JP2015055454A - Method for drying object to be dried in freeze dry and its freeze dry drying device - Google Patents

Method for drying object to be dried in freeze dry and its freeze dry drying device Download PDF

Info

Publication number
JP2015055454A
JP2015055454A JP2013190645A JP2013190645A JP2015055454A JP 2015055454 A JP2015055454 A JP 2015055454A JP 2013190645 A JP2013190645 A JP 2013190645A JP 2013190645 A JP2013190645 A JP 2013190645A JP 2015055454 A JP2015055454 A JP 2015055454A
Authority
JP
Japan
Prior art keywords
dried
drying
container
temperature
freeze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013190645A
Other languages
Japanese (ja)
Other versions
JP5687745B1 (en
Inventor
俊一 八木
Shunichi Yagi
俊一 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUTAMI SEIKA CO Ltd
SANWA ENG KK
Original Assignee
FUTAMI SEIKA CO Ltd
SANWA ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUTAMI SEIKA CO Ltd, SANWA ENG KK filed Critical FUTAMI SEIKA CO Ltd
Priority to JP2013190645A priority Critical patent/JP5687745B1/en
Application granted granted Critical
Publication of JP5687745B1 publication Critical patent/JP5687745B1/en
Publication of JP2015055454A publication Critical patent/JP2015055454A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for drying an object to be dried in freeze dry and its freeze dry drying device in which completion of drying is detected with high accuracy.SOLUTION: This invention relates to a method for drying an object to be dried in freeze dry characterized in that a frozen object 1 to be dried is frozen after the object is loaded in a vessel 2 with a high absorption power of radiant heat generated by a far-infrared heater 12 and with a superior heat conductivity, several vessels are loaded at a pressure reduction tank 6 and after the pressure in the pressure reduction tank is reduced to such a pressure as one in which sublimation occurs at the object to be dried, the dried object loaded vessels are heated by the far-infrared heater to generate heat conduction in the object to be dried from the vessels, temperatures of the surfaces of the vessels are measured by a thermocouple 3 under a pressure in the pressure reduction tank to cause sublimation at the object to be dried and dry it, upon recognition that temperature setting where the surface temperatures of the vessels do not generate any composition damage reaches up to a specified temperature ranging from 30°C to 90°C in response to the type of the object to be dried, the pressure reduced state is returned back to atmospheric pressure to complete the drying step.

Description

本発明は、野菜、魚介類、果物、加工食品等の食品分野、医薬品等の製薬分野、化粧品分野、その他、従来凍結乾燥が用いられてきたすべての被乾燥物に有効であり、各種の被乾燥物を短時間で効率良く凍結乾燥することができ、被乾燥物の均一な品質を実現するための凍結乾燥における被乾燥物の乾燥方法とその凍結乾燥装置に関する。   The present invention is effective for foods such as vegetables, fish and shellfish, fruits, processed foods, pharmaceuticals such as pharmaceuticals, cosmetics, and all other materials that have been conventionally used for freeze-drying. The present invention relates to a method for drying an object to be dried in freeze-drying and a freeze-drying apparatus for the purpose of realizing a uniform quality of the object to be dried, which can efficiently freeze-dry the dried object in a short time.

従来の代表的な凍結乾燥では、被乾燥物を加熱するために、被乾燥物を搭載する容器の個々に対して、シ―ズヒーターにより、ごく近距離よりの直接加熱を行い、まずはシーズヒーター近傍の被乾燥物を乾燥し、線ヒーターから離れた被乾燥物は、シーズヒーター近傍の被乾燥物よりの熱伝導を得て乾燥するというメカニズムが通常であった。   In conventional typical freeze-drying, in order to heat the material to be dried, each container carrying the material to be dried is directly heated from a very short distance by a sheath heater. Usually, the mechanism is such that the object to be dried in the vicinity is dried, and the object to be dried away from the line heater is dried by obtaining heat conduction from the object to be dried in the vicinity of the sheathed heater.

この方法であると、被乾燥物を搭載する多数のトレイに対応する多数のシ―ズヒーターの設置が必要であり、シーズヒーターを設置した被乾燥物搭載容器を搭載する棚は、大変複雑で高価なものになるという欠点があった。   With this method, it is necessary to install a large number of seed heaters corresponding to the large number of trays on which the objects to be dried are mounted. There was a drawback of becoming expensive.

また、シ―ズヒーター近傍の被乾燥物とシーズヒーターから離れた位置の被乾燥物とでは、乾燥レベルが異なるので、これを統一するためには、大変な長時間を要した。すなわち、乾燥工程の中盤以降の、シーズヒーター近傍の被乾燥物の温度は、シ―ズヒーターから離れた被乾燥物の温度とは異なり、それらの温度にはばらつきが多いため、統一された品質を得るためには、シ―ズヒーターから離れた位置の被乾燥物の乾燥を標準とし、その乾燥熱源をシーズヒーターに近い位置にある被乾燥物からの熱伝導に頼るという、非常に弱い熱源とせざるを得ないために、乾燥には24時間から36時間という長時間を要していた。   Moreover, since the drying level is different between the object to be dried in the vicinity of the sheathed heater and the object to be dried away from the sheathed heater, it took a very long time to unify them. In other words, the temperature of the object to be dried in the vicinity of the sheath heater after the middle of the drying process is different from the temperature of the object to be dried away from the sheath heater, and the temperature varies widely. In order to achieve this, a very weak heat source is used, in which drying of the object to be dried away from the sheath heater is standard, and the drying heat source relies on heat conduction from the object to be dried close to the sheath heater. Therefore, it took a long time of 24 to 36 hours for drying.

また、従来の凍結乾燥では、乾燥を終了するにあたっては、被乾燥物の温度を、代表して複数個抽出して温度測定を行い、被乾燥物が所定の温度に到達したことをもって乾燥を終了するか、経験則による時間によって乾燥の終了を決定していた。しかしながら、従来の凍結乾燥では一般的に、被乾燥物の位置によって前述のように乾燥度、すなわち被乾燥物に含まれる水分にばらつきが生ずるため、温度測定のための抽出サンプルを多数設定したり、しかもそれらのサンプルのシ―ズヒーターに対する位置関係を特定したりする作業を行わざるを得ず、しかも被乾燥物の位置によって温度が異なるため、温度測定による終了制御の高い精度を約束することは困難であった。   Also, in the conventional freeze-drying, when drying is finished, representatively extract a plurality of temperatures of the object to be dried and measure the temperature, and the drying is finished when the object to be dried reaches a predetermined temperature. Or, the end of drying was determined by time based on empirical rules. However, in conventional freeze-drying, the dryness, that is, the moisture contained in the material to be dried varies depending on the position of the material to be dried. In addition, work must be done to identify the positional relationship of these samples with respect to the seed heater, and since the temperature varies depending on the position of the object to be dried, high accuracy of termination control by temperature measurement is promised. Was difficult.

