JP2018173330A - Device for measuring component amount of substance - Google Patents

Device for measuring component amount of substance Download PDF

Info

Publication number
JP2018173330A
JP2018173330A JP2017071222A JP2017071222A JP2018173330A JP 2018173330 A JP2018173330 A JP 2018173330A JP 2017071222 A JP2017071222 A JP 2017071222A JP 2017071222 A JP2017071222 A JP 2017071222A JP 2018173330 A JP2018173330 A JP 2018173330A
Authority
JP
Japan
Prior art keywords
detection
coil
excitation
component amount
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017071222A
Other languages
Japanese (ja)
Other versions
JP6695551B2 (en
Inventor
麗誉 千田
Yoshitaka Chida
麗誉 千田
義英 箱崎
Yoshihide Hakozaki
義英 箱崎
高橋 強
Tsuyoshi Takahashi
強 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate Industrial Research Institute
Original Assignee
Iwate Industrial Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate Industrial Research Institute filed Critical Iwate Industrial Research Institute
Priority to JP2017071222A priority Critical patent/JP6695551B2/en
Publication of JP2018173330A publication Critical patent/JP2018173330A/en
Application granted granted Critical
Publication of JP6695551B2 publication Critical patent/JP6695551B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for measuring the component amount of an object, in which the sensitivity of measuring an object is improved.SOLUTION: The present invention is constituted so that a detection unit K comprises an excitation circuit 1 equipped with an exciting element 3 having a wound coil 2 and causing a magnetic flux to be generated by this exciting element 3, a detection resonance circuit 10 having a wound coil 12 and detecting an output amount pertaining to an induced electromotive force that is outputted to the coil 12 of a detection element 13 by the magnetic flux generated by the exciting element 3, and an adjustment resonance circuit 30 equipped with an adjustment element 33 having a wound coil 32 and outputting an induced electromotive force to the coil 32 of the adjustment element 33 by the magnetic flux generated by the excitation circuit 1. The excitation element 3, the detection element 13 and the adjustment element 33 are superposed, with the dense faces of the coils opposed, and a stage 40 where an object W to be detected is arranged is provided on the dense face 15 side of the detection element 13. A component amount pertaining to a specific component of the object W is calculated by a control unit on the basis of the output amount detected by the detection resonance circuit 10.SELECTED DRAWING: Figure 2

Description

本発明は、物体の特定の成分に係る成分量を非破壊で測定する物体の成分量測定装置に係り、特に、電磁誘導法によって被検対象の成分量を測定する物体の成分量測定装置に関する。   The present invention relates to an object component amount measuring apparatus that measures a component amount related to a specific component of an object in a non-destructive manner, and more particularly to an object component amount measuring apparatus that measures a component amount of a test object by an electromagnetic induction method. .

従来、この種の物体の成分量測定装置としては、例えば、特開2003−194960号公報(特許文献1)に記載の技術が知られている。図21に示すように、この成分量測定装置Saは、物体Wの特定の成分である水分量を測定するもので、棒状のコア101に巻回されたコイル102を有した励磁体103を備えこの励磁体103のコイル102に所定の交流電圧を付与して励磁体103に磁束を発生させる励磁回路100と、棒状のコア111に巻回されたコイル112を有し励磁体103に磁気的に結合させられた検出体113を備え励磁体103で発生させられた磁束により検出体113のコイル112に出力される誘導起電圧を検出する検出共振回路110とを備え、励磁体103のコア101の端部101aと検出体113のコア111の端部111aとの間に発生させられた磁束内に被検対象の物体Wを臨ませ、検出共振回路110で検出された電圧に基づいて水分量を測定するようにしている。   Conventionally, as a component amount measuring apparatus of this type of object, for example, a technique described in Japanese Patent Laid-Open No. 2003-194960 (Patent Document 1) is known. As shown in FIG. 21, this component amount measuring device Sa measures the amount of water that is a specific component of the object W, and includes an exciter 103 having a coil 102 wound around a rod-shaped core 101. The exciting body 103 includes an exciting circuit 100 that applies a predetermined alternating voltage to the coil 102 of the exciting body 103 to generate a magnetic flux in the exciting body 103, and a coil 112 wound around a rod-shaped core 111. And a detection resonance circuit 110 that detects an induced electromotive voltage output to the coil 112 of the detection body 113 by the magnetic flux generated by the excitation body 103 and includes the coupled detection body 113, and the core 101 of the excitation body 103 Based on the voltage detected by the detection resonance circuit 110, the object W to be tested is exposed to the magnetic flux generated between the end portion 101a and the end portion 111a of the core 111 of the detection body 113. It is to measure the amount.

特開2003−194960号公報JP 2003-194960 A

しかしながら、上記従来の成分量測定装置Saにあっては、被検対象の物体Wを、励磁体103のコア101の端部101aと検出体113のコア111の端部111aとの間に発生させられた磁束内に臨ませているので、コア101,111の端部101a,111a間に生じるエアのギャップに起因して物体Wの測定感度に劣っているという問題があった。
本発明は上記の点に鑑みて為されたもので、物体の測定感度の向上を図った物体の成分量測定装置を提供することを目的とする。
However, in the conventional component amount measuring apparatus Sa, the object W to be tested is generated between the end 101a of the core 101 of the exciter 103 and the end 111a of the core 111 of the detector 113. Since it faces the generated magnetic flux, there is a problem that the measurement sensitivity of the object W is inferior due to an air gap generated between the end portions 101a and 111a of the cores 101 and 111.
The present invention has been made in view of the above points, and an object of the present invention is to provide an object component amount measuring apparatus that improves the measurement sensitivity of an object.

このような目的を達成するための本発明の物体の成分量測定装置は、検出部と制御部とを備え、上記検出部を、巻回されたコイルを有した励磁体を備え該励磁体のコイルに所定の交流電圧を付与して該励磁体に磁束を発生させる励磁回路と、巻回されたコイルを有し上記励磁体に磁気的に結合させられた検出体を備え上記励磁体で発生させられた磁束により該検出体のコイルに出力される誘導起電力に係る出力量を検出する検出共振回路とを備えて構成し、該検出部で、上記励磁体及び検出体に発生させられた磁束内に被検対象の物体を臨ませ、上記制御部で、上記検出共振回路で検出された出力量に基づいて該物体の特定の成分に係る成分量を算出する物体の成分量測定装置において、
上記検出部の励磁体及び検出体を、巻回したコイルが密集して露出する密集面を有して形成し、上記励磁体の密集面と上記検出体の密集面を対向させて該励磁体及び検出体を重畳させ、上記被検対象の物体が配置されるステージを設け、該ステージを上記検出体の密集面に沿って設けた構成としている。
An object component amount measuring apparatus of the present invention for achieving such an object includes a detection unit and a control unit, and the detection unit includes an exciter having a wound coil. An excitation circuit that applies a predetermined AC voltage to the coil to generate magnetic flux in the exciter and a detector that has a wound coil and is magnetically coupled to the exciter are generated by the exciter. And a detection resonance circuit for detecting an output amount related to the induced electromotive force output to the coil of the detection body by the generated magnetic flux, and the detection unit generates the excitation body and the detection body. In an object component amount measuring apparatus that faces an object to be tested in a magnetic flux and calculates a component amount related to a specific component of the object based on an output amount detected by the detection resonance circuit in the control unit. ,
The excitation body and the detection body of the detection unit are formed with a dense surface where the wound coils are densely exposed, and the excitation surface is opposed to the dense surface of the detection body. And a stage on which the object to be examined is arranged is provided, and the stage is provided along the dense surface of the detector.

ここで、物体とは、固形物,液体,気体,これらの混合体であり、検出共振回路に生じる誘導起電圧の低下や位相の変化から水分や溶融物質分等の成分が測定できるものであればどのようなものでも良い。
また、誘導起電力に係る出力量とは、複素誘導起電力に係り、例えば、誘導起電圧,その位相などを挙げることができる。制御部においては、例えば、誘導起電圧の変化量や、位相差に基づいて物体の特定の成分に係る成分量を算出することができる。誘導起電圧の変化量は、例えば、ステージ上に物体がない状態の誘導電圧を基準とし、この誘導起電圧の基準に対するステージ上に物体があるときの誘導電圧の比率とすることができる。また、位相差は、誘導起電圧の基準の位相に対するステージ上に物体があるときの誘導電圧の位相の差を言い、例えば、ステージ上に物体がない状態の誘導電圧の位相を基準とし、この誘導起電圧の基準の位相に対するステージ上に物体があるときの誘導電圧の位相の位相差とすることができる。
Here, the object is a solid, liquid, gas, or a mixture of these, and can measure components such as moisture and molten material from a decrease in induced electromotive force and a phase change that occur in the detection resonance circuit. Anything is acceptable.
The output amount related to the induced electromotive force relates to the complex induced electromotive force, and can include, for example, the induced electromotive voltage and its phase. In the control unit, for example, a component amount related to a specific component of the object can be calculated based on a change amount of the induced electromotive voltage or a phase difference. The amount of change in the induced electromotive voltage can be, for example, the ratio of the induced voltage when there is an object on the stage relative to the reference of the induced electromotive voltage with reference to the induced voltage in a state where there is no object on the stage. The phase difference is the difference in the phase of the induced voltage when there is an object on the stage relative to the reference phase of the induced electromotive voltage.For example, the phase difference of the induced voltage when there is no object on the stage is used as a reference. The phase difference of the phase of the induced voltage when the object is on the stage with respect to the reference phase of the induced electromotive voltage can be used.

この構成においては、励磁体の密集面と検出体の密集面とを絶縁体を介して接合させても良く、また、互いに所要間隔離間させても良い。ステージは、検出体の密集面で構成しても良く、別途、例えば、プラスチックシートや板等の専用の部材で構成しても良い。専用の部材で構成する場合には、これを検出体の密集面に接合させても良く、また、検出体の密集面から所要間隔離間させても良い。   In this configuration, the dense surface of the exciter and the dense surface of the detector may be joined via an insulator, or may be spaced apart from each other at a required interval. The stage may be composed of a dense surface of the detection body, or may be composed of a dedicated member such as a plastic sheet or a plate. In the case of using a dedicated member, it may be joined to the dense surface of the detection body, or may be separated from the dense surface of the detection body by a required distance.

これにより、物体の特定の成分に係る成分量を測定するときは、検出部において、ステージ上に被検対象の物体を配置し、励磁回路により交流電圧を付与すると、励磁体のコイルに磁束が発生し、この磁束の一部は、検出共振回路の検出体を透過しコイルに誘導起電力が出力される。そして、励磁体及び検出体に発生させられた磁束内に被検対象の物体が臨んでいるので、静電容量が変化して共振周波数が低いほうにシフトし共振特性およびインピーダンスの変化が生じる。それにより、電圧や電流が変化し磁束の変化が生じ磁気的結合の度合いが変化し、検出共振回路では誘導起電力に係る出力量が検出される。制御部においては、この出力量に基づいて物体の特定の成分に係る成分量が測定される。この場合、励磁体の密集面と検出体の密集面を対向させて励磁体及び検出体を重畳させ、しかも、ステージを検出体の密集面に沿って設けたので、ステ―ジ上の物体を透過する磁束にギャップが生じることがなく、そのため、測定感度が向上させられる。   As a result, when measuring the amount of a component related to a specific component of the object, if the object to be tested is placed on the stage and an AC voltage is applied by the excitation circuit, the magnetic flux is generated in the coil of the exciter. A part of this magnetic flux is transmitted through the detection body of the detection resonance circuit, and an induced electromotive force is output to the coil. Since the object to be tested faces the magnetic flux generated in the exciter and the detector, the capacitance changes and the resonance frequency shifts to a lower side, causing a change in resonance characteristics and impedance. As a result, the voltage and current change to change the magnetic flux and the degree of magnetic coupling changes, and the output amount related to the induced electromotive force is detected in the detection resonance circuit. In the control unit, the component amount related to a specific component of the object is measured based on the output amount. In this case, since the dense surface of the excitation body and the dense surface of the detection body are opposed to each other, the excitation body and the detection body are overlapped, and the stage is provided along the dense surface of the detection body. There is no gap in the transmitted magnetic flux, so that the measurement sensitivity is improved.

そして、本発明においては、少なくとも上記検出体を、コイルを中心軸を中心に且つ中心軸方向に沿って所要幅有して板状に巻回し、表裏面を密集面とて構成したことが有効である。検出体は、板状にしたことでコイルの密集面の面積、つまり、被検体との接触面積が大きくなる。これにより、被検体が有るときと無い(空気)ときで検出体の静電容量(浮遊容量)の差が大きく出るため、接触面積が小さいときと比べてより、測定感度を向上させることができる。   In the present invention, it is effective that at least the detection body is configured in such a manner that the coil is wound in a plate shape with the required width around the central axis and along the central axis direction, and the front and back surfaces are formed as dense surfaces. It is. Since the detection body is plate-shaped, the area of the dense surface of the coil, that is, the contact area with the subject increases. As a result, the difference in electrostatic capacitance (floating capacitance) between the presence and absence of the subject (air) is large, so that the measurement sensitivity can be improved compared to when the contact area is small. .

