JP2018167813A - Protrusive substance propelled by body product having a plurality of protrusive faces and streamline shape generated by acceleration at alongside flow of fluid on protrusive face - Google Patents

Protrusive substance propelled by body product having a plurality of protrusive faces and streamline shape generated by acceleration at alongside flow of fluid on protrusive face Download PDF

Info

Publication number
JP2018167813A
JP2018167813A JP2017069382A JP2017069382A JP2018167813A JP 2018167813 A JP2018167813 A JP 2018167813A JP 2017069382 A JP2017069382 A JP 2017069382A JP 2017069382 A JP2017069382 A JP 2017069382A JP 2018167813 A JP2018167813 A JP 2018167813A
Authority
JP
Japan
Prior art keywords
wing
force
along
flow
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017069382A
Other languages
Japanese (ja)
Inventor
元祐 ▲高▼
元祐 ▲高▼
Motosuke Ko
天使 中靜
Tenshi Nakashizuka
天使 中靜
麟 中靜
Rin Nakashizuka
麟 中靜
嘉麟 中靜
Karin Nakashizuka
嘉麟 中靜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017069382A priority Critical patent/JP2018167813A/en
Publication of JP2018167813A publication Critical patent/JP2018167813A/en
Pending legal-status Critical Current

Links

Abstract

To provide a streamline shape which can obtain a propulsion force without using a power supply, and can save energy.SOLUTION: A three-dimensional substance including a constitution which is formed of a plurality of protrusive faces including faces having wing shapes formed by a protrusive face action which is accelerated when fluids flow alongside on the protrusive faces, and the protrusive faces including streamline shapes is propelled by a three-dimensional substance 1 including protrusive faces having rear edges of shapes with which fluids flowing alongside on the three-dimensional substance including the protrusive faces merge in a direction which is the closest to a parallel with direction.SELECTED DRAWING: Figure 1

Description

本発明は、複数の凸面と流線型を具備した体物による推進する凸面物体に関するものである。   The present invention relates to a convex object driven by a body having a plurality of convex surfaces and streamlined shapes.

翼の前縁から後縁にかけての上部の長さより下部の方が短い翼を「飛行翼」とし、鳥の翼と同じような形状の翼を「鳥形翼」とし、翼の上部の形状と下部の形状が対称的な翼を「対称翼」とし、各翼を「推進翼」とするが、翼の前縁から後縁までの長さが「翼弦長」で、該翼弦長が10mの飛行翼の場合で、停止している状態から、時速50キロの向い風が翼を0.72秒(3600÷50000×10)で通過して、翼の上部曲線の長さが11mの場合、平均時速55キロ(3600÷0.72×11)で、下部曲線の長さが10.5mの場合、平均時速52.5キロ(3600÷0.72×10.5)で後縁を通過し、後縁で向い風の本流と翼上部の風と下部の風が同時に通過している「等時間通過」説が以前に有り、この現象は飛行翼全体の空気抵抗が「0(ゼロ)」である事を示しているのであり、現在、向い風が翼の前縁から上部と下部に分離し、面に沿って後縁に到着する時、翼弦長よりも、距離が長い程、分離前の向い風より速度が増していて、下部よりも距離の長い上部が後縁をはるかに早く通過している事が風洞実験などで確認されているので、等時間通過説は否定されているが、この現象は飛行翼全体の空気抵抗が「−(マイナス)」である事を示しているが常識的に抵抗がゼロだったりマイナスに成ることは考えられない現象であって、向い風とは翼の前縁から後縁にかけて面に沿って空気が流れる事で、翼の下部より上部の方が早く後縁を通過し、翼の後方にと噴出されるのですがその分、翼の上部は下部より空気の質量は減るので、翼の下と上の気圧差が生じると思われるが、翼の上部で減った空気の質量と翼全面が大気により受けている空気の質量を比べるとさほどの変化はなく、翼を含む飛行機全体を持ち上げるには、それなりの力を担保しなければならないが、翼の上部の空気の量が少し減ったからと言って翼に生じる気圧差で飛行機全体を持ち上げる程の揚力に換わるとは考えにくいのであるが、図1は、3種類の推進翼断面(a)を縦方向に前縁(d)と後縁(e)が同じ位置に表示されていて、各翼断面の上部(b)と下部(c)が翼弦長(f)と対比できるように表記された図であり、図2は、推進翼の形状により空気が上部と下部の曲面に沿って流れる事で速度が増し、上部面から後縁(e)を通過する時の空気の進行方向と勢いを表示した上部推進力(g)と、下部から後縁(e)を通過する時の空気の進行方向と勢いを表示した下部推進力(h)が合力した合力推進力(i)が表示されていて、反作用により、飛行翼と鳥刑翼が前方向の推進力と上方向の揚力を得て、対称翼が前方向の推進力が作用していることが解り、該作用を「曲面沿流増推進力」とするのであるが、鳥には揚力と推進力が備わっていると定義し、揚力と推進力の対象を推進翼の形状としたことを特徴とした(特許文献1参照)。   A wing whose length is shorter than the upper length from the leading edge to the trailing edge of the wing is referred to as a "flying wing", a wing having the same shape as a bird wing is referred to as a "bird wing", and Symmetrical wings with symmetrical bottom shapes are called “symmetrical wings”, and each wing is called “propulsion wing”. The length from the leading edge to the trailing edge of the wing is “chord chord length”, and the chord length is In the case of a flying wing of 10m, when the head wind is 50km / h from the stationary state and passes through the wing in 0.72 seconds (3600 ÷ 50000 × 10), the length of the upper curve of the wing is 11m When the average speed is 55 km / h (3600 ÷ 0.72 × 11) and the length of the lower curve is 10.5 m, it passes the trailing edge at an average speed of 52.5 km / h (3600 ÷ 0.72 × 10.5) However, there has previously been an `` isochronous passage '' theory in which the main wind of the heading wind at the trailing edge and the wind at the top and bottom of the wing pass at the same time. It shows that the air resistance is "0 (zero)", and now when the head wind separates from the leading edge of the wing to the upper and lower parts and arrives at the trailing edge along the surface, the chord length However, the longer the distance, the higher the speed than the heading wind before separation, and it has been confirmed by wind tunnel experiments that the upper part, which is longer than the lower part, passes through the trailing edge much faster. Although the passing theory is denied, this phenomenon indicates that the air resistance of the entire flight wing is "-(minus)", but it is common sense that the resistance is not considered to be zero or minus However, the head wind is the flow of air along the surface from the leading edge to the trailing edge of the wing, and the upper part passes through the trailing edge earlier than the lower part of the wing, and is ejected to the rear of the wing. However, the air mass in the upper part of the wing is less than that in the lower part. It seems that there is not much change when comparing the mass of air reduced at the top of the wing with the mass of air received by the atmosphere on the entire wing, and a certain amount of force is required to lift the entire airplane including the wing. Although it must be secured, it is difficult to think that the amount of air at the top of the wing has decreased slightly and that it will be converted to a lift that lifts the entire airplane due to the pressure difference generated on the wing. The leading edge (d) and the trailing edge (e) are displayed at the same position in the longitudinal direction of the propeller blade cross section (a), and the upper part (b) and the lower part (c) of each blade cross section are chord lengths (f 2 is a diagram written so that it can be contrasted with FIG. 2, and FIG. 2 shows that the speed increases due to the flow of the air along the curved surfaces of the upper and lower parts due to the shape of the propulsion blade, and passes from the upper surface to the trailing edge (e) The upper propulsive force (g) indicating the direction of air travel and momentum, and the rear edge (e ) The resultant propulsive force (i) is displayed as a result of the lower propulsive force (h) indicating the traveling direction and momentum of the air as it passes through, and the flying wing and the bird wing are propelled forward by the reaction. The force and upward lift force are obtained, and it is understood that the forward thrust is acting on the symmetric wing, and this action is called "curve along the curved surface". It is defined as having a force, and the target of lift and propulsion is the shape of the propulsion blade (see Patent Document 1).

