JP2018169083A - Internal state determination method and internal state determination device for freeze-drying object, and freeze-drying device - Google Patents

Internal state determination method and internal state determination device for freeze-drying object, and freeze-drying device Download PDF

Info

Publication number
JP2018169083A
JP2018169083A JP2017066336A JP2017066336A JP2018169083A JP 2018169083 A JP2018169083 A JP 2018169083A JP 2017066336 A JP2017066336 A JP 2017066336A JP 2017066336 A JP2017066336 A JP 2017066336A JP 2018169083 A JP2018169083 A JP 2018169083A
Authority
JP
Japan
Prior art keywords
article
drying
freeze
dried
electromagnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017066336A
Other languages
Japanese (ja)
Other versions
JP6914076B2 (en
Inventor
晋治 河野
Shinji Kono
晋治 河野
光 今村
Hikari Imamura
光 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2017066336A priority Critical patent/JP6914076B2/en
Publication of JP2018169083A publication Critical patent/JP2018169083A/en
Application granted granted Critical
Publication of JP6914076B2 publication Critical patent/JP6914076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

To determine a time point at which the inside of an object during freeze-drying is completely dried, in a non-destructive manner.SOLUTION: A internal dry state determination method for a freeze-drying object is a method for determining an internal dry state of an object subjected to freeze-drying, and comprises: a detection step of making a resonance electromagnetic field, which is formed by using a microwave resonator, act on the object, and detecting at least one of the resonance frequency and resonance peak voltage of the resonance electromagnetic field; and a determination step of determining a time point at which the inside of the object is completely dried on the basis of secular change of the detection value obtained in the detection step.SELECTED DRAWING: Figure 3

Description

本開示は、凍結乾燥中に凍結乾燥される物品の内部乾燥状態を判定する判定方法、該物品の内部乾燥状態を判定する判定装置及び該判定装置を備える凍結乾燥装置に関する。   The present disclosure relates to a determination method for determining an internal dry state of an article that is freeze-dried during freeze-drying, a determination device that determines an internal dry state of the article, and a freeze-drying apparatus including the determination device.

凍結乾燥方法は、対象物品の品質を損ねない乾燥法として、カップ麺やみそ汁などのインスタント食品や、熱変性を嫌う医薬品など、広い分野で用いられている。
しかし、現状、凍結乾燥中に対象物品の内部を非破壊でモニタリングする方法はなく、また、凍結乾燥の進捗状況は対象物品の内部でバラツキがある。そのため、現状、凍結乾燥の完了時点は、経験的に余裕をみて判断されている。
凍結乾燥が失敗した場合とは、対象物品の内部に昇華しきれなかった氷成分が存在していることであり、氷成分はその後水として析出し、対象物品の品質を損ねるため、再度凍結乾燥工程に戻すことができず不良品となる。
The freeze-drying method is used in a wide range of fields such as instant foods such as cup noodles and miso soup and pharmaceuticals that dislike heat denaturation as a drying method that does not impair the quality of the target article.
However, there is currently no method for nondestructively monitoring the inside of the target article during lyophilization, and the progress of lyophilization varies within the target article. For this reason, at the present time, the completion point of freeze-drying is determined empirically.
When freeze-drying fails, there is an ice component that could not be sublimated inside the target article, and the ice component subsequently precipitates as water, impairing the quality of the target article. It cannot be returned to the process and becomes a defective product.

ところで、特許文献1には、物品の内部温度を外部から検出するための方法として、マイクロ波共振器を用い、対象物品から透過したマイクロ波の共振周波数及び共振ピーク電圧を検出し、これらの検出値から対象物品の内部温度を推定する方法が開示されている。   By the way, in Patent Document 1, as a method for detecting the internal temperature of an article from the outside, a microwave resonator is used to detect the resonance frequency and resonance peak voltage of the microwave transmitted from the object article, and these detections are detected. A method for estimating the internal temperature of a target article from a value is disclosed.

国際公開第2015/146600号International Publication No. 2015/146600

前述のように、凍結乾燥中の物品内部の状態を非破壊でモニタリングする方法はなく、乾燥完了時点を安全サイドで判定しているため、余分な時間がかかっている。
特許文献1に開示された方法は、物品の内部温度を外部から検出するための方法であるため、この技術をそのまま凍結乾燥される物品の乾燥完了時点の判定に適用することはできない。
As described above, there is no method for non-destructively monitoring the state of the inside of the article during freeze-drying, and it takes extra time because the drying completion point is determined on the safe side.
Since the method disclosed in Patent Document 1 is a method for detecting the internal temperature of an article from the outside, this technique cannot be applied to the determination of the completion of drying of an article that is freeze-dried as it is.

少なくとも一実施形態は、上記課題に鑑み、凍結乾燥中の物品内部の乾燥完了時点を非破壊で判定可能にすることを目的とする。   In view of the above problems, at least one embodiment aims to make it possible to determine non-destructively the time point of completion of drying inside an article during freeze-drying.

(1)一実施形態に係る凍結乾燥物品の内部状態判定方法は、
凍結乾燥中に凍結乾燥される物品の内部乾燥状態を判定する方法であって、
前記物品にマイクロ波共振器を用いて形成されるマイクロ波の共振電磁場を作用させ、前記共振電磁場の共振周波数又は共振電圧の少なくとも一方を検出する検出ステップと、
前記検出ステップで得た検出値の経時変化に基づいて前記物品の内部の乾燥完了時点を判定する判定ステップと、
を備える。
(1) A method for determining the internal state of a freeze-dried article according to an embodiment is as follows:
A method for determining the internal dry state of an article that is freeze-dried during freeze-drying,
A step of detecting a resonance frequency or a resonance voltage of the resonance electromagnetic field by causing a microwave resonance electromagnetic field formed using a microwave resonator to act on the article;
A determination step of determining a drying completion time point inside the article based on a change over time of the detection value obtained in the detection step;
Is provided.

物品に水分が含まれるか、あるいは含まれる水分が液相の水であるかあるいは固相の氷であるかによって、物品に吸収又は透過されるマイクロ波の吸収度又は透過度が大きく変化する特性がある。そのため、マイクロ波共振器が形成する共振電磁場に物品が存在するか否かで共振電磁場の共振周波数及び共振電圧が大きく変化する。   Characteristics in which the absorption or transmission of microwaves that are absorbed or transmitted by the article varies greatly depending on whether the article contains moisture or whether the contained moisture is liquid phase water or solid phase ice. There is. Therefore, the resonant frequency and resonant voltage of the resonant electromagnetic field vary greatly depending on whether or not an article exists in the resonant electromagnetic field formed by the microwave resonator.

上記(1)の方法によれば、上記特性を利用し、凍結乾燥される物品を透過したマイクロ波の共振周波数又は共振電圧の少なくとも一方を検出し、その検出値の経時変化に基づいて物品の内部の乾燥完了時点を判定するものであるため、物品内部の乾燥完了時点を非破壊で判定できる。
これによって、乾燥時間を余分に設定する必要がなくなり、凍結乾燥に要する時間を短縮できる。また、凍結乾燥中にリアルタイムで乾燥完了時点を正確に判定できるため、乾燥未了の不良品を低減できる。
また、マイクロ波は、ガラス、紙、ポリエチレン、ポリスチレン等の樹脂に対して透過性が高いため、物品をこれら材料でできた容器に入れたまま検査できる。従って、物品に対して非接触な検査が可能になり、物品に対するマイクロ波共振器に配置自由度を広げることができる。
According to the method of (1), using the above characteristics, at least one of the resonance frequency or resonance voltage of the microwave transmitted through the article to be lyophilized is detected, and the change of the detected value over time is detected. Since the internal drying completion time is determined, the internal drying completion time can be determined nondestructively.
Thereby, it is not necessary to set an extra drying time, and the time required for freeze-drying can be shortened. Moreover, since the completion point of drying can be accurately determined in real time during freeze-drying, defective products that have not been dried can be reduced.
In addition, since microwaves are highly permeable to resins such as glass, paper, polyethylene, polystyrene, etc., it is possible to inspect while keeping an article in a container made of these materials. Accordingly, non-contact inspection can be performed on the article, and the degree of freedom in arrangement of the microwave resonator for the article can be expanded.

(2)一実施形態では、前記(1)の方法において、
前記判定ステップにおいて、
前記検出値の経時変化の傾きが予め設定された閾値(正の傾きを有する閾値)を超えた時点を前記物品の内部の乾燥完了時点であると判定する。
上記(2)の方法によれば、検出値の経時変化の傾きを上記閾値と比較することで、乾燥完了時点を客観的に判定できる。
なお、上記閾値は、過去の実験データなどから適宜に設定する。
(2) In one embodiment, in the method of (1),
In the determination step,
It is determined that the time point at which the slope of the change in the detected value with time exceeds a preset threshold value (threshold value having a positive slope) is the time point when the drying of the inside of the article is completed.
According to the method (2), the drying completion time point can be objectively determined by comparing the slope of the change in the detected value with time with the threshold value.
The threshold value is appropriately set from past experimental data.

(3)一実施形態では、前記(2)の方法において、
前記判定ステップにおいて、
前記検出値が不連続で上昇した時点を前記物品の内部の乾燥完了時点であると判定する。
上記(3)の方法によれば、検出値が不連続で上昇した時点を乾燥完了時点とすることで、明瞭に乾燥完了時点を判定できる。
(3) In one embodiment, in the method of (2),
In the determination step,
It is determined that the time point at which the detected value rises discontinuously is the time point when the drying of the inside of the article is completed.
According to the above method (3), the time point when the detected value is discontinuously increased is set as the time point when the drying is completed, so that the time point when the drying is completed can be clearly determined.

(4)一実施形態では、前記(1)〜(3)の何れかの方法において、
前記物品を凍結乾燥する工程が、
前記物品を冷却して凍結する凍結ステップと、
前記物品を乾燥容器に入れ、前記乾燥容器の内部を減圧しかつ前記物品を加熱して前記物品内部の氷晶を昇華させる乾燥ステップと、
備え、
前記検出ステップにおいて、
前記乾燥容器の内部に配置した前記マイクロ波共振器によって前記共振電磁場を形成する。
(4) In one embodiment, in any one of the methods (1) to (3),
Freeze-drying the article,
A freezing step of cooling and freezing the article;
A drying step of placing the article in a drying container, depressurizing the interior of the drying container and heating the article to sublimate ice crystals inside the article;
Prepared,
In the detection step,
The resonant electromagnetic field is formed by the microwave resonator disposed inside the drying container.

上記(4)の方法によれば、上記乾燥容器の内部にマイクロ波共振器を配置することで、検出値の経時変化が明瞭に現れるため、乾燥完了時点を正確に判定できる。   According to the method (4), by arranging the microwave resonator inside the drying container, the change with time of the detected value clearly appears, so that the drying completion time can be accurately determined.

(5)一実施形態では、前記(1)〜(4)の何れかの方法において、
前記物品が食品又は製薬用溶液である。
上記(5)の方法によれば、物品が食品又は製薬用溶液である場合に、物品内部の乾燥完了時点を非破壊で判定できるため、乾燥時間を余分に設定する必要がなくなり、そのため、凍結乾燥に要する時間を短縮できる。また、凍結乾燥中に乾燥完了時点を判定できるため、乾燥未了の不良品を低減できる。
(5) In one embodiment, in any one of the methods (1) to (4),
The article is a food or pharmaceutical solution.
According to the method of (5) above, when the article is a food or pharmaceutical solution, the drying completion time inside the article can be determined non-destructively, so there is no need to set an extra drying time. The time required for drying can be shortened. Moreover, since the completion point of drying can be determined during freeze-drying, defective products that have not been dried can be reduced.

(6)一実施形態に係る凍結乾燥物品の内部状態判定装置は、
凍結乾燥された物品の内部乾燥状態を判定する装置であって、
マイクロ波を発振するマイクロ波発振器と、
前記マイクロ波発振器で発振された前記マイクロ波の共振電磁場を形成するマイクロ波共振器と、
前記共振電磁場に形成された共振周波数又は共振ピーク電圧の少なくとも一方を検出する検出器と、
前記物品が前記共振電磁場に配置されたときに前記検出器で検出された検出値の経時変化の傾きが予め設定された閾値を超えたとき、前記物品の内部の乾燥が完了したと判定する判定部と、
を備える。
(6) The internal state determination device for a freeze-dried article according to an embodiment
An apparatus for determining an internal dry state of a freeze-dried article,
A microwave oscillator that oscillates microwaves;
A microwave resonator that forms a resonant electromagnetic field of the microwave oscillated by the microwave oscillator;
A detector for detecting at least one of a resonance frequency or a resonance peak voltage formed in the resonance electromagnetic field;
Judgment that the drying of the interior of the article is completed when the slope of the change over time of the detection value detected by the detector when the article is placed in the resonant electromagnetic field exceeds a preset threshold value And
Is provided.

上記(6)の構成によれば、上記検出器で判定対象物品に共振電磁場を作用させたときの共振周波数又は共振電圧の少なくとも一方を検出し、この検出値の経時変化の傾きを上記閾値と比較することで、客観的に乾燥完了時点を判定できる。
このように、物品内部の乾燥完了時点を非破壊で判定できるため、乾燥時間を余分に設定する必要がなくなり、そのため、凍結乾燥に要する時間を短縮できる。また、凍結乾燥中にリアルタイムで乾燥完了時点を判定できるため、乾燥未了の不良品を低減できる。
また、マイクロ波は、ガラス、紙、ポリエチレン、ポリスチレン等の樹脂に対して透過性が高いため、物品をこれら材料でできた容器に入れたまま検査できる。従って、物品に対して非接触な検査が可能になる。
なお、上記閾値は、過去の実験データなどから適宜に設定する。
According to the configuration of (6) above, at least one of the resonance frequency or the resonance voltage when the resonance electromagnetic field is applied to the determination target article is detected by the detector, and the gradient of the change over time of the detected value is set as the threshold value. By comparing, it is possible to objectively determine the drying completion point.
In this way, since the drying completion time inside the article can be determined non-destructively, it is not necessary to set an extra drying time, and therefore the time required for freeze-drying can be shortened. Moreover, since the completion point of drying can be determined in real time during freeze-drying, defective products that have not been dried can be reduced.
In addition, since microwaves are highly permeable to resins such as glass, paper, polyethylene, polystyrene, etc., it is possible to inspect while keeping an article in a container made of these materials. Therefore, non-contact inspection can be performed on the article.
The threshold value is appropriately set from past experimental data.

