JP2018174146A - Nonaqueous electrolyte secondary battery and method for manufacturing the same - Google Patents

Nonaqueous electrolyte secondary battery and method for manufacturing the same Download PDF

Info

Publication number
JP2018174146A
JP2018174146A JP2018120522A JP2018120522A JP2018174146A JP 2018174146 A JP2018174146 A JP 2018174146A JP 2018120522 A JP2018120522 A JP 2018120522A JP 2018120522 A JP2018120522 A JP 2018120522A JP 2018174146 A JP2018174146 A JP 2018174146A
Authority
JP
Japan
Prior art keywords
separator
secondary battery
electrolyte secondary
electrode
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018120522A
Other languages
Japanese (ja)
Other versions
JP6598933B2 (en
Inventor
松田 和也
Kazuya Matsuda
和也 松田
幸広 畑
Yukihiro Hata
幸広 畑
阿部 敏浩
Toshihiro Abe
敏浩 阿部
隆宏 新井
Takahiro Arai
隆宏 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Priority to JP2018120522A priority Critical patent/JP6598933B2/en
Publication of JP2018174146A publication Critical patent/JP2018174146A/en
Application granted granted Critical
Publication of JP6598933B2 publication Critical patent/JP6598933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery superior in load characteristic, etc.SOLUTION: A nonaqueous electrolyte secondary battery according to the present invention comprises a multilayer electrode body arranged by laminating a positive electrode, a negative electrode and a separator, in which any one electrode of the positive and negative electrodes is glued to the separator by an adhesive part. A method for manufacturing a nonaqueous electrolyte secondary battery according to the present invention comprises: a coating step of coating a belt-shaped separator 1 with a radiation-curable resin 3 to form an adhesive part; an electrode-disposing step of disposing an electrode 4 on the adhesive part; and a gluing step of applying radioactive rays 50a to the adhesive part to cure the radiation-curable resin, thereby gluing the electrode with the separator.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池等の非水電解質二次電池及びその製造方法に関する。   The present invention relates to a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery and a method for producing the same.

リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューター等の携帯機器の電源として広く用いられている。携帯機器の高性能化に伴ってリチウムイオン二次電池の高容量化及び長寿命化が更に進む傾向にあり、更なる研究・開発が進められている。   Nonaqueous electrolyte secondary batteries represented by lithium ion secondary batteries are widely used as power sources for portable devices such as mobile phones and notebook personal computers because of their high energy density. As mobile devices become more sophisticated, lithium ion secondary batteries tend to have higher capacities and longer lifetimes, and further research and development are underway.

このような状況下で従来から上記非水電解質二次電池の電池特性を向上させるために種々の方策が検討されてきた。その中で、正極と負極とセパレータとを積層して積層電極体を形成し、その積層電極体をラミネートフィルムからなる外装体に収納した積層型ラミネート電池が実用化されている。積層型ラミネート電池は、負荷特性等に優れており、複数の電池を組み合わせて車載用電源や各種蓄電装置用電源等として用いられているほか、薄型軽量が求められるモバイル機器用電池としても用いられている。   Under such circumstances, various measures have been conventionally studied in order to improve the battery characteristics of the non-aqueous electrolyte secondary battery. Among them, a laminated laminate battery in which a positive electrode, a negative electrode, and a separator are laminated to form a laminated electrode body, and the laminated electrode body is housed in an exterior body made of a laminate film has been put into practical use. Multi-layer laminated batteries have excellent load characteristics, etc., and are used as a power source for in-vehicle power supplies and various power storage devices by combining multiple batteries, and also as a battery for mobile devices that require thin and light weight. ing.

しかし、積層型ラミネート電池は、複数の電極とセパレータとを積層して製造するため、電極の位置ずれ等のない正確な積層工程が必要となり、その積層方法について種々の方法が提案されている。   However, since a laminate-type laminate battery is manufactured by laminating a plurality of electrodes and separators, an accurate lamination process without positional displacement of electrodes is required, and various methods for the lamination method have been proposed.

例えば、特許文献1には、セパレータの両面にイオン伝導性接着剤を塗布し、その両面に正極板と負極板とを接着して位置決めし、その後多数回折ることにより積層電極体を形成する方法が提案されている。   For example, Patent Document 1 discloses a method in which an ion conductive adhesive is applied to both sides of a separator, a positive electrode plate and a negative electrode plate are bonded and positioned on both surfaces, and then a multilayer electrode body is formed by diffracting a large number of times. Has been proposed.

特開2001−229979号公報(特許第3358807号公報)JP 2001-229979 A (Patent No. 3358807)

しかし、特許文献1では、セパレータの両面の全面にイオン伝導性接着剤を塗布しており、電極とセパレータとの接着強度を上げるためにある程度の厚さで塗布した場合、たとえイオン伝導性接着剤であっても電池の内部抵抗は上昇する。このような電池の場合、低温充電や急速充電等を行うとセパレータ上に局所的なリチウムの析出が生じる原因となり、短絡の恐れが大きくなる。   However, in Patent Document 1, an ion conductive adhesive is applied to the entire surface of both surfaces of the separator, and when applied to a certain thickness in order to increase the adhesive strength between the electrode and the separator, the ion conductive adhesive is used. Even so, the internal resistance of the battery increases. In the case of such a battery, if low-temperature charging, rapid charging, or the like is performed, it causes local precipitation of lithium on the separator, and the risk of a short circuit increases.

本発明は上記問題を解決したもので、電極の位置ずれをなくすとともに、負荷特性等に優れた積層型の非水電解質二次電池及びその製造方法を提供するものである。   The present invention solves the above-mentioned problems, and provides a laminated nonaqueous electrolyte secondary battery excellent in load characteristics and the like, and a manufacturing method thereof, while eliminating the displacement of electrodes.

本発明の非水電解質二次電池は、正極と、負極と、セパレータとが積層された積層電極体を含む非水電解質二次電池であって、前記正極及び前記負極のいずれか一方の電極と、前記セパレータとは、接着部により接着されていることを特徴とする。   The non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery including a laminated electrode body in which a positive electrode, a negative electrode, and a separator are laminated, and one of the positive electrode and the negative electrode The separator is bonded by an adhesive portion.