同時に、先に乾燥したシーズヒーター近傍に位置する被乾燥物は、シ―ズヒーターから離れた位置の被乾燥物への熱伝導のための熱に長時間にわたり熱に晒されることから、食品等の場合の乾燥では、被乾燥物の品質、すなわち、味・香り・色・栄養価等を著しく低下せしめる結果が往々にして生じた。   At the same time, the object to be dried located near the sheathed heater previously dried is exposed to heat for a long time to conduct heat to the object to be dried away from the sheathed heater. In the case of drying, the quality of the material to be dried, that is, the result of significantly reducing the taste, aroma, color, nutritional value, etc. often occurred.

また、上記のような従来存在した線ヒーターを用いた凍結乾燥技術における欠点を補うための被乾燥物への加熱技術の内、オイルパンや熱水パンを被乾燥物搭載容器の下に設け被乾燥物搭載容器を熱して凍結乾燥を行う技術では、加熱したオイルや熱水を、装置内に多数設置される被乾燥物搭載容器の各々に向けて供給する必要があるため、装置コストが極めて効果となるばかりでなく、加熱したオイルや熱水の温度制御が極めて困難であるため、良質な乾燥を行うことは困難であった。   In addition, among the heating technologies for the object to be dried to compensate for the disadvantages of the lyophilization technique using the conventional wire heater as described above, an oil pan or hot water pan is provided under the container to be dried. In technology that freezes and dries by heating a dry matter-carrying container, it is necessary to supply heated oil and hot water to each of the dry matter-carrying containers that are installed in the device. Not only is it effective, but it is very difficult to control the temperature of heated oil or hot water, so it is difficult to perform good quality drying.

また、一方、線ヒーターに代えて、被乾燥物搭載容器の加熱に面ヒーターを用いることも可能であったが、装置の大変な複雑化と装置の大変なコスト高を招いた。   On the other hand, it was possible to use a surface heater to heat the container to be dried instead of the line heater, but this led to great complexity of the apparatus and high cost of the apparatus.

当該技術の背景となる、真空槽に設けた遠赤外線ヒーターによる、遠赤外線吸収能が高い被乾燥物搭載容器への加熱技術の発明による凍結乾燥では、乾燥終了時には、遠赤外線吸収能の高い被乾燥物搭載容器の温度と被乾燥物の温度は近似もしくは同等となるので、被乾燥物搭載容器の温度を測定することで乾燥を、高精度に終了することができる。   In the freeze-drying according to the invention of the heating technology for a container to be dried having a high far-infrared absorption capacity by a far-infrared heater provided in a vacuum chamber, which is the background of the technology, at the end of drying, the far-infrared absorption capacity is high. Since the temperature of the dry matter mounting container and the temperature of the dry matter are approximate or equivalent, the drying can be finished with high accuracy by measuring the temperature of the dry matter mounting container.

また複数の遠赤外線の吸収能の高い被乾燥物搭載容器の個々に遠赤外線ヒーターからの輻射熱を与え、容器全体に効率のよい加熱を行うことができることから、乾燥に偏りのない品質の高い乾燥を行うことができる。   In addition, it is possible to provide radiation heat from the far-infrared heater to each of a plurality of containers to be dried having a high absorption capacity for far-infrared rays, so that the entire container can be efficiently heated. It can be performed.

従来の食品の凍結乾燥方法として、魚のすり身を含有した煉り製品を凍結させた後、当該煉り製品に対し、乾燥時の圧力を0.6〜0.65torrに設定して、35〜45℃の環境下で1.5〜2.5時間乾燥する第一次昇華を行った後、70〜80℃の環境下で14〜16時間乾燥する第2次昇華を行い、さらに45〜55度の環境下で23〜25時間乾燥を行う第三次昇華を行うことを特徴とした時間による制御方法が開示されている(特開2007−167014)。   As a conventional freeze-drying method of food, after freezing a brick product containing fish surimi, the pressure during drying is set to 0.6 to 0.65 torr for the brick product, After performing primary sublimation which is dried for 1.5 to 2.5 hours in an environment, second sublimation is performed for 14 to 16 hours in an environment of 70 to 80 ° C., and an environment of 45 to 55 ° C. A time-based control method characterized by performing third sublimation in which drying is performed for 23 to 25 hours is disclosed (Japanese Patent Laid-Open No. 2007-167014).

特開2007−167014号公報JP 2007-167014 A

上記、従来の凍結乾燥の方法の発明においては、時間による制御を開示しているが、被乾燥物の大きさ、数等によって乾燥時間は異なるのであって、上記のような時間制御で精度の高い乾燥終了制御を得ることは不可能である。   In the above invention of the conventional freeze-drying method, control by time is disclosed, but the drying time varies depending on the size, number, etc. of the material to be dried. It is impossible to obtain high drying termination control.

また、被乾燥物に熱電対等を挿入して被乾燥物の温度を測定する方法があるが、従来の凍結乾燥における、被乾燥物の位置による乾燥のばらつきがあることにより、精度の高い乾燥終了制御を得ることはできない。   In addition, there is a method to measure the temperature of the object to be dried by inserting a thermocouple etc. into the object to be dried, but due to the variation in drying depending on the position of the object to be dried in conventional freeze-drying, highly accurate drying is completed. You cannot get control.

本発明は、被乾燥物の搭載量・種類にかかわらずに乾燥の終了を精度高く検知する凍結乾燥における被乾燥物の乾燥方法とその凍結乾燥装置を提供することにある。   An object of the present invention is to provide a method for drying an object to be dried in freeze-drying that accurately detects the end of drying regardless of the amount and type of the object to be dried, and a freeze-drying apparatus thereof.

本発明は、凍結乾燥における被乾燥物の乾燥方法であって、凍結した被乾燥物を、遠赤外線ヒーターによる輻射熱の吸収能が高く、かつ熱伝導率が良好な容器に搭載した後に冷凍し、複数の容器を減圧槽に搭載し減圧槽内の圧力を被乾燥物に昇華が起こる圧力に減圧した後に、当該被乾燥物搭載容器を遠赤外線ヒーターによって加熱し、当該容器から被乾燥物に熱伝導を起こし、被乾燥物に昇華を発生させ乾燥する減圧槽の圧力下において、当該容器の表面の温度を熱電対によって測定し、該容器の表面温度が被乾燥物の種類に応じて成分破壊が生じない温度設定が摂氏30度から摂氏90度の範囲の指定温度に到達したことをもって、減圧状態を大気圧に復圧して乾燥工程を完了することを特徴とする凍結乾燥における被乾燥物の乾燥方法である。   The present invention is a method for drying an object to be dried in freeze-drying, and the frozen object to be dried is frozen after being mounted in a container having high radiation heat absorption ability by a far-infrared heater and good thermal conductivity, After mounting a plurality of containers in a decompression tank and reducing the pressure in the decompression tank to a pressure at which sublimation occurs in the object to be dried, the object to be dried object is heated by a far-infrared heater and heated from the container to the object to be dried. The temperature of the surface of the container is measured by a thermocouple under the pressure of a vacuum tank that causes conduction, generates sublimation in the object to be dried, and is dried, and the surface temperature of the container is destructive depending on the type of object to be dried. Of the object to be dried in lyophilization, wherein the drying process is completed by restoring the reduced pressure state to atmospheric pressure when the temperature setting at which the temperature does not occur reaches a specified temperature in the range of 30 degrees Celsius to 90 degrees Celsius Drying method A.

請求項1における凍結乾燥における被乾燥物の乾燥方法において、容器の外表面の温度を測定する方法は、被乾燥物を搭載した容器の所定の位置の外周面又は側壁に減圧槽外に設けた赤外線温度計からの赤外線を照射して温度を測定することを特徴とする。   The method for measuring the temperature of the outer surface of the container in the freeze-drying method according to claim 1, wherein the temperature of the outer surface of the container is provided outside the decompression tank on the outer peripheral surface or side wall of a predetermined position of the container on which the object to be dried is mounted. The temperature is measured by irradiating infrared rays from an infrared thermometer.

請求項1記載の凍結乾燥方法に使用する凍結乾燥装置は、容器の外周面又は側壁に照射する遠赤外線ヒーターを設置した減圧槽と、減圧槽内に搬送する容器キャリアーと、該容器キャリアーに多段に間隔をおいて搭載する輻射熱の吸収能が高くかつ熱伝導率が良好な被乾燥物搭載容器と、該被乾燥物搭載容器に収納する凍結した被乾燥物と、該凍結した被乾燥物を収納した各被乾燥物搭載容器は遠赤外線ヒーターからの熱照射がまんべんなく照射されるように前記キャリアーに配置され、かつ上下にわたって間隔をおいて多段に設置した被乾燥物搭載容器支持部材と、減圧槽内で被乾燥物の昇華が起こる減圧状態下で被乾燥物を昇華させる制御部を備え、被乾燥物搭載容器の外面で温度測定を行い、前記被乾燥物の成分破壊が生じない温度に到達したことをもって乾燥の完了を制御する温度検出部を含む制御部を備えたことを特徴とする。   The freeze-drying apparatus used for the freeze-drying method according to claim 1 comprises a decompression tank provided with a far-infrared heater for irradiating the outer peripheral surface or side wall of the container, a container carrier transported in the decompression tank, and a multistage in the container carrier. A to-be-dried object mounting container having high radiant heat absorption capacity and good thermal conductivity, a frozen to-be-dried object stored in the to-be-dried object mounting container, and the frozen to-be-dried object. Each container to be dried to be dried is disposed on the carrier so that heat from the far-infrared heater is evenly irradiated, and the container to be dried to be dried is installed in multiple stages at intervals in the vertical direction, and a decompression unit. A control unit for sublimating the material to be dried under reduced pressure where sublimation of the material to be dried occurs in the tank, and measuring the temperature on the outer surface of the container on which the material to be dried is mounted to a temperature at which component destruction of the material to be dried does not occur. Characterized with a that reaches the further comprising a control unit including a temperature detector for controlling the completion of drying.

本発明に係る凍結乾燥方法の基本事項として、当該凍結乾燥においては、遠赤外線吸収能の高い被乾燥物搭載容器が、温度コントロールされた遠赤外線輻射熱を継続して受け、被乾燥物搭載容器から搭載した被乾燥物に熱伝導を発生させて乾燥をすすめ、その被乾燥物の終了を熱電対又は赤外線温度計による温度検出部によって、被乾燥物の種類に応じて成分破壊が生じない被乾燥物を得ることができる。
ることである。
As a basic matter of the freeze-drying method according to the present invention, in the freeze-drying, the to-be-dried object mounting container having a high far-infrared absorption ability continuously receives the temperature-controlled far-infrared radiant heat, from the to-be-dried object mounting container. Drying is carried out by generating heat conduction in the mounted object to be dried, and the end of the object to be dried is detected by a temperature detector using a thermocouple or infrared thermometer, so that component destruction does not occur depending on the type of object to be dried. You can get things.
Is Rukoto.

また、本発明の凍結乾燥では乾燥が完了する時点で、被乾燥物搭載容器の温度と被乾燥物の温度とは近似または同等となった状態であり、被乾燥物の氷分が昇華を完了したために、被乾燥物の温度が被乾燥物搭載容器と近似または同等の温度に昇温したのであって、すなわち乾燥が完了したことを示すものであり、被乾燥物の温度管理が被乾燥物に応じて最適な温度管理が実現でき、均一な被乾燥物を量産することができる。   In the freeze-drying of the present invention, when the drying is completed, the temperature of the container to be dried and the temperature of the object to be dried are close to or equal to each other, and the ice content of the object to be dried has been sublimated. Therefore, the temperature of the object to be dried has risen to a temperature that is close to or equivalent to that of the container on which the object is to be dried, i.e., the drying has been completed. Therefore, optimum temperature control can be realized, and uniform products to be dried can be mass-produced.

本発明の凍結乾燥方法であれば、被乾燥物搭載容器の温度を測定すればよいので、乾燥搭載量が変化したとしても時間制御による不正確な制御から解放される。   With the freeze-drying method of the present invention, it is sufficient to measure the temperature of the container to be dried, so that even if the dry loading amount changes, it is freed from inaccurate control by time control.

また、従来、被乾燥物の温度を測定する場合には、被乾燥物の位置によって、被乾燥物の温度にばらつきが生じているために、精度の高い完了制御とはなり得なかったが、本発明では被乾燥物搭載容器の温度測定は、熱電対又は赤外線温度計から得た熱を検知すると同時に、搭載した全体的な被乾燥物の温度から伝えられた温度を正確に反映するので、精度高く乾燥完了を検知することができる。   In addition, conventionally, when measuring the temperature of an object to be dried, the temperature of the object to be dried varies depending on the position of the object to be dried. In the present invention, the temperature measurement of the object-to-be-dried container detects the heat obtained from the thermocouple or the infrared thermometer, and at the same time accurately reflects the temperature transmitted from the temperature of the entire object to be dried, The completion of drying can be detected with high accuracy.

本発明によって、凍結乾燥の完了を正確に知ることができるので、凍結乾燥において、従来のように余分な乾燥時間を設定する必要がなくなり、生産効率を向上せしめる。   According to the present invention, since completion of lyophilization can be accurately known, it is not necessary to set an extra drying time in lyophilization as in the prior art, and production efficiency is improved.

本発明に係る凍結乾燥方法は、真空槽内に複数の遠赤外線ヒーターを設け、遠赤外線吸収能の高い被乾燥物搭載容器を搭載し、被乾燥物に昇華が起こる圧力において、遠赤外線ヒーターからの輻射熱を、被乾燥物搭載容器に吸収せしめ、次いで、被乾燥物搭載容器の熱を被乾燥物に伝導せしめ、被乾燥物に昇華を起こせしめ乾燥するメカニズムである。   The freeze-drying method according to the present invention includes a plurality of far-infrared heaters in a vacuum chamber, a to-be-dried object mounting container having a high far-infrared absorption capability, and a far-infrared heater at a pressure at which sublimation occurs in the to-be-dried object. This is a mechanism in which the radiant heat is absorbed by the object-to-be-dried container, and then the heat of the object-to-be-dried object container is conducted to the object to be dried to cause sublimation of the object to be dried and dried.

装置が極めて単純であるため、装置コストが低く、また被乾燥物搭載容器が遠赤外線からの輻射熱を容器全体で吸収するため被乾燥物への加熱効率が高く、従来の半分程度の乾燥時間で乾燥を完了でき、また、本発明により高い精度の終了制御によって、格段の生産量増大を実現する。また、減圧槽の天井から所定間隔をおいて垂下する複数の遠赤外線ヒーターを設け、該遠赤外線ヒーターから発せられる輻射熱を、温度コントロールされた複数の遠赤外線吸収能の高い多段に亘り設置した被乾燥物収納容器に与え、被乾燥物収納容器からの熱伝導で被乾燥物に加熱を行い、乾燥を行う凍結乾燥方法であり、その乾燥の終了を精度高く行うことができる。また、遠赤外線ヒーターの端子部分は減圧槽外に設置することにより、遠赤外線ヒーターの端子が減圧槽の環境に影響されることなく安全で、長期使用に耐える。   Since the equipment is extremely simple, the equipment cost is low, and the drying equipment-equipped container absorbs radiant heat from far infrared rays in the entire container, so the heating efficiency of the drying object is high, and the drying time is about half that of the conventional method. Drying can be completed, and the present invention achieves a significant increase in production volume by highly accurate end control. In addition, a plurality of far-infrared heaters that hang from the ceiling of the decompression tank at a predetermined interval are provided, and the radiant heat generated from the far-infrared heaters is installed in a plurality of temperature-controlled multiple far-infrared absorbing capacities. This is a freeze-drying method in which the dried product storage container is heated and heated by heat conduction from the dried product storage container to perform drying, and the drying can be finished with high accuracy. In addition, by installing the far infrared heater terminal outside the decompression tank, the far infrared heater terminal is safe and withstands long-term use without being affected by the environment of the decompression tank.

基本事項として、本発明による凍結乾燥においては、遠赤外線吸収能の高い被乾燥物搭載容器が、温度コントロールされた遠赤外線輻射熱を継続して受け、被乾燥物搭載容器から搭載した被乾燥物に熱伝導を発生せしめ乾燥をすすめることができる。   As a basic matter, in freeze-drying according to the present invention, a dry matter mounting container having a high far-infrared absorption capacity continuously receives temperature-controlled far-infrared radiation heat, and the dry matter mounted from the dry matter mounting container Heat conduction is generated and drying can be promoted.

乾燥が完了する時点で、被乾燥物搭載容器の温度と被乾燥物の温度とは近似または同等となった状態は、被乾燥物の氷分が昇華を完了したために、被乾燥物の温度が被乾燥物搭載容器と近似または同等の温度に昇温したのであって、すなわち乾燥が完了したことを示す。   When the drying is completed, the temperature of the object to be dried and the temperature of the object to be dried are close to or equal to each other. It indicates that the temperature has been raised to a temperature approximate to or equivalent to that of the container to be dried, that is, drying has been completed.

本発明の方法であれば、被乾燥物搭載容器の温度を測定すればよいので、乾燥搭載量が変化したとしても時間制御による不正確な制御から解放される。   According to the method of the present invention, the temperature of the container to be dried can be measured, so that even if the amount of dry load changes, the inaccurate control by time control is released.

また、被乾燥物の温度を測定する場合には、被乾燥物の位置によって、被乾燥物の温度にばらつきが生じているために、精度の高い完了制御とはなり得なかったが、本発明では、被乾燥物搭載容器の温度測定は、遠赤外線ヒーターから得た熱を熱電対又は赤外線温度計にて検知すると同時に、搭載した全体的な被乾燥物の温度から伝えられた温度を正確に反映するので、精度高く乾燥完了を検知することができる。   Further, when measuring the temperature of the object to be dried, the temperature of the object to be dried varies depending on the position of the object to be dried. Then, the temperature of the container to be dried is measured by detecting the heat obtained from the far-infrared heater with a thermocouple or infrared thermometer, and at the same time, accurately measuring the temperature transferred from the temperature of the entire object to be dried. Since this is reflected, the completion of drying can be detected with high accuracy.

本発明に係る減圧槽内の遠赤外線吸収能の高い被乾燥物搭載容器の底外面に熱電対を接触させて温度を測定する状態を示す概略説明図である。It is a schematic explanatory drawing which shows the state which makes a thermocouple contact the bottom outer surface of the to-be-dried object mounting container with a high far-infrared absorptivity in the decompression tank which concerns on this invention, and measures temperature. 本発明に係る減圧槽内の遠赤外線吸収能の高い被乾燥物搭載容器の底外面に赤外線を照射して温度を測定する状態を示す概略説明図である。It is a schematic explanatory drawing which shows the state which irradiates infrared rays to the bottom outer surface of the to-be-dried object mounting container with a high far-infrared absorptivity in the decompression tank which concerns on this invention, and measures temperature. 本発明に係る凍結乾燥装置を示す概略説明図である。It is a schematic explanatory drawing which shows the freeze-drying apparatus which concerns on this invention.

以下、本発明の実施例について図1〜図3に基づいて説明する。
図1は本発明に係る減圧槽内の遠赤外線吸収能の高い被乾燥物搭載容器の底外面に熱電対を接触させて温度を測定する状態を示す概略説明図を示す。2は遠赤外線吸収能の高い被乾燥物搭載容器2を示し、1は被乾燥物を示す。被乾燥物搭載容器2は例えばステンレス等の導電性の良い金属容器の表裏面を遠赤外線吸収能の高い黒色系塗料等の塗膜を形成して得られる。5は減圧槽内部を示し、3は熱電対を示し、検知部が被乾燥物搭載容器2の底外面に接触して温度を測定する。熱電対3の減圧槽6の外部に設けられた温度検知計4に接続され温度が測定される。
Embodiments of the present invention will be described below with reference to FIGS.
FIG. 1 is a schematic explanatory view showing a state in which a thermocouple is brought into contact with the bottom outer surface of a container to be dried having a high far-infrared absorption capacity in a decompression tank according to the present invention and the temperature is measured. 2 shows the to-be-dried object mounting container 2 with high far-infrared absorptivity, and 1 shows to-be-dried object. The to-be-dried object mounting container 2 is obtained by forming a coating film such as a black paint having a high far-infrared absorbing ability on the front and back surfaces of a metal container having good conductivity such as stainless steel. Reference numeral 5 denotes the inside of the decompression tank, 3 denotes a thermocouple, and the detection unit contacts the bottom outer surface of the object-to-be-dried object mounting container 2 and measures the temperature. The temperature is measured by connecting to a temperature detector 4 provided outside the decompression tank 6 of the thermocouple 3.