また、本発明においては、少なくとも上記検出体を、コイルを平面上で該平面に直交する中心軸を中心に渦巻状に巻回して形成し、該中心軸に直交する表裏面を密集面として構成した構成したことが有効である。検出体は、板状にしたことでコイルの密集面の面積、つまり、被検体との接触面積が大きくなる。これにより、被検体が有るときと無い(空気)ときで検出体の静電容量(浮遊容量)の差が大きく出るため、接触面積が小さいときと比べてより、測定感度を向上させることができる。また、コイルを渦巻状にするので製造が容易になる。   Further, in the present invention, at least the detection body is formed by winding a coil in a spiral shape around a central axis orthogonal to the plane on a plane, and the front and back surfaces orthogonal to the central axis are configured as dense surfaces. It is effective to have configured. Since the detection body is plate-shaped, the area of the dense surface of the coil, that is, the contact area with the subject increases. As a result, the difference in electrostatic capacitance (floating capacitance) between the presence and absence of the subject (air) is large, so that the measurement sensitivity can be improved compared to when the contact area is small. . Further, since the coil is formed in a spiral shape, the manufacture becomes easy.

また、本発明においては、上記励磁体及び検出体の少なくとも何れかを、コアにコイルを巻回して形成したことが有効である。コアに巻回するので磁気的結合を制御し易くすることができる。   In the present invention, it is effective to form at least one of the excitation body and the detection body by winding a coil around a core. Since it is wound around the core, the magnetic coupling can be easily controlled.

更に、本発明においては、上記励磁体及び検出体の少なくとも何れかを、上記巻回したコイルの集合体を複数備えて構成したことが有効である。
これにより被検体の成分分布の測定を容易に行うことができる。
Furthermore, in the present invention, it is effective that at least one of the exciter and the detector is provided with a plurality of wound coil assemblies.
Thereby, the component distribution of the subject can be easily measured.

そして、本発明においては、必要に応じ、上記検出部に、巻回されたコイルを有した調整体を備え上記励磁回路で発生させられた磁束により該調整体のコイルに誘導起電力を出力する調整共振回路を設け、上記調整体を、巻回したコイルが密集して露出する密集面を有して形成し、該調整体の密集面を上記励磁体の密集面及び/または上記検出体の密集面に対向させて該調整体を上記励磁体及び/または検出体に重畳させ、該励磁体及び検出体に対して磁気的に結合させた構成としている。   In the present invention, if necessary, the detection unit includes an adjustment body having a wound coil, and an induced electromotive force is output to the coil of the adjustment body by the magnetic flux generated by the excitation circuit. An adjustment resonance circuit is provided, and the adjustment body is formed to have a dense surface where the wound coils are densely exposed, and the dense surface of the adjustment body is formed as a dense surface of the exciter and / or the detection body. The adjustment body is superposed on the excitation body and / or detection body so as to face the dense surface and is magnetically coupled to the excitation body and detection body.

この構成においては、調整体の密集面は、励磁体の密集面及び/または検出体の密集面と絶縁体を介して接合させても良く、また、互いに所要間隔離間させても良い。これにより、調整体を設けたので、検出体のコイルからの出力量を調整することができ、受信電圧の振幅と位相の周波数特性を制御して感度を向上させることができる。調整体は、複数備えるようにして良い。   In this configuration, the dense surface of the adjusting body may be joined to the dense surface of the exciter and / or the dense surface of the detector through an insulator, or may be spaced apart from each other by a predetermined distance. Thereby, since the adjustment body is provided, the output amount from the coil of the detection body can be adjusted, and the sensitivity can be improved by controlling the frequency characteristics of the amplitude and phase of the reception voltage. A plurality of adjustment bodies may be provided.

そして、調整体を備えた構成においては、少なくとも上記検出体を、コイルを中心軸を中心に且つ中心軸方向に所要幅を有するように板状に巻回し、表裏面を密集面として構成したことが有効である。検出体は、板状にしたことでコイルの密集面の面積、つまり、被検体との接触面積が大きくなる。これにより、被検体が有るときと無い(空気)ときで検出体の静電容量(浮遊容量)の差が大きく出るため、接触面積が小さいときと比べてより、測定感度を向上させることができる。   In the configuration including the adjustment body, at least the detection body is wound in a plate shape so that the coil has a required width around the central axis and in the central axis direction, and the front and back surfaces are configured as dense surfaces. Is effective. Since the detection body is plate-shaped, the area of the dense surface of the coil, that is, the contact area with the subject increases. As a result, the difference in electrostatic capacitance (floating capacitance) between the presence and absence of the subject (air) is large, so that the measurement sensitivity can be improved compared to when the contact area is small. .

また、調整体を備えた構成においては、少なくとも上記検出体を、コイルを平面上で該平面に直交する中心軸を中心に渦巻状に巻回して形成し、該中心軸に直交する表裏面を密集面として構成することができる。検出体は、板状にしたことでコイルの密集面の面積、つまり、被検体との接触面積が大きくなる。これにより、被検体が有るときと無い(空気)ときで検出体の静電容量(浮遊容量)の差が大きく出るため、接触面積が小さいときと比べてより、測定感度を向上させることができる。また、コイルを渦巻状にするので製造が容易になる。   In the configuration including the adjustment body, at least the detection body is formed by winding the coil in a spiral shape around the central axis orthogonal to the plane on the plane, and the front and back surfaces orthogonal to the central axis are formed. It can be configured as a dense surface. Since the detection body is plate-shaped, the area of the dense surface of the coil, that is, the contact area with the subject increases. As a result, the difference in electrostatic capacitance (floating capacitance) between the presence and absence of the subject (air) is large, so that the measurement sensitivity can be improved compared to when the contact area is small. . Further, since the coil is formed in a spiral shape, the manufacture becomes easy.

また、調整体を備えた構成においては、上記励磁体,検出体及び調整体の少なくとも何れかを、コアにコイルを巻回して形成したことが有効である。コアに巻回するので磁気的結合を制御し易くすることができる。   In the configuration including the adjusting body, it is effective to form at least one of the exciting body, the detecting body, and the adjusting body by winding a coil around the core. Since it is wound around the core, the magnetic coupling can be easily controlled.

更に、調整体を備えた構成においては、上記励磁体,検出体及び調整体の少なくとも何れかを、上記巻回したコイルの集合体を複数備えて構成したことが有効である。
これにより被検体の成分分布の測定を容易に行うことができる。
Furthermore, in the configuration provided with the adjustment body, it is effective that at least one of the excitation body, the detection body, and the adjustment body includes a plurality of wound coil assemblies.
Thereby, the component distribution of the subject can be easily measured.

そしてまた、本発明においては、必要に応じ、上記調整共振回路を備えた検出部と、該調整共振回路を備えない別の検出部とを、成分量の測定範囲によって、選択使用可能にした構成としている。被検対象の物体の性状に合わせて、調整共振回路を備えた検出部と、調整共振回路を備えない別の検出部とを、使い分けて使用することにより、より精度の高い成分量の測定をすることができる。   In addition, in the present invention, a configuration in which the detection unit including the adjustment resonance circuit and another detection unit not including the adjustment resonance circuit can be selectively used according to the measurement range of the component amount, as necessary. It is said. Depending on the properties of the object to be tested, a detection unit with an adjustment resonance circuit and another detection unit without an adjustment resonance circuit can be used separately to measure the component amount with higher accuracy. can do.

また、上記目的を達成するため、本発明の物体の成分量測定装置は、検出部と制御部とを備え、上記検出部を、巻回されたコイルを有した励磁体を備え該励磁体のコイルに所定の交流電圧を付与して該励磁体に磁束を発生させる励磁回路と、巻回されたコイルを有し上記励磁体に磁気的に結合させられた検出体を備え上記励磁体で発生させられた磁束により該検出体のコイルに出力される誘導起電力に係る出力量を検出する検出共振回路とを備えて構成し、該検出部で、上記励磁体及び検出体に発生させられた磁束内に被検対象の物体を臨ませ、上記制御部で、上記検出共振回路で検出された出力量に基づいて該物体の特定の成分に係る成分量を算出する物体の成分量測定装置において、
上記励磁体を、筒状に巻回されたコイルと、一端側が上記コイルに挿通された磁性体からなる棒状のコアとを備えて構成し、
上記検出体を、上記コアの他端側であって該コアから離間して該コアと同軸で配置され外周面を密集面とした筒状に巻回されたコイルで構成し、
上記励磁体,コア及び検出体を、被検対象の物体が上記検出体の密集面の一部若しくは全部を外側から覆うように位置させて当該検出体によってそのコイルに出力される出力量を検出可能に支持体に支持した構成としている。
In order to achieve the above object, an object component amount measuring apparatus of the present invention includes a detection unit and a control unit, and the detection unit includes an exciter having a wound coil. An excitation circuit that applies a predetermined AC voltage to the coil to generate magnetic flux in the exciter and a detector that has a wound coil and is magnetically coupled to the exciter are generated by the exciter. And a detection resonance circuit for detecting an output amount related to the induced electromotive force output to the coil of the detection body by the generated magnetic flux, and the detection unit generates the excitation body and the detection body. In an object component amount measuring apparatus that faces an object to be tested in a magnetic flux and calculates a component amount related to a specific component of the object based on an output amount detected by the detection resonance circuit in the control unit. ,
The excitation body comprises a coil wound in a cylindrical shape and a rod-shaped core made of a magnetic material having one end inserted through the coil,
The detection body is configured by a coil wound in a cylindrical shape on the other end side of the core and spaced from the core and coaxial with the core and having a dense outer peripheral surface;
The excitation body, the core, and the detection body are positioned so that the object to be tested covers a part or all of the dense surface of the detection body from the outside, and the output amount output to the coil by the detection body is detected. The configuration is such that it is supported by a support.

これによっても、被検対象の物体が検出体の密集面の一部若しくは全部を外側から覆うので、物体を透過する磁束にギャップが生じることがなく、そのため、測定感度が向上させられる。また、棒状のコアを利用することで送信部から離れた測定部でも測定が可能になる。   Also by this, since the object to be examined covers a part or all of the dense surface of the detection body from the outside, there is no gap in the magnetic flux passing through the object, and therefore the measurement sensitivity is improved. In addition, by using a rod-shaped core, measurement is possible even at a measurement unit that is remote from the transmission unit.

また、上記目的を達成するため、本発明の物体の成分量測定装置は、検出部と制御部とを備え、上記検出部を、巻回されたコイルを有した励磁体を備え該励磁体のコイルに所定の交流電圧を付与して該励磁体に磁束を発生させる励磁回路と、巻回されたコイルを有し上記励磁体に磁気的に結合させられた検出体を備え上記励磁体で発生させられた磁束により該検出体のコイルに出力される誘導起電力に係る出力量を検出する検出共振回路とを備えて構成し、該検出部で、上記励磁体及び検出体に発生させられた磁束内に被検対象の物体を臨ませ、上記制御部で、上記検出共振回路で検出された出力量に基づいて該物体の特定の成分に係る成分量を算出する物体の成分量測定装置において、
上記励磁体及び検出体を、コイルを巻回して外周面を密集面とした筒状に形成し、上記励磁体を、上記検出体内に同軸で挿入し、上記励磁体及び検出体を、被検対象の物体が上記検出体の密集面の一部若しくは全部を外側から覆うように位置させて当該検出体によってそのコイルに出力される出力量を検出可能に支持体に支持した構成としている。
これによっても、被検対象の物体が検出体の密集面の一部若しくは全部を外側から覆うので、物体を透過する磁束にギャップが生じることがなく、そのため、測定感度が向上させられる。
In order to achieve the above object, an object component amount measuring apparatus of the present invention includes a detection unit and a control unit, and the detection unit includes an exciter having a wound coil. An excitation circuit that applies a predetermined AC voltage to the coil to generate magnetic flux in the exciter and a detector that has a wound coil and is magnetically coupled to the exciter are generated by the exciter. And a detection resonance circuit for detecting an output amount related to the induced electromotive force output to the coil of the detection body by the generated magnetic flux, and the detection unit generates the excitation body and the detection body. In an object component amount measuring apparatus that faces an object to be tested in a magnetic flux and calculates a component amount related to a specific component of the object based on an output amount detected by the detection resonance circuit in the control unit. ,
The exciter and the detector are formed in a cylindrical shape with a coil wound around the outer peripheral surface, the exciter is inserted coaxially into the detector, and the exciter and detector are tested. The target object is positioned so as to cover a part or all of the dense surface of the detection body from the outside, and the output amount output to the coil by the detection body is supported on the support body so that it can be detected.
Also by this, since the object to be examined covers a part or all of the dense surface of the detection body from the outside, there is no gap in the magnetic flux passing through the object, and therefore the measurement sensitivity is improved.