また、本発明の非水電解質二次電池の製造方法は、帯状のセパレータに放射線硬化性樹脂を塗布して接着部を形成する塗布工程と、塗布された前記接着部の上に電極を配置する
電極配置工程と、前記接着部に放射線を照射して前記放射線硬化性樹脂を硬化して前記電極と前記セパレータとを接着する接着工程とを含むことを特徴とする。
Moreover, the manufacturing method of the nonaqueous electrolyte secondary battery of this invention arrange | positions an electrode on the apply | coating process which apply | coats a radiation curable resin to a strip | belt-shaped separator, and forms an adhesion part, and the said adhesion | attachment part applied The method includes an electrode arranging step and an adhesion step of irradiating the bonding portion with radiation to cure the radiation curable resin and bond the electrode and the separator.

本発明によると、電極の位置ずれがなく、負荷特性等に優れた非水電解質二次電池及びその製造方法を提供できる。   According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery excellent in load characteristics and the like without any positional deviation of electrodes and a manufacturing method thereof.

図1は、本発明の非水電解質二次電池の製造工程の一例を示す模式側面図である。FIG. 1 is a schematic side view showing an example of the manufacturing process of the nonaqueous electrolyte secondary battery of the present invention. 図2は、本発明の非水電解質二次電池の製造工程の一例を示す模式平面図である。FIG. 2 is a schematic plan view showing an example of a manufacturing process of the nonaqueous electrolyte secondary battery of the present invention. 図3は、本発明の非水電解質二次電池に用いる積層電極体の一例を示す底面図である。FIG. 3 is a bottom view showing an example of a laminated electrode body used in the nonaqueous electrolyte secondary battery of the present invention. 図4は、本発明の非水電解質二次電池の製造工程の他の一例を示す模式図である。FIG. 4 is a schematic view showing another example of the manufacturing process of the nonaqueous electrolyte secondary battery of the present invention. 図5は、本発明の非水電解質二次電池に用いる積層電極体の他の一例を示す底面図である。FIG. 5 is a bottom view showing another example of the laminated electrode body used in the nonaqueous electrolyte secondary battery of the present invention. 図6は、本発明の非水電解質二次電池の一例を示す平面図である。FIG. 6 is a plan view showing an example of the nonaqueous electrolyte secondary battery of the present invention.

本発明の非水電解質二次電池は、正極と、負極と、セパレータとが積層された積層電極体を備えている。また、上記正極及び上記負極のいずれか一方の電極と、上記セパレータとは、接着部により接着されている。   The nonaqueous electrolyte secondary battery of the present invention includes a laminated electrode body in which a positive electrode, a negative electrode, and a separator are laminated. In addition, one of the positive electrode and the negative electrode is bonded to the separator by an adhesive portion.

上記電極は、上記接着部により上記セパレータに接着して固定されているので、上記セパレータに対する電極のずれをなくすことができる。これにより、負荷特性等に優れた非水電解質二次電池を提供できる。   Since the electrode is bonded and fixed to the separator by the bonding portion, the electrode can be prevented from being displaced with respect to the separator. Thereby, the nonaqueous electrolyte secondary battery excellent in load characteristics etc. can be provided.

また、上記正極と上記セパレータとが、上記接着部により接着されており、上記負極と上記セパレータとは、接着されていないことが好ましい。リチウムイオンを受け入れる側の負極がセパレータと接着していないことにより、セパレータのイオン伝導性が阻害されず、低温充電や急速充電等を行ってもリチウムの析出が抑制されて、短絡の恐れが小さくなる。   Moreover, it is preferable that the said positive electrode and the said separator are adhere | attached by the said adhesion part, and the said negative electrode and the said separator are not adhere | attached. Since the negative electrode that accepts lithium ions is not bonded to the separator, the ion conductivity of the separator is not hindered, and even if low-temperature charging or rapid charging is performed, lithium deposition is suppressed and the risk of short-circuiting is small. Become.

また、上記接着部は放射線硬化性樹脂から形成されていることが好ましい。これにより、放射線硬化性樹脂以外の接着性樹脂を用いる場合に比べて上記接着部の接着強度を高めることができるとともに、放射線を照射するという簡便な工程で樹脂を硬化できるため、製造工程を簡略化できる。   Moreover, it is preferable that the said adhesion part is formed from the radiation curable resin. This makes it possible to increase the adhesive strength of the adhesive portion compared to the case where an adhesive resin other than a radiation curable resin is used, and the resin can be cured by a simple process of irradiating radiation, thus simplifying the manufacturing process. Can be

上記接着部の1箇所当たりの面積は、0.3mm2以上7.1mm2以下であることが好ましい。これにより、接着強度を保持しつつ、接着部の面積をできるだけ小さくして、セパレータのイオン伝導性の低下を抑制できる。 Area per one place of the adhesive portion is preferably 0.3 mm 2 or more 7.1 mm 2 or less. Thereby, the area | region of an adhesion part can be made as small as possible, maintaining adhesive strength, and the fall of the ion conductivity of a separator can be suppressed.

上記接着部の1箇所当たりの厚さは、5μm以下であることが好ましい。上記接着部の厚さが5μmあれば接着強度としては十分であり、逆に上記接着部の厚さが5μmを超えると上記接着部が凸状となり、積層電極体が変形する恐れがあるからである。この観点からは、上記接着部の厚さの下限値は、接着強度を確保できれば0μmであることが最も好ましい。   It is preferable that the thickness per one part of the said adhesion part is 5 micrometers or less. If the thickness of the adhesive part is 5 μm, the adhesive strength is sufficient, and conversely if the thickness of the adhesive part exceeds 5 μm, the adhesive part becomes convex and the laminated electrode body may be deformed. is there. From this viewpoint, the lower limit value of the thickness of the bonded portion is most preferably 0 μm as long as the bonding strength can be secured.

上記電極と上記セパレータとの接着強度は、0.5N以上あればよく、これにより工程中の電極のずれの防止が可能となる。   The adhesive strength between the electrode and the separator may be 0.5 N or more, which can prevent the electrode from being displaced during the process.

