JP2018169290A - Durability evaluation method of buried object in cementitious hardened body - Google Patents

Durability evaluation method of buried object in cementitious hardened body Download PDF

Info

Publication number
JP2018169290A
JP2018169290A JP2017066887A JP2017066887A JP2018169290A JP 2018169290 A JP2018169290 A JP 2018169290A JP 2017066887 A JP2017066887 A JP 2017066887A JP 2017066887 A JP2017066887 A JP 2017066887A JP 2018169290 A JP2018169290 A JP 2018169290A
Authority
JP
Japan
Prior art keywords
core material
evaluation object
durability
evaluation
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017066887A
Other languages
Japanese (ja)
Other versions
JP6829133B2 (en
Inventor
昂雄 落合
Takao Ochiai
昂雄 落合
愛 吉田
Ai Yoshida
愛 吉田
早野 博幸
Hiroyuki Hayano
博幸 早野
玲 江里口
Rei Eriguchi
玲 江里口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2017066887A priority Critical patent/JP6829133B2/en
Publication of JP2018169290A publication Critical patent/JP2018169290A/en
Application granted granted Critical
Publication of JP6829133B2 publication Critical patent/JP6829133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

To provide a method of simply evaluating the durability of fibers, steel bars, coating materials, and the like buried in a cementitious hardened body.SOLUTION: A durability evaluation method of a buried object in a cementitious hardened body of the present invention includes at least: (A) a step of making an evaluation object in contact with a core material; (B) placing the core material in contact with the evaluation object in a formwork, casting a cement composition, and removing the formwork to make a sample; and (C) curing the created sample for a prescribed period, then splitting the sample, taking out the evaluation object in contact with the core material, and evaluating the durability of the evaluation object.SELECTED DRAWING: Figure 2

Description

本発明は、コンクリートおよびモルタル(以下、フレッシュな状態のコンクリートおよびモルタルを「セメント組成物」といい、硬化した状態のコンクリートおよびモルタルを「セメント質硬化体」ということがある。)中に埋設した繊維、鉄筋および被覆材料等の耐久性(特に、耐アルカリ性)を簡易に評価する方法に関する。   The present invention is embedded in concrete and mortar (hereinafter, fresh concrete and mortar may be referred to as “cement composition”, and hardened concrete and mortar may be referred to as “cemented hardened body”). The present invention relates to a method for easily evaluating the durability (particularly alkali resistance) of fibers, reinforcing bars and coating materials.

近年、コンクリート構造物の維持管理やモニタリングに使うための各種センサが開発され、例えば、コンクリート構造物中へ光ファイバーセンサを埋設して、鋼材の腐食を早期かつ正確に検出する方法が提案されている(特許文献1、非特許文献1)。
また、コンクリート構造物のひび割れの低減やコンクリートの剥落防止のため、施工時に構造物中にガラス繊維を埋設したり、構造物の表面に炭素繊維等を接着する工法が検討されている。
In recent years, various sensors have been developed for use in the maintenance and monitoring of concrete structures. For example, a method has been proposed in which an optical fiber sensor is embedded in a concrete structure to detect corrosion of steel early and accurately. (Patent Document 1, Non-Patent Document 1).
In addition, in order to reduce cracks in concrete structures and prevent concrete from peeling off, methods of embedding glass fibers in the structure during construction or bonding carbon fibers to the surface of the structure are being studied.

ところで、前記センサ等をコンクリート構造物中に埋設する場合、前記センサ等には高アルカリ環境下での耐久性が求められる。そこで、センサ等の評価対象物の耐アルカリ性を簡易に評価する方法の一つに、コンクリート中のアルカリ環境を模擬した飽和水酸化カルシウム溶液中に浸漬する方法がある。しかし、コンクリート中の空隙水は、水酸化カルシウム(CH)単相ではなく、NaやK等のアルカリ金属イオンをはじめ複数の化学成分を含むため、水酸化カルシウムだけに起因するアルカリ環境は、現実のアルカリ環境と乖離した状態であり、実際のセメント質硬化体中において、耐アルカリ性を評価するのが好ましい。 By the way, when the sensor or the like is embedded in a concrete structure, the sensor or the like is required to have durability in a highly alkaline environment. Therefore, as one method for simply evaluating the alkali resistance of an evaluation object such as a sensor, there is a method of immersing in a saturated calcium hydroxide solution simulating an alkaline environment in concrete. However, the pore water in concrete is not a single phase of calcium hydroxide (CH) but contains multiple chemical components including alkali metal ions such as Na + and K +, so the alkaline environment caused solely by calcium hydroxide is not It is in a state deviating from the actual alkaline environment, and it is preferable to evaluate the alkali resistance in the actual hardened cementitious material.

そこで、実際のセメント質硬化体中で耐アルカリ性を評価する方法の一つとして、図1に示すように、セメント質硬化体の供試体の中心線上に評価対象物を所定の期間配置した後、供試体を割裂する方法が考えられる。しかし、対象物を中心線上に配置することは容易ではない。また、供試体の割裂時に中心線に沿って供試体が割れない場合もあり、当該状態にある評価対象物を損傷させずに取り出すことは難しい。   Therefore, as one of the methods for evaluating the alkali resistance in the actual hardened cementitious body, as shown in FIG. 1, after placing the evaluation object on the center line of the specimen of the hardened cementitious body for a predetermined period, A method of splitting the specimen can be considered. However, it is not easy to place the object on the center line. In addition, when the specimen is split, the specimen may not break along the center line, and it is difficult to take out the evaluation object in this state without damaging it.

特開2016−180740号公報JP, 2006-180740, A

早野博幸ほか:光ファイバセンサを用いたコンクリート中の電食下における鉄筋の腐食膨張挙動,土木学会 第71回年次学術講演会講演概要集,pp.765-766,2016.09Hiroyuki Hayano et al .: Corrosion expansion behavior of rebar under electric corrosion in concrete using fiber optic sensor, 71st Annual Conference of the Japan Society of Civil Engineers, pp.765-766, 2016.09

そこで、本発明は、セメント質硬化体中に埋設される繊維、鉄筋および被覆材料等の耐久性を簡易に評価する方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for simply evaluating the durability of fibers, reinforcing bars, coating materials and the like embedded in a cementitious hardened body.

本発明者は、前記目的を達成するため種々検討したところ、評価対象物を芯材に接触させて、セメント質硬化体中に埋設すれは、評価対象物の耐久性を簡易に評価できることを見い出し、本発明を完成させた。
すなわち、本発明は、以下の構成を有するセメント質硬化体中の埋設物の耐久性評価方法である。
As a result of various studies to achieve the above object, the present inventor found that the durability of the evaluation object can be easily evaluated by placing the evaluation object in contact with the core material and embedding it in the hardened cementitious material. The present invention has been completed.
That is, this invention is a durability evaluation method of the embedded object in the cementitious hardened | cured material which has the following structures.

[1](A)評価対象物を芯材に接触させる工程、(B)評価対象物が接触した芯材を型枠に配置した後、セメント組成物を打設して脱型し、供試体を作製する工程、および(C)作製した供試体を所定期間養生した後、該供試体を割裂して、芯材に接触した評価対象物を取り出し、評価対象物の耐久性を評価する工程を、少なくとも含む、セメント質硬化体中の埋設物の耐久性評価方法。
[2]前記芯材が、鋼材、プラスチック、ガラス、またはセラミックスである、前記[1]に記載のセメント質硬化体中の埋設物の耐久性評価方法。
[3]前記型枠が、供試体の割裂が容易になる溝を付与するためのスペーサーを、対向した状態で1組以上、型枠の内側の側面に設置してなる型枠である、前記[1]または[2]に記載の、セメント質硬化体中の埋設物の耐久性評価方法。
[1] (A) A step of bringing the evaluation object into contact with the core material, (B) After placing the core material in contact with the evaluation object on the formwork, the cement composition is placed and demolded, and the specimen And (C) after curing the prepared specimen for a predetermined period, splitting the specimen, taking out the evaluation object in contact with the core material, and evaluating the durability of the evaluation object The durability evaluation method of the embedded object in the cementitious hardened body at least.
[2] The method for evaluating durability of an embedded object in a hardened cementitious material according to [1], wherein the core material is steel, plastic, glass, or ceramics.
[3] The mold is a mold formed by installing one or more sets of spacers on the inner side surface of the mold in a state of facing each other, in order to provide a groove for facilitating the splitting of the specimen. [1] or [2], the durability evaluation method for an embedded object in a cementitious hardened body.

本発明によれば、セメント質硬化体中の埋設物の耐久性を、簡易に評価することができる。   ADVANTAGE OF THE INVENTION According to this invention, durability of the embedded object in a cementitious hardened body can be evaluated easily.

セメント質硬化体の供試体の中心位置に、評価対象物を配置した一例を示す図である。It is a figure which shows an example which has arrange | positioned the evaluation target object in the center position of the specimen of a cementitious hardening body. 芯材に光ファイバーを巻き付けた状態を示す図である。It is a figure which shows the state which wound the optical fiber around the core material. 面木(スペーサー)を対向して側面の内側に設置してなる型枠の中心に、光ファイバーを巻き付けた芯材を設置して、セメント組成部物を打設した状態を示す図である。It is a figure which shows the state which installed the core material which wound the optical fiber in the center of the mold formed by facing the face wood (spacer) inside the side, and cast the cement composition part. 芯材に耐アルカリガラス繊維ネットを巻き付けた状態を示す図である。It is a figure which shows the state which wound the alkali-resistant glass fiber net around the core material. セメント質硬化体の供試体の形状の一例を示す図である。It is a figure which shows an example of the shape of the specimen of a cementitious hardening body. 割裂した供試体の状態を示す図である。It is a figure which shows the state of the torn specimen. 光ファイバーの表面の状態を示すマイクロスコープ写真であり、(A)は割裂した供試体から回収した光ファイバーの写真、(B)は評価試験前の光ファイバー写真である。It is a microscope photograph which shows the state of the surface of an optical fiber, (A) is a photograph of the optical fiber collect | recovered from the torn specimen, (B) is an optical fiber photograph before an evaluation test. 耐アルカリガラス繊維(ネット)の表面の状態を示すマイクロスコープの写真であり、(A)は割裂した供試体から回収した耐アルカリガラス繊維の写真、(B)は評価試験前の耐アルカリガラス繊維の写真である。It is the photograph of the microscope which shows the state of the surface of an alkali-resistant glass fiber (net), (A) is the photograph of the alkali-resistant glass fiber collect | recovered from the test piece which was split, (B) is the alkali-resistant glass fiber before an evaluation test It is a photograph of.

本発明は、前記のとおり、(A)評価対象物を芯材に接触させる工程、(B)評価対象物が接触した芯材を型枠に配置した後、セメント組成物を打設して脱型し、供試体を作製する工程、(C)作製した供試体を所定期間養生した後、該供試体を割裂して、芯材に接触した評価対象物を取り出して、評価対象物の耐久性を評価する工程を、少なくとも含む、セメント質硬化体中の埋設物の耐久性評価方法である。以下、前記(A)〜(C)工程に分けて説明する。   As described above, the present invention includes (A) a step of bringing the evaluation object into contact with the core material, and (B) placing the core material in contact with the evaluation object on the formwork, and then placing and removing the cement composition. A step of molding and preparing a specimen, (C) after curing the prepared specimen for a predetermined period, splitting the specimen, taking out the evaluation object in contact with the core material, and durability of the evaluation object Is a method for evaluating the durability of an embedded object in a hardened cementitious body, which includes at least a step of evaluating. Hereinafter, the steps (A) to (C) will be described separately.

(A)工程
該工程は、評価対象物を芯材に接触させる工程である。前記接触は、例えば、接着剤やテープ等を用いて評価対象物の一部または全部を芯材に固定することにより、評価対象物全体を芯材に沿わす、巻き付ける、貼付する、または被覆する等の態様が挙げられる。
該評価対象物は、ガラス繊維、炭素繊維、アラミド繊維、ポリエチレン繊維、ナイロン繊維、光ファイバー、鉄線、繊維シート、および塗料等から選ばれる1種以上が挙げられる。これらのうち、ガラス繊維、炭素繊維、アラミド繊維、ポリエチレン繊維、ナイロン繊維、光ファイバー、鉄線、および繊維シートは芯材に巻き付けて評価に供し、また、塗料は芯材に被覆して評価に供する。なお、芯材に2種類以上の評価対象物を接触させれば、1度の試験で複数の種類の材料の耐久性を評価でき効率的である。
芯材の形状は円筒や角柱が挙げられ、角材では、それぞれの面に異なる評価対象物を貼り付けて、また、円筒では、複数の異なる繊維を周回させて、評価に供することができる。また、芯材の材質は、鋼材(鉄筋)、プラスチック、ガラス、またはセラミックスが挙げられる。
(A) Process This process is a process of bringing the evaluation object into contact with the core material. In the contact, for example, by fixing a part or all of the evaluation object to the core material using an adhesive, a tape, or the like, the entire evaluation object is placed along, wound, pasted, or covered along the core material. And the like.
Examples of the evaluation object include one or more selected from glass fiber, carbon fiber, aramid fiber, polyethylene fiber, nylon fiber, optical fiber, iron wire, fiber sheet, paint, and the like. Among these, glass fiber, carbon fiber, aramid fiber, polyethylene fiber, nylon fiber, optical fiber, iron wire, and fiber sheet are wrapped around a core material for evaluation, and a coating material is coated on a core material for evaluation. In addition, if two or more types of evaluation objects are brought into contact with the core material, durability of a plurality of types of materials can be evaluated in one test, which is efficient.
Examples of the shape of the core material include a cylinder and a prism. In the case of a square material, different evaluation objects can be attached to each surface, and in the case of a cylinder, a plurality of different fibers can be circulated for evaluation. Examples of the material of the core material include steel (rebar), plastic, glass, or ceramics.

(B)工程
該工程は、評価対象物が接触した芯材を型枠に配置した後、セメント組成物を打設して脱型し、供試体を作製する工程である。該型枠は特に制限されず、円筒形、角柱形のいずれも使える。該供試体は、供試体の割裂を容易にするため、面木等のスペーサーを、型枠の内側の側面に対向した状態で1組以上設置して、供試体の高さ方向に切欠きを入れた供試体が好ましい。スペーサーの断面形状は特に制限されず、三角形や四角形等が挙げられる。また、面木の材質は特に制限されず、木材、樹脂等が挙げられ、例えば、コンクリート用目地材、カットした木材、またはスポンジを用いると、切欠きの形成が容易である。
供試体のかぶり厚さ(供試体の表面(側面)から芯材の表面までの距離)は、評価対象物および芯材の寸法に応じて任意に設定できるが、セメント質硬化体中での耐久性を正しく評価するためには、好ましくは5mm以上である。また、供試体の割裂を容易にすることと、セメント質硬化体中での耐久性を正しく評価することの兼ね合いから、スペーサーの厚みは、スペーサーを設置した箇所におけるかぶり厚さに対し、好ましくは25〜75%である。
また、芯材の両端面がセメント組成物中に埋設されるように、セメント組成物を打設することが好ましい。芯材の上下面にもかぶりを設けることにより、耐久性の評価に影響を与える炭酸ガス等の外的因子がセメント質硬化体中に浸透することを防止できる。また、セメント組成物は、評価対象物が実際に使用されるセメント組成物が好ましいが、評価対象物の評価目的に応じて調整するとよい。例えば、アルカリや塩分を添加して、これらの劣化因子が評価対象物に及ぼす影響を評価することができる。
(B) Process This process is a process of placing a core material in contact with an evaluation object on a mold, placing a cement composition, removing the mold, and preparing a specimen. The formwork is not particularly limited, and either a cylindrical shape or a prismatic shape can be used. In order to facilitate the splitting of the specimen, install one or more spacers such as face plates facing the inner side of the mold, and make notches in the height direction of the specimen. Specimens put in are preferred. The cross-sectional shape of the spacer is not particularly limited, and examples thereof include a triangle and a quadrangle. Moreover, the material of the face wood is not particularly limited, and examples thereof include wood, resin, and the like. For example, when a joint material for concrete, cut wood, or sponge is used, formation of a notch is easy.
The cover thickness of the specimen (distance from the surface (side surface) of the specimen to the surface of the core material) can be set arbitrarily according to the evaluation object and the dimensions of the core material. In order to correctly evaluate the property, the thickness is preferably 5 mm or more. Further, from the viewpoint of facilitating the splitting of the specimen and correctly evaluating the durability in the cementitious cured body, the thickness of the spacer is preferably relative to the cover thickness at the location where the spacer is installed. 25-75%.
Moreover, it is preferable to cast the cement composition so that both end faces of the core material are embedded in the cement composition. By providing the cover on the upper and lower surfaces of the core material, it is possible to prevent an external factor such as carbon dioxide gas that affects the durability evaluation from penetrating into the hardened cementitious material. Further, the cement composition is preferably a cement composition in which the evaluation object is actually used, but may be adjusted according to the evaluation purpose of the evaluation object. For example, the influence of these deterioration factors on the evaluation object can be evaluated by adding alkali or salt.

(C)工程
該工程は、作製した供試体を所定期間養生した後、該供試体を割裂して、芯材に接触した評価対象物を取り出して、評価対象物の耐久性を評価する工程である。ここで、養生方法は、特に制限されず、水中養生、封緘養生、湿空養生、促進養生等が挙げられ、評価対象物の実際の養生方法に準じて養生方法を選択するとよい。割裂の方法は、供試体の切り欠き部分に三角アングル等をあてがい、ハンマー等を用いて供試体を割裂して、評価対象物を回収する。なお、アングルに関しては必ずしも必要ではなく、ハンマーのみを使用して供試体を割裂することもできる。
また、前記評価対象物の耐久性を評価するとは、例えば、評価試験後の評価対象物の表面状態を、目視、マイクロスコープ等により観察する方法が挙げられ、評価対象物の評価項目に応じて各種分析・測定を行えばよい。
(C) Process This process is a process in which, after curing the prepared specimen for a predetermined period, the specimen is split, the evaluation object in contact with the core is taken out, and the durability of the evaluation object is evaluated. is there. Here, the curing method is not particularly limited, and examples include underwater curing, sealing curing, wet curing, accelerated curing, and the like, and the curing method may be selected according to the actual curing method of the evaluation object. In the splitting method, a triangular angle or the like is assigned to the notch portion of the specimen, the specimen is split using a hammer or the like, and the evaluation object is collected. The angle is not always necessary, and the specimen can be split using only a hammer.
Further, evaluating the durability of the evaluation object includes, for example, a method of observing the surface state of the evaluation object after the evaluation test by visual observation, a microscope, etc., depending on the evaluation item of the evaluation object. Various analyzes and measurements may be performed.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.供試体の作製
評価対象物を1周播き付けて、その両端を接着剤で固定した直径30mm、高さ40mmのステンレス製鋼材(図2)を作製した。次に、断面の形状が正三角形で、高さが5mmの2本の面木を対向して側面の内側に設置した、内径50mm、高さ40mmの型枠の中に、表1に示す材料を用いて、表2に示す配合に従い混練して作製したモルタルを打設した(図3)。そして、打設して1日経過した後に脱型して、切欠きのある供試体を作製した(図5)。なお、評価対象物は、直径が150μmの光ファイバーケーブル(図2、3)とネットの1区画の大きさが縦25mm×横25mmの耐アルカリガラス繊維ネット(図4)を用いた。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
1. Preparation of specimen A stainless steel material (Fig. 2) having a diameter of 30 mm and a height of 40 mm, in which the object to be evaluated was seeded once and fixed at both ends with an adhesive, was prepared. Next, the materials shown in Table 1 are placed in a formwork having an inner diameter of 50 mm and a height of 40 mm in which two face woods having a cross section of an equilateral triangle and a height of 5 mm are placed opposite to each other on the inner side. The mortar prepared by kneading according to the formulation shown in Table 2 was placed (FIG. 3). Then, after one day had passed after casting, the mold was removed to produce a notched specimen (FIG. 5). The evaluation object used was an optical fiber cable having a diameter of 150 μm (FIGS. 2 and 3) and an alkali-resistant glass fiber net having a size of one section of the net of 25 mm × 25 mm (FIG. 4).

2.耐久性の評価
前記作製した供試体は、5日間、40℃の湿空環境下(相対湿度は95%以上)で養生した後、長さ方向の切欠き部分に三角アングルを当てて、ハンマーでたたいて割裂し、評価対象物を巻き付けた鋼材を取り出した(図6)。さらに、鋼材から評価対象物を回収し、表面に付着した微細なモルタルをアセトンで除去した後、評価対象物の表面の様子をマイクロスコープを用いて観察した。その結果を図7、8に示す。
2. Durability evaluation The specimens prepared above were cured for 5 days in a humid air environment at 40 ° C (relative humidity of 95% or more), and a triangular angle was applied to the notch in the length direction with a hammer. The steel material around which the evaluation object was wound was taken out by tapping (FIG. 6). Further, the evaluation object was collected from the steel material, fine mortar adhered to the surface was removed with acetone, and then the state of the surface of the evaluation object was observed using a microscope. The results are shown in FIGS.

図6に示すように、芯材に巻いた評価対象物が容易に露出して、モルタルから剥離でき、評価対象物を損傷することなく回収できた。
また、図7、8に示す実施例では、モルタル中から回収した光ファイバー(図7の(A))、および耐アルカリガラス繊維ネット(図8の(A))はともに、評価試験前の状態(それぞれ図7、8の(B))と比べ、損傷や外観の変化は認められなかったことから、本発明の耐久性評価方法において、いずれの評価対象物も耐アルカリ性は高いと評価した。
As shown in FIG. 6, the evaluation object wound around the core material was easily exposed and could be peeled off from the mortar and recovered without damaging the evaluation object.
In the examples shown in FIGS. 7 and 8, both the optical fiber recovered from the mortar (FIG. 7A) and the alkali-resistant glass fiber net (FIG. 8A) are in the state before the evaluation test ( 7 and 8 (B)), no damage or change in appearance was observed, and therefore, in the durability evaluation method of the present invention, each evaluation object was evaluated as having high alkali resistance.

Claims (3)

(A)評価対象物を芯材に接触させる工程、(B)評価対象物が接触した芯材を型枠に配置した後、セメント組成物を打設して脱型し、供試体を作製する工程、および(C)作製した供試体を所定期間養生した後、該供試体を割裂して、芯材に接触した評価対象物を取り出し、評価対象物の耐久性を評価する工程を、少なくとも含む、セメント質硬化体中の埋設物の耐久性評価方法。   (A) A step of bringing the evaluation object into contact with the core material, (B) After placing the core material in contact with the evaluation object on the formwork, the cement composition is placed and demolded to prepare a specimen. And (C) at least a step of curing the prepared specimen for a predetermined period, splitting the specimen, taking out the evaluation object in contact with the core material, and evaluating the durability of the evaluation object , A method for evaluating the durability of buried objects in cementitious hardened bodies. 前記芯材が、鋼材、プラスチック、ガラス、またはセラミックスである、請求項1に記載のセメント質硬化体中の埋設物の耐久性評価方法。   The method for evaluating the durability of an embedded object in a hardened cementitious material according to claim 1, wherein the core material is steel, plastic, glass, or ceramics. 前記型枠が、供試体の割裂が容易になる溝を付与するためのスペーサーを、対向した状態で1組以上、型枠の内側の側面に設置してなる型枠である、前記[1]または[2]に記載の、セメント質硬化体中の埋設物の耐久性評価方法。   [1] The above-mentioned formwork is a formwork in which one or more sets of spacers for providing a groove that facilitates splitting of the specimen are placed on the inner side surface of the formwork in an opposed state. Or the durability evaluation method of the embedded object in a cementitious hardening body as described in [2].
JP2017066887A 2017-03-30 2017-03-30 Durability evaluation method for buried objects in hardened cementum Active JP6829133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017066887A JP6829133B2 (en) 2017-03-30 2017-03-30 Durability evaluation method for buried objects in hardened cementum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017066887A JP6829133B2 (en) 2017-03-30 2017-03-30 Durability evaluation method for buried objects in hardened cementum

Publications (2)

Publication Number Publication Date
JP2018169290A true JP2018169290A (en) 2018-11-01
JP6829133B2 JP6829133B2 (en) 2021-02-10

Family

ID=64017900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017066887A Active JP6829133B2 (en) 2017-03-30 2017-03-30 Durability evaluation method for buried objects in hardened cementum

Country Status (1)

Country Link
JP (1) JP6829133B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113588374A (en) * 2021-08-20 2021-11-02 华北有色工程勘察院有限公司 Sensing optical fiber burying device and method in geotechnical engineering similar material model

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106510A (en) * 2003-09-29 2005-04-21 Sekisui House Ltd Method for evaluating corrosion resistance of metal member
JP2009222685A (en) * 2008-03-19 2009-10-01 Tokyo Electric Power Co Inc:The Method for introducing artificial crack in rock sample
JP2013087413A (en) * 2011-10-13 2013-05-13 Kajima Corp Demolition method
US20130340505A1 (en) * 2012-06-26 2013-12-26 Virgilio C. Go Boncan Multi-function testing apparatus for cement and methods of using the same
JP2014181920A (en) * 2013-03-18 2014-09-29 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of sample
JP2016180740A (en) * 2015-03-25 2016-10-13 太平洋セメント株式会社 Corrosion sensor and method for detecting corrosion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106510A (en) * 2003-09-29 2005-04-21 Sekisui House Ltd Method for evaluating corrosion resistance of metal member
JP2009222685A (en) * 2008-03-19 2009-10-01 Tokyo Electric Power Co Inc:The Method for introducing artificial crack in rock sample
JP2013087413A (en) * 2011-10-13 2013-05-13 Kajima Corp Demolition method
US20130340505A1 (en) * 2012-06-26 2013-12-26 Virgilio C. Go Boncan Multi-function testing apparatus for cement and methods of using the same
JP2014181920A (en) * 2013-03-18 2014-09-29 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of sample
JP2016180740A (en) * 2015-03-25 2016-10-13 太平洋セメント株式会社 Corrosion sensor and method for detecting corrosion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113588374A (en) * 2021-08-20 2021-11-02 华北有色工程勘察院有限公司 Sensing optical fiber burying device and method in geotechnical engineering similar material model
CN113588374B (en) * 2021-08-20 2024-02-06 华北有色工程勘察院有限公司 Sensing optical fiber burying device and method in geotechnical engineering similar material model

Also Published As

Publication number Publication date
JP6829133B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
Beushausen et al. The use of superabsorbent polymers to reduce cracking of bonded mortar overlays
Golewski et al. Macroscopic evaluation of fracture processes in fly ash concrete
Piérard et al. Durability evaluation of different types of UHPC
Terai et al. Research and development on bamboo reinforced concrete structure
JP2016188850A (en) Concrete cracks detection method and cracks sensor
JP5737649B2 (en) Method for producing concrete specimen with through crack
JP2018169290A (en) Durability evaluation method of buried object in cementitious hardened body
JP2014181920A (en) Manufacturing method of sample
JP5579031B2 (en) Crack repair method for concrete structure and concrete structure
Sierra Beltran et al. Performance of SHCC with bacteria for concrete patch repair
CN103364313A (en) Testing device and method for determining chloride ion diffusion mechanism of pre-stressed concrete under multi-factor effect
Rust Role of relative humidity in concrete expansion due to alkali-silica reaction and delayed ettringite formation: relative humidity thresholds, measurement methods, and coatings to mitigate expansion
Toutlemonde et al. Long-term material performance checked on world’s oldest UHPFRC road bridges at Bourg-Lès-Valence
Gentilini et al. Adhesion between SRP and masonry: Laboratory simulations of the field moisture and salt conditions
JP6097664B2 (en) Degradation state analysis method for hardened cement
Čajka et al. Coupled Timber–Concrete Ceiling using Bonded Shear Connectors
JP6689036B2 (en) Neutralization depth measuring method, neutralization depth measuring seal
Bajzecerová et al. Long-term bending test of adhesively bonded timber-concrete composite slabs
Schulte Holthausen et al. Sprayed polymer concrete for the rehabilitation of sewage systems
Soares et al. Use of non-standard specimens to study the compressive strength of multi-coat renders
Sanchez et al. Strengthening of arched masonry structures with composite materials
Jerman et al. Effect of moisture variations on damage cumulation in surface layers of building structures
Kabir Short and long term performance of concrete structures repaired/strengthened with FRP
Salas Accelerated corrosion testing, evaluation and durability design of bonded post-tensioned concrete tendons.
Appalla Assessing corrosion damage in post-tensioned concrete structures using acoustic emission & a preliminary investigation of biopolymer doped cement mortar for use in structural restoration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210121

R150 Certificate of patent or registration of utility model

Ref document number: 6829133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250