この場合、巻回されたコイルを有した調整体を備え上記励磁回路で発生させられた磁束により該調整体のコイルに誘導起電力を出力する調整共振回路を設け、上記調整体を、コイルを巻回して外周面を密集面とした筒状に形成するとともに、上記検出体内に同軸で挿入して支持体に支持した構成とすることができる。これにより、調整体を設けたので、検出体のコイルからの出力量を調整することができ、受信電圧の振幅と位相の周波数特性を制御して感度を向上させることができる。   In this case, an adjustment resonance circuit that includes an adjustment body having a wound coil and outputs an induced electromotive force to the coil of the adjustment body by the magnetic flux generated by the excitation circuit is provided. It can be configured to be wound to form a cylindrical shape with the outer peripheral surface being a dense surface, and to be coaxially inserted into the detection body and supported by the support. Thereby, since the adjustment body is provided, the output amount from the coil of the detection body can be adjusted, and the sensitivity can be improved by controlling the frequency characteristics of the amplitude and phase of the reception voltage.

また、必要に応じ、上記制御部を、予め、特定の成分に係る成分量既知のサンプル物体において求められ、該サンプル物体の特定成分について上記検出共振回路の検出体のコイルに出力される誘導起電力に係る相関を記憶する相関記憶手段と、上記検出共振回路で検出される出力量及び上記相関記憶手段が記憶した相関に基づいて物体の特定の成分に係る成分量を算出する成分量算出手段とを備えて構成している。   In addition, if necessary, the control unit obtains the induction component which is obtained in advance for a sample object having a known component amount related to the specific component and is output to the coil of the detection body of the detection resonance circuit for the specific component of the sample object. Correlation storage means for storing correlations related to power, and component amount calculation means for calculating a component quantity related to a specific component of the object based on the output amount detected by the detection resonance circuit and the correlation stored by the correlation storage means And comprising.

本発明によれば、検出体のコイルの密集面に被検対象の物体が位置するので、物体を透過する磁束にギャップが生じることがなく、そのため、測定感度を向上させることができる。また、棒状のコアを利用するものにおいては、送信部から離れた測定部でも測定が可能になる。   According to the present invention, since the object to be tested is located on the dense surface of the coil of the detection body, there is no gap in the magnetic flux passing through the object, and therefore the measurement sensitivity can be improved. In addition, in the case of using a rod-shaped core, measurement is possible even at a measurement unit away from the transmission unit.

本発明の実施の形態に係る物体の成分量測定装置を示すブロック図である。It is a block diagram which shows the component amount measuring apparatus of the object which concerns on embodiment of this invention. 本発明の実施の形態に係る物体の成分量測定装置において検出部の構成を示す図である。It is a figure which shows the structure of a detection part in the component amount measuring apparatus of the object which concerns on embodiment of this invention. 本発明の実施の形態に係る物体の成分量測定装置において検出部の励磁体,検出体及び調整体の構成を示す図であり、(a)は正面図、(b)側面図である。It is a figure which shows the structure of the excitation body of a detection part, a detection body, and an adjustment body in the component amount measuring apparatus of the object which concerns on embodiment of this invention, (a) is a front view, (b) It is a side view. 本発明の実施の形態に係る物体の成分量測定装置において別の検出部の構成を示す図である。It is a figure which shows the structure of another detection part in the component amount measuring apparatus of the object which concerns on embodiment of this invention. 本発明の検出部の検出原理を示す図である。It is a figure which shows the detection principle of the detection part of this invention. 本発明の検出部において、調整共振回路を備えた検出部と、調整共振回路を備えない検出部との相違を示す図である。In the detection part of this invention, it is a figure which shows the difference with the detection part provided with the adjustment resonance circuit, and the detection part which is not provided with the adjustment resonance circuit. 本発明の実施の形態に係る物体の成分量測定装置により物体の成分の測定する際のフローチャートである。It is a flowchart at the time of measuring the component of an object with the component amount measuring apparatus of the object which concerns on embodiment of this invention. 本発明の実施の形態に係る物体の成分量測定装置において検出部の別の例を示す図である。It is a figure which shows another example of a detection part in the component amount measuring apparatus of the object which concerns on embodiment of this invention. 本発明の実施の形態に係る物体の成分量測定装置において検出部の励磁体,検出体及び調整体の変形例を示し、(a)は正面図、(b)は側面図である。The modification of the excitation body of a detection part, a detection body, and an adjustment body is shown in the component amount measuring apparatus of the object which concerns on embodiment of this invention, (a) is a front view, (b) is a side view. 本発明の実施の形態に係る物体の成分量測定装置において検出部の励磁体,検出体及び調整体の別の変形例を示し、(a)は正面図、(b)は側面図である。In the component amount measuring apparatus for an object according to the embodiment of the present invention, another modification of the exciter, detector and adjuster of the detector is shown, (a) is a front view and (b) is a side view. 本発明の実施の形態に係る物体の成分量測定装置において検出部の励磁体,検出体及び調整体のまた別の例を示す図である。It is a figure which shows another example of the excitation body of a detection part, a detection body, and an adjustment body in the component amount measuring apparatus of the object which concerns on embodiment of this invention. 本発明の実施の形態に係る物体の成分量測定装置において検出部の励磁体,検出体及び調整体の更にまた別の例を示す図である。It is a figure which shows another example of the exciting body of a detection part, a detection body, and an adjustment body in the component amount measuring apparatus of the object which concerns on embodiment of this invention. 本発明の実施の形態に係る物体の成分量測定装置において他の励磁体及び検出体を示し、(a)は正面図、(b)は側面図である。In the component amount measuring apparatus for an object according to the embodiment of the present invention, another exciter and a detector are shown, (a) is a front view, and (b) is a side view. 本発明の別の実施の形態に係る物体の成分量測定装置の検出部を示す図であり、(a)は正面図、(b)は左側面図、(c)は右側面図である。It is a figure which shows the detection part of the component amount measuring apparatus of the object which concerns on another embodiment of this invention, (a) is a front view, (b) is a left view, (c) is a right view. 本発明の別の実施の形態に係る物体の成分量測定装置の検出部を用いて物体の成分の測定する際の状態を示し、(a)は物体との関係を示す斜視図、(b)は物体の測定時の状態を示す断面図である。The state at the time of measuring the component of an object using the detection part of the component amount measuring apparatus of the object which concerns on another embodiment of this invention is shown, (a) is a perspective view which shows the relationship with an object, (b). FIG. 5 is a cross-sectional view showing a state during measurement of an object. 本発明のまた別の実施の形態に係る物体の成分量測定装置の検出部を示す図であり、(a)は正面断面図、(b)は右側面図である。It is a figure which shows the detection part of the component amount measuring apparatus of the object which concerns on another embodiment of this invention, (a) is front sectional drawing, (b) is a right view. 本発明の実施例に係る成分量測定装置の検出部を示す図であり、(a)は平面図、(b)は正面図である。It is a figure which shows the detection part of the component amount measuring apparatus which concerns on the Example of this invention, (a) is a top view, (b) is a front view. 本発明の実施例に係る成分量測定装置において、調整共振回路を備えた検出部による測定に係る検量線を、調整共振回路を備えない検出部による測定に係る検量線とともに示し、(a)は水分と電圧との関係を示すグラフ図、(b)は水分と位相差との関係を示すグラフ図である。In the component amount measuring apparatus according to the embodiment of the present invention, a calibration curve related to measurement by a detection unit including an adjustment resonance circuit is shown together with a calibration curve related to measurement by a detection unit not including the adjustment resonance circuit. The graph which shows the relationship between a water | moisture content and a voltage, (b) is a graph which shows the relationship between a water | moisture content and a phase difference. 本発明の別の実施例に係る成分量測定装置の検出部において、(a)はその構成を示す図、(b)は水分と電圧との関係、及び、水分と位相差との関係を示すグラフ図である。In the detection part of the component amount measuring apparatus which concerns on another Example of this invention, (a) is a figure which shows the structure, (b) shows the relationship between a water | moisture content and a voltage, and the relationship between a water | moisture content and a phase difference. FIG. 本発明の実施例に係る成分量測定装置において、塩蔵わかめについての検量線を示し、(a)は水分量と電圧との関係を示すグラフ図、(b)は水分量と位相差との関係を示すグラフ図、(c)は塩分量と電圧との関係を示すグラフ図、(d)は塩分量と位相差との関係を示すグラフ図である。In the component amount measuring apparatus which concerns on the Example of this invention, the calibration curve about salted seaweed is shown, (a) is a graph which shows the relationship between a moisture content and a voltage, (b) is the relationship between a moisture content and a phase difference. (C) is a graph showing the relationship between the salinity and the voltage, and (d) is a graph showing the relationship between the salinity and the phase difference. 従来の成分量測定装置の一例を示す図である。It is a figure which shows an example of the conventional component amount measuring apparatus.

以下、添付図面に基づいて、本発明の実施の形態に係る物体の成分量測定装置について詳細に説明する。   Hereinafter, an object component amount measuring apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1乃至図3に示すように、実施の形態に係る物体の成分量測定装置Sは、検出部Kと制御部Cとを備えて構成されている。検出部Kは、巻回されたコイル2を有した励磁体3を備えこの励磁体3のコイルに所定の交流電圧を付与してこの励磁体3に磁束を発生させる励磁回路1と、巻回されたコイル12を有し励磁体3に磁気的に結合させられた検出体13を備えるとともに励磁体3で発生させられた磁束によりこの検出体13のコイル12に出力される誘導起電力に係る出力量を検出する検出共振回路10とを備え、この検出部Kで、励磁体3及び検出体13に発生させられた磁束内に被検対象の物体Wを臨ませ、制御部Cで、検出共振回路10で検出された出力量に基づいて物体Wの特定の成分に係る成分量を算出するものである。   As shown in FIGS. 1 to 3, the object component amount measuring apparatus S according to the embodiment includes a detection unit K and a control unit C. The detection unit K includes an exciter 3 having a wound coil 2, an excitation circuit 1 that applies a predetermined AC voltage to the coil of the exciter 3 and generates a magnetic flux in the exciter 3, and a winding And a detection body 13 that is magnetically coupled to the exciter 3 and has an induced electromotive force that is output to the coil 12 of the detector 13 by the magnetic flux generated by the exciter 3. The detection resonance circuit 10 for detecting the output amount is provided. The detection unit K causes the object W to be tested to face the magnetic flux generated in the exciter 3 and the detection unit 13, and the control unit C detects the output. The component amount related to a specific component of the object W is calculated based on the output amount detected by the resonance circuit 10.

励磁回路1において、励磁体3は、図3に示すように、巻回したコイル2が密集して露出する密集面5,6を有した板状に形成されている。コイル2は、中心軸Pを中心に且つ中心軸P方向に沿って所要幅Lを有して板状に巻回されており、この板状に巻回されたコイル2の集合体の面積の広い平面状の表裏面が密集面5,6として構成されている。コイル2は、導線を絶縁体で被覆した周知の構成のもので、矩形板状のコア4に巻回されている。コア4を特に設けることなく巻回したものでも良い。コア4に巻回した場合には磁気的結合を制御し易くすることができる。励磁回路1は、図1及び図2に示すように、励磁体3の巻回されたコイル2(励磁コイル)と、コイル2に電源から電圧を付与する正弦波発信回路8を有した送信機7とを備えている。   In the excitation circuit 1, the exciter 3 is formed in a plate shape having dense surfaces 5 and 6 where the wound coil 2 is densely exposed as shown in FIG. 3. The coil 2 is wound in a plate shape with a required width L around the central axis P and along the direction of the central axis P, and the area of the aggregate of the coils 2 wound in the plate shape. Wide flat front and back surfaces are formed as dense surfaces 5 and 6. The coil 2 has a known configuration in which a conductive wire is covered with an insulator, and is wound around a rectangular plate-shaped core 4. The core 4 may be wound without being particularly provided. When wound around the core 4, the magnetic coupling can be easily controlled. As shown in FIGS. 1 and 2, the excitation circuit 1 is a transmitter having a coil 2 (excitation coil) wound with an exciter 3 and a sine wave transmission circuit 8 that applies a voltage to the coil 2 from a power source. 7.