上記接着部の配置位置は、上記電極毎に異なることが好ましい。これにより、上記接着部に厚さがある場合に、電極の積層方向における上記接着部同士の重なりを防止でき、積層電極体の変形を抑制することができる。   The arrangement position of the adhesive portion is preferably different for each electrode. Thereby, when the said adhesion part has thickness, the overlap of the said adhesion parts in the lamination direction of an electrode can be prevented, and a deformation | transformation of a laminated electrode body can be suppressed.

上記セパレータは、袋状セパレータを形成していることが好ましい。これにより、本発明の非水電解質二次電池では、正極と負極との短絡をより確実に防止できる。上記積層電極体において、上記袋状セパレータは、それぞれ独立していても、それぞれ連結していてもよい。   The separator preferably forms a bag-like separator. Thereby, in the nonaqueous electrolyte secondary battery of this invention, the short circuit with a positive electrode and a negative electrode can be prevented more reliably. In the laminated electrode body, the bag-like separators may be independent or connected to each other.

また、本発明の非水電解質二次電池の製造方法は、帯状のセパレータに放射線硬化性樹脂を塗布して接着部を形成する塗布工程と、塗布された上記接着部の上に電極を配置する電極配置工程と、上記接着部に放射線を照射して上記放射線硬化性樹脂を硬化して上記電極と上記セパレータとを接着する接着工程とを備えている。   Moreover, the manufacturing method of the nonaqueous electrolyte secondary battery according to the present invention includes an application step of applying a radiation curable resin to a strip-shaped separator to form an adhesive portion, and disposing an electrode on the applied adhesive portion. An electrode placement step, and a bonding step of irradiating the bonding portion with radiation to cure the radiation curable resin and bond the electrode and the separator.

上記接着に放射線硬化性樹脂を用いているため、放射線硬化性樹脂以外の接着性樹脂を用いる場合に比べて接着強度を高めることができるとともに、放射線を照射するという簡便な工程で樹脂を硬化できるため、製造工程を簡略化でき、本発明の非水電解質二次電池を効率的に製造できる。   Since a radiation curable resin is used for the adhesion, the adhesive strength can be increased compared to the case where an adhesive resin other than the radiation curable resin is used, and the resin can be cured by a simple process of irradiating radiation. Therefore, the manufacturing process can be simplified, and the nonaqueous electrolyte secondary battery of the present invention can be efficiently manufactured.

上記放射線硬化性樹脂の1箇所当たりの塗布量は、0.005mg以上0.15mg以下であることが好ましい。これにより、上記接着部の1箇所当たりの面積を0.3mm2
以上7.1mm2以下とすることができ、前述のとおり、セパレータのイオン伝導性の低
下を抑制できる。上記塗布量は、0.07mg以下がより好ましい。これにより、上記接着部の1箇所当たりの厚さを5μm以下にすることができ、積層電極体の変形を抑制することができる。
The coating amount of the radiation curable resin per location is preferably 0.005 mg or more and 0.15 mg or less. Thereby, the area per one place of the said adhesion part is 0.3 mm < 2 >.
The thickness can be set to 7.1 mm 2 or less, and as described above, a decrease in the ion conductivity of the separator can be suppressed. The coating amount is more preferably 0.07 mg or less. Thereby, the thickness per one place of the said adhesion part can be 5 micrometers or less, and a deformation | transformation of a laminated electrode body can be suppressed.

上記放射線硬化性樹脂の塗布粘度は、30℃において40mPa・s以上であることが好ましい。上記粘度が上記範囲にあれば、塗布された放射線硬化性樹脂がセパレータを貫通してしまうことがないため、製造装置の汚染を防止できるとともに、セパレータの表面にある程度の放射線硬化性樹脂を保持できるため、確実にセパレータと電極とを接着できる。また、上記塗布粘度は、上記放射線硬化性樹脂をある程度セパレータ内に浸透させるために、300mPa・s以下であることが好ましい。   The coating viscosity of the radiation curable resin is preferably 40 mPa · s or more at 30 ° C. If the viscosity is in the above range, the applied radiation curable resin does not penetrate the separator, so that contamination of the manufacturing apparatus can be prevented and a certain amount of radiation curable resin can be held on the surface of the separator. Therefore, the separator and the electrode can be securely bonded. Further, the coating viscosity is preferably 300 mPa · s or less in order to allow the radiation curable resin to penetrate into the separator to some extent.

上記塗布工程において、上記接着部は上記電極毎に異なる位置に配置されることが好ましい。これにより、上記接着部に厚さがある場合に、電極の積層方法における上記接着部同士の重なりを防止でき、積層電極体の変形を抑制することができる。   In the coating step, it is preferable that the bonding portion is disposed at a different position for each of the electrodes. Thereby, when the said adhesion part has thickness, the overlap of the said adhesion parts in the lamination | stacking method of an electrode can be prevented, and a deformation | transformation of a laminated electrode body can be suppressed.

上記接着工程の後に上記電極の上に別のセパレータを配置するセパレータ積層工程と、対向する上記セパレータ同士を接合して袋状セパレータを形成するセパレータ接合工程とを更に備えることもできる。   It is also possible to further include a separator stacking step in which another separator is disposed on the electrode after the bonding step, and a separator joining step in which the separators facing each other are joined to form a bag-like separator.

上記接着部により上記セパレータと接着される電極としては、正極が好ましい。通常、正極は、負極に比べて大きさが小さいため、負極に比べて位置決めが困難だからである。また、上記接着部はリチウムイオンの受け入れを悪化させるため、負極とセパレータとは上記接着部により接着されていないことが好ましい。   The electrode bonded to the separator by the bonding portion is preferably a positive electrode. This is because the positive electrode is usually smaller in size than the negative electrode and is difficult to position compared to the negative electrode. Moreover, since the said adhesion part worsens acceptance of lithium ion, it is preferable that the negative electrode and the separator are not adhere | attached by the said adhesion part.

以下、本発明の実施形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
先ず、本発明の非水電解質二次電池の製造方法の実施形態を説明する。
(Embodiment 1)
First, an embodiment of a method for producing a nonaqueous electrolyte secondary battery of the present invention will be described.