(7)一実施形態では、前記(6)の構成において、
前記判定部は、
前記閾値を記憶する記憶部と、
前記検出器で検出された前記検出値の経時変化と前記閾値とを比較し、前記検出値の経時変化の傾きが前記閾値を超えたとき、前記物品の乾燥完了時点と判定する演算部と、
を含む。
上記(7)の構成によれば、上記演算部で、検出器で検出した経時変化の傾きと実験データなどから予め設定した閾値とを比較することで、乾燥完了時点を客観的に判定できる。
(7) In one embodiment, in the configuration of (6),
The determination unit
A storage unit for storing the threshold value;
Comparing the change over time of the detection value detected by the detector and the threshold value, and when the slope of the change over time of the detection value exceeds the threshold value, a calculation unit that determines the completion of drying of the article;
including.
According to the configuration of (7) above, the calculation unit can objectively determine the drying completion time point by comparing the slope of the change with time detected by the detector and a preset threshold value from experimental data or the like.

(8)一実施形態に係る凍結乾燥装置は、
物品を凍結する凍結部と、
前記凍結部で凍結された前記物品が収容される乾燥容器と、
前記乾燥容器に収容された前記物品に昇華用熱を付加する加熱部と、
前記乾燥容器の内部を減圧する減圧部と、
前記(6)又は(7)の構成を有する凍結乾燥物品の内部状態判定装置と、
を備える。
(8) A freeze-drying apparatus according to an embodiment includes:
A freezing part for freezing the article;
A drying container in which the article frozen in the freezing section is stored;
A heating unit for applying heat for sublimation to the article contained in the drying container;
A decompression section for decompressing the inside of the drying container;
An internal state determination device for a freeze-dried article having the configuration of (6) or (7);
Is provided.

上記(8)の構成において、乾燥工程では、上記凍結部で凍結された物品を上記乾燥容器に入れ、乾燥容器内を減圧すると共に、物品に昇華用熱を付加することで、物品内部の氷成分を昇華させる。このとき、上記内部状態判定装置を備えることで、凍結乾燥中の物品内部の乾燥完了時点を非破壊で判定できる。これによって、乾燥時間を余分に設定する必要がなくなり、凍結乾燥に要する時間を短縮できると共に、凍結乾燥工程中に乾燥完了時点をリアルタイムで判定できるので、乾燥未了の不良品を低減できる。
また、マイクロ波は、ガラス、紙、ポリエチレン、ポリスチレン等の樹脂に対して透過性が高いため、物品をこれら材料でできた容器に入れたまま検査できる。従って、物品に対して非接触な検査が可能になる。
In the configuration of (8) above, in the drying step, the article frozen in the freezing section is placed in the drying container, the inside of the drying container is depressurized, and the ice inside the article is added by applying heat for sublimation to the article. Sublimate ingredients. At this time, by providing the internal state determination device, it is possible to determine the completion point of drying inside the article during lyophilization without destruction. Accordingly, it is not necessary to set an extra drying time, the time required for freeze-drying can be shortened, and the time point of completion of drying can be determined in real time during the freeze-drying process, so that defective products that have not been dried can be reduced.
In addition, since microwaves are highly permeable to resins such as glass, paper, polyethylene, polystyrene, etc., it is possible to inspect while keeping an article in a container made of these materials. Therefore, non-contact inspection can be performed on the article.

(9)一実施形態では、前記(8)の構成において、
前記内部状態判定装置は前記物品に前記共振電磁場を作用させる前記マイクロ波発振器を含み、
前記マイクロ波共振器は前記乾燥容器の内部に配置され、前記乾燥容器の内部で前記物品に前記共振電磁場を作用させる。
上記(9)の構成によれば、上記乾燥容器の内部で物品にマイクロ波共振器を作用させることができるので、共振周波数又は共振ピーク電圧の検出値の経時変化が明瞭に現れる。これによって、乾燥完了時点を正確に判定できる。
(9) In one embodiment, in the configuration of (8),
The internal state determination device includes the microwave oscillator that causes the resonance electromagnetic field to act on the article,
The microwave resonator is disposed inside the drying container, and causes the resonance electromagnetic field to act on the article inside the drying container.
According to the configuration of (9), since the microwave resonator can act on the article inside the drying container, the change with time in the detected value of the resonance frequency or the resonance peak voltage clearly appears. Thereby, it is possible to accurately determine the drying completion time point.

一実施形態によれば、凍結乾燥中の物品内部の乾燥完了時点を非破壊で判定できるため、乾燥時間を余分に設定する必要がなくなり、凍結乾燥に要する時間を短縮できる。また、凍結乾燥中にリアルタイムで物品内部の乾燥状態を判定できるため、乾燥未了の不良品を低減できる。   According to one embodiment, it is possible to determine the completion point of drying inside the article during lyophilization in a nondestructive manner, so that it is not necessary to set an extra drying time, and the time required for lyophilization can be shortened. Moreover, since the dry state inside the article can be determined in real time during freeze-drying, defective products that have not been dried can be reduced.

一実施形態に係る内部状態判定装置の系統図である。It is a systematic diagram of the internal state determination device according to an embodiment. 一実施形態に係るマイクロ波共振器の概略図である。It is the schematic of the microwave resonator which concerns on one Embodiment. 一実施形態に係る内部状態判定方法の工程図である。It is process drawing of the internal state determination method which concerns on one Embodiment. 一実施形態に係る乾燥容器の概略図である。It is the schematic of the drying container which concerns on one Embodiment. 一実施形態に係る共振周波数の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the resonant frequency which concerns on one Embodiment. 一実施形態に係る共振電圧の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the resonant voltage which concerns on one Embodiment. 一実施形態に係る凍結乾燥工程を示す概略図である。It is the schematic which shows the freeze-drying process which concerns on one Embodiment. (A)は一実施形態に係る凍結乾燥装置の凍結部の正面視断面図であり、(B)は該凍結乾燥装置の乾燥部の正面視断面図である。(A) is front sectional drawing of the freezing part of the freeze-drying apparatus which concerns on one Embodiment, (B) is front sectional drawing of the drying part of this freeze-drying apparatus.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples.
For example, expressions expressing relative or absolute arrangements such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” are strictly In addition to such an arrangement, it is also possible to represent a state of relative displacement with an angle or a distance such that tolerance or the same function can be obtained.
For example, an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
For example, expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of other constituent elements.

図1は、凍結乾燥される物品の内部状態判定を判定する一実施形態に係る判定装置10を示す。
判定装置10は、マイクロ波を発振するマイクロ波発振器12を備える。マイクロ波発振器12で発振されたマイクロ波はマイクロ波共振器14に供給され、マイクロ波共振器14でマイクロ波の共振電磁場を形成する。
マイクロ波検出器16は、共振電磁場に形成された共振周波数又は共振電圧の少なくとも一方を検出する。検査対象物品の乾燥完了時点を判定するときは、凍結乾燥中の物品に共振電磁場を作用させたときの共振周波数又は共振電圧を検出し、その検出値を判定部18に送る。
判定部18は、例えば、パーソナルコンピュータなどの電子計算機であり、マイクロ波検出器16で検出した検出値の経時変化の傾きが予め設定された閾値(正の傾きを有する閾値)を超えたとき、物品内部の乾燥が完了したと判定する。
FIG. 1 shows a determination apparatus 10 according to an embodiment for determining an internal state determination of an article to be freeze-dried.
The determination apparatus 10 includes a microwave oscillator 12 that oscillates a microwave. The microwave oscillated by the microwave oscillator 12 is supplied to the microwave resonator 14, and the microwave resonator 14 forms a microwave resonant electromagnetic field.
The microwave detector 16 detects at least one of a resonance frequency and a resonance voltage formed in the resonance electromagnetic field. When determining the drying completion time of the article to be inspected, the resonance frequency or resonance voltage when a resonance electromagnetic field is applied to the article being freeze-dried is detected, and the detected value is sent to the determination unit 18.
The determination unit 18 is an electronic computer such as a personal computer, for example, and when the slope of the change over time of the detection value detected by the microwave detector 16 exceeds a preset threshold value (threshold value having a positive slope), It is determined that the drying inside the article has been completed.

上記構成によれば、物品内部の乾燥完了時点を非破壊で判定できるため、乾燥時間を余分に設定する必要がなくなり、そのため、凍結乾燥に要する時間を短縮できる。また、凍結乾燥中にリアルタイムで乾燥完了時点を判定できるため、乾燥未了の不良品を低減できる。
また、マイクロ波は、ガラス、紙、ポリエチレン、ポリスチレン等の樹脂に対して透過性が高いため、物品をこれら材料でできた容器に入れたまま検査できる。従って、物品に対して非接触な検査が可能になる。
なお、上記閾値は、過去の実験データなどから適宜に設定する。
According to the above configuration, it is possible to determine the drying completion time inside the article in a non-destructive manner, so that it is not necessary to set an extra drying time, and therefore the time required for freeze-drying can be shortened. Moreover, since the completion point of drying can be determined in real time during freeze-drying, defective products that have not been dried can be reduced.
In addition, since microwaves are highly permeable to resins such as glass, paper, polyethylene, polystyrene, etc., it is possible to inspect while keeping an article in a container made of these materials. Therefore, non-contact inspection can be performed on the article.
The threshold value is appropriately set from past experimental data.

一実施形態では、図2に示すように、マイクロ波共振器14上に凍結乾燥される物品Mが収納された容器34が載置される。容器34は、例えば、上方が開放された皿状の容器であるが、この形状に限定されず、物品Mを内部に収納可能な袋状であってもよい。容器34は、マイクロ波に対して透過性が高いガラス、紙及び樹脂で構成される。
この実施形態によれば、物品Mを容器34に入れたまま検査できるため、物品Mに対してマイクロ波共振器14が非接触で検査が可能になる。
In one embodiment, as shown in FIG. 2, a container 34 containing an article M to be lyophilized is placed on the microwave resonator 14. The container 34 is, for example, a dish-shaped container having an open top, but is not limited to this shape, and may be a bag that can store the article M therein. The container 34 is made of glass, paper, and resin that are highly permeable to microwaves.
According to this embodiment, since the article M can be inspected while being placed in the container 34, the microwave resonator 14 can be inspected without contact with the article M.

一実施形態では、物品Mは、例えば、食品であり、あるいはワクチンなどの製薬用溶液である。
このように、物品Mが食品又は製薬用溶液である場合に、物品内部の乾燥完了時点を非破壊で判定できるため、乾燥時間を余分に設定する必要がなくなり、そのため、凍結乾燥に要する時間を短縮できる。また、凍結乾燥中にリアルタイムで乾燥完了時点を判定できるため、乾燥未了の不良品を低減できる。
In one embodiment, article M is, for example, a food product or a pharmaceutical solution such as a vaccine.
In this way, when the article M is a food or pharmaceutical solution, it is possible to determine the drying completion time inside the article in a non-destructive manner, so there is no need to set an extra drying time. Can be shortened. Moreover, since the completion point of drying can be determined in real time during freeze-drying, defective products that have not been dried can be reduced.

一実施形態では、図1に示すように、判定部18は、閾値を記憶するメモリ20(記憶部)と演算部22とを含む。演算部22は、マイクロ波検出器16で検出された検出値の経時変化と閾値とを比較し、検出値の経時変化の傾きが閾値を超えたとき、物品の乾燥完了時点と判定する。
この実施形態によれば、演算部22で、マイクロ波検出器16で検出した検出値の経時変化の傾きと実験データなどから予め設定した閾値とを比較することで、乾燥完了時点を客観的に判定できる。
In one embodiment, as illustrated in FIG. 1, the determination unit 18 includes a memory 20 (storage unit) that stores a threshold value and a calculation unit 22. The computing unit 22 compares the change in the detected value with time detected by the microwave detector 16 with a threshold value, and determines that the drying of the article is complete when the gradient of the change in the detected value with time exceeds the threshold value.
According to this embodiment, the calculating unit 22 compares the slope of the change in the detected value detected by the microwave detector 16 with the threshold value set in advance from experimental data, thereby objectively determining the drying completion time point. Can be judged.

一実施形態では、さらに、マイクロ波検出器16で検出された検出値の経時変化及び判定結果等をディスプレイなどに表示する表示部24を備える。表示部24を備えることで、作業員が物品内部の凍結乾燥の進捗状態をビジュアルに把握できる。   In one embodiment, the display unit 24 further displays on a display or the like the change over time of the detection value detected by the microwave detector 16 and the determination result. By providing the display unit 24, the worker can visually grasp the progress of freeze-drying inside the article.

一実施形態では、マイクロ波発振器12から発信されたマイクロ波は、ケーブル26を介してサーキュレータ28に供給される。サーキュレータ28は、マイクロ波発振器12から発信されたマイクロ波が反射してマイクロ波発振器12を損傷させないために、反射するマイクロ波がマイクロ波発振器12に伝播するのを規制する。
サーキュレータ28から出力されたマイクロ波は、ケーブル26を介して減衰器30に供給され、減衰器30でノイズが除去された後、マイクロ波共振器14に供給される。マイクロ波共振器14から出力されるマイクロ波は、ケーブル26を介して減衰器32に供給され、減衰器32でノイズが除去された後、マイクロ波検出器16で検出される、マイクロ波検出器16で検出されたマイクロ波の検出信号は判定部18に送られる。
In one embodiment, the microwave transmitted from the microwave oscillator 12 is supplied to the circulator 28 via the cable 26. The circulator 28 regulates propagation of the reflected microwave to the microwave oscillator 12 so that the microwave transmitted from the microwave oscillator 12 is not reflected and damages the microwave oscillator 12.
The microwave output from the circulator 28 is supplied to the attenuator 30 via the cable 26, and after noise is removed by the attenuator 30, the microwave is supplied to the microwave resonator 14. The microwave output from the microwave resonator 14 is supplied to the attenuator 32 via the cable 26, noise is removed by the attenuator 32, and then detected by the microwave detector 16. The microwave detection signal detected at 16 is sent to the determination unit 18.