検出共振回路10において、検出体13は、図3に示すように、励磁体3と同様に形成され、巻回したコイル12が密集して露出する密集面15,16を有した板状に形成されている。コイル12は、中心軸Pを中心に且つ中心軸P方向に沿って所要幅Lを有して板状に巻回されており、この板状に巻回されたコイル12の集合体の面積の広い平面状の表裏面が密集面15,16として構成されている。コイル12は、導線を絶縁体で被覆した周知の構成のもので、矩形板状のコア14に巻回されている。コア14を特に設けることなく巻回したものでも良い。コア4に巻回した場合には磁気的結合を制御し易くすることができる。   In the detection resonance circuit 10, as shown in FIG. 3, the detection body 13 is formed in the same manner as the excitation body 3, and is formed in a plate shape having dense surfaces 15 and 16 where the wound coil 12 is densely exposed. Has been. The coil 12 is wound in a plate shape with a required width L around the center axis P and along the direction of the center axis P, and the area of the aggregate of the coils 12 wound in the plate shape is Wide flat front and back surfaces are formed as dense surfaces 15 and 16. The coil 12 has a known structure in which a conductive wire is covered with an insulator, and is wound around a rectangular plate-shaped core 14. The core 14 may be wound without being particularly provided. When wound around the core 4, the magnetic coupling can be easily controlled.

検出共振回路10は、図1及び図2に示すように、検出体13の巻回されたコイル12(検出コイル)と、コイル12に接続されたコンデンサ17と、励磁体3で発生させられた磁束により検出体13のコイル12に出力される誘導起電力に係る出力量を検出する受信器20とを備えている。受信器20は、電圧の最大振幅を出力量として検出する振幅最大値検出回路21と、電圧との位相を出力量として検出する位相検出回路22と、振幅最大値検出回路21及び位相検出回路22からのアナログ電気信号をデジタル電気信号に変換して出力するA/D変換器23とを備えている。   As shown in FIGS. 1 and 2, the detection resonance circuit 10 is generated by a coil 12 (detection coil) wound with a detection body 13, a capacitor 17 connected to the coil 12, and the excitation body 3. And a receiver 20 that detects an output amount related to the induced electromotive force output to the coil 12 of the detection body 13 by magnetic flux. The receiver 20 includes an amplitude maximum value detection circuit 21 that detects the maximum amplitude of the voltage as an output amount, a phase detection circuit 22 that detects a phase of the voltage as an output amount, an amplitude maximum value detection circuit 21, and a phase detection circuit 22. And an A / D converter 23 that converts the analog electric signal from the digital signal into a digital electric signal and outputs the digital electric signal.

また、検出部Kは、巻回されたコイル32を有した調整体33を備え励磁回路1で発生させられた磁束により調整体33のコイルに誘導起電力を出力する調整共振回路30を備えている。調整共振回路30において、調整体33は、図3に示すように、励磁体3と同様に形成され、巻回したコイル32が密集して露出する密集面35,36を有した板状に形成されている。コイル32は、中心軸Pを中心に且つ中心軸P方向に沿って所要幅Lを有して板状に巻回されており、この板状に巻回されたコイル2の集合体の面積の広い平面状の表裏面が密集面35,36として構成されている。コイル2は、導線を絶縁体で被覆した周知の構成のもので、矩形板状のコア34に巻回されている。コア34を特に設けることなく巻回したものでも良い。コア4に巻回した場合には磁気的結合を制御し易くすることができる。調整共振回路30は、図2に示すように、調整体33の巻回されたコイル32と、コイル32に接続されたコンデンサ37とを備えている。   The detection unit K includes an adjustment body 33 having a wound coil 32, and an adjustment resonance circuit 30 that outputs an induced electromotive force to the coil of the adjustment body 33 by the magnetic flux generated by the excitation circuit 1. Yes. In the adjustment resonance circuit 30, the adjustment body 33 is formed in the same manner as the excitation body 3, as shown in FIG. 3, and is formed in a plate shape having dense surfaces 35 and 36 where the wound coil 32 is densely exposed. Has been. The coil 32 is wound in a plate shape with a required width L around the central axis P and along the direction of the central axis P, and the area of the aggregate of the coils 2 wound in the plate shape is reduced. Wide flat front and back surfaces are formed as dense surfaces 35 and 36. The coil 2 has a known configuration in which a conductive wire is covered with an insulator, and is wound around a rectangular plate-shaped core 34. The core 34 may be wound without being particularly provided. When wound around the core 4, the magnetic coupling can be easily controlled. As shown in FIG. 2, the adjustment resonance circuit 30 includes a coil 32 wound with an adjustment body 33 and a capacitor 37 connected to the coil 32.

そして、励磁体3,検出体13及び調整体33は、略同じ大きさに形成されている。励磁体3及び検出体13は、励磁体3の表面の密集面5と検出体13の裏面の密集面16を対向させて重畳させられている。また、調整体33は、調整体33の密集面を励磁体3の密集面及び/または検出体13の密集面に対向させて、励磁体3及び/または検出体13に重畳させられ、励磁体3及び検出体13に対して磁気的に結合させられている。実施の形態では、調整体33は、励磁体3と検出体13との間に介装されており、調整体33の表面の密集面35は検出体13の裏面の密集面16に対向させられ、調整体33の裏面の密集面36は励磁体3の表面の密集面5に対向させられている。励磁体3,検出体13及び調整体33同士の間隔は適宜に定められ、図示外の基台に支持されている。必要に応じ、励磁体3と調整体33との間、調整体33と検出体13との間には、プラスチック等の絶縁板を介装している。励磁体3,検出体13及び調整体33同士の間隔や、調整共振回路30のコンデンサ37の容量を調整するなどして、予め、励磁体3,検出体13及び調整体33相互の磁気的結合度を調整しておく。   And the exciting body 3, the detection body 13, and the adjustment body 33 are formed in substantially the same size. The exciter 3 and the detector 13 are superposed with the dense surface 5 on the surface of the exciter 3 and the dense surface 16 on the back surface of the detector 13 facing each other. The adjustment body 33 is superimposed on the excitation body 3 and / or the detection body 13 such that the dense surface of the adjustment body 33 faces the dense surface of the excitation body 3 and / or the detection surface of the detection body 13. 3 and the detector 13 are magnetically coupled. In the embodiment, the adjustment body 33 is interposed between the excitation body 3 and the detection body 13, and the dense surface 35 on the surface of the adjustment body 33 is opposed to the dense surface 16 on the back surface of the detection body 13. The dense surface 36 on the back surface of the adjustment body 33 is opposed to the dense surface 5 on the surface of the exciter 3. The intervals between the exciter 3, the detector 13, and the adjuster 33 are appropriately determined and supported by a base not shown. If necessary, an insulating plate such as plastic is interposed between the exciter 3 and the adjuster 33 and between the adjuster 33 and the detector 13. The magnetic coupling between the exciter 3, the detector 13 and the adjustment body 33 in advance is adjusted by adjusting the distance between the exciter 3, the detector 13 and the adjustment body 33 and the capacitance of the capacitor 37 of the adjustment resonance circuit 30. Adjust the degree.

更に、本装置Sは、被検対象の物体Wが配置されるステージ40を備えている。ステージ40は、例えば、プラスチックシートで形成され、検出体13の表面の密集面15側に設けられている。実施の形態では、検出体13の表面の密集面15に接合して重畳させられている。即ち、励磁体3,検出体13,調整体33及びステージ40は、密集面5,6,15,16,35,36を互いに平行にし、これらの密集面5,6,15,16,35,36に直交する一方向R(実施の形態では上下方向)に重畳させられている。ステージ40は、側壁のある容器状に形成し、その底面を検出体13の表面の密集面15に対して重畳し、被検対象の物体Wを収容可能に形成することもできる。   Furthermore, the present apparatus S includes a stage 40 on which an object W to be examined is placed. The stage 40 is formed of, for example, a plastic sheet, and is provided on the dense surface 15 side of the surface of the detection body 13. In the embodiment, the detection body 13 is superposed on the dense surface 15 on the surface of the detection body 13. That is, the excitation body 3, the detection body 13, the adjustment body 33, and the stage 40 have dense surfaces 5, 6, 15, 16, 35, 36 parallel to each other, and these dense surfaces 5, 6, 15, 16, 35, Is superposed in one direction R (vertical direction in the embodiment) orthogonal to 36. The stage 40 may be formed in a container shape having a side wall, and its bottom surface may be superimposed on the dense surface 15 on the surface of the detection body 13 so as to accommodate the object W to be examined.

また、本装置Sは、上記の図2に示す調整共振回路30を備えた検出部K(A)と、図4に示す調整共振回路30を備えない別の検出部K(B)とを、成分量の測定範囲によって、選択使用可能な構成となっている。調整共振回路30を備えない別の検出部K(B)は、図4に示すように、上記の調整共振回路30を備えた検出部Kの構成から、調整共振回路30を除いた構成のものであり、調整体33がなく、励磁体3及び検出体13の間隔は適宜に定められ、図示外の基台に支持されている。必要に応じ、励磁体3と検出体13との間には、プラスチック等の絶縁板を介装している。励磁体3及び検出体13の間隔を調整するなどして、予め、励磁体3及び検出体13相互の磁気的結合度を調整しておく。   Further, the apparatus S includes a detection unit K (A) including the adjustment resonance circuit 30 illustrated in FIG. 2 and another detection unit K (B) not including the adjustment resonance circuit 30 illustrated in FIG. It can be selectively used depending on the measurement range of the component amount. As shown in FIG. 4, another detection unit K (B) that does not include the adjustment resonance circuit 30 has a configuration in which the adjustment resonance circuit 30 is excluded from the configuration of the detection unit K that includes the adjustment resonance circuit 30 described above. The adjustment body 33 is not provided, and the interval between the excitation body 3 and the detection body 13 is appropriately determined and supported by a base not shown. As necessary, an insulating plate such as plastic is interposed between the exciter 3 and the detector 13. The degree of magnetic coupling between the exciter 3 and the detector 13 is adjusted in advance by adjusting the interval between the exciter 3 and the detector 13.

更にまた、本装置Sは、図1に示すように、物体Wの特定の成分に係る成分量を算出する制御部Cを備えている。制御部Cは、CPUやメモリなどの機能によって実現され、予め、特定の成分に係る成分量既知のサンプル物体Wにおいて求められ、このサンプル物体Wの特定成分について検出共振回路10の検出体13のコイル12に出力される誘導起電力に係る相関を記憶する相関記憶手段50と、検出共振回路10で検出される出力量及び相関記憶手段50が記憶した相関に基づいて物体Wの特定の成分に係る成分量を算出する成分量算出手段51とを備えて構成している。   Furthermore, as shown in FIG. 1, the apparatus S includes a control unit C that calculates a component amount related to a specific component of the object W. The control unit C is realized by a function such as a CPU and a memory, and is obtained in advance in a sample object W with a known component amount related to a specific component. The specific component of the sample object W is detected by the detection body 13 of the detection resonance circuit 10. Correlation storage means 50 for storing the correlation related to the induced electromotive force output to the coil 12, the output amount detected by the detection resonance circuit 10, and a specific component of the object W based on the correlation stored in the correlation storage means 50 A component amount calculating means 51 for calculating the component amount is provided.

詳しくは、相関記憶手段50は、サンプル物体Wの特定成分と、ステージ40上に物体Wがない状態の誘導電圧を基準とし、この誘導起電圧の基準に対するステージ40上に物体があるときの誘導電圧の変化量(比率)との相関(検量線)を記憶するとともに、サンプル物体Wの特定成分と、ステージ40上に物体がない状態の誘導電圧の位相を基準とし、この誘導起電圧の基準の位相に対するステージ40上に物体があるときの誘導電圧の位相の位相差との相関(検量線)を記憶する。   Specifically, the correlation storage means 50 uses the specific component of the sample object W and the induced voltage in the state where the object W is not on the stage 40 as a reference, and induces the object when the object is on the stage 40 with respect to the reference of the induced electromotive voltage. The correlation (calibration curve) with the amount of change (ratio) of the voltage is stored, and the reference of this induced electromotive voltage is determined based on the phase of the specific component of the sample object W and the induced voltage when there is no object on the stage 40. The correlation (calibration curve) with the phase difference of the phase of the induced voltage when the object is on the stage 40 with respect to the phase of.

制御部Cは、図1に示すように、振幅最大値検出回路21からの電圧の最大振幅から、ステージ40上に物体Wがない状態の誘導電圧の最大振幅を基準とし、この誘導起電圧の最大振幅の基準に対するステージ40上に物体Wがあるときの誘導電圧の最大振幅における変化量(比率)を算出する振幅変化量算出手段52と、位相検出回路22からの電圧の位相から、ステージ上に物体がない状態の誘導電圧の位相を基準とし、この誘導起電圧の基準の位相に対するステージ上に物体があるときの誘導電圧の位相の位相差を算出する位相差算出手段53とを備えている。   As shown in FIG. 1, the control unit C uses the maximum amplitude of the induced voltage in a state where the object W is not on the stage 40 as a reference from the maximum amplitude of the voltage from the amplitude maximum value detection circuit 21. Based on the amplitude change amount calculation means 52 for calculating the change amount (ratio) in the maximum amplitude of the induced voltage when the object W is on the stage 40 with respect to the reference of the maximum amplitude, and the phase of the voltage from the phase detection circuit 22, Phase difference calculating means 53 for calculating the phase difference of the phase of the induced voltage when there is an object on the stage with respect to the phase of the induced voltage with reference to the phase of the induced voltage when no object is present. Yes.