図1は、本発明の非水電解質二次電池の製造工程の一例を示す模式側面図であり、図2は、図1に対応する本発明の非水電解質二次電池の製造工程の一例を示す模式平面図である。但し、図2では、電極とセパレータのみを図示した。   FIG. 1 is a schematic side view showing an example of the manufacturing process of the nonaqueous electrolyte secondary battery of the present invention, and FIG. 2 shows an example of the manufacturing process of the nonaqueous electrolyte secondary battery of the present invention corresponding to FIG. It is a schematic plan view to show. However, in FIG. 2, only the electrode and the separator are shown.

本実施形態では、先ず、第1の繰り出しロール10に帯状の第1のセパレータ1を準備し、第2の繰り出しロール20に帯状の第2のセパレータ2を準備する。   In this embodiment, first, the strip-shaped first separator 1 is prepared for the first feeding roll 10, and the strip-shaped second separator 2 is prepared for the second feeding roll 20.

次に、第1の繰り出しロール10から第1のセパレータ1を水平に繰り出し、放射線硬化性樹脂塗布機30から放射線硬化性樹脂3を第1のセパレータ1の上に塗布する。その際、放射線硬化性樹脂3は、正極が配置される予定位置のほぼ中央に3a、3bとして塗布される。但し、放射線硬化性樹脂3の塗布位置は、上記位置に限定されず、また、それぞれの塗布毎に塗布位置を相違させてもよい。更に、塗布位置の数も、2箇所には限定されず、1箇所でもよく、3箇所以上でもよい。   Next, the first separator 1 is fed horizontally from the first feeding roll 10, and the radiation curable resin 3 is applied onto the first separator 1 from the radiation curable resin coating machine 30. At that time, the radiation curable resin 3 is applied as 3a, 3b in the approximate center of the position where the positive electrode is to be disposed. However, the application position of the radiation curable resin 3 is not limited to the above position, and the application position may be different for each application. Furthermore, the number of application positions is not limited to two, and may be one or three or more.

放射線硬化性樹脂3としては特に限定されないが、硬化性が良好な2官能以上の放射線硬化性樹脂が好ましい。具体的には例えば、アクリル酸、アクリル酸エステル、アクリルアミド類、メタクリル酸エステル、メタクリル酸アミド類、アリル化合物、ビニルエーテル、ビニルエステル類等を使用できる。これらの樹脂は、単独でも使用できるが、複数を組み合わせて使用することもできる。硬化に用いる放射線としては、紫外線、電子線、可視光等を使用できるが、高いエネルギーで安価に照射できる点で紫外線が好ましい。   Although it does not specifically limit as the radiation curable resin 3, The bifunctional or more radiation curable resin with favorable sclerosis | hardenability is preferable. Specifically, for example, acrylic acid, acrylic acid ester, acrylamide, methacrylic acid ester, methacrylic acid amide, allyl compound, vinyl ether, vinyl ester and the like can be used. These resins can be used alone or in combination. As radiation used for curing, ultraviolet rays, electron beams, visible light, and the like can be used, but ultraviolet rays are preferable because they can be irradiated with high energy at low cost.

次に、正極供給機40により塗布された放射線硬化性樹脂3a、3bに接するように、端子4aを備えた正極4を第1のセパレータ1の上に配置した後、放射線照射装置50から放射線50aをセパレータ1側から照射して、放射線硬化性樹脂3a、3bを硬化して、セパレータ1と正極4とを接着する。この際に正極4は硬化した放射線硬化性樹脂3によりセパレータ1に固定され、その後の工程により正極4がセパレータ1に対してずれることは一切ない。   Next, after the positive electrode 4 provided with the terminal 4a is disposed on the first separator 1 so as to be in contact with the radiation curable resins 3a and 3b applied by the positive electrode feeder 40, the radiation 50a is irradiated with the radiation 50a. Is irradiated from the separator 1 side to cure the radiation curable resins 3a and 3b, and the separator 1 and the positive electrode 4 are bonded. At this time, the positive electrode 4 is fixed to the separator 1 by the cured radiation curable resin 3, and the positive electrode 4 is not displaced from the separator 1 by any subsequent process.

次に、第2の繰り出しロール20から第2のセパレータ2を繰り出して、第2のセパレータ2を正極4の上に配置する。続いて、台座60の上で加熱装置70を用いて、第2のセパレータ2を正極4の外形に沿って密着させるとともに、第1のセパレータ1と第2のセパレータ2とを熱溶着により接合して、正極入り袋状セパレータ5を形成する。この時点では、正極入り袋状セパレータ5は、接合部5a及び連結部6aを有し、正極入り袋状セパレータ連結体6を形成している。   Next, the second separator 2 is fed out from the second feeding roll 20, and the second separator 2 is disposed on the positive electrode 4. Subsequently, using the heating device 70 on the pedestal 60, the second separator 2 is brought into close contact with the outer shape of the positive electrode 4, and the first separator 1 and the second separator 2 are joined by thermal welding. Thus, the positive electrode-containing bag-like separator 5 is formed. At this point, the positive electrode-filled bag-shaped separator 5 has the joining portion 5a and the connecting portion 6a, and forms the positive-electrode-filled bag-shaped separator connector 6.

次に、正極入り袋状セパレータ連結体6の連結部6aを切断・除去して、正極入り袋状セパレータ5を分離する。続いて、別途準備した負極7と、分離した正極入り袋状セパレータ5とを交互に積層して、図3に示す積層電極体9Aを作製する。図3は、積層電極体9Aの底面図である。図3では、負極7を5枚、正極入り袋状セパレータ5を4枚それぞれ積層した例を示したが、電極の枚数はこれらに限定されない。   Next, the connecting portion 6a of the positive electrode bag-like separator connector 6 is cut and removed to separate the positive electrode bag-like separator 5. Subsequently, the separately prepared negative electrode 7 and the separated positive electrode-filled bag-like separator 5 are alternately laminated to produce a laminated electrode body 9A shown in FIG. FIG. 3 is a bottom view of the laminated electrode body 9A. Although FIG. 3 shows an example in which five negative electrodes 7 and four positive electrode-containing bag-like separators 5 are stacked, the number of electrodes is not limited thereto.

