amount of coal feeding supplied to the grinding mill 1 is assumed to be constant throughout the day.

図4(a)〜(d)から、先行例に従って石炭水分値を用いた粉砕ミル出口温度の制御を実施しない場合、粉砕ミル出口温度に基づきMガス流量を変化させる制御(フィードバック制御)のみ実施するため、図4(c)に示すように制御したMガス流量の変化が図4(a)に示す実際に測定した石炭水分量の変化に追随せず、図4(b)に示すように石炭水分値の変動により粉砕ミル出口温度が大きく変動することがわかる。一方、本発明例に従って石炭水分値を考慮した粉砕ミル出口温度の制御を実施した場合、石炭水分値の変動に基づく制御(フィードフォワード制御)と共に粉砕ミル出口温度に基づきMガス流量を変化させる制御(フィードバック制御)を実施するため、図4(c)に示すように制御したMガス流量の変化が図4(a)に示す実際に測定した石炭水分量の変化に追随し、図4(b)に示すように石炭水分値の変動により粉砕ミル出口温度が大きく変動しないことがわかる。   From FIGS. 4 (a) to 4 (d), when control of the grinding mill outlet temperature using coal moisture value is not performed according to the prior art, only control (feedback control) to change the M gas flow rate based on the grinding mill outlet temperature Therefore, the change in the M gas flow rate controlled as shown in FIG. 4C does not follow the change in the amount of coal moisture actually measured as shown in FIG. 4A, as shown in FIG. 4B. It can be seen that the temperature at the outlet of the grinding mill fluctuates significantly due to the fluctuation of the moisture content of the coal. On the other hand, when control of the grinding mill outlet temperature in consideration of the coal moisture value is carried out according to the example of the present invention, control of changing the M gas flow rate based on the grinding mill outlet temperature together with control based on fluctuation of the coal moisture value (feed forward control) In order to carry out (feedback control), the change in the M gas flow rate controlled as shown in FIG. 4C follows the change in the amount of coal moisture actually measured shown in FIG. As shown in), it can be seen that the temperature at the outlet of the grinding mill does not significantly fluctuate due to the fluctuation of the moisture content of the coal.

本発明の微粉炭の製造方法は、粉砕ミルへ供給する石炭の水分値が増減した場合でも、ミル出口温度の急激な低下を抑止でき、安定的に微粉炭の製造を行うことができるため、本発明に従って製造した微粉炭は、高炉の羽口から吹込んで燃料および還元材として使用される、あるいは、発電プラントのボイラ等で燃料として使用される等、様々な用途に適用可能である。   According to the method of the present invention for producing pulverized coal, even when the moisture value of coal supplied to the pulverizing mill increases or decreases, the rapid reduction of the mill outlet temperature can be suppressed, and the pulverized coal can be stably produced. The pulverized coal produced according to the present invention can be applied to various applications such as blowing from the tuyere of a blast furnace to be used as a fuel and a reducing agent, or used as a fuel in a boiler or the like of a power plant.

1 粉砕ミル
2 石炭ホッパー
3 ガスバーナー
4 集塵機
5 ベルトコンベア
6 石炭
7 水分計
8 給炭機
9 微粉炭
10 ロードセル
11 温度計
Reference Signs List 1 grinding mill 2 coal hopper 3 gas burner 4 dust collector 5 belt conveyor 6 coal 7 moisture meter 8 coal feeder 9 pulverized coal 10 load cell 11 thermometer

Claims (2)