そして、成分量算出手段51は、振幅変化量算出手段52の算出結果から、相関記憶手段50が記憶した相関に基づいて物体Wの特定の成分に係る成分量を算出する。また、位相差算出手段53の算出結果から、相関記憶手段50が記憶した相関に基づいて物体Wの特定の成分に係る成分量を算出する。また、本装置Sにおいては、成分量算出手段51の算出結果を表示する表示部54や、算出結果を出力するプリンタ(図示せず)が備えられている。   Then, the component amount calculation unit 51 calculates a component amount related to a specific component of the object W based on the correlation stored in the correlation storage unit 50 from the calculation result of the amplitude change amount calculation unit 52. Further, the component amount relating to a specific component of the object W is calculated from the calculation result of the phase difference calculating unit 53 based on the correlation stored in the correlation storage unit 50. In addition, the apparatus S includes a display unit 54 that displays the calculation result of the component amount calculation unit 51 and a printer (not shown) that outputs the calculation result.

物体の特定の成分として、例えば、水分量の場合、後述の実施例で示すが、図18(a)に示すように、サンプル物体Wの水分量に対する誘導起電圧の変化量(空気の電圧を1としたときの比率規格化受信電圧)の検量線を作成しておく。あるいはまた、図18(b)に示すように、サンプル物体Wの水分量に対する位相の変化量(空気の位相を基準)の検量線を作成しておく。相関記憶手段50は、この検量線の関係を記憶しておく。   As the specific component of the object, for example, in the case of the moisture content, as shown in an example described later, as shown in FIG. A calibration curve of the ratio normalized reception voltage (when 1) is created. Alternatively, as shown in FIG. 18B, a calibration curve for the amount of change in phase with respect to the amount of moisture in the sample object W (based on the phase of air) is created. The correlation storage means 50 stores the relationship of the calibration curve.

ここで、図5及び図6を用い、検出共振回路10での検出原理について説明する。例えば、成分量として水分の場合で説明する。図5(a)に示すように、サンプル物体Wに水分が含まれていない場合、検出共振回路10の共振周波数と調整共振回路30の共振周波数は同じ値である。このとき受信電圧の周波数特性は単峰性の特性となる。図5(b)に示すように、サンプル物体Wが水分を含むと検出共振回路10側の静電容量が大きくなり検出回路10の共振周波数が低い方にシフトする。そしてこのときの受信電圧の周波数特性は谷が浅い双峰性の特性となる。調整共振回路30の共振周波数は固定されており水などの成分量に依存せず変化しない。更に、図5(c)に示すように、サンプル物体Wの水分が増えるとさらに静電容量が増え、検出共振回路10の共振周波数はより低い方にシフトする。このとき受信電圧の周波数特性は深い双峰性の特性となる。   Here, the detection principle in the detection resonance circuit 10 will be described with reference to FIGS. 5 and 6. For example, the case where moisture is used as the component amount will be described. As shown in FIG. 5A, when the sample object W does not contain moisture, the resonance frequency of the detection resonance circuit 10 and the resonance frequency of the adjustment resonance circuit 30 are the same value. At this time, the frequency characteristic of the received voltage is a unimodal characteristic. As shown in FIG. 5B, when the sample object W contains moisture, the capacitance on the detection resonance circuit 10 side is increased, and the resonance frequency of the detection circuit 10 is shifted to the lower side. The frequency characteristic of the received voltage at this time is a bimodal characteristic with a shallow valley. The resonance frequency of the adjustment resonance circuit 30 is fixed and does not change regardless of the amount of components such as water. Further, as shown in FIG. 5C, when the moisture of the sample object W increases, the capacitance further increases, and the resonance frequency of the detection resonance circuit 10 shifts to a lower side. At this time, the frequency characteristic of the received voltage is a deep bimodal characteristic.

即ち、サンプル物体Wに水分が含まれていない場合、周波数帯で位相の傾きが急峻な周波数特性となる。サンプル物体Wが水分を含むとこの傾きが周波数の低い方にシフトし更に傾きが小さくなだらかな特性となる。さらにサンプル物体Wの水分が増えるとさらに位相の傾きがなだらかなまま周波数の低い方にシフトする。以上の受信電圧および位相特性において、測定周波数をfmとすると、水分が多いときと少ないときで受信電圧および位相にレベル差が出来る。このレベル差が測定範囲であり、この範囲のどの値かを知ることで水分量を知ることが出来る。   That is, when the sample object W contains no moisture, the frequency characteristic has a steep phase gradient in the frequency band. When the sample object W contains moisture, this inclination shifts to a lower frequency, and the inclination becomes smaller and has a gentle characteristic. Further, when the moisture of the sample object W increases, the phase shifts further toward the lower frequency while the phase gradient becomes gentler. In the above received voltage and phase characteristics, if the measurement frequency is fm, the received voltage and phase can be level-differed between when there is a lot of moisture and when there is little moisture. This level difference is the measurement range, and it is possible to know the amount of moisture by knowing which value is within this range.

図6に示すように、調整共振回路30を用いない場合と、用いた場合を比較すると、図6(a)に示すように、調整共振回路30を用いない場合には、波形の傾きが大きいので、すぐに測定限界を迎えるが、図6(b)に示すように、調整共振回路30を用いる場合には、緩い傾きになることから、同じ周波数のシフト量でも、測定限界を迎えずに、測定余地を生じ、測定分解能は低下するものの、測定範囲を拡大させることができる。   As shown in FIG. 6, when the adjusted resonance circuit 30 is not used and when it is used, the waveform has a large slope when the adjusted resonance circuit 30 is not used as shown in FIG. Therefore, the measurement limit is reached immediately. However, as shown in FIG. 6B, when the adjustment resonance circuit 30 is used, the adjustment becomes a gentle slope, so that the measurement limit is not reached even with the same frequency shift amount. Although there is room for measurement and the measurement resolution is lowered, the measurement range can be expanded.

従って、本成分量測定装置Sにより、物体Wの特定の成分に係る成分量を測定するときは、図7に示すフローチャートを用いて説明すると以下のようになる。
先ず、調整共振回路30を備えた検出部Kを用いる場合について説明する。予め、ステージ40上に物体Wがない状態で電圧及び電圧の位相を測定する。励磁回路1により交流電圧を付与すると(S1)、励磁体3に磁束が発生し(S2)、検出部Kは調整共振回路30を備えているので(S3Yes)、調整体33のコイル32に磁束が発生するとともに(S4)、磁束の一部は、検出共振回路10の検出体13を透過しコイル12に誘導起電力が出力される(S5)。そして、被検対象の物体Wがないので(S6No)、検出共振回路10の位相検出回路22では検出された電圧の基準の振幅と位相を記憶する(S7)。
Therefore, when the component amount related to a specific component of the object W is measured by the component amount measuring apparatus S, the following description will be given using the flowchart shown in FIG.
First, the case where the detection part K provided with the adjustment resonance circuit 30 is used is demonstrated. In advance, the voltage and the phase of the voltage are measured without the object W on the stage 40. When an AC voltage is applied by the excitation circuit 1 (S1), a magnetic flux is generated in the excitation body 3 (S2), and the detection unit K includes the adjustment resonance circuit 30 (S3 Yes), so that the magnetic flux is applied to the coil 32 of the adjustment body 33. (S4), a part of the magnetic flux passes through the detection body 13 of the detection resonance circuit 10 and an induced electromotive force is output to the coil 12 (S5). Since there is no object W to be examined (S6 No), the phase detection circuit 22 of the detection resonance circuit 10 stores the reference amplitude and phase of the detected voltage (S7).

この状態で、ステージ40上に被検対象の物体Wを配置して、その成分量を測定する。上記と同様に、励磁回路1により交流電圧を付与すると(S1)、励磁体3に磁束が発生し(S2)、検出部Kは調整共振回路30を備えているので(S3Yes)、調整体33のコイルに磁束が発生するとともに(S4)、磁束の一部は、検出共振回路10の検出体13を透過しコイル32に誘導起電力が出力される(S5)。そして、今度は、被検対象の物体Wがあるので(S6Yes)、即ち、励磁体3及び検出体13に発生させられた磁束内に被検対象の物体Wが臨んでいるので、磁束に変化を生じせしめ、電圧の振幅及びその位相に変化を生じさせる(S8)。これにより、振幅最大値検出回路21においては、振幅最大値を出力量として検出処理して(S9,S10)、A/D変換器23を介して(S12)、制御部Cに出力する。一方、位相検出回路22においては、基準の位相との位相差を出力量として検出処理し(S9,S11)て、A/D変換器23を介して(S12)、制御部Cに出力する。制御部Cにおいては、A/D変換器23からの出力を一時的に記憶する(S13)。   In this state, the object W to be examined is placed on the stage 40 and the amount of the component is measured. Similarly to the above, when an AC voltage is applied by the excitation circuit 1 (S1), a magnetic flux is generated in the excitation body 3 (S2), and the detection unit K includes the adjustment resonance circuit 30 (S3 Yes). A magnetic flux is generated in the coil (S4), and a part of the magnetic flux passes through the detection body 13 of the detection resonance circuit 10 and an induced electromotive force is output to the coil 32 (S5). Then, since there is an object W to be examined this time (S6 Yes), that is, the object W to be examined faces in the magnetic flux generated by the exciter 3 and the detector 13, so that the magnetic flux changes. To change the amplitude and the phase of the voltage (S8). Thus, the maximum amplitude value detection circuit 21 detects and processes the maximum amplitude value as an output amount (S9, S10), and outputs it to the control unit C via the A / D converter 23 (S12). On the other hand, the phase detection circuit 22 detects the phase difference from the reference phase as an output amount (S9, S11), and outputs it to the control unit C via the A / D converter 23 (S12). In the control unit C, the output from the A / D converter 23 is temporarily stored (S13).

この場合、励磁体3の密集面5と検出体13の密集面16を対向させて励磁体3及び検出体13を重畳させ、しかも、ステージ40を検出体13の別の密集面15側に設けたので、ステージ40上の物体Wを透過する磁束にギャップが生じることがなく、そのため、測定感度が向上させられる。また、調整体33を設けたので、検出体13のコイル12からの出力量を調整することができ、特性を制御して感度を向上させることができる。   In this case, the dense surface 5 of the excitation body 3 and the dense surface 16 of the detection body 13 are opposed to each other, the excitation body 3 and the detection body 13 are overlapped, and a stage 40 is provided on the other dense surface 15 side of the detection body 13. Therefore, there is no gap in the magnetic flux that passes through the object W on the stage 40, so that the measurement sensitivity is improved. Moreover, since the adjustment body 33 is provided, the output amount from the coil 12 of the detection body 13 can be adjusted, and the sensitivity can be improved by controlling the characteristics.

そして、制御部Cにおいて、振幅変化量算出手段52が、振幅最大値検出回路21からの電圧の最大振幅から、ステージ上に物体がない状態の誘導電圧を基準とし、この誘導起電圧の基準に対するステージ上に物体があるときの誘導電圧の変化量(比率)を算出する(S14)。また、位相差算出手段53が、位相検出回路22からの電圧の位相から、ステージ上に物体がない状態の誘導電圧の位相を基準とし、この誘導起電圧の基準の位相に対するステージ上に物体があるときの誘導電圧の位相の位相差を算出する(S14)。
そして、成分量算出手段51は、振幅変化量算出手段52の算出結果から、相関記憶手段50が記憶した相関に基づいて物体Wの特定の成分に係る成分量を算出する(S15)。また、位相差算出手段53の算出結果から、相関記憶手段50が記憶した相関に基づいて物体Wの特定の成分に係る成分量を算出する(S15)。成分量算出手段51の算出結果は、表示部54に表示され(S16)、あるいは、プリンタで出力される。尚、成分量の出力は、2種あるが、何れかを出力するように構成し、あるいは、データを統合して出力するように構成してよい。
Then, in the control unit C, the amplitude change amount calculation means 52 uses the induced voltage when no object is present on the stage from the maximum amplitude of the voltage from the amplitude maximum value detection circuit 21 as a reference, and the reference of this induced electromotive voltage. The amount of change (ratio) of the induced voltage when there is an object on the stage is calculated (S14). The phase difference calculation means 53 uses the phase of the voltage from the phase detection circuit 22 as a reference to the phase of the induced voltage when no object is on the stage, and the object is on the stage with respect to the reference phase of the induced electromotive voltage. The phase difference of the phase of the induced voltage at a certain time is calculated (S14).
Then, the component amount calculating unit 51 calculates a component amount related to a specific component of the object W based on the correlation stored in the correlation storage unit 50 from the calculation result of the amplitude change amount calculating unit 52 (S15). Further, the component amount related to a specific component of the object W is calculated from the calculation result of the phase difference calculation unit 53 based on the correlation stored in the correlation storage unit 50 (S15). The calculation result of the component amount calculation means 51 is displayed on the display unit 54 (S16) or output by a printer. There are two types of component amount output, but either one may be configured to output, or the data may be integrated and output.