一実施形態に係る内部乾燥状態判定方法は、凍結乾燥中に凍結乾燥される物品Mの内部乾燥状態を判定する方法である。
図3に示すように、凍結乾燥される物品Mにマイクロ波共振器14を用いて形成されるマイクロ波の共振電磁場を作用させ、共振電磁場の共振周波数又は共振電圧の少なくとも一方を検出する(検出ステップS12)。
次に、検出ステップS12で得た検出値の経時変化に基づいて物品Mの内部の乾燥完了時点を判定する(判定ステップS14)。
The internal dry state determination method according to an embodiment is a method of determining the internal dry state of an article M that is freeze-dried during freeze-drying.
As shown in FIG. 3, a microwave resonant electromagnetic field formed by using the microwave resonator 14 is applied to the freeze-dried article M, and at least one of the resonant frequency or resonant voltage of the resonant electromagnetic field is detected (detection). Step S12).
Next, the time point of completion of drying inside the article M is determined based on the temporal change of the detection value obtained in the detection step S12 (determination step S14).

上記方法によれば、物品Mに対するマイクロ波の特性を利用することで、物品内部の乾燥完了時点を非破壊で判定できる。
これによって、乾燥時間を余分に設定する必要がなくなり、凍結乾燥に要する時間を短縮できる。また、凍結乾燥中に乾燥完了時点を正確に判定できるため、乾燥未了の不良品を低減できる。
また、凍結乾燥中に物品が乾燥完了時点に達したことをリアルタイムで判定できる。さらに、マイクロ波は、ガラス、紙、ポリエチレン、ポリスチレン等の樹脂に対して透過性が高いため、物品をこれら材料でできた容器に入れたまま検査できる。従って、物品に対して非接触な検査が可能になる。
According to the above method, by using the characteristics of the microwave with respect to the article M, it is possible to determine the time point when the drying inside the article is completed without breaking.
As a result, it is not necessary to set an extra drying time, and the time required for freeze-drying can be shortened. In addition, since the completion point of drying can be accurately determined during freeze-drying, defective products that have not been dried can be reduced.
In addition, it can be determined in real time that the article has reached the point of completion of drying during freeze-drying. Furthermore, since microwaves are highly permeable to resins such as glass, paper, polyethylene, polystyrene, etc., it is possible to inspect while keeping an article in a container made of these materials. Therefore, non-contact inspection can be performed on the article.

図4〜図6は、凍結乾燥される物品として5%マンニトール溶液を用い、凍結乾燥中にこの溶液の共振周波数及び共振電圧をモニタリングしたものである。
図4はこのとき用いた実験器具を示す。密封可能で透明な密封容器40の中に、サンプルMを入れたシャーレ42を配置する。密封容器40の内部を真空ポンプ(不図示)に接続された吸引管44で吸引して減圧する。その後、密封容器40の外側に配置したマイクロ波共振器14でサンプルMに共振電磁場を作用させ、マイクロ波検出器16でその共振電磁場に発生した共振周波数及び共振電圧の経時変化を検出した。図5及び図6は検出された経時変化を示す。
4 to 6 show a case where a 5% mannitol solution is used as an article to be lyophilized, and the resonance frequency and resonance voltage of the solution are monitored during lyophilization.
FIG. 4 shows the experimental instrument used at this time. A petri dish 42 containing the sample M is placed in a sealable and transparent sealed container 40. The inside of the sealed container 40 is sucked and decompressed by a suction pipe 44 connected to a vacuum pump (not shown). Thereafter, a resonant electromagnetic field was applied to the sample M by the microwave resonator 14 disposed outside the sealed container 40, and the time-dependent changes in the resonant frequency and resonant voltage generated in the resonant electromagnetic field were detected by the microwave detector 16. 5 and 6 show the detected change with time.

図5及び図6に示す経時変化には、時間t1で急激な変化が表れており、判定部18では時間t1で乾燥が完了したと判定する(判定ステップS14)。例えば、図5及び図6において、閾値が傾きαであるとすると、時間t1で傾きαを超えた経時変化が発生している。
このように、共振周波数及び共振電圧は、乾燥完了時点で明瞭な変化が現れるので、容易に乾燥完了時点を判定できる。
5 and 6 show a rapid change at time t1, and the determination unit 18 determines that the drying is completed at time t1 (determination step S14). For example, in FIG. 5 and FIG. 6, if the threshold value is an inclination α, a change with time exceeding the inclination α occurs at time t1.
Thus, the resonance frequency and the resonance voltage change clearly at the time when the drying is completed, so that the time when the drying is completed can be easily determined.

一実施形態では、図3に示す判定ステップS14において、上記検出値の経時変化の傾きが予め設定された閾値を超えた時点を物品Mの内部の乾燥完了時点であると判定する。乾燥完了時点と判定できる傾きは正の傾きである。
この実施形態によれば、検出値の経時変化の傾きを閾値と比較することで、乾燥完了時点を客観的に判定できる。
なお、正の傾きの閾値は、過去の実験データなどから適宜に設定する。
In one embodiment, in the determination step S14 shown in FIG. 3, it is determined that the time point at which the slope of the change over time of the detected value exceeds a preset threshold is the time point when the drying inside the article M is completed. The inclination that can be determined as the drying completion time is a positive inclination.
According to this embodiment, the time point of completion of drying can be objectively determined by comparing the slope of the change over time of the detected value with a threshold value.
Note that the positive slope threshold is appropriately set based on past experimental data.

一実施形態では、判定ステップS14において、図5及び図6に示すように、検出値が不連続に上昇した時点を物品Mの内部の乾燥完了時点であると判定する。
この実施形態によれば、検出値が不連続で上昇した時点を乾燥完了時点とすることで、明瞭に乾燥完了時点を判定できる。
なお、図5及び図6は凍結乾燥される物品Mとして、5%マンニトール溶液を用いた場合の経時変化曲線であるが、物品Mとして食品を用いた場合でも、共振周波数及び共振電圧の検出値の経時変化は、乾燥完了時点において、図5及び図6とほぼ同様に、不連続に上昇した経時変化曲線が得られる。
In one embodiment, as shown in FIGS. 5 and 6, in the determination step S <b> 14, it is determined that the time point at which the detected value has risen discontinuously is the time point at which drying inside the article M is completed.
According to this embodiment, when the detected value rises discontinuously is set as the drying completion time, the drying completion time can be clearly determined.
5 and 6 are time-dependent change curves when a 5% mannitol solution is used as the article M to be lyophilized, but even when food is used as the article M, the detected values of the resonance frequency and the resonance voltage are shown. As for the change with time, when the drying is completed, a time-dependent change curve that rises discontinuously is obtained in substantially the same manner as in FIGS.

一実施形態では、図3に示すように、物品Mを凍結乾燥する工程S10として、物品Mを冷却して凍結する凍結ステップS10aと、凍結された物品Mを乾燥させる乾燥ステップS10bと、を含む。
図7は、一実施形態に係る凍結乾燥工程S10を示す。
図7に示すように、乾燥ステップS10bでは、物品Mを乾燥容器46の中に入れ、乾燥容器46の内部を減圧しかつ物品Mを加熱して昇華用熱を付加し、物品内部の氷成分(氷晶)を昇華させる。乾燥容器46の内部にマイクロ波共振器14を配置し、検出ステップS12において、マイクロ波共振器14によって共振電磁場を形成させ、乾燥中の物品Mに共振電磁場を作用させる。
In one embodiment, as shown in FIG. 3, the step S10 for freeze-drying the article M includes a freezing step S10a for cooling and freezing the article M, and a drying step S10b for drying the frozen article M. .
FIG. 7 shows a freeze-drying step S10 according to one embodiment.
As shown in FIG. 7, in the drying step S <b> 10 b, the article M is put in the drying container 46, the inside of the drying container 46 is decompressed and the article M is heated to add heat for sublimation, and the ice component inside the article Sublimate (ice crystals). The microwave resonator 14 is disposed inside the drying container 46, and in the detection step S12, a resonance electromagnetic field is formed by the microwave resonator 14, and the resonance electromagnetic field is applied to the article M being dried.

この実施形態によれば、乾燥容器46の内部にマイクロ波共振器14を配置することで、検出値の経時変化が明瞭に現れるため、乾燥完了時点を正確に判定できる。   According to this embodiment, by arranging the microwave resonator 14 inside the drying container 46, the change with time of the detected value clearly appears, so that the drying completion time can be accurately determined.

一実施形態では、凍結ステップS10aにおいて、図7に示すように、物品Mを内部を冷凍温度に保持可能な冷凍庫48に収納し凍結処理する。   In one embodiment, in the freezing step S10a, as shown in FIG. 7, the article M is stored in a freezer 48 capable of maintaining the inside at a freezing temperature and subjected to a freezing process.

図8は、一実施形態に係る凍結乾燥装置50を示し、凍結部52と乾燥容器54とを備える。図8(A)は、凍結乾燥の対象となる物品Mを凍結する凍結部52を示し、図8(B)は、凍結部52で凍結された物品Mが乾燥処理される乾燥容器54を示す。
乾燥容器54は、内部を密封可能な容器であり、乾燥容器54に収容された物品Mに昇華用熱を付加する加熱部56と、乾燥容器54の内部を減圧する減圧部58と、を有する。
さらに、凍結乾燥装置50は、凍結乾燥される物品Mの内部乾燥状態を判定する上記各実施形態に係る判定装置10を備える。
FIG. 8 shows a freeze-drying apparatus 50 according to an embodiment, and includes a freezing unit 52 and a drying container 54. 8A shows a freezing unit 52 that freezes an article M to be freeze-dried, and FIG. 8B shows a drying container 54 in which the article M frozen by the freezing unit 52 is subjected to a drying process. .
The drying container 54 is a container whose inside can be sealed, and includes a heating unit 56 that applies heat for sublimation to the article M accommodated in the drying container 54, and a decompression unit 58 that decompresses the inside of the drying container 54. .
Furthermore, the freeze-drying device 50 includes the determination device 10 according to each of the embodiments described above that determines the internal drying state of the article M to be freeze-dried.

物品Mは凍結部52で凍結された後、乾燥容器54で乾燥される。減圧部58によって減圧された乾燥容器54の内部で、物品Mに加熱部56から昇華用熱が付加されることで、物品Mに含まれる氷成分は解けることなく昇華する。これによって、物品Mは品質を損なうことなく乾燥される。
一実施形態では、加熱部56は電気ヒータであり、又は内部を加熱媒体が流れる加熱プレートや配管等で構成される。
The article M is frozen in the freezing unit 52 and then dried in the drying container 54. Inside the drying container 54 decompressed by the decompression unit 58, heat for sublimation is applied to the article M from the heating unit 56, so that the ice component contained in the article M is sublimated without melting. Thereby, the article M is dried without impairing the quality.
In one embodiment, the heating unit 56 is an electric heater, or is configured by a heating plate, piping, or the like through which a heating medium flows.

上記構成によれば、判定装置10を備えるため、凍結乾燥された物品Mの内部の乾燥完了有無を非破壊で判定できる。そのため、乾燥時間を余分に設定する必要がなくなり、凍結乾燥に要する時間を短縮できる。また、凍結乾燥中にリアルタイムで乾燥完了時点を正確に判定できるため、乾燥未了の不良品を低減できる。
さらに、マイクロ波は、ガラス、紙、ポリエチレン、ポリスチレン等の樹脂に対して透過性が高いため、図2に示すように、物品をこれら材料でできた容器34に入れたまま検査できる。従って、物品Mに対して非接触な検査が可能になる。
According to the above configuration, since the determination device 10 is provided, the presence / absence of completion of drying inside the freeze-dried article M can be determined nondestructively. Therefore, it is not necessary to set an extra drying time, and the time required for freeze-drying can be shortened. Moreover, since the completion point of drying can be accurately determined in real time during freeze-drying, defective products that have not been dried can be reduced.
Furthermore, since microwaves are highly permeable to resins such as glass, paper, polyethylene, polystyrene, etc., as shown in FIG. 2, the article can be inspected while placed in a container 34 made of these materials. Therefore, non-contact inspection can be performed on the article M.

一実施形態では、図8(B)に示すように、判定装置10は、物品Mに共振電磁場を作用させるマイクロ波共振器14を含む。マイクロ波共振器14は乾燥容器54の内部に配置され、乾燥容器54の内部で物品Mに共振電磁場を作用させる。
この実施形態によれば、乾燥容器54の内部に設けられたマイクロ波共振器14で物品Mに共振電磁場を作用させることができるので、共振周波数又は共振電圧の検出値の経時変化を明瞭に捉えることができる。これによって、乾燥完了時点を正確に判定できる。
In one embodiment, as illustrated in FIG. 8B, the determination apparatus 10 includes a microwave resonator 14 that applies a resonant electromagnetic field to the article M. The microwave resonator 14 is disposed inside the drying container 54, and causes a resonance electromagnetic field to act on the article M inside the drying container 54.
According to this embodiment, since the resonance electromagnetic field can be applied to the article M by the microwave resonator 14 provided inside the drying container 54, a change with time in the detected value of the resonance frequency or the resonance voltage can be clearly captured. be able to. Thereby, it is possible to accurately determine the drying completion time point.

一実施形態では、凍結部52は、内部に冷却空間を形成可能なハウジング60と、ハウジング60の内部で物品Mを搬送するコンベア62とを備えたフリーザで構成される。該フリーザはハウジング60の内部にハウジング内空気を冷却可能なクーラユニット64を備える。クーラユニット64には、冷凍機(不図示)から冷媒又はブラインが循環される。ファン66でハウジング内の空気が循環され、クーラユニット64で冷却される。
一実施形態では、減圧部58は減圧ポンプを含む。該減圧ポンプの稼働で乾燥容器54の内部空気を排出し、乾燥容器内を減圧する。
一実施形態では、乾燥容器54の内部に台59が設けられ、物品Mは台59の上面に載置され、マイクロ波共振器14及び加熱部56は台59の裏面に固定される。
In one embodiment, the freezing part 52 is configured by a freezer including a housing 60 capable of forming a cooling space therein, and a conveyor 62 that conveys the article M inside the housing 60. The freezer includes a cooler unit 64 capable of cooling the air in the housing inside the housing 60. In the cooler unit 64, refrigerant or brine is circulated from a refrigerator (not shown). The air in the housing is circulated by the fan 66 and cooled by the cooler unit 64.
In one embodiment, the decompression unit 58 includes a decompression pump. By operating the decompression pump, the air inside the drying container 54 is discharged, and the inside of the drying container is decompressed.
In one embodiment, a table 59 is provided inside the drying container 54, the article M is placed on the upper surface of the table 59, and the microwave resonator 14 and the heating unit 56 are fixed to the back surface of the table 59.

少なくとも一実施形態によれば、凍結乾燥中の物品内部の乾燥完了時点を非破壊で判定できるため、乾燥時間を余分に設定する必要がなくなり、凍結乾燥に要する時間を短縮できる。また、凍結乾燥中にリアルタイムで物品内部の乾燥状態を判定できるため、乾燥未了の不良品を低減できる。   According to at least one embodiment, it is possible to determine non-destructively the drying completion point inside the article during lyophilization, so that it is not necessary to set an extra drying time, and the time required for lyophilization can be shortened. Moreover, since the dry state inside the article can be determined in real time during freeze-drying, defective products that have not been dried can be reduced.

10 判定装置
12 マイクロ波発振器
14 マイクロ波共振器
16 マイクロ波検出器
18 判定部
20 メモリ(記憶部)
22 演算部
24 表示部
26 ケーブル
28 サーキュレータ
30、32 減衰器
34 容器
40 密封容器
42 シャーレ
44 吸引管
46、54 乾燥容器
48 冷凍庫
50 凍結乾燥装置
52 凍結部
56 加熱部
58 減圧部
59 台
60 ハウジング
62 コンベア
64 クーラユニット
66 ファン
M 物品
DESCRIPTION OF SYMBOLS 10 Determination apparatus 12 Microwave oscillator 14 Microwave resonator 16 Microwave detector 18 Judgment part 20 Memory (memory | storage part)
DESCRIPTION OF SYMBOLS 22 Calculation part 24 Display part 26 Cable 28 Circulator 30, 32 Attenuator 34 Container 40 Sealed container 42 Petri dish 44 Suction tube 46, 54 Drying container 48 Freezer 50 Freeze-drying device 52 Freezing part 56 Heating part 58 Decompression part 59 Unit 60 Housing 62 Conveyor 64 Cooler unit 66 Fan M Goods

Claims (9)

凍結乾燥中に凍結乾燥される物品の内部乾燥状態を判定する方法であって、
前記物品にマイクロ波共振器を用いて形成されるマイクロ波の共振電磁場を作用させ、前記共振電磁場の共振周波数又は共振電圧の少なくとも一方を検出する検出ステップと、
前記検出ステップで得た検出値の経時変化に基づいて前記物品の内部の乾燥完了時点を判定する判定ステップと、
を備えることを特徴とする凍結乾燥物品の内部状態判定方法。
A method for determining the internal dry state of an article that is freeze-dried during freeze-drying,
A step of detecting a resonance frequency or a resonance voltage of the resonance electromagnetic field by causing a microwave resonance electromagnetic field formed using a microwave resonator to act on the article;
A determination step of determining a drying completion time point inside the article based on a change over time of the detection value obtained in the detection step;
A method for determining the internal state of a freeze-dried article, comprising:
前記判定ステップにおいて、
前記検出値の経時変化の傾きが予め設定された閾値を超えた時点を前記物品の内部の乾燥完了時点であると判定することを特徴とする請求項1に記載の凍結乾燥物品の内部状態判定方法。
In the determination step,
2. The internal state determination of a freeze-dried article according to claim 1, wherein it is determined that a time point when a slope of a change with time of the detected value exceeds a preset threshold value is a time point when drying of the inside of the article is completed. Method.
前記判定ステップにおいて、
前記検出値が不連続で上昇した時点を前記物品の内部の乾燥完了時点であると判定することを特徴とする請求項2に記載の凍結乾燥物品の内部状態判定方法。
In the determination step,
3. The method for determining the internal state of a freeze-dried article according to claim 2, wherein the time when the detected value rises discontinuously is determined as the time when the drying of the inside of the article is completed.
前記物品を凍結乾燥する工程が、
前記物品を冷却して凍結する凍結ステップと、
前記物品を乾燥容器に入れ、前記乾燥容器の内部を減圧しかつ前記物品を加熱して前記物品内部の氷成分を昇華させる乾燥ステップと、
備え、
前記検出ステップにおいて、
前記乾燥容器の内部に配置した前記マイクロ波共振器によって前記共振電磁場を形成することを特徴とする請求項1乃至3の何れか一項に記載の凍結乾燥物品の内部状態判定方法。
Freeze-drying the article,
A freezing step of cooling and freezing the article;
A drying step of placing the article in a drying container, depressurizing the inside of the drying container and heating the article to sublimate ice components inside the article;
Prepared,
In the detection step,
The method for determining an internal state of a freeze-dried article according to any one of claims 1 to 3, wherein the resonance electromagnetic field is formed by the microwave resonator disposed inside the drying container.
前記物品が食品又は製薬用溶液であることを特徴とする請求項1乃至4の何れか一項に記載の凍結乾燥物品の内部状態判定方法。   The method for determining the internal state of a freeze-dried article according to any one of claims 1 to 4, wherein the article is a food or pharmaceutical solution. 凍結乾燥される物品の内部乾燥状態を判定する装置であって、
マイクロ波を発振するマイクロ波発振器と、
前記マイクロ波発振器で発振された前記マイクロ波の共振電磁場を形成するマイクロ波共振器と、
前記共振電磁場に形成された共振周波数又は共振電圧の少なくとも一方を検出する検出器と、
前記物品に前記共振電磁場を作用させたときに前記検出器で検出された検出値の経時変化の傾きが予め設定された閾値を超えたとき、前記物品の内部の乾燥が完了したと判定する判定部と、
を備えることを特徴とする凍結乾燥物品の内部状態判定装置。
An apparatus for determining an internal dry state of an article to be freeze-dried,
A microwave oscillator that oscillates microwaves;
A microwave resonator that forms a resonant electromagnetic field of the microwave oscillated by the microwave oscillator;
A detector for detecting at least one of a resonance frequency or a resonance voltage formed in the resonance electromagnetic field;
Judgment that the drying of the interior of the article is completed when the slope of the change over time of the detected value detected by the detector when the resonant electromagnetic field is applied to the article exceeds a preset threshold value And
A device for determining the internal state of a freeze-dried article, comprising:
前記判定部は、
前記閾値を記憶する記憶部と、
前記検出器で検出された前記検出値の経時変化と前記閾値とを比較し、前記検出値の経時変化の傾きが前記閾値を超えたとき、前記物品の乾燥完了時点と判定する演算部と、
を含むことを特徴とする請求項6に記載の凍結乾燥物品の内部状態判定装置。
The determination unit
A storage unit for storing the threshold value;
Comparing the change over time of the detection value detected by the detector and the threshold value, and when the slope of the change over time of the detection value exceeds the threshold value, a calculation unit that determines the completion of drying of the article,
The internal state determination device for a freeze-dried article according to claim 6.
物品を凍結する凍結部と、
前記凍結部で凍結された前記物品が収容される乾燥容器と、
前記乾燥容器に収容された前記物品に昇華用熱を付加する加熱部と、
前記乾燥容器の内部を減圧する減圧部と、
請求項6又は7に記載の凍結乾燥物品の内部状態判定装置と、
を備えることを特徴とする凍結乾燥装置。
A freezing part for freezing the article;
A drying container in which the article frozen in the freezing section is stored;
A heating unit for applying heat for sublimation to the article contained in the drying container;
A decompression section for decompressing the inside of the drying container;
The internal state determination device for a freeze-dried article according to claim 6 or 7,
A freeze-drying apparatus comprising:
前記内部状態判定装置は前記物品に前記共振電磁場を作用させる前記マイクロ波発振器を含み、
前記マイクロ波共振器は前記乾燥容器の内部に配置され、前記乾燥容器の内部で前記物品に前記共振電磁場を作用させることを特徴とする請求項8に記載の凍結乾燥装置。
The internal state determination device includes the microwave oscillator that causes the resonance electromagnetic field to act on the article,
9. The freeze-drying apparatus according to claim 8, wherein the microwave resonator is disposed inside the drying container and causes the resonance electromagnetic field to act on the article inside the drying container.
JP2017066336A 2017-03-29 2017-03-29 Internal condition determination method, internal condition determination device and freeze-drying device for freeze-dried products Active JP6914076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017066336A JP6914076B2 (en) 2017-03-29 2017-03-29 Internal condition determination method, internal condition determination device and freeze-drying device for freeze-dried products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017066336A JP6914076B2 (en) 2017-03-29 2017-03-29 Internal condition determination method, internal condition determination device and freeze-drying device for freeze-dried products