石炭ホッパー、ガスバーナーおよび集塵機を備える粉砕ミルを使用して、石炭ホッパーから供給される石炭を、ガスバーナーからの高温ガスにより乾燥すると共に粉砕ミルにより粉砕して微粉炭を生成し、生成した微粉炭を高温ガスの排気ガスに随伴させて集塵機に運び、集塵機により微粉炭を排気ガスから分離して得る、微粉炭の製造方法において、
まず、石炭ホッパーへ投入される石炭の水分値を求め、求めた水分値から粉砕ミルへ供給する石炭の水分値を推定すると共に、石炭ホッパーから粉砕ミルへの給炭量を求め、推定した水分値および給炭量に基づきガスバーナーの燃料ガス量をフィードフォワード制御する一方、粉砕ミルから排出される排気ガスの温度が所定の温度範囲になるように、ガスバーナーの燃料ガス量をフィードバック制御することを特徴とする、微粉炭の製造方法。
The coal supplied from the coal hopper is dried by the high temperature gas from the gas burner using a grinding mill equipped with a coal hopper, a gas burner and a dust collector, and pulverized by a grinding mill to produce pulverized coal, and the pulverized powder produced In a method of producing pulverized coal, coal is carried along with exhaust gas of high temperature gas and carried to a dust collector, and pulverized coal is separated from exhaust gas by the dust collector,
First, the moisture value of coal fed into the coal hopper is determined, the moisture value of coal supplied to the pulverizing mill is estimated from the determined moisture value, and the amount of coal supply from the coal hopper to the pulverizing mill is determined, and the estimated moisture Feed-forward controls the amount of fuel gas in the gas burner based on the value and amount of coal supply, and feedback controls the amount of fuel gas in the gas burner so that the temperature of the exhaust gas discharged from the grinding mill falls within a predetermined temperature range A method of producing pulverized coal characterized by
前記粉砕ミルへ供給される石炭の水分値の推定は、前記求めた石炭ホッパーへ投入される石炭の水分値に基づき、石炭ホッパーへ投入される石炭の石炭ホッパー内での移動をトラッキングし、粉砕ミルへの石炭供給時点の石炭の水分値を推定することにより行うことを特徴とする請求項1に記載の微粉炭の製造方法。   The estimation of the moisture value of the coal supplied to the grinding mill is based on the moisture value of the coal input to the coal hopper, tracking movement in the coal hopper of the coal input to the coal hopper, and crushing The method for producing pulverized coal according to claim 1, wherein the method is carried out by estimating the moisture value of coal at the time of coal supply to the mill.
JP2017083294A 2017-04-20 2017-04-20 Manufacturing method of pulverized coal Active JP6798407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017083294A JP6798407B2 (en) 2017-04-20 2017-04-20 Manufacturing method of pulverized coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017083294A JP6798407B2 (en) 2017-04-20 2017-04-20 Manufacturing method of pulverized coal

Publications (2)

Publication Number Publication Date
JP2018176123A true JP2018176123A (en) 2018-11-15
JP6798407B2 JP6798407B2 (en) 2020-12-09

Family

ID=64282038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017083294A Active JP6798407B2 (en) 2017-04-20 2017-04-20 Manufacturing method of pulverized coal

Country Status (1)

Country Link
JP (1) JP6798407B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105629A1 (en) * 2018-11-21 2020-05-28 三菱日立パワーシステムズ株式会社 Pulverized coal drying system for coal pulverizer and pulverized coal drying method therefor, and pulverized coal drying program, coal pulverizer, and gasification combined cycle facility
CN113028387A (en) * 2021-03-31 2021-06-25 山东阳光电力有限公司 Biomass power generation feeding system
CN115400865A (en) * 2021-05-28 2022-11-29 北京京能电力股份有限公司 Control method for reducing minimum output of medium-speed coal mill

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670853A (en) * 1979-11-15 1981-06-13 Hitachi Ltd Controlling system for temperature of outlet of coal mill
JPS63263316A (en) * 1987-04-20 1988-10-31 Babcock Hitachi Kk Coal pulverizer control equipment
JPH02194865A (en) * 1989-01-25 1990-08-01 Mitsubishi Heavy Ind Ltd Automatic control of number of mill in operation
JPH0647232U (en) * 1992-12-07 1994-06-28 株式会社守谷商会 Water management coal handling equipment
JPH08299828A (en) * 1995-04-28 1996-11-19 Kobe Steel Ltd Operation of roller mill
US20100043675A1 (en) * 2005-08-26 2010-02-25 Willy Lohle Method and Device for Grinding Hot, Wet Raw Material
JP2010104939A (en) * 2008-10-31 2010-05-13 Mitsubishi Heavy Ind Ltd Controller in coal pulverizing apparatus
JP2014062280A (en) * 2012-09-20 2014-04-10 Mitsubishi Heavy Ind Ltd Blast furnace equipment
JP2014114994A (en) * 2012-12-07 2014-06-26 Nippon Steel & Sumitomo Metal Device and method for temperature control of crushing plant, and computer program
JP2015025582A (en) * 2013-07-24 2015-02-05 バブコック日立株式会社 Solid fuel combustion device
JP2016118346A (en) * 2014-12-22 2016-06-30 三菱日立パワーシステムズ株式会社 Pulverized fuel manufacturing device
JP2016168590A (en) * 2015-03-13 2016-09-23 Jfeスチール株式会社 Coal feed amount control method to coal crushing mill, and device therefor
JP2018103067A (en) * 2016-12-22 2018-07-05 新日鐵住金株式会社 Processing unit, method and program in pulverization plant