図2は本発明に係る減圧槽内の遠赤外線吸収能の高い被乾燥物搭載容器の底外面に赤外線を照射して温度を測定する状態を示す概略説明図である。赤外線9を被乾燥物搭載容器2の底部に照射して温度を測定する状態を示す概略説明図を示す。2は遠赤外線吸収能の高い被乾燥物搭載容器2を示し、1は被乾燥物を示す。8は赤外線温度計を示し、4は赤外線が被乾燥物搭載容器2の底部に照射され、測温する様子を示す。10は減圧槽6に設けられた赤外線透過部で、石英ガラス等が用いられる。赤外線温度計8は減圧槽6の外部に設置された制御部7に連結される。   FIG. 2 is a schematic explanatory view showing a state in which the temperature is measured by irradiating the bottom outer surface of the container to be dried with high far-infrared absorption capacity in the decompression tank according to the present invention with infrared rays. The schematic explanatory drawing which shows the state which irradiates the infrared rays 9 to the bottom part of the to-be-dried material mounting container 2, and measures temperature is shown. 2 shows the to-be-dried object mounting container 2 with a high far-infrared absorptivity, and 1 shows a to-be-dried object. Reference numeral 8 denotes an infrared thermometer, and reference numeral 4 denotes a state in which infrared light is irradiated to the bottom of the object-to-be-dried object mounting container 2 and temperature is measured. Reference numeral 10 denotes an infrared transmitting portion provided in the decompression tank 6, and quartz glass or the like is used. The infrared thermometer 8 is connected to a control unit 7 installed outside the decompression tank 6.

図3は本発明に係る凍結乾燥装置を示す概略説明図である。図中、2は被乾燥物搭載容器を示し、1は被乾燥物を示す。11は被乾燥物搭載容器2の容器搭載棚を示す。3は熱電対等の温度測定部を示し、温度検知部4と乾燥の制御部7に連結され、乾燥の終了を制御する。6は減圧槽を示し、13は減圧槽6から発生する昇華蒸気を捕捉するコールドトラップを示し、このコールドトラップ13には冷凍機14が連結される。図中、15は真空ポンプである。   FIG. 3 is a schematic explanatory view showing a freeze-drying apparatus according to the present invention. In the figure, 2 indicates a container to be dried and 1 indicates a substance to be dried. Reference numeral 11 denotes a container mounting shelf of the object to be dried mounting container 2. Reference numeral 3 denotes a temperature measurement unit such as a thermocouple, which is connected to the temperature detection unit 4 and the drying control unit 7 and controls the end of drying. Reference numeral 6 denotes a decompression tank, 13 denotes a cold trap that captures sublimation vapor generated from the decompression tank 6, and a refrigerator 14 is connected to the cold trap 13. In the figure, 15 is a vacuum pump.

被乾燥物収納容器の基材をアルミニウム深さ30mmの箱型に構成し、当該容器をシリコン樹脂焼付で、遠赤外線吸収能の高い黒色で塗装した。   The base material of the container to be dried was formed into a box shape with an aluminum depth of 30 mm, and the container was painted with a black resin having a high far-infrared absorption capability by baking a silicon resin.

当該容器に、−30℃に凍結したホウレン草1kgを搭載し、遠赤外線ヒーターを設置した真空槽に、当該容器を100枚、すなわち、ほうれん草100kgを搭載した。減圧を開始し、被乾燥物の乾燥を開始した。圧力は0.5torrで安定した。この時点で真空槽内に設置した1本あたり出力1kwの遠赤外線ヒーター18本に入電したところ、5分後には被乾燥物からの昇華が発生し始めたため、圧力は2.5torrまで上昇し安定した。乾燥開始時の被乾燥物収納容器外部の熱電対による温度測定では、容器に搭載した被乾燥物からの熱電導により凍結した被乾燥物と同温度の−30℃あった。同位置における12時間後の温度測定では、乾燥が進み、熱電対の温度は、−5℃であった。さらに1時間経過後の温度測定では、温度上昇に転じ、−1℃であった。またさらに1時間経過後には+40℃に到達した。被乾燥物の温度は被乾燥物収納容器の温度と近似であることを実験で確認しており、かつ被乾燥物に45℃以上の加熱を行わないことで、栄養素や色・味等を・損なわないことを分析で確認してあったので、この時点で乾燥を終了し、圧力を大気圧に戻し、被乾燥物を取り上げた。   The container was loaded with 1 kg of spinach frozen at −30 ° C., and 100 sheets of the container, that is, 100 kg of spinach, were mounted in a vacuum tank provided with a far infrared heater. Depressurization was started, and drying of the material to be dried was started. The pressure was stable at 0.5 torr. At this time, when 18 far-infrared heaters with an output of 1 kW per unit installed in the vacuum chamber were energized, sublimation from the material to be dried began to occur after 5 minutes, so the pressure rose to 2.5 torr and stabilized. did. In the temperature measurement with the thermocouple outside the container to be dried at the start of drying, the temperature was −30 ° C., which was the same as that of the object to be dried frozen by the thermal conduction from the object to be dried mounted on the container. In the temperature measurement after 12 hours at the same position, drying progressed and the temperature of the thermocouple was −5 ° C. Further, in the temperature measurement after 1 hour, the temperature started to rise and was -1 ° C. Further, after 1 hour, the temperature reached + 40 ° C. Experimentation has confirmed that the temperature of the material to be dried is similar to the temperature of the container to be dried, and by not heating the material to be dried at 45 ° C or higher, nutrients, color, taste, etc. Since it was confirmed by analysis that there was no damage, drying was terminated at this point, the pressure was returned to atmospheric pressure, and the material to be dried was taken up.

後の分析によって、栄養素・色・味を元材料に近似の値で保持した乾燥ホウレン草であることが判明した。   Later analysis revealed that it was a dried spinach with nutrients, color and taste similar to the original ingredients.

遠赤外線吸収能の高い被乾燥物収納容器100枚に味噌を各1kg搭載し−30℃に冷凍した。これらを遠赤外線出力1kwのヒーター18本を備えた真空槽に搭載し、被乾燥物搭載容器の温度変化を記録した。遠赤外線ヒーターは、被乾燥物搭載容器に45℃の加温を常時行い、加熱制御は、ヒーター表面から被乾燥物搭載容器底面の中央の位置までの距離と同距離の位置に、被乾燥物搭載容器と同素材、同表面処理をした30mm角の板を設置し、当該板が受ける温度によってPIDによる温度調節を行うこととした。
真空圧力は、2.3torr〜2.8torrの間で推移した。
終了制御は、被乾燥物収納容器底部外面の3点を熱電対によって温度測定を行い、被乾燥物収納容器の3点がすべて+40℃を示した時点で乾燥を完了することとした。
以下に温度推移表を示す。
1 kg of miso was loaded on 100 pieces of dry matter storage containers each having a high far-infrared absorption capacity, and frozen at −30 ° C. These were mounted in a vacuum chamber equipped with 18 heaters with a far-infrared output of 1 kW, and the temperature change of the dry matter mounting container was recorded. The far-infrared heater always heats the container to be dried at 45 ° C, and the heating control is performed at the same distance as the distance from the heater surface to the center of the bottom of the container to be dried. A 30 mm square plate with the same material and surface treatment as the mounting container was installed, and the temperature was adjusted by PID according to the temperature received by the plate.
The vacuum pressure changed between 2.3 torr and 2.8 torr.
In the end control, the temperature of the three points on the outer surface of the bottom of the container to be dried was measured with a thermocouple, and the drying was completed when all three points of the container to be dried showed + 40 ° C.
The temperature transition table is shown below.

Figure 2015055454
Figure 2015055454

遠赤外線吸収能の高い被乾燥物搭載容器100枚にオニオンスープ各0.8kgを搭載し、−30℃に冷凍した。これらを、遠赤外線出力1kwのヒーターを18本備えた真空槽に搭載した。ヒーターの当該容器への加熱温度を55℃に制御し、被乾燥物収納容器の底外面の温度を赤外線によって測定し、50℃に至った時点で終了することとした。   Each 100 kg of onion soup was loaded on 100 to-be-dried objects-loading containers having a high far-infrared absorptivity and frozen at −30 ° C. These were mounted in a vacuum chamber equipped with 18 heaters with a far-infrared output of 1 kW. The heating temperature of the heater to the container was controlled at 55 ° C., the temperature of the bottom outer surface of the container to be dried was measured with infrared rays, and the process was terminated when the temperature reached 50 ° C.

真空圧力は、乾燥工程中、2.5torrを中心とした圧力で推移した。   The vacuum pressure changed at a pressure around 2.5 torr during the drying process.

乾燥は、熱電対で被乾燥物搭載容器の底面外部の温度を測定し、温度が50℃に到達した時点をもって完了することとした。乾燥開始12時間後に、測定していた被乾燥物搭載容器の底面外部の温度が50℃を示したので乾燥を完了した。   Drying was completed when the temperature outside the bottom surface of the object mounting container was measured with a thermocouple and the temperature reached 50 ° C. Twelve hours after the start of drying, the temperature outside the bottom surface of the container to be dried was 50 ° C., and thus drying was completed.

乾燥した固体を回収し、これを粉砕しパウダー化した。味・香り・色に優れ、お湯を注げば即座にお湯に溶解するパウダー状のオニオンスープの素を得た。   The dried solid was collected and pulverized into powder. A powdery onion soup that is excellent in taste, aroma, and color and dissolves in hot water instantly when hot water is poured into it.

本発明は、野菜、魚介類、果物、加工食品等の食品分野、医薬品等の製薬分野、化粧品分野、その他、従来凍結乾燥が用いられてきた分野のすべてに有効であり、全ての凍結乾燥物を短時間で効率良く凍結乾燥でき、被乾燥物の均一な品質を実現できる凍結乾燥方法及びその凍結乾燥装置は幅広い産業分野に利用される。   The present invention is effective in all fields of food such as vegetables, seafood, fruits and processed foods, pharmaceutical fields such as pharmaceuticals, cosmetics fields, and other fields where lyophilization has been conventionally used. The lyophilization method and the lyophilization apparatus that can achieve lyophilization efficiently in a short time and achieve uniform quality of the material to be dried are used in a wide range of industrial fields.

1 被乾燥物
2 被乾燥物搭載容器
3 熱電対
4 温度検知計
5 減圧槽内部
6 減圧槽
7 乾燥制御部
8 赤外線温度計
9 赤外線
10 赤外線透過ガラス
11 容器搭載棚
12 遠赤外線ヒーター
13 コールドトラップ
14 冷凍機
15 真空ポンプ
DESCRIPTION OF SYMBOLS 1 To-be-dried object 2 To-be-dried object mounting container 3 Thermocouple 4 Temperature detection meter 5 Depressurization tank inside 6 Decompression tank 7 Drying control part 8 Infrared thermometer 9 Infrared 10 Infrared transmitting glass 11 Container mounting shelf 12 Far infrared heater 13 Cold trap 14 Refrigerator 15 Vacuum pump

本発明は、野菜、魚介類、果物、加工食品のいずれか一種の食品の被乾燥物を短時間で効率良く凍結乾燥することができ、被乾燥物の均一な品質を実現するための凍結乾燥における被乾燥物の乾燥方法とその凍結乾燥装置に関する。 The present invention, vegetables, seafood, fruits, the material to be dried in any one of the food in processed food can be a short time to efficiently freeze-dried, frozen to achieve a uniform quality of the dried product The present invention relates to a method for drying an object to be dried and its freeze-drying apparatus.

また、上記のような従来存在した線ヒーターを用いた凍結乾燥技術における欠点を補うための被乾燥物への加熱技術の内、オイルパンや熱水パンを被乾燥物搭載容器の下に設け被乾燥物搭載容器を熱して凍結乾燥を行う技術では、加熱したオイルや熱水を、装置内に多数設置される被乾燥物搭載容器の各々に向けて供給する必要があるため、装置コストが極めて高価となるばかりでなく、加熱したオイルや熱水の温度制御が極めて困難であるため、良質な乾燥を行うことは困難であった。 In addition, among the heating technologies for the object to be dried to compensate for the disadvantages of the lyophilization technique using the conventional wire heater as described above, an oil pan or hot water pan is provided under the container to be dried. In technology that freezes and dries by heating a dry matter-carrying container, it is necessary to supply heated oil and hot water to each of the dry matter-carrying containers that are installed in the device. Not only is it expensive , but it is very difficult to control the temperature of heated oil or hot water, so it is difficult to perform good quality drying.

本発明は、凍結乾燥における被乾燥物の乾燥方法であって、凍結した野菜、魚介類、果物、加工食品のいずれかの被乾燥物を、遠赤外線ヒーターによる輻射熱の吸収能が高く、かつ熱伝導率が良好な複数の容器に搭載した後に冷凍し、複数の容器を減圧槽に多段に間隔をおいて搭載し減圧槽内の圧力を被乾燥物に昇華が起こる圧力に減圧した後に、当該被乾燥物搭載容器を遠赤外線ヒーターによって加熱し、当該容器から被乾燥物に熱伝導を起こし、被乾燥物に昇華を発生させ乾燥する減圧槽の圧力下において、複数の被乾燥物搭載容器の底面中央部に設置した被乾燥物搭載容器と同一の素材で同一の表面処理をした温度検出用の小さな板から受ける温度を熱電対または赤外線温度計により複数個所から検知した温度が被乾燥物の成分破壊が生じない温度で、かつ複数個所で測定した温度が一致した時点で乾燥を完了する制御をPIDによる温度調節制御部で行なうことを特徴とする凍結乾燥における被乾燥物の乾燥方法である。 The present invention is a method for drying an object to be dried in freeze-drying, wherein the object to be dried is any one of frozen vegetables, seafood, fruits and processed foods, which has a high ability to absorb radiant heat by a far-infrared heater and is heated. after the conductivity frozen after mounting the good multiple containers were the plurality of containers to reduce the pressure in the vacuum tank mounted at intervals in multiple stages in vacuum tank pressure sublimation occurs material to be dried, heating the material to be dried equipped container by the far infrared heater, causing a heat conduction material to be dried from the vessel, under pressure of the vacuum tank for drying caused the sublimation material to be dried, a plurality of material to be dried equipped container The temperature received from a small plate for temperature detection, which is the same material and the same material as the container to be dried installed in the center of the bottom, is detected from multiple locations with thermocouples or infrared thermometers. Destruction of ingredients In occurs no temperature, and a method for drying objects to be dried in the freeze-drying and performing complete control the drying when the temperature measured at a plurality of locations is matched with the temperature control unit according to PID.

請求項1記載の凍結乾燥方法に使用する凍結乾燥装置は、被乾燥物搭載容器の外周面に照射する遠赤外線ヒーターを設置した減圧槽と、減圧槽内に搬送する上下にわたって間隔をおいて多段に設置した容器キャリアーと、該容器キャリアーに多段に間隔をおいて搭載する輻射熱の吸収能が高くかつ熱伝導率が良好な複数の被乾燥物搭載容器と、該被乾燥物搭載容器に収納する凍結した野菜、魚介類、果物、加工食品のいずれか一種の被乾燥物と、減圧槽内で被乾燥物の昇華が起こる減圧状態下で被乾燥物を昇華させる制御部を備え、被乾燥物搭載容器の底面中央部に被乾燥物搭載容器と同一の素材、同一の表面処理をした温度検出用の小さな板を複数の異なる容器への設置と、該複数個所の小さな板が受ける温度の一致によって乾燥を完了するPIDによる温度調節制御部を備えたことを特徴とする。 Freeze-drying apparatus, at a reduced pressure tank which was installed far infrared heater for irradiating the outer peripheral surface of the material to be dried equipped vessel, the intervals over vertical transport to the vacuum vessel to be used for freeze-drying method according to claim 1, wherein a container carrier that is installed in multiple stages, the material to be dried equipped container absorption capacity is high and the thermal conductivity of the plurality good radiant heat to be mounted at intervals in multiple stages in the container carrier, said each material to be dried equipped container It has a control unit for sublimating the dried product under the reduced pressure condition in which the dried product in the decompression tank is sublimated, and the dried product to be stored is one of frozen vegetables, seafood, fruits and processed foods to be stored. Place the same material and the same surface-treated small temperature detection plate in the bottom center of the dry matter loading container in different containers, and the temperature received by the small plates in the multiple places Complete the drying by matching Characterized by comprising a temperature control unit according to PID to be.

本発明に係る凍結乾燥方法の基本事項として、当該凍結乾燥においては、遠赤外線吸収能の高い被乾燥物搭載容器が、温度コントロールされた遠赤外線輻射熱を継続して受け、被乾燥物搭載容器から搭載した被乾燥物に熱伝導を発生させて乾燥をすすめ、その被乾燥物の終了を熱電対又は赤外線温度計による温度検出部によって、被乾燥物の種類に応じて成分破壊が生じない被乾燥物を得ることができる。すなわち、複数の被乾燥物搭載容器の底面中央部に設置した被乾燥物搭載容器と同一の素材で同一の表面処理をした温度検出用の小さな板から受ける温度を熱電対または赤外線温度計により複数個所から検知した温度が被乾燥物の成分破壊が生じない温度で、かつ複数個所で温度が一致した時点で乾燥を完了する制御をPIDによる温度調節制御部で行なうことができる。 As a basic matter of the freeze-drying method according to the present invention, in the freeze-drying, the to-be-dried object mounting container having a high far-infrared absorption ability continuously receives the temperature-controlled far-infrared radiant heat, from the to-be-dried object mounting container. Drying is carried out by generating heat conduction in the mounted object to be dried, and the end of the object to be dried is detected by a temperature detector using a thermocouple or infrared thermometer, so that component destruction does not occur depending on the type of object to be dried. You can get things. That is, the temperature received from a small plate for temperature detection, which is the same material and the same surface treatment as that of the container to be dried installed in the center of the bottom of the plurality of containers to be dried, is measured by a thermocouple or an infrared thermometer. Control that completes drying when the temperature detected from the location does not cause the component destruction of the material to be dried and the temperatures coincide at the plurality of locations can be performed by the temperature adjustment control unit using PID.

Claims (3)

凍結乾燥における被乾燥物の乾燥方法であって、凍結した被乾燥物を、遠赤外線ヒーターによる輻射熱の吸収能が高く、かつ熱伝導率が良好な容器に搭載した後に冷凍し、複数の容器を減圧槽に搭載し減圧槽内の圧力を被乾燥物に昇華が起こる圧力に減圧した後に、当該被乾燥物搭載容器を遠赤外線ヒーターによって加熱し、当該容器から被乾燥物に熱伝導を起こし、被乾燥物に昇華を発生させ乾燥する減圧槽の圧力下において、当該容器の表面の温度を熱電対によって測定し、該容器の表面温度が被乾燥物の種類に応じて成分破壊が生じない温度設定が摂氏30度から摂氏90度の範囲の指定温度に到達したことをもって、減圧状態を大気圧に復圧して乾燥工程を完了することを特徴とする凍結乾燥における被乾燥物の乾燥方法。   A method of drying an object to be dried in freeze-drying, wherein the object to be dried is frozen after being mounted in a container having a high radiation heat absorption capacity by a far-infrared heater and good thermal conductivity. After reducing the pressure in the vacuum tank to a pressure at which sublimation occurs in the object to be dried, the container to be dried is heated by a far-infrared heater, causing heat conduction from the container to the object to be dried, The temperature of the surface of the container is measured with a thermocouple under the pressure of a vacuum tank that generates sublimation and is dried, and the surface temperature of the container is a temperature at which component destruction does not occur depending on the type of the object to be dried. A method for drying an object to be dried in lyophilization, wherein the drying step is completed by restoring the reduced pressure state to atmospheric pressure when the setting reaches a specified temperature in the range of 30 degrees Celsius to 90 degrees Celsius. 請求項1における凍結乾燥における被乾燥物の乾燥方法において、容器の外表面の温度を測定する方法は、被乾燥物を搭載した容器の所定の位置の底面に赤外線を照射して温度を測定することを特徴とする凍結乾燥における被乾燥物の乾燥方法。   2. The method for drying an object to be dried in freeze-drying according to claim 1, wherein the temperature of the outer surface of the container is measured by irradiating the bottom surface at a predetermined position of the container on which the object to be dried is irradiated with infrared rays. A method for drying an object to be dried in freeze-drying. 請求項1記載の凍結乾燥方法に使用する凍結乾燥装置は、容器の外周面又は側壁に照射する遠赤外線ヒーターを設置した減圧槽と、減圧槽内に搬送する容器キャリアーと、該容器キャリアーに多段に間隔をおいて搭載する輻射熱の吸収能が高くかつ熱伝導率が良好な被乾燥物搭載容器と、該被乾燥物搭載容器に収納する凍結した被乾燥物と、該凍結した被乾燥物を収納した各被乾燥物搭載容器は遠赤外線ヒーターからの熱照射がまんべんなく照射されるように前記キャリアーに配置され、かつ上下にわたって間隔をおいて多段に設置した被乾燥物搭載容器支持部材と、減圧槽内で被乾燥物の昇華が起こる減圧状態下で被乾燥物を昇華させる制御部を備え、被乾燥物搭載容器の外面で温度測定を行い、前記被乾燥物の成分破壊が生じない温度に到達したことをもって乾燥の完了を制御する温度検出部を含む制御部を備えたことを特徴とする被乾燥物の凍結乾燥装置。   The freeze-drying apparatus used for the freeze-drying method according to claim 1 comprises a decompression tank provided with a far-infrared heater for irradiating the outer peripheral surface or side wall of the container, a container carrier transported in the decompression tank, and a multistage in the container carrier. A to-be-dried object mounting container having high radiant heat absorption capacity and good thermal conductivity, a frozen to-be-dried object stored in the to-be-dried object mounting container, and the frozen to-be-dried object. Each container to be dried to be dried is disposed on the carrier so that heat from the far-infrared heater is evenly irradiated, and the container to be dried to be dried is installed in multiple stages at intervals in the vertical direction, and a decompression unit. A control unit for sublimating the material to be dried under reduced pressure where sublimation of the material to be dried occurs in the tank, and measuring the temperature on the outer surface of the container on which the material to be dried is mounted to a temperature at which component destruction of the material to be dried does not occur. Freeze-drying apparatus of the object to be dried, characterized in that with a to reach with a control unit comprising a temperature detection unit that controls the completion of drying.
JP2013190645A 2013-09-13 2013-09-13 Drying method for freeze-dried product and freeze-drying apparatus Active JP5687745B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013190645A JP5687745B1 (en) 2013-09-13 2013-09-13 Drying method for freeze-dried product and freeze-drying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013190645A JP5687745B1 (en) 2013-09-13 2013-09-13 Drying method for freeze-dried product and freeze-drying apparatus

Publications (2)

Publication Number Publication Date
JP5687745B1 JP5687745B1 (en) 2015-03-18
JP2015055454A true JP2015055454A (en) 2015-03-23

Family

ID=52819969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013190645A Active JP5687745B1 (en) 2013-09-13 2013-09-13 Drying method for freeze-dried product and freeze-drying apparatus

Country Status (1)

Country Link
JP (1) JP5687745B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220635A (en) * 2015-06-01 2016-12-28 三菱電機株式会社 Vacuum freeze drying apparatus
WO2018051962A1 (en) * 2016-09-16 2018-03-22 パナソニックIpマネジメント株式会社 Food drying method and refrigerator and storage in which said drying method is implemented
JP2021529926A (en) * 2018-06-29 2021-11-04 ユニバーシテイト ヘント Freeze-dry, dry and / or freeze-dry by product volume
RU2773997C1 (en) * 2022-01-20 2022-06-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кузбасская государственная сельскохозяйственная академия" Method for freeze-drying rose hips

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106213836A (en) * 2016-07-30 2016-12-14 合肥柏隆科技发展有限公司 A kind of school canteen infrared tableware disinfecting kitchen cabinet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121956A (en) * 1994-10-20 1996-05-17 Shunichi Yagi Vacuum drying device
JP2010266086A (en) * 2009-05-12 2010-11-25 Soka Univ Freeze-drying device, freeze-drying method for sample, device for preparing sample for electron microscope including freeze-drying device and method of preparing sample for electron microscope
JP2011113953A (en) * 2009-11-30 2011-06-09 Nichiwa Denki Kk Electromagnetic cooking device
JP2013113532A (en) * 2011-11-30 2013-06-10 Shunichi Yagi Freeze-drying method and freeze-drying device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121956A (en) * 1994-10-20 1996-05-17 Shunichi Yagi Vacuum drying device
JP2010266086A (en) * 2009-05-12 2010-11-25 Soka Univ Freeze-drying device, freeze-drying method for sample, device for preparing sample for electron microscope including freeze-drying device and method of preparing sample for electron microscope
JP2011113953A (en) * 2009-11-30 2011-06-09 Nichiwa Denki Kk Electromagnetic cooking device
JP2013113532A (en) * 2011-11-30 2013-06-10 Shunichi Yagi Freeze-drying method and freeze-drying device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220635A (en) * 2015-06-01 2016-12-28 三菱電機株式会社 Vacuum freeze drying apparatus
WO2018051962A1 (en) * 2016-09-16 2018-03-22 パナソニックIpマネジメント株式会社 Food drying method and refrigerator and storage in which said drying method is implemented
JP2021529926A (en) * 2018-06-29 2021-11-04 ユニバーシテイト ヘント Freeze-dry, dry and / or freeze-dry by product volume
US11828535B2 (en) 2018-06-29 2023-11-28 Universiteit Gent Freezing, drying and/or freeze-drying of product dose units
JP7481807B2 (en) 2019-03-11 2024-05-13 株式会社神鋼環境ソリューション Freeze Drying Equipment
RU2773997C1 (en) * 2022-01-20 2022-06-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кузбасская государственная сельскохозяйственная академия" Method for freeze-drying rose hips

Also Published As

Publication number Publication date
JP5687745B1 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5814094B2 (en) Freeze-drying method and apparatus using far-infrared heater
JP5687745B1 (en) Drying method for freeze-dried product and freeze-drying apparatus
Kumar et al. Multiphase porous media model for intermittent microwave convective drying (IMCD) of food
Hebbar et al. Mass transfer during infrared drying of cashew kernel
Parikh Vacuum drying: basics and application
Jiang et al. Analysis of temperature distribution and SEM images of microwave freeze drying banana chips
EP3250869B1 (en) Process control using non-invasive printed product sensors
US3271874A (en) Infra-red sublimation method and apparatus for freeze drying techniques
US20170142785A1 (en) Microwave heating system
CN105916386A (en) Measurement of dielectric properties during thawing or freezing of a food product
Hazervazifeh et al. Energy economy and kinetic investigation of sugar cube dehydration using microwave supplemented with thermal imaging
Akoy et al. Microwave drying of mango slices at controlled temperatures
Hashimoto et al. Factors influencing constant drying rate of wet granular bed irradiated by infrared radiation
Allanic et al. Convective and radiant drying of a polymer aqueous solution
Fernando et al. Roasting chilli (Capsicum annuum L.) using far-infrared radiation
JPH0727474A (en) Vacuum dryer
US10645941B2 (en) Method and system for treating a product
Adhami et al. Freeze drying of quince (Cydonia oblonga): Modelling of drying kinetics and characteristics
RU2720127C1 (en) Controlled microwave heating method and device
Shaozhi et al. A thermophysical study on the freeze drying of wooden archaeological artifacts
Hashimoto et al. Effects of assistance of high frequency dielectric and infrared heating on vacuum freeze drying characteristics of food model
Li et al. Microwave drying
Xiaoyong Quality analysis of microwave dried iron yam chips controlled by infrared thermal imaging
KR20190105559A (en) Infrared freeze drying system
Teleken et al. Drying of foods under intermittent supply of microwave energy: proposal for a mathematical model

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150122

R150 Certificate of patent or registration of utility model

Ref document number: 5687745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250