最後に、作製した積層電極体9Aを外装体に挿入し、電解液を注入して、外装体を封止すれば、本発明の非水電解質二次電池が完成する。上記外装体及び電解液については後述する。   Finally, the produced multilayer electrode body 9A is inserted into the exterior body, an electrolytic solution is injected, and the exterior body is sealed. Thus, the nonaqueous electrolyte secondary battery of the present invention is completed. The said exterior body and electrolyte solution are mentioned later.

次に、本発明の非水電解質二次電池の製造方法の他の実施形態を説明する。図4は、本
発明の非水電解質二次電池の製造工程の他の一例を示す模式図である。図4では、前述の図1〜3で示した部分と対応する部分には同一の符号を付けて詳細な説明は省略する。
Next, another embodiment of the method for producing a nonaqueous electrolyte secondary battery of the present invention will be described. FIG. 4 is a schematic view showing another example of the manufacturing process of the nonaqueous electrolyte secondary battery of the present invention. In FIG. 4, parts corresponding to those shown in FIGS. 1 to 3 are given the same reference numerals, and detailed description thereof is omitted.

本実施形態でも、正極入り袋状セパレータ連結体6を、前述の図1及び図2を用いて説明した工程と同様にして形成する。本実施形態では、正極入り袋状セパレータ連結体6は4個の正極入り袋状セパレータ5を備えているが、電池の容量に応じて正極入り袋状セパレータ5の数を増減できる。   Also in the present embodiment, the positive electrode-filled bag-like separator connector 6 is formed in the same manner as the steps described with reference to FIGS. In this embodiment, the positive electrode-containing bag-like separator connector 6 includes four positive-electrode-containing bag-like separators 5, but the number of positive-electrode-containing bag-like separators 5 can be increased or decreased according to the capacity of the battery.

次に、図4に示すように、正極入り袋状セパレータ連結体6の正極入り袋状セパレータ5に対応する表側と裏側にそれぞれ負極7を配置し、正極入り袋状セパレータ連結体6の連結部6aを折り目としてつづら折りして、正極入り袋状セパレータ5と負極7とをそれぞれ交互に積層して、図5に示す積層電極体9Bを作製する。   Next, as shown in FIG. 4, the negative electrode 7 is arrange | positioned at the front side and back side corresponding to the positive electrode containing bag-like separator 5 of the positive electrode containing bag-like separator connecting body 6, respectively, and the connection part of the positive electrode containing bag-like separator connecting body 6 6a is folded as a crease, and the positive electrode-filled bag-like separator 5 and the negative electrode 7 are alternately laminated to produce a laminated electrode body 9B shown in FIG.

その後は、前述したように通常の方法で本発明の非水電解質二次電池を製造する。本実施形態では、正極入り袋状セパレータ連結体6の連結部6aの切断・除去が不要で、連結部6aの幅を調整するのみで積層電極体9Bを連続的に作製できるので、生産効率を向上できる。   Thereafter, as described above, the nonaqueous electrolyte secondary battery of the present invention is manufactured by a normal method. In the present embodiment, it is not necessary to cut and remove the connecting portion 6a of the positive electrode bag-like separator connecting body 6, and the laminated electrode body 9B can be continuously produced simply by adjusting the width of the connecting portion 6a. It can be improved.

(実施形態2)
次に、本発明の非水電解質二次電池の実施形態について代表的な非水電解質二次電池であるリチウムイオン二次電池を例に説明する。
(Embodiment 2)
Next, a non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described using a lithium ion secondary battery, which is a typical non-aqueous electrolyte secondary battery, as an example.

図6は、本発明のラミネート形リチウムイオン二次電池の一例を示す平面図である。図6において、本実施形態のラミネート形リチウムイオン二次電池100では、実施形態1で説明した積層電極体9A又は9B及び非水電解液が、平面視で矩形のラミネートフィルムからなる外装体200内に収容されている。そして、正極外部端子300及び負極外部端子400が、外装体200の同じ辺から引き出されている。   FIG. 6 is a plan view showing an example of a laminated lithium ion secondary battery of the present invention. 6, in the laminated lithium ion secondary battery 100 of the present embodiment, the laminated electrode body 9A or 9B and the non-aqueous electrolyte described in the first embodiment are inside the outer package 200 made of a rectangular laminated film in plan view. Is housed in. The positive external terminal 300 and the negative external terminal 400 are drawn from the same side of the exterior body 200.

本実施形態に用いる正極は、正極活物質、正極用導電助剤、正極用バインダ等を含む混合物に、溶剤を加えて十分に混練して得た正極合剤ペーストを、正極集電体の両面に塗布して乾燥した後に、その正極合剤層を所定の厚さ及び所定の電極密度に制御することにより形成できる。   The positive electrode used in the present embodiment is a mixture of positive electrode active material, positive electrode conductive additive, positive electrode binder, and the like, and a positive electrode mixture paste obtained by sufficiently kneading the mixture with a solvent. After being applied to and dried, the positive electrode mixture layer can be formed by controlling it to a predetermined thickness and a predetermined electrode density.

上記正極活物質としては、例えば、LiCoO2等のリチウムコバルト酸化物、LiM
24等のリチウムマンガン酸化物、LiNiO2等のリチウムニッケル酸化物等が使用
できるが、リチウムイオンを吸蔵・放出可能であればこれらに限定はされない。
Examples of the positive electrode active material include lithium cobalt oxide such as LiCoO 2 , LiM
Although lithium manganese oxides such as n 2 O 4 and lithium nickel oxides such as LiNiO 2 can be used, there is no limitation to these as long as they can occlude and release lithium ions.

上記正極集電体としては、構成された電池において実質的に化学的に安定な電子伝導体であれば特に限定されない。正極集電体としては、例えば、アルミニウム箔等が用いられる。   The positive electrode current collector is not particularly limited as long as it is an electron conductor that is substantially chemically stable in the battery. As the positive electrode current collector, for example, an aluminum foil or the like is used.

本実施形態に用いる負極は、負極活物質、負極用導電助剤、負極用バインダ等を含む混合物に、溶剤を加えて十分に混練して得た負極合剤ペーストを、負極集電体の両面に塗布して乾燥した後に、その負極合剤層を所定の厚さ及び所定の電極密度に制御することにより形成できる。   The negative electrode used in the present embodiment is obtained by adding a negative electrode mixture paste obtained by sufficiently kneading a mixture containing a negative electrode active material, a conductive aid for negative electrode, a binder for negative electrode, and the like, to both surfaces of the negative electrode current collector. After coating and drying, the negative electrode mixture layer can be formed by controlling the thickness to a predetermined thickness and a predetermined electrode density.

上記負極活物質としては、例えば、天然黒鉛、又は塊状黒鉛、鱗片状黒鉛、土状黒鉛等の人造黒鉛等の炭素材料が用いられるが、リチウムイオンを吸蔵・放出可能であればこれらに限定はされない。   As the negative electrode active material, for example, natural graphite, or carbon materials such as artificial graphite such as massive graphite, flake graphite, earthy graphite, etc. are used, but there is no limitation to these as long as lithium ions can be occluded / released. Not.

上記負極集電体としては、構成された電池において実質的に化学的に安定な電子伝導体であれば特に限定されない。負極集電体としては、例えば、銅箔等が用いられる。   The negative electrode current collector is not particularly limited as long as it is an electron conductor that is substantially chemically stable in the constituted battery. For example, a copper foil or the like is used as the negative electrode current collector.

本実施形態に用いるセパレータとしては、大きなイオン透過度及び所定の機械的強度を有する熱可塑性樹脂からなる微多孔性フィルムを用いることができる。   As the separator used in the present embodiment, a microporous film made of a thermoplastic resin having a large ion permeability and a predetermined mechanical strength can be used.

外装体200としては、アルミニウム等の金属層と熱可塑性樹脂層とが積層されたラミネートフィルムを用いることができる。   As the exterior body 200, a laminate film in which a metal layer such as aluminum and a thermoplastic resin layer are laminated can be used.

上記非水電解液としては、例えば、ビニレンカーボネート(VC)、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、γ−ブチロラクトン等の有機溶媒を1種類又は2種類以上混合した溶媒に、例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiC
3SO3等から選ばれる少なくとも1種類のリチウム塩を溶解させた電解液を用いればよい。この電解液中のLiイオンの濃度は、0.5〜1.5mol/Lとすればよい。
Examples of the non-aqueous electrolyte include vinylene carbonate (VC), propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate ( MEC), an organic solvent such as γ- butyrolactone to one or more kinds mixed solvent, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiC
An electrolytic solution in which at least one lithium salt selected from F 3 SO 3 and the like is dissolved may be used. The concentration of Li ions in the electrolytic solution may be 0.5 to 1.5 mol / L.

以下、実施例により本発明を説明する。   Hereinafter, the present invention will be described by way of examples.

先ず、図1及び図2に示す製造方法により正極4とセパレータ1とを放射線硬化性樹脂3により接着した。その際に放射線硬化性樹脂3の1箇所当たりの塗布量を変化させて各種のサンプルを作製した。正極4としては、厚さ106μm、縦200mm、横84mmの正極を用いた。セパレータ1としては、厚さ21μmのポリエチレン製微多孔膜を用いた。放射線硬化性樹脂としては、主剤にDPHA(ジペンタエリストールヘキサアクリレート)を68質量部、希釈剤にHDDA(1,6−ヘキサンジオールジアクリレート)を
29質量部、光開始剤に2,4,6−トリメチルベンゾイル−ジフェニルフォスフィンオキサイドを3質量部、それぞれ混合して用いた。この時、30℃で測定した放射線硬化性樹脂3の粘度は、160mPa・sであった。
First, the positive electrode 4 and the separator 1 were bonded with the radiation curable resin 3 by the manufacturing method shown in FIGS. 1 and 2. At that time, various samples were prepared by changing the coating amount per one place of the radiation curable resin 3. As the positive electrode 4, a positive electrode having a thickness of 106 μm, a length of 200 mm, and a width of 84 mm was used. As the separator 1, a polyethylene microporous film having a thickness of 21 μm was used. As the radiation curable resin, 68 parts by mass of DPHA (dipentaerystol hexaacrylate) as a main agent, 29 parts by mass of HDDA (1,6-hexanediol diacrylate) as a diluent, and 2,4,4 as a photoinitiator. Three parts by mass of 6-trimethylbenzoyl-diphenylphosphine oxide were mixed and used. At this time, the viscosity of the radiation curable resin 3 measured at 30 ° C. was 160 mPa · s.

次に、各サンプルの放射線硬化性樹脂3による接着部の1箇所当たりの面積及び厚さを測定した。その後、引張試験機を用いて各サンプルについて、正極4からセパレータ1を、正極4に対して垂直方向に引っ張って接着強度を測定した。引っ張り速度は100mm/分とした。接着強度としては、正極4からセパレータ1が剥離するまでの最大引張強度を測定した。   Next, the area and thickness per one part of the adhesion part by the radiation curable resin 3 of each sample were measured. Thereafter, for each sample, the separator 1 was pulled from the positive electrode 4 in a direction perpendicular to the positive electrode 4 using a tensile tester, and the adhesive strength was measured. The pulling speed was 100 mm / min. As the adhesive strength, the maximum tensile strength until the separator 1 was peeled from the positive electrode 4 was measured.

表1に以上の結果を示す。   Table 1 shows the above results.

Figure 2018174146
Figure 2018174146

表1から、接着強度を0.5N以上にするには、放射線硬化性樹脂の1箇所当たりの塗布量を0.005mg以上とする必要があることが分かる。また、放射線硬化性樹脂の1箇所当たりの塗布量が0.15mgあれば接着強度としては7N以上あり、接着強度としては十分であることが分かる。また、上記塗布量が0.005mg以上0.15mg以下であれば、接着部の1箇所当たりの面積を0.3mm2以上7.1mm2以下とでき、上記塗布量が0.07mg以下であれば接着部の1箇所当たりの厚さを5μm以下とできることが分かる。 From Table 1, it can be seen that, in order to increase the adhesive strength to 0.5 N or more, it is necessary to set the application amount of the radiation curable resin per location to 0.005 mg or more. Further, it can be seen that if the coating amount per spot of the radiation curable resin is 0.15 mg, the adhesive strength is 7 N or more, and the adhesive strength is sufficient. Further, if the application amount is 0.005 mg or more and 0.15 mg or less, the area per one part of the bonded portion can be 0.3 mm 2 or more and 7.1 mm 2 or less, and the application amount is 0.07 mg or less. In other words, it can be seen that the thickness of each bonded portion can be 5 μm or less.

次に、上記放射線硬化性樹脂の30℃での塗布粘度を変化させて、塗布後の上記セパレータに対する上記放射線硬化性樹脂の貫通時間を測定した。その結果を表2に示す。   Next, the coating viscosity at 30 ° C. of the radiation curable resin was changed, and the penetration time of the radiation curable resin with respect to the separator after coating was measured. The results are shown in Table 2.

Figure 2018174146
Figure 2018174146

表2から、上記放射線硬化性樹脂の30℃での塗布粘度が40mPa・s以上であれば、上記貫通時間を1秒以上とすることができ、上記放射線硬化性樹脂の硬化時間は通常1秒以下であるため、塗布された放射線硬化性樹脂がセパレータを貫通してしまうことがない。また、セパレータの内部にある程度の放射線硬化性樹脂を浸透させる必要があるため、上記塗布粘度は300mPa・s以下であることが好ましい。   From Table 2, if the coating viscosity at 30 ° C. of the radiation curable resin is 40 mPa · s or more, the penetration time can be set to 1 second or more, and the curing time of the radiation curable resin is usually 1 second. Since it is the following, the applied radiation curable resin does not penetrate the separator. Moreover, since it is necessary to permeate a certain amount of radiation-curable resin into the separator, the coating viscosity is preferably 300 mPa · s or less.

以上説明したように、本発明は、負荷特性等に優れた非水電解質二次電池及びその製造
方法を提供できる。
As described above, the present invention can provide a nonaqueous electrolyte secondary battery excellent in load characteristics and the like and a method for manufacturing the same.

1 第1のセパレータ
2 第2のセパレータ
3 放射線硬化性樹脂
4 正極
5 正極入り袋状セパレータ
6 正極入り袋状セパレータ連結体
7 負極
9A、9B 積層電極体
10 第1の繰り出しロール
20 第2の繰り出しロール
30 放射線硬化性樹脂塗布機
40 正極供給機
50 放射線照射装置
50a 放射線
60 台座
70 加熱装置
100 ラミネート形リチウムイオン二次電池
200 外装体
300 正極外部端子
400 負極外部端子
DESCRIPTION OF SYMBOLS 1 1st separator 2 2nd separator 3 Radiation curable resin 4 Positive electrode 5 Bag-like separator containing positive electrode 6 Bag-like separator connected with positive electrode 7 Negative electrode 9A, 9B Laminated electrode body 10 First feeding roll 20 Second feeding Roll 30 Radiation curable resin coating machine 40 Positive electrode feeder 50 Radiation irradiation device 50a Radiation 60 Base 70 Heating device 100 Laminated lithium ion secondary battery 200 Exterior body 300 Positive electrode external terminal 400 Negative electrode external terminal

Claims (14)

正極と、負極と、セパレータとが積層された積層電極体を含む非水電解質二次電池であって、
前記正極及び前記負極のいずれか一方の電極と、前記セパレータとは、接着部により接着されていることを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery including a laminated electrode body in which a positive electrode, a negative electrode, and a separator are laminated,
The nonaqueous electrolyte secondary battery, wherein either the positive electrode or the negative electrode and the separator are bonded by an adhesive portion.
前記正極と前記セパレータとが、前記接着部により接着されており、前記負極と前記セパレータとは、接着されていない請求項1に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode and the separator are bonded by the bonding portion, and the negative electrode and the separator are not bonded. 前記接着部は、放射線硬化性樹脂から形成されている請求項1又は2に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the adhesion portion is formed of a radiation curable resin. 前記接着部の1箇所当たりの面積が、0.3mm2以上7.1mm2以下である請求項1〜3のいずれか1項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein an area per one portion of the bonding portion is 0.3 mm 2 or more and 7.1 mm 2 or less. 前記接着部の1箇所当たりの厚さが、5μm以下である請求項1〜4のいずれか1項に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein a thickness per one portion of the adhesion portion is 5 µm or less. 前記電極と前記セパレータとの接着強度が、0.5N以上である請求項1〜5のいずれか1項に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein an adhesive strength between the electrode and the separator is 0.5 N or more. 前記接着部の配置位置が、前記電極毎に異なる請求項1〜6のいずれか1項に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein an arrangement position of the adhesive portion is different for each of the electrodes. 前記セパレータは、袋状セパレータを形成している請求項1〜7のいずれか1項に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the separator forms a bag-shaped separator. 請求項1〜8のいずれか1項に記載の非水電解質二次電池を製造する方法であって、
帯状のセパレータに放射線硬化性樹脂を塗布して接着部を形成する塗布工程と、
塗布された前記接着部の上に電極を配置する電極配置工程と、
前記接着部に放射線を照射して前記放射線硬化性樹脂を硬化して前記電極と前記セパレータとを接着する接着工程とを含むことを特徴とする非水電解質二次電池の製造方法。
A method for producing the nonaqueous electrolyte secondary battery according to any one of claims 1 to 8,
An application step of applying a radiation curable resin to a strip-shaped separator to form an adhesive portion;
An electrode placement step of placing an electrode on the applied adhesive portion;
The manufacturing method of the nonaqueous electrolyte secondary battery characterized by including the adhesion | attachment process of irradiating a radiation to the said adhesion part, hardening | curing the said radiation curable resin, and adhere | attaching the said electrode and the said separator.
前記放射線硬化性樹脂の1箇所当たりの塗布量が、0.005mg以上0.15mg以下である請求項9に記載の非水電解質二次電池の製造方法。   The method for producing a nonaqueous electrolyte secondary battery according to claim 9, wherein an application amount of the radiation curable resin per place is 0.005 mg or more and 0.15 mg or less. 前記放射線硬化性樹脂の塗布粘度が、30℃において40mPa・s以上300mPa・s以下である請求項9又は10に記載の非水電解質二次電池の製造方法。   The method for producing a nonaqueous electrolyte secondary battery according to claim 9 or 10, wherein the coating viscosity of the radiation curable resin is 40 mPa · s or more and 300 mPa · s or less at 30 ° C. 前記塗布工程において、前記接着部を前記電極毎に異なる位置に配置する請求項9〜11のいずれか1項に記載の非水電解質二次電池の製造方法。   The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 9, wherein in the application step, the adhesive portion is disposed at a different position for each of the electrodes. 前記接着工程の後に前記電極の上に別のセパレータを配置するセパレータ積層工程と、対向する前記セパレータ同士を接合して袋状セパレータを形成するセパレータ接合工程とを更に含む請求項9〜12のいずれか1項に記載の非水電解質二次電池の製造方法。   Any of Claims 9-12 further including the separator lamination process which arrange | positions another separator on the said electrode after the said adhesion process, and the separator joining process which joins the said separators which oppose and form a bag-shaped separator. A method for producing a non-aqueous electrolyte secondary battery according to claim 1. 前記電極が、正極である請求項9〜13のいずれか1項に記載の非水電解質二次電池の製造方法。   The method for producing a nonaqueous electrolyte secondary battery according to any one of claims 9 to 13, wherein the electrode is a positive electrode.
JP2018120522A 2018-06-26 2018-06-26 Non-aqueous electrolyte secondary battery and manufacturing method thereof Active JP6598933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018120522A JP6598933B2 (en) 2018-06-26 2018-06-26 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018120522A JP6598933B2 (en) 2018-06-26 2018-06-26 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014036506A Division JP6404577B2 (en) 2014-02-27 2014-02-27 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018174146A true JP2018174146A (en) 2018-11-08
JP6598933B2 JP6598933B2 (en) 2019-10-30

Family

ID=64107542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018120522A Active JP6598933B2 (en) 2018-06-26 2018-06-26 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6598933B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203113A1 (en) * 2019-03-29 2020-10-08 パナソニック株式会社 Layered electrode body and bonding device for layered electrode body
EP4131532A4 (en) * 2020-08-21 2024-03-13 LG Energy Solution, Ltd. Adhesive layer coating part, and manufacturing apparatus and method for electrode assembly comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080007692A (en) * 2006-07-18 2008-01-23 주식회사 엘지화학 Lithium ion polymer battery using photosensitive polymer as separator
WO2011049113A1 (en) * 2009-10-21 2011-04-28 国立大学法人京都大学 Electrochemical device using solid polymer electrolyte using fine polymer composite particles
CN102653663A (en) * 2011-03-04 2012-09-05 日东电工株式会社 Tackiness adhesive sheet for thin-film substrate fixing
WO2012131972A1 (en) * 2011-03-31 2012-10-04 株式会社日立製作所 Nonaqueous electrolyte battery
JP2013069495A (en) * 2011-09-21 2013-04-18 Hitachi Ltd Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery, and method of manufacturing electrode for nonaqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080007692A (en) * 2006-07-18 2008-01-23 주식회사 엘지화학 Lithium ion polymer battery using photosensitive polymer as separator
WO2011049113A1 (en) * 2009-10-21 2011-04-28 国立大学法人京都大学 Electrochemical device using solid polymer electrolyte using fine polymer composite particles
CN102653663A (en) * 2011-03-04 2012-09-05 日东电工株式会社 Tackiness adhesive sheet for thin-film substrate fixing
WO2012131972A1 (en) * 2011-03-31 2012-10-04 株式会社日立製作所 Nonaqueous electrolyte battery
JP2013069495A (en) * 2011-09-21 2013-04-18 Hitachi Ltd Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery, and method of manufacturing electrode for nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203113A1 (en) * 2019-03-29 2020-10-08 パナソニック株式会社 Layered electrode body and bonding device for layered electrode body
CN113632279A (en) * 2019-03-29 2021-11-09 松下电器产业株式会社 Laminated electrode assembly and bonding device for laminated electrode assembly
JP7528055B2 (en) 2019-03-29 2024-08-05 パナソニックホールディングス株式会社 Stacked electrode body and bonding device for stacked electrode body
EP4131532A4 (en) * 2020-08-21 2024-03-13 LG Energy Solution, Ltd. Adhesive layer coating part, and manufacturing apparatus and method for electrode assembly comprising same

Also Published As

Publication number Publication date
JP6598933B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP4370902B2 (en) Bipolar battery and manufacturing method thereof.
US7008722B2 (en) Polymer-gel lithium ion battery
JP4892893B2 (en) Bipolar battery
EP2065954B1 (en) Battery electrode structure
CN107431232A (en) Include the electrode assemblie of the attachment between the electrode contact and contact conductor of gap
JP2004134116A (en) Bipolar battery
JP2004335167A (en) Electrode as well as battery for high-speed charge and discharge
KR20080107291A (en) Secondary battery and method of producing the secondary battery
JP6404577B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
US10096856B2 (en) Electrode assembly with tape and electrochemical device comprising the same
JP2003051339A (en) Nonaqueous electrolyte battery and manufacturing method therefor
WO2019054216A1 (en) Separator for lithium ion battery
JP2004253155A (en) Bipolar battery
JP6598933B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4443178B2 (en) Laminate battery manufacturing method and laminate battery manufacturing mold
CN111384451A (en) Laminated body
KR20130102869A (en) Manufacture device of battery cell
JP2015053224A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP4055640B2 (en) Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle
KR100509435B1 (en) Lithium secondary battery and its fabrication
CN1269251C (en) Non-aqueous electrolytic solution lithium secondary battery
JP2004247209A (en) Laminated battery
JP2011181310A (en) Lamination-type unit cell
JP2001052681A (en) Polymer electrolyte battery
JP2004220829A (en) Bipolar battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191001

R150 Certificate of patent or registration of utility model

Ref document number: 6598933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350