中心点が存在する円弧による曲線により構成された面を「弧面」とし、該弧面の集合体を「曲面」とし、外側に膨らんだ曲面が「凸面」で内側に膨らんだ曲面を「凹面」とし、空気や水等の粘性流体の物質を「粘質体」とし、該粘質体と物体が直接的に接した状態を「密接」とし、該密接しながら流れている事を「沿流」とし、重力により空気や水等が加える圧力を「対外圧力」とし、円弧上で弧の中心に向かい押し付ける力を「向心力」とし、運動する力と力が合わさる事を「合力」とし、
物体上を粘質体が沿流するにおいて、粘質体が物体と密接している状態で、物体と粘質体との間に何も無い事により、物体と粘質体が一体化した事で、従来は物体にかかる対外圧力が粘質体の上から作用する事で物体と該物体上を沿流する粘質体が対外圧力により一体化した事で曲面を沿流するにおいて、曲面の形状と同じ形状に沿って沿流している事で明らかで、沿流している粘質体と物体を含む全体に対外圧力が作用するが、特に物体に密接している粘質体に作用する圧力の部分を「付帯圧力」とし、
弧面上を粘質体が沿流するにおいて、弧面の中心点の方向に対して直角で遠心力が作用する方向と同じ方向に粘質体が弧面の接点から慣性により直進しようとする力を「慣性直進力」とし、弧面上で粘質体との接点から始まる慣性直進力の方向と該方向側にある弧面までの範囲以内で受ける付帯圧力を「付内圧力」とし、該範囲以外から受ける付帯圧力を「付外圧力」とし、
弧面上を粘質体が沿流するにおいて、弧面に接している粘質体は慣性直進力により弧面から剥離する方向に作用するが、該作用は弧面とその弧面に接していた粘質体との間に真空状の隙間が発生する作用で、該発生する作用を「剥離減圧」とし、該剥離減圧により真空状態になる大きな力を回避するため、付帯圧力が対応し、
粘質体の慣性直進力による剥離において、粘質体が沿流する弧面内の中心点までの距離が長かったり、付帯圧力より慣性直進力が弱い場合、剥離減圧を回避するため剥離しないよう付帯圧力の付外圧力が向心力となり粘質体を押し付け、該粘質体を押し付ける作用は記載の条件が満たされる限り継続的に作用し、該継続的な作用により粘質体は持続的に弧面に押し付けられながら沿流すると同時に従来の粘質体の流速による慣性直進力と向心力が合力する事で、凸面上を沿流する流れを加速させるが、該加速させる作用を「凸面沿流加速力」とし、
粘質体の慣性直進力による剥離において、粘質体が沿流する弧面内の中心点までの距離が短かったり、付帯圧力より慣性直進力が強い場合、粘質体が慣性直進力により弧面から剥離するが、粘質体が剥離した後の剥離減圧を回避するため付内圧力により該付内圧力が作用する範囲にある粘質体を剥離した跡の弧面上に補填するが、該補填する方向と粘質体が剥離した方向とは反対の方向になり、互いの方向が違う事により渦が発生する要因になる。該要因は記載の条件が満たされる限り継続的に作用し、該断続的な作用により持続的に渦が発生し、該発生した渦は凸面上を沿流していた粘質体が剥離した先から渦を循環させる事になり、該渦の循環により凸面上を沿流していた粘質体の速力が吸収される事で沿流する速力が消滅して失速する事になり、
物体上を沿流中の粘質体が離れるにおいて、実際に翼後縁となるフラップ先端の様に、上面と下面の沿流が可能な限り平行で鋭利な角度で合流する事で流速を損なわずに翼後縁(フラップ先端)から噴出されるが、実際の翼後縁では上面からの速い噴出と下面からの流速の違いにより、翼自体は不要な渦を発生させながらも推進力と上昇力を得ているが、翼上面と同じ形状により翼の下面を構成し、該構成された下面により上面と同じ凸面上で作用する推進力と上昇力の作用を得るにおいて、翼を引き上げる揚力と錯覚していた上昇力は相殺され、翼の後方斜め下方向に発生していた不要な渦も消滅し、前の方向へ推進する力を増幅した作用を得る事が可能で、上下の面が同じ形状による対称翼の様に上下の凸面で凸面沿流加速力を得て、該得た凸面沿流加速力をフラップの形状で示す様に後縁が可能な限り平行で鋭利な角度で合流するよう構成された形状の翼を「推進翼」とするが、該推進翼は対称翼だけでは無く非対称でも下の面で凸面沿流加速力を得る事が可能な形状を含み、
揚力は存在しないが「翼後縁のフラップ等の先端を下げる操作により揚力の強弱を調整し、離着陸時に利用してきた。」とあるが実際は、翼後縁となるフラップ先端から後方斜め下方向に噴出する事で推進力と上昇力を得ているが、フラップ先端を下げる事により、下方向の噴出を強化させた事による反作用により翼の推進力を減少させて上昇力を増幅させる事になり、上昇力の強弱を離着陸の補助に利用している事から、フラップは流れを調整する舵の機能があり、該舵の機能を推進翼に具備する事と、推進翼と同等な機能と進行方向を変更する機能を具備した舵を「推進舵」とし、
空気抵抗を軽減する形状を示す流線型と魚類やイルカ等の形状と同様で潜水艦等により形状を示す涙適型が有るが、粘質体の中で移動を目的とする物体において、凸面の面積を多く占める事で凸面沿流加速力による作用を得て、末尾は沿流している粘質体が鋭利な角度で一点に結集して噴出される形状や線上に集中して噴出されるよう構成された形状を「流結型」とし、該流結型により構成された物体を「流結体」とし、
推進翼は流結型で推進舵は流結体に属し、流結体に推進舵を具備する事により、一層の推進力を得る事ができ、飛行機、自動車等の対外圧力の中で動力により移動する物体を「自走体」とし、該自走体の形状に流結型を具備する事で「自走流結型」とし、該自走流結型により全体が構成された自走体を「自走流結体」とし、自走流結体に推進翼を具備した事で、粘質対の剥離現象を考慮した状態で、自走体を含む物体の全体に流結型や流結体を具備し、自走体を含む物体の一部又は複数の部分に流結型や流結体を具備し、流結型の一部又は複数に流結型や流結体を具備し、流結体の一部又は複数に流結型や流結体を具備した事を特徴とした(特許文献2参照)。
A surface formed by a curved line with an arc having a center point is called an "arc surface", a set of the arc surfaces is called a "curved surface", and a curved surface bulging outward is a "convex surface" and a curved surface bulging inward is "concave The viscous fluid substance such as air or water is referred to as “viscous body”, the state where the viscous body and the object are in direct contact with each other is referred to as “closely”, `` Flow '', the pressure applied by air or water due to gravity is `` external pressure '', the force pushing toward the center of the arc on the arc is `` centripetal force '', and the combined force and force to move is `` synthetic force ''
When the sticky body runs along the object, the sticky body is in close contact with the object, and there is nothing between the sticky body and the object and the sticky body is integrated. Conventionally, when the external pressure applied to the object acts from above the viscous body, the object and the viscous body flowing along the object are integrated by the external pressure. It is obvious that it is along the same shape as the shape, and external pressure acts on the whole including the viscous body and the object that are flowing along, but the pressure acting on the viscous body that is in close contact with the object in particular. Is the “incident pressure”.
When the sticky body flows along the arc surface, the sticky body tries to go straight from the contact point of the arc surface by inertia in the same direction as the direction of the centrifugal force perpendicular to the direction of the center point of the arc surface. The force is `` inertial straight force '', the incidental pressure received within the range of the direction of inertia straight force starting from the contact point with the viscous body on the arc surface and the arc surface on the direction side is `` internal pressure '', The incidental pressure received from outside this range is called "external pressure"
When a sticky body flows along an arc surface, the sticky body that is in contact with the arc surface acts in a direction that separates from the arc surface due to inertial linear force, but this action is in contact with the arc surface and the arc surface. In order to avoid a large force that causes a vacuum state due to the peeling pressure reduction, the incident pressure corresponds,
When peeling due to the inertial linear force of the sticky body, if the distance to the center point in the arc surface along which the sticky body flows is long, or if the inertial straight-forward force is weaker than the incidental pressure, it will not peel off to avoid pressure reduction. The external pressure of the incidental pressure becomes a centripetal force and presses the viscous body, and the action of pressing the viscous body continues as long as the described conditions are satisfied, and the continuous action causes the viscous body to continuously arc. The flow along the convex surface is accelerated by the combined force of inertia linearity and centripetal force due to the flow velocity of the conventional sticky body at the same time while pressing against the surface. Power,
When the sticky body is peeled off by the inertial straight force, if the distance to the center point in the arc surface along which the sticky body flows is short or if the inertial straight force is stronger than the incident pressure, the sticky body is Although it peels from the surface, in order to avoid peeling pressure reduction after the sticky body peels off, the internal pressure compensates the sticky body in the range where the internal pressure acts by the attached pressure on the trace surface. The filling direction and the direction in which the sticky body peels are opposite to each other, and a vortex is generated when the directions are different from each other. The factor acts continuously as long as the described conditions are satisfied, and the eddy is continuously generated by the intermittent action, and the generated vortex is from the point where the sticky body that has flowed along the convex surface is separated. The vortex will be circulated, and the speed of the viscous material that has flowed along the convex surface will be absorbed by the circulation of the vortex.
When the sticky substance running along the body leaves, the flow velocity is impaired by joining the upper and lower surfaces along the parallel and sharp angles as much as possible, like the tip of the flap that is actually the trailing edge of the blade. However, due to the difference in the flow velocity from the upper surface and the lower surface at the actual blade trailing edge, the wing itself generates propulsive force and rise while generating unnecessary vortices. However, the lower surface of the wing is constituted by the same shape as the upper surface of the wing, and the lifting force that lifts the wing is obtained in order to obtain the action of the driving force and the lifting force acting on the same convex surface as the upper surface. The illusion of ascending force is canceled out, the unnecessary vortex generated in the diagonally downward direction of the wing disappears, and it is possible to obtain the effect of amplifying the force propelled forward, and the upper and lower surfaces are Like the symmetrical wing with the same shape, the acceleration along the convex surface is obtained by the upper and lower convex surfaces. As shown by the shape of the flap along the convex surface, the wing with a shape that is configured so that the trailing edges merge as parallel and at a sharp angle as possible is referred to as a "propulsion wing". Including not only asymmetric but also a shape that can obtain acceleration along the convex surface on the lower surface,
Although there is no lift, it has been used during take-off and landing by adjusting the strength of the lift by lowering the tip of the flap at the trailing edge of the wing. Propelling force and ascending force are obtained by jetting, but by lowering the flap tip, the propulsive force of the wing is reduced by the reaction caused by strengthening the downward jetting and the ascending force is amplified. Since the strength of the ascending force is used for assisting takeoff and landing, the flap has a rudder function that adjusts the flow, and the propulsion wing has the function of the rudder, and the same function and progress as the propulsion wing. A rudder equipped with a function to change the direction is called a "propulsion rudder"
There is a streamline type that shows the shape to reduce air resistance and a tear suitable type that shows the shape by submarines, etc., similar to the shape of fish and dolphins, etc. By occupying a large amount, the effect of the acceleration force along the convex surface is obtained, and at the end, the viscous bodies flowing along the surface are concentrated at one point at a sharp angle and are ejected in a concentrated manner on the line. The shape formed as “flowing type”, and the object formed by the flow type as “flowing body”,
The propulsion blade is a flow type, and the propulsion rudder belongs to the flow assembly. By providing the flow control body with a propulsion rudder, it is possible to obtain further propulsive power, and by power in the external pressure of airplanes, automobiles, etc. A moving object is a “self-propelled body”, and the self-propelled body is formed as a “self-propelled fluidized type” by providing a flowable type in the shape of the self-propelled body. Is a self-propelled flow body, and the self-propelled flow body is equipped with a propulsion wing. Containing a ligation body, including a flow type or a flow body in a part or a plurality of parts of an object including a self-propelled body, and having a flow type or a flow body in a part or a plurality of the flow type. In addition, the present invention is characterized in that a part or a plurality of the joined bodies are provided with a casting type or a joined body (see Patent Document 2).