Publications (2)

Publication Number Publication Date
JP2018169083A true JP2018169083A (en) 2018-11-01
JP6914076B2 JP6914076B2 (en) 2021-08-04

Family

ID=64020101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017066336A Active JP6914076B2 (en) 2017-03-29 2017-03-29 Internal condition determination method, internal condition determination device and freeze-drying device for freeze-dried products

Country Status (1)

Country Link
JP (1) JP6914076B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021060153A (en) * 2019-10-07 2021-04-15 国立研究開発法人産業技術総合研究所 Sublimation device and sublimation method
CN112881235A (en) * 2019-11-29 2021-06-01 深圳市帝迈生物技术有限公司 Sample analysis device and method for calculating solidification time

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156499A (en) * 2007-12-26 2009-07-16 Ulvac Japan Ltd Method of confirming drying end point in vacuum drying device
JP2017044520A (en) * 2015-08-25 2017-03-02 王子ホールディングス株式会社 Device and method for measuring moisture content in powders

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156499A (en) * 2007-12-26 2009-07-16 Ulvac Japan Ltd Method of confirming drying end point in vacuum drying device
JP2017044520A (en) * 2015-08-25 2017-03-02 王子ホールディングス株式会社 Device and method for measuring moisture content in powders

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021060153A (en) * 2019-10-07 2021-04-15 国立研究開発法人産業技術総合研究所 Sublimation device and sublimation method
JP7390703B2 (en) 2019-10-07 2023-12-04 国立研究開発法人産業技術総合研究所 Sublimation equipment and sublimation method
CN112881235A (en) * 2019-11-29 2021-06-01 深圳市帝迈生物技术有限公司 Sample analysis device and method for calculating solidification time
CN112881235B (en) * 2019-11-29 2021-11-16 深圳市帝迈生物技术有限公司 Sample analysis device and method for calculating solidification time

Also Published As

Publication number Publication date
JP6914076B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
Bedane et al. Experimental study of radio frequency (RF) thawing of foods with movement on conveyor belt
Jiang et al. Comparison of drying characteristic and uniformity of banana cubes dried by pulse‐spouted microwave vacuum drying, freeze drying and microwave freeze drying
Tang et al. Microwave heating in food processing
Schneid et al. Evaluation of a new wireless temperature remote interrogation system (TEMPRIS) to measure product temperature during freeze drying
JP2015044064A5 (en)
Jiang et al. Analysis of temperature distribution and SEM images of microwave freeze drying banana chips
JP6914076B2 (en) Internal condition determination method, internal condition determination device and freeze-drying device for freeze-dried products
US20160331004A1 (en) Measurement of dielectric properties during thawing or freezing of a food product
JP6914075B2 (en) Internal condition determination method, internal condition determination device and freeze-drying device for freeze-dried products
Wang et al. Microwave freeze drying characteristics of beef
EP3101420A1 (en) Sensor for monitoring freezing status of products
Bourlès et al. Scale-up of freeze-drying cycles, the use of process analytical technology (PAT), and statistical analysis
JP2020067217A (en) refrigerator
JPS5836252B2 (en) Freeze or thaw state detection device
JP6276384B2 (en) Method for measuring internal temperature of frozen object and apparatus for measuring internal temperature of frozen object
Hottot et al. Experimental study and modeling of freeze-drying in syringe configuration. Part II: Mass and heat transfer parameters and sublimation end-points
Chakraborty et al. Modeling and simulation of parametric sensitivity in primary freeze-drying of foodstuffs
JPH0372840A (en) Device for detecting thawing degree
JP2015055454A (en) Method for drying object to be dried in freeze dry and its freeze dry drying device
WO2004090446A1 (en) Method and apparatus for freeze drying material
EP2831526B1 (en) Optimization of nucleation and crystallization for lyophilization using gap freezing
Rahman et al. A novel atmospheric freeze dryer using simultaneous application of subzero and hot air streams using a vortex chiller
Pongsuwan et al. Complex permittivity of fully ripe palm fruit and its application for microwave heating
CN113453998B (en) Storage library
Hashimoto et al. Effects of assistance of high frequency dielectric and infrared heating on vacuum freeze drying characteristics of food model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210713

R150 Certificate of patent or registration of utility model

Ref document number: 6914076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150