一方、調整共振回路30を備えない別の検出部Kを用いる場合は、上記と同様に、予め、ステージ40上に物体Wがない状態で電圧及び電圧の位相を測定する。励磁回路1により交流電圧を付与すると(S1)、励磁体3に磁束が発生し(S2)、検出部Kは調整共振回路30を備えていないので(S3No)、磁束の一部は、検出共振回路10の検出体13を透過しコイル12に誘導起電力が出力される(S5)。そして、被検対象の物体Wがないので(S6No)、検出共振回路10の位相検出回路22では検出された電圧の基準の振幅と位相を記憶する(S7)。   On the other hand, when another detection unit K that does not include the adjustment resonance circuit 30 is used, the voltage and the phase of the voltage are measured in advance without the object W on the stage 40 in the same manner as described above. When an AC voltage is applied by the excitation circuit 1 (S1), a magnetic flux is generated in the exciter 3 (S2), and the detection unit K does not include the adjustment resonance circuit 30 (S3 No). The induced electromotive force is output to the coil 12 through the detection body 13 of the circuit 10 (S5). Since there is no object W to be examined (S6 No), the phase detection circuit 22 of the detection resonance circuit 10 stores the reference amplitude and phase of the detected voltage (S7).

この状態で、ステージ40上に被検対象の物体Wを配置して、その成分量を測定する。上記と同様に、励磁回路1により交流電圧を付与すると(S1)、励磁体3に磁束が発生し(S2)、検出部Kは調整共振回路30を備えていないので(S3No)、磁束の一部は、検出共振回路10の検出体13を透過しコイル12に誘導起電力が出力される(S5)。そして、今度は、被検対象の物体Wがあるので(S6Yes)、即ち、励磁体3及び検出体13に発生させられた磁束内に被検対象の物体Wが臨んでいるので、磁束に変化を生じせしめ、電圧の振幅及びその位相に変化を生じさせる(S8)。その後の工程は、上述したと同様に推移する。このため、被検対象の物体Wの性状に合わせて、調整共振回路30を備えた検出部K(A)と、調整共振回路30を備えない別の検出部K(B)とを、使い分けて使用することにより、より精度の高い成分量の測定をすることができる。   In this state, the object W to be examined is placed on the stage 40 and the amount of the component is measured. Similarly to the above, when an AC voltage is applied by the excitation circuit 1 (S1), a magnetic flux is generated in the excitation body 3 (S2), and the detection unit K does not include the adjustment resonance circuit 30 (S3 No). The part passes through the detection body 13 of the detection resonance circuit 10 and an induced electromotive force is output to the coil 12 (S5). Then, since there is an object W to be examined this time (S6 Yes), that is, the object W to be examined faces in the magnetic flux generated by the exciter 3 and the detector 13, so that the magnetic flux changes. To change the amplitude and the phase of the voltage (S8). Subsequent processes change in the same manner as described above. For this reason, according to the property of the object W to be examined, the detection unit K (A) provided with the adjustment resonance circuit 30 and another detection unit K (B) not provided with the adjustment resonance circuit 30 are selectively used. By using it, the component amount can be measured with higher accuracy.

図8には、検出部Kの別の例を示す。これは、上記の調整共振回路30を備えた検出部Kと同様に構成されるが、上記とは調整体33の位置が異なっている。即ち、調整体33は、励磁体3の裏面の密集面6側に設けられており、調整体33の表面の密集面35は励磁体3の裏面の密集面6に対向させられ、励磁体3の表面の密集面5は検出体13の裏面の密集面16に対向させられている。これによっても上記と同様の作用,効果を奏する。   FIG. 8 shows another example of the detection unit K. This is configured in the same manner as the detection unit K including the adjustment resonance circuit 30 described above, but the position of the adjustment body 33 is different from the above. That is, the adjustment body 33 is provided on the dense surface 6 side of the back surface of the excitation body 3, and the dense surface 35 on the surface of the adjustment body 33 is opposed to the dense surface 6 on the back surface of the excitation body 3. The dense surface 5 on the surface of the detector is opposed to the dense surface 16 on the back surface of the detection body 13. This also provides the same operations and effects as described above.

次に、励磁体3,検出体13及び調整体33の変形例を示す。図9に示すものは、偏平状のコイル2,12,32を基板からなるコア4,14,34にエッチングにより形成したものであり、表裏のコイル2,12,32はスルーホールの導体68を介して接続されている。即ち、コイル2,12,32は中心軸Pを中心にコア4,14,34に巻回されて板状に形成されており、表裏面を密集面(5,15,35),(6,16,36)として構成したものである。上記と同様の作用,効果を奏する。   Next, modified examples of the excitation body 3, the detection body 13, and the adjustment body 33 will be described. In FIG. 9, flat coils 2, 12, and 32 are formed by etching on cores 4, 14, and 34 made of a substrate, and the front and back coils 2, 12, and 32 have through-hole conductors 68. Connected through. That is, the coils 2, 12, and 32 are wound around the cores 4, 14, and 34 around the central axis P and formed in a plate shape, and the front and back surfaces are dense surfaces (5, 15, 35), (6, 16, 36). Has the same effects and effects as above.

図10に示すものは、コイル2,12,32を平面上で該平面に直交する中心軸Pを中心に渦巻状に巻回して形成し、中心軸Pに直交する表裏面を密集面(5,15,35),(6,16,36)として構成したものである。後述の試験例で示すが、図19には、この構成に係る励磁体3,検出体13及び調整体33を用いた物体Wの成分量測定装置Sの例を示している。これによれば、検出体13とステージ40との間のギャップdが大きくても対応できる。   The coil shown in FIG. 10 is formed by winding the coils 2, 12, and 32 in a spiral shape around a central axis P orthogonal to the plane, and the front and back surfaces orthogonal to the central axis P are dense surfaces (5 , 15, 35), (6, 16, 36). As shown in a test example to be described later, FIG. 19 shows an example of the component amount measuring apparatus S of the object W using the exciter 3, the detector 13, and the adjuster 33 according to this configuration. According to this, even if the gap d between the detection body 13 and the stage 40 is large, it can respond.

図11に示す励磁体3,検出体13及び調整体33は、巻回したコイル2,12,32の集合体60を複数備えて構成したものである。この集合体60は、図9と同様に、コア(4,14,34)を構成する基板69に行列状に組み付けられている。   The excitation body 3, the detection body 13, and the adjustment body 33 shown in FIG. 11 include a plurality of assemblies 60 of wound coils 2, 12, and 32. The assembly 60 is assembled in a matrix on the substrate 69 constituting the core (4, 14, 34) as in FIG.

図12に示す励磁体3,検出体13及び調整体33は、巻回したコイル2,12,32の集合体60を、行列状に複数備えて構成したものである。各集合体60は、基板としての支持板63にエッチングにより、コイル2,12,32を中心軸を中心に渦巻状に形成したものである。   The excitation body 3, the detection body 13, and the adjustment body 33 shown in FIG. 12 are configured by including a plurality of assemblies 60 of wound coils 2, 12, and 32 in a matrix. Each assembly 60 is formed by forming coils 2, 12, and 32 in a spiral shape around the central axis by etching a support plate 63 as a substrate.

図13にはまた別の励磁体3及び検出体13を示す。これは、励磁体3及び検出体13を合体させたもので、コア7をフェライト等の磁性体で偏平リング状に形成し、互いに対向する一対の扁平部64a,64bを有して形成し、両扁平部64a,64bに夫々コイル2,12を巻回し、一方の偏平部64a及びコイル2を励磁体3として構成し、他方の偏平部64b及びコイル12を検出体13として構成したものである。   FIG. 13 shows another exciter 3 and detector 13. This is a combination of the exciter 3 and the detector 13, and the core 7 is formed in a flat ring shape with a magnetic material such as ferrite, and has a pair of flat portions 64a and 64b facing each other, The coils 2 and 12 are wound around the flat portions 64 a and 64 b, respectively, and one flat portion 64 a and the coil 2 are configured as the exciter 3, and the other flat portion 64 b and the coil 12 are configured as the detection body 13. .

尚、励磁体3,検出体13及び調整体33の組合せは、同じ形態のもの同士の組合せでなくても良い。例えば、励磁体3として板状のコアにコイルを巻回したもの(図9)を用い、検出体13としてコイルの集合体60を複数備え励磁体3と同じ大きさのもの(図11)を用いるなど、適宜変更して差支えない。   In addition, the combination of the excitation body 3, the detection body 13, and the adjustment body 33 may not be a combination of the same form. For example, the exciter 3 is a plate-shaped core wound with a coil (FIG. 9), and the detector 13 is provided with a plurality of coil assemblies 60 having the same size as the exciter 3 (FIG. 11). It can be changed as appropriate.

図14には、別の実施の形態に係る物体Wの成分量測定装置の検出部Kを示している。これは、励磁体3を、筒状に巻回されたコイル2と、一端側がコイル2に挿通された磁性体からなる棒状のコア70とを備えて構成し、検出体13を、コア70の他端側であってコア70から離間してコア70と同軸で配置され外周面を密集面71とした筒状に巻回されたコイル12で構成し、励磁体3,コア70及び検出体13を、被検対象の物体Wが検出体13の密集面71の一部若しくは全部を外側から覆うように位置させて検出体13によってそのコイル12に出力される出力量を検出可能に支持体73に支持したものである。   FIG. 14 shows a detection unit K of a component amount measuring apparatus for an object W according to another embodiment. In this structure, the exciter 3 includes a coil 2 wound in a cylindrical shape and a rod-shaped core 70 made of a magnetic material inserted into the coil 2 at one end side. The other end side is separated from the core 70 and is arranged coaxially with the core 70 and is formed of a coil 12 wound in a cylindrical shape having an outer peripheral surface as a dense surface 71, and the exciter 3, the core 70, and the detector 13. Is positioned so that the object W to be examined covers a part or all of the dense surface 71 of the detection body 13 from the outside, and the support body 73 can detect the output amount output to the coil 12 by the detection body 13. It is what I supported.

従って、この成分量測定装置Sを用いるときは、図15に示すように、被検対象の例えば木材からなる物体Wに支持体73が挿通される穴Waを開け、この穴Waに、支持体73を挿入し、被検対象の物体Wが検出体13の密集面71の全部を外側から覆うようにする。これによっても、被検対象の物体Wが検出体13の密集面71の全部を外側から覆うので、物体Wを透過する磁束にギャップが生じることがなく、そのため、測定感度が向上させられる。また、棒状のコア70を利用することで送信部から離れた測定部でも測定が可能になる。   Therefore, when using this component amount measuring apparatus S, as shown in FIG. 15, a hole Wa through which the support 73 is inserted is formed in an object W made of, for example, wood, and the support is provided in the hole Wa. 73 is inserted so that the object W to be examined covers the entire dense surface 71 of the detection body 13 from the outside. Also by this, since the object W to be examined covers the entire dense surface 71 of the detection body 13 from the outside, there is no gap in the magnetic flux that passes through the object W, so that the measurement sensitivity is improved. In addition, by using the rod-shaped core 70, measurement can be performed even at a measurement unit away from the transmission unit.

図16には、また別の実施の形態に係る物体Wの成分量測定装置の検出部Kを示している。これは、検出体13,励磁体3及び調整体33を、コイル2,12,32を巻回して外周面全体を密集面とした筒状に形成している。コイル2,12,32は、支持体73に支持した筒状のコア4,14,34に巻回されている。検出体13の内径を励磁体3の外径より大きく設定し、励磁体3の内径を調整体33の外径より大きく設定し、励磁体3及び調整体33を、検出体13内に同軸で挿入して構成している。この検出体13を用いた成分量測定装置Sを用いるときは、図15に示すと同様に、被検対象の例えば木材からなる物体Wに検出体13が挿通される穴Waを開け、この穴Waに、検出体13を挿入し、被検対象の物体Wが検出体13の密集面の全部を外側から覆うようにする。これによっても、被検対象の物体Wが検出体13の密集面の全部を外側から覆うので、物体Wを透過する磁束にギャップが生じることがなく、そのため、測定感度が向上させられる。   FIG. 16 illustrates a detection unit K of a component amount measurement apparatus for an object W according to another embodiment. In this configuration, the detection body 13, the excitation body 3 and the adjustment body 33 are formed in a cylindrical shape in which the coils 2, 12, 32 are wound and the entire outer peripheral surface is a dense surface. The coils 2, 12, and 32 are wound around cylindrical cores 4, 14, and 34 supported by the support body 73. The inner diameter of the detection body 13 is set larger than the outer diameter of the excitation body 3, the inner diameter of the excitation body 3 is set larger than the outer diameter of the adjustment body 33, and the excitation body 3 and the adjustment body 33 are coaxial with the detection body 13. Insert and configure. When using the component amount measuring apparatus S using the detection body 13, as shown in FIG. 15, a hole Wa through which the detection body 13 is inserted into an object W made of wood, for example, to be tested is formed. The detection body 13 is inserted into Wa so that the object W to be examined covers the entire dense surface of the detection body 13 from the outside. Also by this, the object W to be inspected covers the entire dense surface of the detection body 13 from the outside, so that no gap is generated in the magnetic flux passing through the object W, and therefore the measurement sensitivity is improved.