特開2017―19391号公報JP 2017-19391 A 特願2016―166359号Japanese Patent Application No. 2016-166359

飛行機などでは、鳥が持つ羽をかたどった翼で、流れてくる気流を上下の2方向に分ける事で気圧差を得て揚力を発生させ飛行に利用しているはずだが、揚力の作用として、気圧差が吸引することで翼を上方向に持ち上げると有るが、物理的に周りの質量の軽い空気が先に吸収されるので、質量の重い翼を上方向に吸引し持ち上げるのは不可能であるが、「翼上部の気流は下部の気流より速く翼の後縁に到着する」事から「翼上部で加速した気流は、翼の後縁で加速した分の速力で斜め下後方に噴出されている」事が理解でき、気流が斜め下後方に噴出される事で翼が斜め上前方に推進している事になり、曲面を沿流する流体は加速する事を知らずに利用していて、対称翼では揚力が相殺するので凸面の凸面率が大きくならない形状により構成されていて、揚力の発生を対象に翼を構成していたので上面に対する一方向だけの利用だった。   In airplanes and the like, the wings that have the shape of a bird's wings should be used for flying by generating a lift by dividing the flowing airflow into two directions, up and down, but as an effect of lift, Although the air pressure difference sucks up the wings upward, it is impossible to suck up and lift the heavy wings upward because physically lighter air is absorbed first. However, from the fact that “the airflow at the top of the wing arrives at the trailing edge of the wing faster than the airflow at the bottom”, “the airflow accelerated at the top of the wing is ejected diagonally downward and rearward at the speed accelerated by the trailing edge of the wing. It is understood that the wings are propelled diagonally up and forward because the airflow is ejected diagonally downward and rearward, and the fluid flowing along the curved surface is used without knowing that it will accelerate. For symmetrical wings, lift cancels out, so the convexity ratio of the convex surface does not increase. Have been, was the use of the subject the occurrence of lift only in one direction with respect to the upper surface so made up the wing.

凸面を流体が沿流すると加速する凸面作用による、翼の形状による面を含む複数の凸面による構成や流線型を含み構成された凸面を含む立体物が、該凸面を含む立体物に沿流する流体が可能な限り平行に近い方向で合流する形状の後縁を具備した凸面を含む立体物による推進する凸面物体   A fluid that has a convex surface effect that accelerates when a fluid flows along the convex surface, and that includes a plurality of convex surfaces including a surface due to the shape of a wing, or a solid object that includes a streamlined shape, and that flows along the three-dimensional object including the convex surface. Convex object that is propelled by a three-dimensional object including a convex surface with a trailing edge that merges in a direction as close to parallel as possible

一般的にデザイン(形状)により空気抵抗等の軽減を試みるが、抵抗値がゼロになる事は無いとの認識である。しかしながらデザインに流結型を具備する事により、凸面沿流加速力により推進する力が加わり、抵抗値がゼロ以下のマイナスになる事が可能で、自走体の形状に流結型を取り入れたり、自走体自身を流結体により構成したり自走体に流結体を具備する等により動力源を使用せず推進力を得る事が可能で、省エネが実施できる。   In general, it tries to reduce air resistance by design (shape), but it is recognized that the resistance value never becomes zero. However, by having a flow type in the design, a force propelled by the acceleration force along the convex surface is added, and the resistance value can be less than zero, and the flow type can be incorporated into the shape of the self-propelled body. It is possible to obtain a propulsive force without using a power source by configuring the self-propelled body itself with a fluidized body or by providing the self-propelled body with a fluidized body, thereby saving energy.

「翼上面を沿流する気流は、前縁らか進行方向の前面にかけて速くなるがその後、後縁に向かい減速する」との説があり、本発明とは別の作用であるが、実際に翼に作用する現象として、前縁らか進行方向の前面に沿流している粘質体に対して、向心力以外の力が作用して剥離現象は発生しないが、その後は未確認である。   There is a theory that `` the airflow along the upper surface of the wing increases from the leading edge to the front in the traveling direction, but then decelerates toward the trailing edge '', which is a function different from the present invention, but actually As a phenomenon acting on the wing, a force other than the centripetal force acts on the sticky body flowing along the front edge or the front surface in the traveling direction, and no peeling phenomenon occurs, but it has not been confirmed.

凸面沿流加速力に対して、凹面上を沿流する流れは減速するが、該減速する作用を「凹面沿流減速力」とし、凸面と凹面上で沿流する粘質体による速度が加減する作用を「曲面沿流増減力」とした。   The flow along the concave surface decelerates against the acceleration along the convex surface, but the deceleration action is called "concave surface deceleration force", and the speed due to the viscous material flowing along the convex and concave surfaces is increased or decreased. The action to be performed was called “curved surface up / down force”.

対称翼にする事で揚力の様な上昇力は相殺され無駄な渦も消滅し、翼に迎角を設定する事により従来と同じ上昇力が得られ、巡航飛行も迎角やフラップの調整で可能になる。   By using symmetrical wings, the lifting force such as lift is offset and the useless vortex disappears. By setting the angle of attack on the wing, the same ascending force can be obtained, and cruise flight can be adjusted by adjusting the angle of attack and flap. It becomes possible.

本発明において、翼従来の上面の形状を下面に応用した推進翼の断面図In the present invention, a sectional view of a propulsion blade in which the shape of the upper surface of the conventional blade is applied to the lower surface 本発明において、凸面沿流加速力が作用する弧面により構成された流結型の断面図In the present invention, a cross-sectional view of a flow type constituted by an arc surface on which a convex surface acceleration force acts. 本発明において、自走体に流結型を具備した自走流結体に推進舵を具備した断面図In the present invention, a cross-sectional view of a self-propelled flow body equipped with a propulsion rudder with a self-propelled flow structure.

図1は、従来の翼の上側と同じ形状の上面(2)で前縁(4a)から後縁(5a)にかけて気流が沿流する事で凸面沿流加速力により推進力を得ていたが、後縁(5a)から気流を噴出する角度と流速の違いから渦を発生させて運動量を無駄に使用していたが、上面(2)と同じ形状で下面(3)を構成する事により気流を噴出する角度と流速が同じなので無駄な渦の発生を控える事ができ、より多くの推進力を得る事ができる推進翼(1)の断面図である。   In FIG. 1, propulsive force was obtained by the acceleration along the convex surface by the airflow flowing from the leading edge (4a) to the trailing edge (5a) on the upper surface (2) having the same shape as the upper side of the conventional wing. The vortex was generated due to the difference between the angle and the flow velocity at which the air flow was ejected from the trailing edge (5a), and the momentum was wasted. However, the air flow was created by forming the lower surface (3) with the same shape as the upper surface (2). FIG. 2 is a cross-sectional view of a propulsion blade (1) that can prevent generation of useless vortices and can obtain more propulsive force because the angle at which the gas is ejected and the flow velocity are the same.

図2は、上側又は右側の弧面(7a)と下側又は左側の弧面(7b)により前縁(4b)から後縁(5b)にかけて、上下又は左右で凸面沿流加速力の作用が得られる形状により構成された流結型(6)の断面図である。   FIG. 2 shows the effect of the acceleration force along the convex surface from the front edge (4b) to the rear edge (5b) by the upper or right arc surface (7a) and the lower or left arc surface (7b). It is sectional drawing of the flow type | mold (6) comprised by the shape obtained.

図3は、自走体を流結型の形状により構成した自走流結体(8)に自体が凸面により構成される事により凸面沿流加速力による推進力を具備した推進舵(9)を具備した断面図である。   FIG. 3 shows a propulsion rudder (9) provided with a propulsive force due to the acceleration along the convex surface due to the fact that the self-propelled flow body (8) is formed of a convex surface. FIG.

図1,2,3はラグビーボールの様な球体の形状とした断面図としても対応でき、凸面沿流加速力の作用は凸面の面積の度合いにより変化する。   1, 2, and 3 can also be handled as a cross-sectional view in the shape of a sphere like a rugby ball, and the action of the acceleration along the convex surface changes depending on the degree of the convex surface area.

飛行機、グライダー、ハンググライダー、パラグライダー、水中翼等で通常、揚力を発生させる要因を具備する翼の部分に対して、平面に該当する面を凸面により構成する事により凸面沿流加速力を得る事ができる。   For planes, gliders, hang gliders, paragliders, hydrofoil, etc., which usually have lift-causing factors, the surface corresponding to the plane is made of a convex surface to obtain a convex surface acceleration force. Can do.

自動車等の屋根や左右の側面、船の船上や船底等の様に、自走体に流結体を具備する事により、流結体の推進力を得ることで自走体における動力負担の軽減ができる。   Reduce the power burden on the self-propelled body by obtaining the propulsive force of the joint body by providing the joint body on the self-propelled body, such as the roof and left and right sides of the car, the ship's shipboard and the bottom. Can do.

1 推進翼
2 上面
3 下面
4a、4b、 前縁
5a、5b、 後縁
6 流結型
7a、7b、 弧面
8 流結体
9 推進舵
DESCRIPTION OF SYMBOLS 1 Propulsion blade 2 Upper surface 3 Lower surface 4a, 4b, Front edge 5a, 5b, Rear edge 6 Flow type 7a, 7b, Arc surface 8 Flow body 9 Propulsion rudder

Claims (1)

中翼の前縁から後縁にかけての上部の長さより下部の方が短い翼を「飛行翼」とし、鳥の翼と同じような形状の翼を「鳥形翼」とし、翼の上部の形状と下部の形状が対称的な翼を「対称翼」とし、各翼を「推進翼」とするが、翼の前縁から後縁までの長さが「翼弦長」で、該翼弦長が10mの飛行翼の場合で、停止している状態から、時速50キロの向い風が翼を0.72秒(3600÷50000×10)で通過して、翼の上部曲線の長さが11mの場合、平均時速55キロ(3600÷0.72×11)で、下部曲線の長さが10.5mの場合、平均時速52.5キロ(3600÷0.72×10.5)で後縁を通過し、後縁で向い風の本流と翼上部の風と下部の風が同時に通過している「等時間通過」説が以前に有り、この現象は飛行翼全体の空気抵抗が「0(ゼロ)」である事を示しているのであり、現在、向い風が翼の前縁から上部と下部に分離し、面に沿って後縁に到着する時、翼弦長よりも、距離が長い程、分離前の向い風より速度が増していて、下部よりも距離の長い上部が後縁をはるかに早く通過している事が風洞実験などで確認されているので、等時間通過説は否定されているが、この現象は飛行翼全体の空気抵抗が「−(マイナス)」である事を示しているが常識的に抵抗がゼロだったりマイナスに成ることは考えられない現象であって、向い風とは翼の前縁から後縁にかけて面に沿って空気が流れる事で、翼の下部より上部の方が早く後縁を通過し、翼の後方にと噴出されるのですがその分、翼の上部は下部より空気の質量は減るので、翼の下と上の気圧差が生じると思われるが、翼の上部で減った空気の質量と翼全面が大気により受けている空気の質量を比べるとさほどの変化はなく、翼を含む飛行機全体を持ち上げるには、それなりの力を担保しなければならないが、翼の上部の空気の量が少し減ったからと言って翼に生じる気圧差で飛行機全体を持ち上げる程の揚力に換わるとは考えにくいのであるが、図1は、3種類の推進翼断面(a)を縦方向に前縁(d)と後縁(e)が同じ位置に表示されていて、各翼断面の上部(b)と下部(c)が翼弦長(f)と対比できるように表記された図であり、図2は、推進翼の形状により空気が上部と下部の曲面に沿って流れる事で速度が増し、上部面から後縁(e)を通過する時の空気の進行方向と勢いを表示した上部推進力(g)と、下部から後縁(e)を通過する時の空気の進行方向と勢いを表示した下部推進力(h)が合力した合力推進力(i)が表示されていて、反作用により、飛行翼と鳥刑翼が前方向の推進力と上方向の揚力を得て、対称翼が前方向の推進力が作用していることが解り、該作用を「曲面沿流増推進力」とするのであるが、鳥には揚力と推進力が備わっていると定義し、揚力と推進力の対象を推進翼の形状としたことを特徴とし、
中心点が存在する円弧による曲線により構成された面を「弧面」とし、該弧面の集合体を「曲面」とし、外側に膨らんだ曲面が「凸面」で内側に膨らんだ曲面を「凹面」とし、空気や水等の粘性流体の物質を「粘質体」とし、該粘質体と物体が直接的に接した状態を「密接」とし、該密接しながら流れている事を「沿流」とし、重力により空気や水等が加える圧力を「対外圧力」とし、円弧上で弧の中心に向かい押し付ける力を「向心力」とし、運動する力と力が合わさる事を「合力」とし、
物体上を粘質体が沿流するにおいて、粘質体が物体と密接している状態で、物体と粘質体との間に何も無い事により、物体と粘質体が一体化した事で、従来は物体にかかる対外圧力が粘質体の上から作用する事で物体と該物体上を沿流する粘質体が対外圧力により一体化した事で曲面を沿流するにおいて、曲面の形状と同じ形状に沿って沿流している事で明らかで、沿流している粘質体と物体を含む全体に対外圧力が作用するが、特に物体に密接している粘質体に作用する圧力の部分を「付帯圧力」とし、
弧面上を粘質体が沿流するにおいて、弧面の中心点の方向に対して直角で遠心力が作用する方向と同じ方向に粘質体が弧面の接点から慣性により直進しようとする力を「慣性直進力」とし、弧面上で粘質体との接点から始まる慣性直進力の方向と該方向側にある弧面までの範囲以内で受ける付帯圧力を「付内圧力」とし、該範囲以外から受ける付帯圧力を「付外圧力」とし、
弧面上を粘質体が沿流するにおいて、弧面に接している粘質体は慣性直進力により弧面から剥離する方向に作用するが、該作用は弧面とその弧面に接していた粘質体との間に真空状の隙間が発生する作用で、該発生する作用を「剥離減圧」とし、該剥離減圧により真空状態になる大きな力を回避するため、付帯圧力が対応し、
粘質体の慣性直進力による剥離において、粘質体が沿流する弧面内の中心点までの距離が長かったり、付帯圧力より慣性直進力が弱い場合、剥離減圧を回避するため剥離しないよう付帯圧力の付外圧力が向心力となり粘質体を押し付け、該粘質体を押し付ける作用は記載の条件が満たされる限り継続的に作用し、該継続的な作用により粘質体は持続的に弧面に押し付けられながら沿流すると同時に従来の粘質体の流速による慣性直進力と向心力が合力する事で、凸面上を沿流する流れを加速させるが、該加速させる作用を「凸面沿流加速力」とし、
粘質体の慣性直進力による剥離において、粘質体が沿流する弧面内の中心点までの距離が短かったり、付帯圧力より慣性直進力が強い場合、粘質体が慣性直進力により弧面から剥離するが、粘質体が剥離した後の剥離減圧を回避するため付内圧力により該付内圧力が作用する範囲にある粘質体を剥離した跡の弧面上に補填するが、該補填する方向と粘質体が剥離した方向とは反対の方向になり、互いの方向が違う事により渦が発生する要因になる。該要因は記載の条件が満たされる限り継続的に作用し、該断続的な作用により持続的に渦が発生し、該発生した渦は凸面上を沿流していた粘質体が剥離した先から渦を循環させる事になり、該渦の循環により凸面上を沿流していた粘質体の速力が吸収される事で沿流する速力が消滅して失速する事になり、
物体上を沿流中の粘質体が離れるにおいて、実際に翼後縁となるフラップ先端の様に、上面と下面の沿流が可能な限り平行で鋭利な角度で合流する事で流速を損なわずに翼後縁(フラップ先端)から噴出されるが、実際の翼後縁では上面からの速い噴出と下面からの流速の違いにより、翼自体は不要な渦を発生させながらも推進力と上昇力を得ているが、翼上面と同じ形状により翼の下面を構成し、該構成された下面により上面と同じ凸面上で作用する推進力と上昇力の作用を得るにおいて、翼を引き上げる揚力と錯覚していた上昇力は相殺され、翼の後方斜め下方向に発生していた不要な渦も消滅し、前の方向へ推進する力を増幅した作用を得る事が可能で、上下の面が同じ形状による対称翼の様に上下の凸面で凸面沿流加速力を得て、該得た凸面沿流加速力をフラップの形状で示す様に後縁が可能な限り平行で鋭利な角度で合流するよう構成された形状の翼を「推進翼」とするが、該推進翼は対称翼だけでは無く非対称でも下の面で凸面沿流加速力を得る事が可能な形状を含み、
揚力は存在しないが「翼後縁のフラップ等の先端を下げる操作により揚力の強弱を調整し、離着陸時に利用してきた。」とあるが実際は、翼後縁となるフラップ先端から後方斜め下方向に噴出する事で推進力と上昇力を得ているが、フラップ先端を下げる事により、下方向の噴出を強化させた事による反作用により翼の推進力を減少させて上昇力を増幅させる事になり、上昇力の強弱を離着陸の補助に利用している事から、フラップは流れを調整する舵の機能があり、該舵の機能を推進翼に具備する事と、推進翼と同等な機能と進行方向を変更する機能を具備した舵を「推進舵」とし、
空気抵抗を軽減する形状を示す流線型と魚類やイルカ等の形状と同様で潜水艦等により形状を示す涙適型が有るが、粘質体の中で移動を目的とする物体において、凸面の面積を多く占める事で凸面沿流加速力による作用を得て、末尾は沿流している粘質体が鋭利な角度で一点に結集して噴出される形状や線上に集中して噴出されるよう構成された形状を「流結型」とし、該流結型により構成された物体を「流結体」とし、
推進翼は流結型で推進舵は流結体に属し、流結体に推進舵を具備する事により、一層の推進力を得る事ができ、飛行機、自動車等の対外圧力の中で動力により移動する物体を「自走体」とし、該自走体の形状に流結型を具備する事で「自走流結型」とし、該自走流結型により全体が構成された自走体を「自走流結体」とし、自走流結体に推進翼を具備した事で、粘質対の剥離現象を考慮した状態で、自走体を含む物体の全体に流結型や流結体を具備し、自走体を含む物体の一部又は複数の部分に流結型や流結体を具備し、流結型の一部又は複数に流結型や流結体を具備し、流結体の一部又は複数に流結型や流結体を具備した事を特徴とし、
凸面を流体が沿流すると加速する凸面作用による、翼の形状による面を含む複数の凸面による構成や流線型を含み構成された凸面を含む立体物が、該凸面を含む立体物に沿流する流体が可能な限り平行に近い方向で合流する形状の後縁を具備した凸面を含む立体物による推進する凸面物体による事を特徴とする
流体は凸面を沿流すると加速する事による複数の凸面と流線型を具備した体物による推進する凸面物体。
The wings that are shorter in the lower part than the upper part from the leading edge to the trailing edge of the middle wing are called “flight wings”, and the wings that have the same shape as the bird wings are called “bird wings”. The wings with symmetrical shapes at the bottom and the bottom are called “symmetric wings”, and each wing is called a “propulsion wing”, but the length from the leading edge to the trailing edge of the wing is “chord chord length”. In the case of a flying wing with a height of 10 m, a headwind of 50 km / h passes through the wing in 0.72 seconds (3600 ÷ 50000 × 10), and the upper curve length of the wing is 11 m. If the average speed is 55 km / h (3600 ÷ 0.72 × 11) and the length of the lower curve is 10.5 m, the trailing edge will be 52.5 km / h (3600 ÷ 0.72 × 10.5) Previously, there was an `` isochronous passage '' theory in which the main wind of the heading wind at the trailing edge, the wind at the top of the wing, and the wind at the bottom of the wing passed at the same time. The air resistance is 0 (zero), and when the head wind is separated from the leading edge of the wing to the top and bottom and reaches the trailing edge along the surface, the chord length As the distance is longer, the speed is higher than the head wind before separation, and it has been confirmed by wind tunnel experiments that the upper part, which is longer than the lower part, passes the trailing edge much faster. Although the time passing theory is denied, this phenomenon indicates that the air resistance of the entire flight wing is "-(minus)", but it is common sense that the resistance is zero or negative. Phenomenon, the head wind is the flow of air along the surface from the leading edge to the trailing edge of the wing, and the upper part passes through the trailing edge earlier than the lower part of the wing, and is ejected to the rear of the wing. However, since the air mass at the top of the wing is less than that at the bottom, the difference in pressure between the bottom and top of the wing However, there is not much change when comparing the mass of air reduced at the top of the wing and the mass of air received by the atmosphere on the entire wing, and it takes some force to lift the entire airplane including the wing. However, it is unlikely that the air pressure at the upper part of the wing has decreased slightly, and it is unlikely that it will be converted to a lift that lifts the entire airplane due to the pressure difference generated in the wing. Each type of propulsion blade cross section (a) is displayed in the longitudinal direction with the leading edge (d) and the trailing edge (e) at the same position, and the upper part (b) and the lower part (c) of each blade cross section are chord lengths ( Figure 2 is a diagram that can be contrasted with f). Figure 2 shows the propulsion blade shape that increases the speed of air flowing along the upper and lower curved surfaces, and passes through the trailing edge (e) from the upper surface. The upper propulsive force (g) showing the direction and momentum of the air when you e) The resultant propulsive force (i) obtained by combining the lower propulsive force (h) indicating the traveling direction and momentum of the air when passing through is displayed. By obtaining the propulsive force and the upward lift force, it is understood that the symmetric wings are acting in the forward direction, and this action is called “curved along the curved surface”. It is defined as having propulsive force, and the target of lift and propulsive force is the shape of the propulsion wing,
A surface formed by a curved line with an arc having a center point is called an "arc surface", a set of the arc surfaces is called a "curved surface", and a curved surface bulging outward is a "convex surface" and a curved surface bulging inward is "concave The viscous fluid substance such as air or water is referred to as “viscous body”, the state where the viscous body and the object are in direct contact with each other is referred to as “closely”, `` Flow '', the pressure applied by air or water due to gravity is `` external pressure '', the force pushing toward the center of the arc on the arc is `` centripetal force '', and the combined force and force to move is `` synthetic force ''
When the sticky body runs along the object, the sticky body is in close contact with the object, and there is nothing between the sticky body and the object and the sticky body is integrated. Conventionally, when the external pressure applied to the object acts from above the viscous body, the object and the viscous body flowing along the object are integrated by the external pressure. It is obvious that it is along the same shape as the shape, and external pressure acts on the whole including the viscous body and the object that are flowing along, but the pressure acting on the viscous body that is in close contact with the object in particular. Is the “incident pressure”.
When the sticky body flows along the arc surface, the sticky body tries to go straight from the contact point of the arc surface by inertia in the same direction as the direction of the centrifugal force perpendicular to the direction of the center point of the arc surface. The force is `` inertial straight force '', the incidental pressure received within the range of the direction of inertia straight force starting from the contact point with the viscous body on the arc surface and the arc surface on the direction side is `` internal pressure '', The incidental pressure received from outside this range is called "external pressure"
When a sticky body flows along an arc surface, the sticky body that is in contact with the arc surface acts in a direction that separates from the arc surface due to inertial linear force, but this action is in contact with the arc surface and the arc surface. In order to avoid a large force that causes a vacuum state due to the peeling pressure reduction, the incident pressure corresponds,
When peeling due to the inertial linear force of the sticky body, if the distance to the center point in the arc surface along which the sticky body flows is long, or if the inertial straight-forward force is weaker than the incidental pressure, it will not peel off to avoid pressure reduction. The external pressure of the incidental pressure becomes a centripetal force and presses the viscous body, and the action of pressing the viscous body continues as long as the described conditions are satisfied, and the continuous action causes the viscous body to continuously arc. The flow along the convex surface is accelerated by the combined force of inertia linearity and centripetal force due to the flow velocity of the conventional sticky body at the same time while pressing against the surface. Power,
When the sticky body is peeled off by the inertial straight force, if the distance to the center point in the arc surface along which the sticky body flows is short or if the inertial straight force is stronger than the incident pressure, the sticky body is Although it peels from the surface, in order to avoid peeling pressure reduction after the sticky body peels off, the internal pressure compensates the sticky body in the range where the internal pressure acts by the attached pressure on the trace surface. The filling direction and the direction in which the sticky body peels are opposite to each other, and a vortex is generated when the directions are different from each other. The factor acts continuously as long as the described conditions are satisfied, and the eddy is continuously generated by the intermittent action, and the generated vortex is from the point where the sticky body that has flowed along the convex surface is separated. The vortex will be circulated, and the speed of the viscous material that has flowed along the convex surface will be absorbed by the circulation of the vortex.
When the sticky substance running along the body leaves, the flow velocity is impaired by joining the upper and lower surfaces along the parallel and sharp angles as much as possible, like the tip of the flap that is actually the trailing edge of the blade. However, due to the difference in the flow velocity from the upper surface and the lower surface at the actual blade trailing edge, the wing itself generates propulsive force and rise while generating unnecessary vortices. However, the lower surface of the wing is constituted by the same shape as the upper surface of the wing, and the lifting force that lifts the wing is obtained in order to obtain the action of the driving force and the lifting force acting on the same convex surface as the upper surface. The illusion of ascending force is canceled out, the unnecessary vortex generated in the diagonally downward direction of the wing disappears, and it is possible to obtain the effect of amplifying the force propelled forward, and the upper and lower surfaces are Like the symmetrical wing with the same shape, the acceleration along the convex surface is obtained by the upper and lower convex surfaces. As shown by the shape of the flap along the convex surface, the wing with a shape that is configured so that the trailing edges merge as parallel and at a sharp angle as possible is referred to as a "propulsion wing". Including not only asymmetric but also a shape that can obtain acceleration along the convex surface on the lower surface,
Although there is no lift, it has been used during take-off and landing by adjusting the strength of the lift by lowering the tip of the flap at the trailing edge of the wing. Propelling force and ascending force are obtained by jetting, but by lowering the flap tip, the propulsive force of the wing is reduced by the reaction caused by strengthening the downward jetting and the ascending force is amplified. Since the strength of the ascending force is used for assisting takeoff and landing, the flap has a rudder function that adjusts the flow, and the propulsion wing has the function of the rudder, and the same function and progress as the propulsion wing. A rudder equipped with a function to change the direction is called a "propulsion rudder"
There is a streamline type that shows the shape to reduce air resistance and a tear suitable type that shows the shape by submarines, etc., similar to the shape of fish and dolphins, etc. By occupying a large amount, the effect of the acceleration force along the convex surface is obtained, and at the end, the viscous bodies flowing along the surface are concentrated at one point at a sharp angle and are ejected in a concentrated manner on the line. The shape formed as “flowing type”, and the object formed by the flow type as “flowing body”,
The propulsion blade is a flow type, and the propulsion rudder belongs to the flow assembly. By providing the flow control body with a propulsion rudder, it is possible to obtain further propulsive power, and by power in the external pressure of airplanes, automobiles, etc. A moving object is a “self-propelled body”, and the self-propelled body is formed as a “self-propelled fluidized type” by providing a flowable type in the shape of the self-propelled body. Is a self-propelled flow body, and the self-propelled flow body is equipped with a propulsion wing. Containing a ligation body, including a flow type or a flow body in a part or a plurality of parts of an object including a self-propelled body, and having a flow type or a flow body in a part or a plurality of the flow type. , Characterized by having a flow type or flow body in part or multiple of the flow body,
A fluid that has a convex surface effect that accelerates when a fluid flows along the convex surface, and that includes a plurality of convex surfaces including a surface due to the shape of a wing, or a solid object that includes a streamlined shape, and that flows along the three-dimensional object including the convex surface. Is characterized by a convex object propelled by a three-dimensional object including a convex surface with a trailing edge that merges in a direction that is as parallel as possible, and the fluid is streamlined with multiple convex surfaces by accelerating as it flows along the convex surface Convex object to be propelled by a body equipped with
JP2017069382A 2017-03-30 2017-03-30 Protrusive substance propelled by body product having a plurality of protrusive faces and streamline shape generated by acceleration at alongside flow of fluid on protrusive face Pending JP2018167813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017069382A JP2018167813A (en) 2017-03-30 2017-03-30 Protrusive substance propelled by body product having a plurality of protrusive faces and streamline shape generated by acceleration at alongside flow of fluid on protrusive face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017069382A JP2018167813A (en) 2017-03-30 2017-03-30 Protrusive substance propelled by body product having a plurality of protrusive faces and streamline shape generated by acceleration at alongside flow of fluid on protrusive face

Publications (1)

Publication Number Publication Date
JP2018167813A true JP2018167813A (en) 2018-11-01

Family

ID=64017811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017069382A Pending JP2018167813A (en) 2017-03-30 2017-03-30 Protrusive substance propelled by body product having a plurality of protrusive faces and streamline shape generated by acceleration at alongside flow of fluid on protrusive face

Country Status (1)

Country Link
JP (1) JP2018167813A (en)

Similar Documents

Publication Publication Date Title
US6923403B1 (en) Tailed flying wing aircraft
JP5290976B2 (en) Wing-supported airplane
US10377471B2 (en) Apparatus, system and method for drag reduction
US10532812B2 (en) Multi-hull seaplane
US2576294A (en) Airplane sustentation and control surface arrangement
CN105035306A (en) Jet-propelled flap lift augmentation joined wing system and aircraft thereof
US20050029396A1 (en) Channel-wing system for thrust deflection and force/moment generation
EP2757039A1 (en) Fuselage and method for reducing drag
JP2012500156A (en) Ground effect wing machine without horizontal tail
US2918229A (en) Ducted aircraft with fore elevators
US2511502A (en) Tailless airplane
RU2582505C1 (en) Hovercraft with water-jet propulsor
US6581536B1 (en) Surface effect watercraft having airfoil-augmented lift
US4494713A (en) Shockcone and channeled disk-airframe
JP2018167813A (en) Protrusive substance propelled by body product having a plurality of protrusive faces and streamline shape generated by acceleration at alongside flow of fluid on protrusive face
WO2011129721A1 (en) Fuselage and method for reducing resistance
JP2008137506A (en) Vessel
RU2557685C2 (en) "flying wing" configuration aircraft
JP2018030562A (en) Wing obtaining driving force without power by acceleration due to flow along convex surface
TWI683767B (en) Tailless aircraft
JP5745213B2 (en) Three-body airplane
CN104015924A (en) Track pump pneumatic lifting-body aircraft
JP2017019391A (en) Increasing propulsive force and propulsion blade for viscous fluid flowing along face
RU220983U1 (en) Longitudinal triplane ekranoplan scheme
US20050178884A1 (en) Flight device with a lift-generating fuselage