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670853A (en) * 1979-11-15 1981-06-13 Hitachi Ltd Controlling system for temperature of outlet of coal mill
JPS63263316A (en) * 1987-04-20 1988-10-31 Babcock Hitachi Kk Coal pulverizer control equipment
JPH02194865A (en) * 1989-01-25 1990-08-01 Mitsubishi Heavy Ind Ltd Automatic control of number of mill in operation
JPH0647232U (en) * 1992-12-07 1994-06-28 株式会社守谷商会 Water management coal handling equipment
JPH08299828A (en) * 1995-04-28 1996-11-19 Kobe Steel Ltd Operation of roller mill
US20100043675A1 (en) * 2005-08-26 2010-02-25 Willy Lohle Method and Device for Grinding Hot, Wet Raw Material
JP2010104939A (en) * 2008-10-31 2010-05-13 Mitsubishi Heavy Ind Ltd Controller in coal pulverizing apparatus
JP2014062280A (en) * 2012-09-20 2014-04-10 Mitsubishi Heavy Ind Ltd Blast furnace equipment
JP2014114994A (en) * 2012-12-07 2014-06-26 Nippon Steel & Sumitomo Metal Device and method for temperature control of crushing plant, and computer program
JP2015025582A (en) * 2013-07-24 2015-02-05 バブコック日立株式会社 Solid fuel combustion device
JP2016118346A (en) * 2014-12-22 2016-06-30 三菱日立パワーシステムズ株式会社 Pulverized fuel manufacturing device
JP2016168590A (en) * 2015-03-13 2016-09-23 Jfeスチール株式会社 Coal feed amount control method to coal crushing mill, and device therefor
JP2018103067A (en) * 2016-12-22 2018-07-05 新日鐵住金株式会社 Processing unit, method and program in pulverization plant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105629A1 (en) * 2018-11-21 2020-05-28 三菱日立パワーシステムズ株式会社 Pulverized coal drying system for coal pulverizer and pulverized coal drying method therefor, and pulverized coal drying program, coal pulverizer, and gasification combined cycle facility
JP2020085305A (en) * 2018-11-21 2020-06-04 三菱日立パワーシステムズ株式会社 Pulverized coal drying system for coal pulverizer, pulverized coal drying method and pulverized coal drying program for the system, coal pulverizer and gasification combined power generation facility
JP7325948B2 (en) 2018-11-21 2023-08-15 三菱重工業株式会社 Pulverized Coal Drying System for Pulverized Coal Mill, Pulverized Coal Drying Method Therefor, Pulverized Coal Drying Program, Pulverized Coal Mill, Combined Gasification Combined Cycle System
CN113028387A (en) * 2021-03-31 2021-06-25 山东阳光电力有限公司 Biomass power generation feeding system
CN115400865A (en) * 2021-05-28 2022-11-29 北京京能电力股份有限公司 Control method for reducing minimum output of medium-speed coal mill
CN115400865B (en) * 2021-05-28 2023-11-14 北京京能电力股份有限公司 Control method for reducing minimum output of medium-speed coal mill

Also Published As

Publication number Publication date
JP6798407B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
JP2018176123A (en) Method for manufacturing fine coal
CN108393146B (en) Self-adaptive optimal decoupling control method for coal pulverizing system of steel ball coal mill
JP5962476B2 (en) Grinding plant temperature control device, grinding plant temperature control method, and computer program
CN110533082B (en) Sintering mixed water adding control method based on dual-model collaborative prediction
CN103017531B (en) Method and system for controlling sintering burn-through point
US4410355A (en) Process for controlling a pelletizing plant for fine-grained ores
JP2018103067A (en) Processing unit, method and program in pulverization plant
CN113325885B (en) Sintering mixture water adding method based on feed amount estimation
JP6319594B2 (en) Coal feed amount control method and apparatus for coal crushing mill
CN105330178B (en) A kind of method that production active lime is transformed using cement producing line
JP5040737B2 (en) Operation method of cement production equipment
CN104728854A (en) Pulverized coal preparation system and method with air-blew pulverized coal heat measurement and control functions
JP7120167B2 (en) Pulverized coal manufacturing apparatus and manufacturing method
JP6601511B2 (en) Blast furnace operation method
JP6702110B2 (en) Method, device and program for predicting inlet temperature of crusher in circulating crushing plant, and method, device and program for calculating raw material supply amount
JPH0711313A (en) Control method for blowing of pulverized coal
JP6801438B2 (en) Milling plant oxygen concentration controller, milling plant oxygen concentration control method, and program
CN104266500A (en) Cooler heat source parameter forecasting and regulation method based on heat condition in sintering process
CN114216349B (en) Sintering end point forecasting method based on coding and decoding network
JP6729349B2 (en) Grinding plant oxygen concentration control device, grinding plant oxygen concentration control method, and program
JPH0619551Y2 (en) Control device for heating and drying pulverized coal for blast furnace injection
De Clerk et al. A holistic approach to control and optimization of a PGM concentrate flash drying unit
CN115682023A (en) Oriental coal blending system and method
JP6702109B2 (en) Process control method in grinding plant, process control device in grinding plant, and program
JP2013104116A (en) Control method and controller for injection amount of pulverized coal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201102

R150 Certificate of patent or registration of utility model

Ref document number: 6798407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250