次に、実施例を示す。
図17に装置構成を示す。この装置においては、図2に示すと同様の調整共振回路30を備えた検出部K(A)と、図4に示すと同様の調整共振回路30を備えない別の検出部K(B)とを作成した。検出部Kにおいて、励磁体3,検出体13及び調整体33は、図10に示すと同様に構成され、コイルはプリント両面基板において線のパターンをエッチングにより作成し両面のパターン端をスルーホールで貫通して製作した。励磁体3,検出体13及び調整体33の大きさは、コアの板厚tを2mm、縦500mm、横300mmにした。励磁体3,検出体13及び調整体33は、基台80に設けられており、検出体13と調整体33との間には樹脂板81が介装されている。ステージ40は、検出体13に付設した樹脂シート82を用い、周囲を側壁83で囲繞し、容器状に形成した。側壁83も樹脂シート82で被覆した。容器寸法は縦700mm、横500mm、深さ150mmである。
Next, an example is shown.
FIG. 17 shows an apparatus configuration. In this apparatus, a detection unit K (A) having the same adjustment resonance circuit 30 as shown in FIG. 2 and another detection unit K (B) not having the same adjustment resonance circuit 30 as shown in FIG. It was created. In the detection unit K, the excitation body 3, the detection body 13, and the adjustment body 33 are configured in the same manner as shown in FIG. 10, and the coil is formed by etching a line pattern on a double-sided printed board and the pattern ends on both sides are through holes. Made through. As for the size of the exciter 3, the detector 13, and the adjuster 33, the thickness t of the core is 2 mm, the length is 500 mm, and the width is 300 mm. The excitation body 3, the detection body 13 and the adjustment body 33 are provided on the base 80, and a resin plate 81 is interposed between the detection body 13 and the adjustment body 33. The stage 40 was formed in a container shape by using a resin sheet 82 attached to the detection body 13 and surrounding the periphery with a side wall 83. The side wall 83 was also covered with the resin sheet 82. The container dimensions are 700 mm long, 500 mm wide, and 150 mm deep.

この装置を用いて、被検対象は水分を含む紙とし、その紙の水分量について試験した。出力量を、電圧と位相差にし、水分量を変えて、検量線を作成した。
図18に、調整共振回路30を備えない検出部Kを使用した装置の試験結果と、調整共振回路30を備えた検出部Kを使用した装置の試験結果を示す。
Using this apparatus, the test object was paper containing moisture, and the moisture content of the paper was tested. A calibration curve was created by changing the output amount to voltage and phase difference, and changing the water content.
FIG. 18 shows the test results of the apparatus using the detection unit K that does not include the adjustment resonance circuit 30 and the test results of the apparatus that uses the detection unit K that includes the adjustment resonance circuit 30.

このことから、調整共振回路30を用いない場合、水分量が40重量%以下の領域における測定分解能は、受信電圧については約1.3倍良く、位相差については約1.2倍良く測定が可能である。また、逆に水分量が40重量%より多い領域においては、調整共振回路30を用いたほうが測定分解能がよい。受信電圧は約10倍、位相差では約1.5倍測定分解能が良い。よって、水分量が40重量%以下領域の測定は、調整共振回路30を用いない場合が有利であり、水分量が40重量%より多い領域では、調整共振回路30を用いたほうが有利であることが分かった。即ち、水分量0〜40重量%においては、調整共振回路30を備えない検出部Kを使用した装置の分解能が高く、水分量40重量%を超えるものについては、調整共振回路30を備えた検出部Kを使用した装置の分解能が高く、被検対象の性状に応じて使い分けることが良いことが分かった。   Therefore, when the adjustment resonance circuit 30 is not used, the measurement resolution in the region where the water content is 40% by weight or less is about 1.3 times better for the received voltage and about 1.2 times better for the phase difference. Is possible. On the other hand, in the region where the amount of moisture is greater than 40% by weight, the measurement resolution is better when the adjustment resonance circuit 30 is used. The reception voltage is about 10 times better, and the phase resolution is about 1.5 times better. Therefore, it is advantageous that the adjustment resonance circuit 30 is not used for measurement in the region where the moisture amount is 40% by weight or less, and that the adjustment resonance circuit 30 is more advantageous in the region where the moisture amount is more than 40% by weight. I understood. That is, when the moisture amount is 0 to 40% by weight, the resolution of the device using the detection unit K not including the adjustment resonance circuit 30 is high, and when the moisture amount exceeds 40% by weight, the detection including the adjustment resonance circuit 30 is performed. It was found that the resolution of the apparatus using the part K is high, and it is good to use properly according to the properties of the test object.

次に、別の実施例を示す。これは、図19に示すように、図10に示すと同様の渦巻状に巻回した励磁体3,検出体13及び調整体33を用いた検出部Kを備えた成分量測定装置Sである。励磁体3,検出体13及び調整体33のコイルは直径1.8mmの被覆された銅線で直径約150mmの渦巻き形状とした。この装置を用いて、被検対象は水分を含む紙とし、その紙の水分量について試験した。特に、ギャップdについて検証した。結果を図19(b)に示す。この結果から、検出コイルと被検対象物を5mm離しても測定が可能であることが分かった。即ち、水分量20重量%〜70重量%の領域において、受信電圧も位相差も単調な減少変化をしていることから被検対象物から5mm離れたところでも十分に測定可能であることが分かる。   Next, another embodiment is shown. As shown in FIG. 19, this is a component amount measuring apparatus S provided with a detecting unit K using an exciting body 3, a detecting body 13 and an adjusting body 33 wound in the same spiral shape as shown in FIG. . The coils of the exciter 3, the detector 13, and the adjuster 33 were made of a copper wire with a diameter of 1.8 mm and a spiral shape with a diameter of about 150 mm. Using this apparatus, the test object was paper containing moisture, and the moisture content of the paper was tested. In particular, the gap d was verified. The result is shown in FIG. From this result, it was found that measurement was possible even when the detection coil and the test object were separated by 5 mm. That is, it can be seen that in the region where the moisture content is 20 wt% to 70 wt%, the received voltage and the phase difference both monotonously decrease and can be sufficiently measured even at a distance of 5 mm from the test object. .

<試験例>
図17に示す装置を用いて、塩蔵わかめを測定サンプルに用いて測定を行い、水分量(測定エリア内の重量)及び塩分の量(測定エリア内の重量)の検量線を求めた。その結果を図20に示す。図20のいずれも、多項式の関数で検量線を作成でき、これを用いて水分量(測定エリア内の重量)や塩分の量(測定エリア内の重量)の推定が可能である。
<Test example>
Using the apparatus shown in FIG. 17, measurement was performed using a salted seaweed as a measurement sample, and a calibration curve for the amount of water (weight in the measurement area) and the amount of salt (weight in the measurement area) was obtained. The result is shown in FIG. In any of FIGS. 20A and 20B, a calibration curve can be created by a function of a polynomial, and the moisture amount (weight in the measurement area) and the amount of salt (weight in the measurement area) can be estimated using this.

尚、上記実施の形態において、検出部Kの構成は上述したものに限定されるものではなく、被検対象の物体Wが検出体13の密集面側に設けられるようにすれば、適宜変更して差支えない。また、被検対象や、測定する成分は、どのようなものでも良いことは勿論である。   In the above embodiment, the configuration of the detection unit K is not limited to that described above, and can be changed as appropriate if the object W to be tested is provided on the dense surface side of the detection body 13. There is no problem. Needless to say, the subject to be examined and the component to be measured may be anything.

本発明によれば、例えば、塩蔵わかめ,シイタケ,麺類等の農水産加工物を始め、種々の物体Wの品質管理などに、極めて有用になる。   According to the present invention, for example, it is extremely useful for quality control of various objects W including processed fishery products such as salted seaweed, shiitake mushrooms, and noodles.

S 成分量測定装置
W 物体(被検対象)
K 検出部
C 制御部
1 励磁回路
2 コイル(励磁コイル)
3 励磁体
4 コア
5,6 密集面
7 送信機
8 正弦波発信回路
10 検出共振回路
12 コイル(検出コイル)
13 検出体
14 コア
15,16 密集面
17 コンデンサ
20 受信器
21 振幅最大値検出回路
22 位相検出回路
23 A/D変換器
30 調整共振回路
32 コイル(調整コイル)
33 調整体
34 コア
35,36 密集面
37 コンデンサ
40 ステージ
50 相関記憶手段
51 成分量算出手段
52 振幅変化量算出手段
53 位相差算出手段
54 表示部
60 集合体
63 支持板
64 コア
64a,64b 扁平部
70 コア
71 密集面
73 支持体
80 基台
81 樹脂板
82 樹脂シート
83 側壁
S Component measuring device W Object (test object)
K detector C controller 1 excitation circuit 2 coil (excitation coil)
3 Exciter 4 Core 5, 6 Dense surface 7 Transmitter 8 Sine wave transmission circuit 10 Detection resonance circuit 12 Coil (detection coil)
13 Detector 14 Core 15, 16 Dense surface 17 Capacitor 20 Receiver 21 Amplitude maximum value detection circuit 22 Phase detection circuit 23 A / D converter 30 Adjustment resonance circuit 32 Coil (adjustment coil)
33 Adjustment body 34 Core 35, 36 Dense surface 37 Capacitor 40 Stage 50 Correlation storage means 51 Component amount calculation means 52 Amplitude change amount calculation means 53 Phase difference calculation means 54 Display part 60 Assembly 63 Support plate 64 Cores 64a, 64b Flat part 70 Core 71 Dense surface 73 Support 80 Base 81 Resin plate 82 Resin sheet 83 Side wall

Claims (15)

検出部と制御部とを備え、上記検出部を、巻回されたコイルを有した励磁体を備え該励磁体のコイルに所定の交流電圧を付与して該励磁体に磁束を発生させる励磁回路と、巻回されたコイルを有し上記励磁体に磁気的に結合させられた検出体を備え上記励磁体で発生させられた磁束により該検出体のコイルに出力される誘導起電力に係る出力量を検出する検出共振回路とを備えて構成し、該検出部で、上記励磁体及び検出体に発生させられた磁束内に被検対象の物体を臨ませ、上記制御部で、上記検出共振回路で検出された出力量に基づいて該物体の特定の成分に係る成分量を算出する物体の成分量測定装置において、
上記検出部の励磁体及び検出体を、巻回したコイルが密集して露出する密集面を有して形成し、上記励磁体の密集面と上記検出体の密集面を対向させて該励磁体及び検出体を重畳させ、上記被検対象の物体が配置されるステージを設け、該ステージを上記検出体の密集面に沿って設けたことを特徴とする物体の成分量測定装置。
An excitation circuit including a detection unit and a control unit, the excitation unit including an excitation body having a wound coil, and applying a predetermined AC voltage to the coil of the excitation body to generate a magnetic flux in the excitation body And a detection body having a wound coil and magnetically coupled to the exciter, and an output related to the induced electromotive force output to the coil of the detector by the magnetic flux generated by the exciter. And a detection resonance circuit for detecting the force level. The detection unit causes the object to be tested to face within the magnetic flux generated in the excitation body and the detection body, and the control unit detects the detection resonance. In an object component amount measuring apparatus that calculates a component amount related to a specific component of the object based on an output amount detected by a circuit,
The excitation body and the detection body of the detection unit are formed with a dense surface where the wound coils are densely exposed, and the excitation surface is opposed to the dense surface of the detection body. And an object component amount measuring apparatus, comprising: a stage on which the object to be tested is arranged; and the stage is provided along a dense surface of the object to be detected.
少なくとも上記検出体を、コイルを中心軸を中心に且つ中心軸方向に所要幅を有するように板状に巻回し、表裏面を密集面として構成したことを特徴とする請求項1記載の物体の成分量測定装置。   2. The object according to claim 1, wherein at least the detection body is configured such that the coil is wound in a plate shape so as to have a required width in the center axis direction with the center axis as a center, and the front and back surfaces are configured as a dense surface. Component amount measuring device. 少なくとも上記検出体を、コイルを平面上で該平面に直交する中心軸を中心に渦巻状に巻回して形成し、該中心軸に直交する表裏面を密集面として構成したことを特徴とする請求項1記載の物体の成分量測定装置。   At least the detection body is formed by winding a coil in a spiral shape around a central axis orthogonal to the plane on a plane, and the front and back surfaces orthogonal to the central axis are configured as dense surfaces. Item 1. The component amount measuring apparatus for an object according to Item 1. 上記励磁体及び検出体の少なくとも何れかを、コアにコイルを巻回して形成したことを特徴とする請求項1乃至3何れかに記載の物体の成分量測定装置。
4. The object component amount measuring apparatus according to claim 1, wherein at least one of the excitation body and the detection body is formed by winding a coil around a core.
上記励磁体及び検出体の少なくとも何れかを、上記巻回したコイルの集合体を複数備えて構成したことを特徴とする請求項1乃至4何れかに記載の物体の成分量測定装置。   5. The object component amount measuring apparatus according to claim 1, wherein at least one of the excitation body and the detection body includes a plurality of wound coil assemblies. 上記検出部に、巻回されたコイルを有した調整体を備え上記励磁回路で発生させられた磁束により該調整体のコイルに誘導起電力を出力する調整共振回路を設け、上記調整体を、巻回したコイルが密集して露出する密集面を有して形成し、該調整体の密集面を上記励磁体の密集面及び/または上記検出体の密集面に対向させて該調整体を上記励磁体及び/または検出体に重畳させ、該励磁体及び検出体に対して磁気的に結合させたことを特徴とする請求項1記載の物体の成分量測定装置。   The detection unit is provided with an adjustment resonance circuit that includes an adjustment body having a wound coil and outputs an induced electromotive force to the coil of the adjustment body by a magnetic flux generated by the excitation circuit, and the adjustment body is The wound coil is formed to have a dense surface that is densely exposed, and the dense body of the adjustment body is opposed to the dense surface of the exciter and / or the dense surface of the detector. 2. The component amount measuring apparatus for an object according to claim 1, wherein the device is superposed on an exciter and / or a detector and is magnetically coupled to the exciter and the detector. 少なくとも上記検出体を、コイルを中心軸を中心に且つ中心軸方向に所要幅を有するように板状に巻回し、表裏面を密集面として構成したことを特徴とする請求項6記載の物体の成分量測定装置。   The object according to claim 6, wherein at least the detection body is configured by winding a coil in a plate shape so as to have a required width in the center axis direction with the center axis as a center, and the front and back surfaces are configured as a dense surface. Component amount measuring device. 少なくとも上記検出体を、コイルを平面上で該平面に直交する中心軸を中心に渦巻状に巻回して形成し、該中心軸に直交する表裏面を密集面として構成したことを特徴とする請求項6記載の物体の成分量測定装置。   At least the detection body is formed by winding a coil in a spiral shape around a central axis orthogonal to the plane on a plane, and the front and back surfaces orthogonal to the central axis are configured as dense surfaces. Item 7. The component amount measuring apparatus for an object according to Item 6. 上記励磁体,検出体及び調整体の少なくとも何れかを、コアにコイルを巻回して形成したことを特徴とする請求項6乃至8何れかに記載の物体の成分量測定装置。   9. The object component amount measuring apparatus according to claim 6, wherein at least one of the excitation body, the detection body, and the adjustment body is formed by winding a coil around a core. 上記励磁体,検出体及び調整体の少なくとも何れかを、上記巻回したコイルの集合体を複数備えて構成したことを特徴とする請求項6乃至9何れかに記載の物体の成分量測定装置。   10. The object component amount measuring apparatus according to claim 6, wherein at least one of the excitation body, the detection body, and the adjustment body includes a plurality of wound coil assemblies. . 上記調整共振回路を備えた検出部と、該調整共振回路を備えない別の検出部とを、成分量の測定範囲によって、選択使用可能にしたことを特徴とする請求項6乃至10何れかに記載の物体の成分量測定装置。   11. The detection unit including the adjustment resonance circuit and another detection unit not including the adjustment resonance circuit can be selected and used according to a component amount measurement range. The component amount measuring apparatus of the object described. 検出部と制御部とを備え、上記検出部を、巻回されたコイルを有した励磁体を備え該励磁体のコイルに所定の交流電圧を付与して該励磁体に磁束を発生させる励磁回路と、巻回されたコイルを有し上記励磁体に磁気的に結合させられた検出体を備え上記励磁体で発生させられた磁束により該検出体のコイルに出力される誘導起電力に係る出力量を検出する検出共振回路とを備えて構成し、該検出部で、上記励磁体及び検出体に発生させられた磁束内に被検対象の物体を臨ませ、上記制御部で、上記検出共振回路で検出された出力量に基づいて該物体の特定の成分に係る成分量を算出する物体の成分量測定装置において、
上記励磁体を、筒状に巻回されたコイルと、一端側が上記コイルに挿通された磁性体からなる棒状のコアとを備えて構成し、
上記検出体を、上記コアの他端側であって該コアから離間して該コアと同軸で配置され外周面を密集面とした筒状に巻回されたコイルで構成し、
上記励磁体,コア及び検出体を、被検対象の物体が上記検出体の密集面の一部若しくは全部を外側から覆うように位置させて当該検出体によってそのコイルに出力される出力量を検出可能に支持体に支持したことを特徴とする物体の成分量測定装置。
An excitation circuit including a detection unit and a control unit, the excitation unit including an excitation body having a wound coil, and applying a predetermined AC voltage to the coil of the excitation body to generate a magnetic flux in the excitation body And a detection body having a wound coil and magnetically coupled to the exciter, and an output related to the induced electromotive force output to the coil of the detector by the magnetic flux generated by the exciter. And a detection resonance circuit for detecting the force level. The detection unit causes the object to be tested to face within the magnetic flux generated in the excitation body and the detection body, and the control unit detects the detection resonance. In an object component amount measuring apparatus that calculates a component amount related to a specific component of the object based on an output amount detected by a circuit,
The excitation body comprises a coil wound in a cylindrical shape and a rod-shaped core made of a magnetic material having one end inserted through the coil,
The detection body is configured by a coil wound in a cylindrical shape on the other end side of the core and spaced from the core and coaxial with the core and having a dense outer peripheral surface;
The excitation body, the core, and the detection body are positioned so that the object to be tested covers a part or all of the dense surface of the detection body from the outside, and the output amount output to the coil by the detection body is detected. An apparatus for measuring a component amount of an object, wherein the apparatus is supported by a support.
検出部と制御部とを備え、上記検出部を、巻回されたコイルを有した励磁体を備え該励磁体のコイルに所定の交流電圧を付与して該励磁体に磁束を発生させる励磁回路と、巻回されたコイルを有し上記励磁体に磁気的に結合させられた検出体を備え上記励磁体で発生させられた磁束により該検出体のコイルに出力される誘導起電力に係る出力量を検出する検出共振回路とを備えて構成し、該検出部で、上記励磁体及び検出体に発生させられた磁束内に被検対象の物体を臨ませ、上記制御部で、上記検出共振回路で検出された出力量に基づいて該物体の特定の成分に係る成分量を算出する物体の成分量測定装置において、
上記励磁体及び検出体を、コイルを巻回して外周面を密集面とした筒状に形成し、上記励磁体を、上記検出体内に同軸で挿入し、上記励磁体及び検出体を、被検対象の物体が上記検出体の密集面の一部若しくは全部を外側から覆うように位置させて当該検出体によってそのコイルに出力される出力量を検出可能に支持体に支持したことを特徴とする物体の成分量測定装置。
An excitation circuit including a detection unit and a control unit, the excitation unit including an excitation body having a wound coil, and applying a predetermined AC voltage to the coil of the excitation body to generate a magnetic flux in the excitation body And a detection body having a wound coil and magnetically coupled to the exciter, and an output related to the induced electromotive force output to the coil of the detector by the magnetic flux generated by the exciter. And a detection resonance circuit for detecting the force level. The detection unit causes the object to be tested to face within the magnetic flux generated in the excitation body and the detection body, and the control unit detects the detection resonance. In an object component amount measuring apparatus that calculates a component amount related to a specific component of the object based on an output amount detected by a circuit,
The exciter and the detector are formed in a cylindrical shape with a coil wound around the outer peripheral surface, the exciter is inserted coaxially into the detector, and the exciter and detector are tested. The target object is positioned so as to cover a part or all of the dense surface of the detection body from the outside, and the output amount output to the coil by the detection body is supported on the support body so that it can be detected. Device for measuring the amount of components in objects.
巻回されたコイルを有した調整体を備え上記励磁回路で発生させられた磁束により該調整体のコイルに誘導起電力を出力する調整共振回路を設け、上記調整体を、コイルを巻回して外周面を密集面とした筒状に形成するとともに、上記検出体内に同軸で挿入して支持体に支持したことを特徴とする請求項13記載の物体の成分量測定装置。   An adjustment resonance circuit that outputs an induced electromotive force to the coil of the adjustment body by the magnetic flux generated by the excitation circuit is provided, and the adjustment body is wound around the coil. The object component amount measuring apparatus according to claim 13, wherein the object component amount measuring apparatus is formed in a cylindrical shape having a dense outer peripheral surface, and is coaxially inserted into the detection body and supported by a support. 上記制御部を、予め、特定の成分に係る成分量既知のサンプル物体において求められ、該サンプル物体の特定成分と上記検出共振回路で検出され上記検出体のコイルに出力される誘導起電力に係る出力量との相関を記憶する相関記憶手段と、上記検出共振回路で検出される出力量と上記相関記憶手段が記憶した相関とから物体の特定の成分に係る成分量を算出する成分量算出手段とを備えて構成したことを特徴とする請求項1乃至14何れかに記載の物体の成分量測定装置。   The control unit is obtained in advance for a sample object having a known component amount related to a specific component, and relates to the specific component of the sample object and the induced electromotive force detected by the detection resonance circuit and output to the coil of the detection body. Correlation storage means for storing a correlation with the output amount; and component amount calculation means for calculating a component amount relating to a specific component of the object from the output amount detected by the detection resonance circuit and the correlation stored by the correlation storage means 15. The component amount measuring apparatus for an object according to any one of claims 1 to 14, characterized by comprising:
JP2017071222A 2017-03-31 2017-03-31 Object component amount measuring device Expired - Fee Related JP6695551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071222A JP6695551B2 (en) 2017-03-31 2017-03-31 Object component amount measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071222A JP6695551B2 (en) 2017-03-31 2017-03-31 Object component amount measuring device

Publications (2)

Publication Number Publication Date
JP2018173330A true JP2018173330A (en) 2018-11-08
JP6695551B2 JP6695551B2 (en) 2020-05-20

Family

ID=64108596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071222A Expired - Fee Related JP6695551B2 (en) 2017-03-31 2017-03-31 Object component amount measuring device

Country Status (1)

Country Link
JP (1) JP6695551B2 (en)

Also Published As

Publication number Publication date
JP6695551B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
US20120206132A1 (en) Shielded eddy current coils and methods for forming same on printed circuit boards
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
US9304225B2 (en) Method and sensor unit for locating and/or detecting metallic or metal-containing objects and materials
JP6242155B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP6291635B2 (en) Metal material identification device
JP6695551B2 (en) Object component amount measuring device
JP2003075475A (en) Ac current sensor
JP4420938B2 (en) Nuclear magnetic resonance probe
WO2020049883A1 (en) Electric current measurement apparatus and electric current measurement method
US20180364181A1 (en) Wafer inspection apparatus
JP5209994B2 (en) Eddy current sensor
JP2007139498A (en) Instrument of measuring specific resistance
JP2009145056A (en) Electromagnetic ultrasonic probe and electromagnetic ultrasonic flaw detector
RU2456589C1 (en) Method for eddy current-measurement of thickness of metal coatings
JP2912063B2 (en) Detection coil
US10241081B2 (en) Sensory elements for pulsed eddy current probe
JP2020180969A (en) Device and method for measuring magnetic characteristics of ferromagnetic endless belt
JP2005315732A (en) Instrument for measuring displacement of ferromagnetic body
RU2656134C2 (en) Electromagnetic-acoustic transducer
KR20190067716A (en) Method and device for measuring the thickness of non-magnetisable layers on a magnetisable base material
KR20160041389A (en) Crack detection system and crack detection method using the same
JP2016133459A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP2013015355A (en) Conductive film sensor and detection method of conductive film
RU2204131C2 (en) Electromagnetic converter
CN115857026B (en) Detection method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200325

R150 Certificate of patent or registration of utility model

Ref document number: 6695551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees