JP2018167409A - Method of producing fiber-reinforced resin mold article - Google Patents

Method of producing fiber-reinforced resin mold article Download PDF

Info

Publication number
JP2018167409A
JP2018167409A JP2017064567A JP2017064567A JP2018167409A JP 2018167409 A JP2018167409 A JP 2018167409A JP 2017064567 A JP2017064567 A JP 2017064567A JP 2017064567 A JP2017064567 A JP 2017064567A JP 2018167409 A JP2018167409 A JP 2018167409A
Authority
JP
Japan
Prior art keywords
fiber
mass
glass fiber
glass
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017064567A
Other languages
Japanese (ja)
Other versions
JP6504192B2 (en
Inventor
健二 森脇
Kenji Moriwaki
健二 森脇
小川 淳一
Junichi Ogawa
淳一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2017064567A priority Critical patent/JP6504192B2/en
Publication of JP2018167409A publication Critical patent/JP2018167409A/en
Application granted granted Critical
Publication of JP6504192B2 publication Critical patent/JP6504192B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

To provide a fiber-reinforced resin mold article having high rigidity and being excellent in impact resistance.SOLUTION: An injection molder including a low shear type screw of a single flight is used in injection molding using a molding material containing carbon fiber resin pellets and glass fiber resin pellets, in which: both pellets each have a weight average lenth of 10 mm or longer; a combined percentage content of carbon fibers and glass fibers is 20 mass% or more and 50 mass% or less; a ratio of the glass fibers to a total amount of the carbon fibers and the glass fibers is 5 mass% or more and 15 mass% or less; and in the injection molding, L/D is 22 or more and a compression ratio is 1.6 or more and 1.8 or less.SELECTED DRAWING: Figure 1

Description

本発明は繊維強化樹脂成形品の製造方法に関する。   The present invention relates to a method for producing a fiber-reinforced resin molded product.

カーボン繊維は軽量で且つ高剛性を有するため繊維強化樹脂成形品の強化用繊維として用いられている。このような繊維強化樹脂成形品は射出成形で製造することができるが、強化用繊維を含有する樹脂ペレットの混練時や成形時にその強化用繊維が折損することが知られている。この折損により、得られる繊維強化樹脂成形品の物性(強度、弾性、導電性等)が低くなる。   Since carbon fibers are light and have high rigidity, they are used as reinforcing fibers for fiber-reinforced resin molded products. Such a fiber reinforced resin molded product can be manufactured by injection molding, but it is known that the reinforcing fiber breaks when kneading or molding the resin pellet containing the reinforcing fiber. Due to this breakage, the physical properties (strength, elasticity, conductivity, etc.) of the obtained fiber-reinforced resin molded product are lowered.

これに対して、特許文献1には、混練や成形等の製造過程におけるカーボン繊維の折損を抑制するために、特定の結晶サイズを有する特定の結晶構造の柔軟性を有するカーボン繊維を用いることが記載されている。また、同文献には、必要に応じて、カーボン繊維に加えてガラス繊維をペレットに加えてもよいことが記載されている。   On the other hand, in Patent Document 1, in order to suppress breakage of carbon fibers in the manufacturing process such as kneading and molding, carbon fibers having a specific crystal structure and having a specific crystal size are used. Have been described. Further, this document describes that glass fibers may be added to the pellets in addition to the carbon fibers as necessary.

特開2010−77407号公報JP 2010-77407 A

強化用繊維としてカーボン繊維を用いた繊維強化樹脂成形品は、ガラス繊維を用いた繊維強化樹脂成形品よりも曲げ弾性率が高いことから、高い剛性が要求される製品への適用が期待される。しかし、カーボン繊維強化樹脂成形品は、ガラス繊維強化樹脂成形品に比べて耐衝撃性に劣り、耐衝撃性が要求される製品への適用には不利である。   Fiber reinforced resin molded products using carbon fibers as reinforcing fibers have higher flexural modulus than fiber reinforced resin molded products using glass fibers, and are expected to be applied to products that require high rigidity. . However, carbon fiber reinforced resin molded products are inferior in impact resistance compared to glass fiber reinforced resin molded products, and are disadvantageous for application to products that require impact resistance.

そこで、本発明は、高剛性で且つ耐衝撃性に優れた繊維強化樹脂成形品を得ることを課題とする。   Then, this invention makes it a subject to obtain the fiber reinforced resin molded product which is highly rigid and excellent in impact resistance.

本発明者は、強化用繊維としてカーボン繊維とガラス繊維を併用した繊維強化樹脂成形品の研究した。その研究において、カーボン繊維とガラス繊維の配合比率を様々に変えて得られる繊維強化樹脂成形品の強度及び耐衝撃性を調べた結果、ガラス繊維の少量配合により耐衝撃性が大きく向上することを見出した。   The present inventor has studied a fiber-reinforced resin molded article using both carbon fiber and glass fiber as reinforcing fiber. In the research, as a result of examining the strength and impact resistance of fiber reinforced resin molded products obtained by changing the blending ratio of carbon fiber and glass fiber, it was found that impact resistance was greatly improved by blending a small amount of glass fiber. I found it.

ここに開示する繊維強化樹脂成形品の製造方法は、カーボン繊維を含有するカーボン繊維樹脂ペレットと、ガラス繊維を含有するガラス繊維樹脂ペレットとを含む成形材料を用いた射出成形による繊維強化樹脂成形品の製造方法であって、
上記カーボン繊維樹脂ペレット及び上記ガラス繊維樹脂ペレット各々が含有する繊維の重量平均長さは10mm以上であり、
上記成形材料における上記カーボン繊維と上記ガラス繊維を合わせた含有率を20質量%以上50%質量以下とし、
上記カーボン繊維と上記ガラス繊維の総量に占める上記ガラス繊維の割合を5質量%以上15質量%以下とし、
上記射出成形に、スクリューの長さLと径Dの比L/Dが22以上であり、圧縮比が1.6以上1.8以下であるシングルフライトの低せん断型スクリューを備えた射出成形機を用いることを特徴とする。
The manufacturing method of the fiber reinforced resin molded article disclosed here is a fiber reinforced resin molded article by injection molding using a molding material including carbon fiber resin pellets containing carbon fibers and glass fiber resin pellets containing glass fibers. A manufacturing method of
The weight average length of the fibers contained in each of the carbon fiber resin pellets and the glass fiber resin pellets is 10 mm or more,
The total content of the carbon fiber and the glass fiber in the molding material is 20% by mass to 50% by mass,
The ratio of the glass fiber to the total amount of the carbon fiber and the glass fiber is 5 mass% or more and 15 mass% or less,
An injection molding machine provided with a single flight low shear type screw having a ratio L / D of a screw length L to a diameter D of 22 or more and a compression ratio of 1.6 to 1.8. It is characterized by using.

これにより、高強度で且つ耐衝撃性が高い繊維強化樹脂成形品が得られる。ガラス繊維の少量の配合(カーボン繊維及びガラス繊維の総量に占めるガラス繊維の割合が5質量%以上15質量%以下)によって耐衝撃性が大きく向上する点に大きな特徴がある。また、ガラス繊維の配合量が少ないから、強化用繊維をカーボン繊維のみとするケースからの強度の低下が抑えられ、カーボン繊維の配合量が相対的に低下するにも拘わらず、比較的高い強度が維持される。   Thereby, a fiber reinforced resin molded article having high strength and high impact resistance can be obtained. A great feature is that the impact resistance is greatly improved by a small amount of glass fiber (the ratio of the glass fiber to the total amount of the carbon fiber and the glass fiber is 5 mass% or more and 15 mass% or less). In addition, since the amount of glass fiber is small, a decrease in strength from the case where the reinforcing fiber is only carbon fiber is suppressed, and the strength is relatively high despite the relative decrease in the amount of carbon fiber. Is maintained.

ここに、圧縮比を小さくしたことにより、射出成形機の圧縮部で成形材料に加わるせん断力が小さくなり、カーボン繊維及びガラス繊維が受けるダメージが少なくなったと認められる。   Here, it is recognized that by reducing the compression ratio, the shearing force applied to the molding material in the compression part of the injection molding machine is reduced, and the damage received by the carbon fibers and glass fibers is reduced.

シングルフライトの採用により、カーボン繊維及びガラス繊維に大きな力が加わる成形材料のフライト乗越えが少なくなり、また、狭いフライト間での成形材料のせん断が抑制され、その結果、カーボン繊維及びガラス繊維の折損が抑制されたと認められる。   By adopting a single flight, the flight of the molding material that applies a large force to the carbon fiber and glass fiber is reduced, and the shear of the molding material between the narrow flights is suppressed, resulting in breakage of the carbon fiber and glass fiber. Is recognized as being suppressed.

L/Dを22以上として射出成形機の供給部を長くしたことにより、カーボン繊維及びガラス繊維の折損を抑制しながら、樹脂ペレットの可塑化及び解繊性を向上させることができたと認められる。   It is recognized that plasticization and defibration of the resin pellets could be improved while suppressing breakage of the carbon fiber and glass fiber by increasing the supply part of the injection molding machine with L / D being 22 or more.

上記射出成形機の逆流防止リングは上記スクリューと共に回転する共回り型であることが好ましい。これにより、スクリューヘッドと逆流防止リングとの間で成形材料に強いせん断力が加わることが防止され、カーボン繊維及びガラス繊維の折損防止に有利になる。   The backflow prevention ring of the injection molding machine is preferably a co-rotating type that rotates together with the screw. This prevents a strong shearing force from being applied to the molding material between the screw head and the backflow prevention ring, which is advantageous for preventing breakage of the carbon fibers and glass fibers.

本発明によれば、カーボン繊維樹脂ペレット及びガラス繊維樹脂ペレット各々が含有する繊維の重量平均長さを10mm以上とし、成形材料におけるカーボン繊維とガラス繊維を合わせた含有率を20質量%以上50%質量以下とし、カーボン繊維とガラス繊維の総量に占めるガラス繊維の割合を5質量%以上15質量%以下とし、射出成形に、スクリューの長さLと径Dの比L/Dが22以上であり、圧縮比が1.6以上1.8以下であるシングルフライトの低せん断型スクリューを備えた射出成形機を用いるから、高強度で且つ耐衝撃性が高い繊維強化樹脂成形品を得ることができる。   According to the present invention, the weight average length of the fibers contained in each of the carbon fiber resin pellets and the glass fiber resin pellets is 10 mm or more, and the combined content of the carbon fibers and the glass fibers in the molding material is 20% by mass or more and 50%. The ratio of the glass fiber to the total amount of the carbon fiber and the glass fiber is 5 mass% or more and 15 mass% or less, and the ratio L / D of the screw length L to the diameter D is 22 or more in the injection molding. Since an injection molding machine equipped with a single flight low shear type screw having a compression ratio of 1.6 or more and 1.8 or less is used, a fiber-reinforced resin molded product having high strength and high impact resistance can be obtained. .

本発明の実施形態に係る射出成形機を示す断面図である。It is sectional drawing which shows the injection molding machine which concerns on embodiment of this invention. 同射出成形機のスクリューの供給部を拡大して示す側面図である。It is a side view which expands and shows the supply part of the screw of the injection molding machine. 同射出成形機の逆流防止リング部分を拡大して示す断面図である。It is sectional drawing which expands and shows the backflow prevention ring part of the injection molding machine. 繊維強化樹脂成形品のMDでのパンクチャーエネルギー吸収量及び曲げ弾性率とのガラス繊維配合割合との関係を示すグラフ図。The graph which shows the relationship with the glass fiber compounding ratio with the amount of puncture energy absorption in MD of a fiber reinforced resin molded product, and a bending elastic modulus. 繊維強化樹脂成形品のMDでのパンクチャーエネルギー吸収量及び曲げ強度とのガラス繊維配合割合との関係を示すグラフ図。The graph which shows the relationship with the glass fiber compounding ratio with the puncture energy absorption amount and bending strength in MD of a fiber reinforced resin molded product. 繊維強化樹脂成形品のTDでのパンクチャーエネルギー吸収量及び曲げ弾性率とのガラス繊維配合割合との関係を示すグラフ図。The graph which shows the relationship with the glass fiber compounding ratio with the puncture energy absorption amount and bending elastic modulus in TD of a fiber reinforced resin molded product. 繊維強化樹脂成形品のTDでのパンクチャーエネルギー吸収量及び曲げ強度とのガラス繊維配合割合との関係を示すグラフ図。The graph which shows the relationship with the glass fiber compounding ratio with the puncture energy absorption amount and bending strength in TD of a fiber reinforced resin molded product.

以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its application, or its use.

<射出成形機>
図1に示す射出成形機において、1は加熱シリンダ、2は加熱シリンダ1内に回転可能にかつ進退自在に配置された低せん断型スクリューである。射出成形機は、図示は省略しているが、スクリュー2を回転駆動する油圧モータ及びスクリュー2を進退駆動する射出シリンダを備えている。
<Injection molding machine>
In the injection molding machine shown in FIG. 1, reference numeral 1 denotes a heating cylinder, and 2 denotes a low-shearing screw that is disposed in the heating cylinder 1 so as to be capable of rotating and reciprocating. Although not shown, the injection molding machine includes a hydraulic motor that rotates the screw 2 and an injection cylinder that drives the screw 2 forward and backward.

加熱シリンダ1の基端側には成形材料を投入するホッパ3が設けられ、加熱シリンダ1の先端には射出ノズル4が設けられている。加熱シリンダ1の外周には外部ヒータ5としてのバンドヒータが巻かれている。射出ノズル4は繊維強化樹脂成形品を成形する金型6のランナー7に接続されている。金型6はランナー7を有する固定型6aと可動型6bとによって構成されている。固定型6aと可動型6bによってキャビティ8が形成されている。   A hopper 3 for feeding a molding material is provided on the proximal end side of the heating cylinder 1, and an injection nozzle 4 is provided on the distal end of the heating cylinder 1. A band heater as an external heater 5 is wound around the outer periphery of the heating cylinder 1. The injection nozzle 4 is connected to a runner 7 of a mold 6 for molding a fiber reinforced resin molded product. The mold 6 includes a fixed mold 6a having a runner 7 and a movable mold 6b. A cavity 8 is formed by the fixed mold 6a and the movable mold 6b.

スクリュー2は、スクリュー本体11と、スクリュー本体11の先端に結合されたスクリューヘッド12とを備えている。スクリュー本体11は、フライト13が1条で形成されているシングルフライト型である。スクリュー本体11の長さ(材料供給口13からスクリュー先端までの長さ)Lとスクリュー本体11の直径Dの比L/Dは22以上である。L/D比の上限は例えば30程度とすればよい。   The screw 2 includes a screw body 11 and a screw head 12 coupled to the tip of the screw body 11. The screw main body 11 is a single flight type in which the flights 13 are formed by one line. The ratio L / D of the length (length from the material supply port 13 to the screw tip) L of the screw body 11 and the diameter D of the screw body 11 is 22 or more. The upper limit of the L / D ratio may be about 30, for example.

スクリュー本体11は、基端側(上流側)から先端側(下流側)に向かって順に供給部14、圧縮部15及び計量部16を備えている。供給部14は、直径Dの10倍以上15倍以下の長さを有する。図2に示すように、供給部14のスクリュー溝深さ(フライト13の高さ)dは供給部14の全長にわたって一定であり、その溝深さdは成形材料17のいずれのペレット長さよりも大きい。ホッパ3から供給部14に供給された成形材料17は、外部ヒータ5の熱を受けて軟化しながら、スクリュー2の回転によって、フライト13で区切られた空間内を圧縮部15に向かって送られる。   The screw body 11 includes a supply unit 14, a compression unit 15, and a metering unit 16 in order from the proximal end side (upstream side) to the distal end side (downstream side). The supply unit 14 has a length that is 10 to 15 times the diameter D. As shown in FIG. 2, the screw groove depth (height of the flight 13) d of the supply unit 14 is constant over the entire length of the supply unit 14, and the groove depth d is larger than any pellet length of the molding material 17. large. The molding material 17 supplied from the hopper 3 to the supply unit 14 is sent to the compression unit 15 through the space separated by the flight 13 by the rotation of the screw 2 while being softened by receiving heat from the external heater 5. .

圧縮部15はスクリュー溝深さが漸減する区間である。成形材料17は、圧縮部15において、スクリュー2の回転によって圧縮されて大きなせん断力と熱を受けて可塑化して溶融し、溶融樹脂として計量部16に送られる。計量部16は、溶融樹脂をスクリュー2の前方の樹脂溜め部に貯えられるように、スクリュー溝深さが小さく形成されている。   The compression part 15 is a section where the screw groove depth gradually decreases. The molding material 17 is compressed by the rotation of the screw 2 in the compression unit 15, plasticized and melted by receiving a large shearing force and heat, and sent to the metering unit 16 as a molten resin. The metering unit 16 is formed with a small screw groove depth so that the molten resin can be stored in the resin reservoir in front of the screw 2.

スクリュー2の圧縮比(供給部14と計量部16の溝部の1ピッチ当たりの体積の比)は1.6以上1.8以下である。   The compression ratio of the screw 2 (the ratio of the volume per pitch of the grooves of the supply unit 14 and the metering unit 16) is 1.6 or more and 1.8 or less.

図3に示すように、スクリューヘッド12の背部には共回り構造の逆流防止リング18が設けられている。逆流防止リング18は、スクリュー本体11とスクリューヘッド12とを結合する結合軸19に隙間を存して進退自在に嵌められている。スクリューヘッド12の基端部外周には、当該ヘッド12の基端面に開口した溝21が周方向に間隔をおいて形成されており、この溝21に逆流防止リング18より前方に突出した突起22が係合している。この係合により、逆流防止リング18は、スクリュー2と共に回転するようになっている。   As shown in FIG. 3, a backflow prevention ring 18 having a co-rotating structure is provided on the back of the screw head 12. The backflow prevention ring 18 is fitted to a coupling shaft 19 that couples the screw body 11 and the screw head 12 so as to be able to advance and retreat with a gap. On the outer periphery of the base end portion of the screw head 12, a groove 21 opened in the base end surface of the head 12 is formed at a circumferential interval, and a protrusion 22 protruding forward from the backflow prevention ring 18 in the groove 21. Are engaged. By this engagement, the backflow prevention ring 18 rotates with the screw 2.

<繊維強化樹脂成形品の成形>
−成形材料について−
繊維強化樹脂成形品の成形においては、成形材料17として、ペレット長さ方向に延びるカーボン繊維束に樹脂を含浸してなるカーボン繊維樹脂ペレット(長繊維ペレット)、並びにペレット長さ方向に延びるガラス繊維束に樹脂を含浸してなるガラス繊維樹脂ペレット(長繊維ペレット)を用いる。当該2種のペレットの長さは10mm以上とする。長繊維ペレットであるカーボン繊維樹脂ペレット及びガラス繊維樹脂ペレットは各々が含有する繊維の長さがペレット長さと同じであるから、当該繊維の重量平均長さは10mm以上となる。ペレット長さは15mm以下(当該繊維の重量平均長さは15mm以下)であることが好ましい。
<Molding of fiber reinforced resin molded products>
-About molding materials-
In the molding of a fiber reinforced resin molded product, as the molding material 17, carbon fiber resin pellets (long fiber pellets) formed by impregnating a carbon fiber bundle extending in the pellet length direction and glass fibers extending in the pellet length direction are used. Glass fiber resin pellets (long fiber pellets) formed by impregnating a bundle with resin are used. The length of the two kinds of pellets is 10 mm or more. Carbon fiber resin pellets and glass fiber resin pellets, which are long fiber pellets, have the same length as the pellet length, and therefore the weight average length of the fibers is 10 mm or more. The pellet length is preferably 15 mm or less (the weight average length of the fibers is 15 mm or less).

上記カーボン繊維樹脂ペレット及びガラス繊維樹脂ペレット各々のマトリックス樹脂には、MFR(温度230℃,荷重2.16kg)が9g/10分以上65g/10分以下であるPP(ポリプロピレン)を採用することが好ましい。   PP (polypropylene) having an MFR (temperature 230 ° C., load 2.16 kg) of 9 g / 10 min to 65 g / 10 min may be adopted as the matrix resin for each of the carbon fiber resin pellets and glass fiber resin pellets. preferable.

上記カーボン繊維樹脂ペレット及びガラス繊維樹脂ペレットは、当該成形材料17におけるカーボン繊維とガラス繊維を合わせた含有率が20質量%以上50%質量以下(好ましくは30質量%以上50%質量以下)となり、カーボン繊維とガラス繊維の総量に占めるガラス繊維の割合が5質量%以上15質量%以下となるように混合してホッパ3に投入する。   The carbon fiber resin pellets and glass fiber resin pellets have a combined content of carbon fibers and glass fibers in the molding material 17 of 20% by mass to 50% by mass (preferably 30% by mass to 50% by mass), Mixing is performed so that the ratio of the glass fiber to the total amount of the carbon fiber and the glass fiber is 5% by mass or more and 15% by mass or less, and the mixture is put into the hopper 3.

−カーボン繊維とガラス繊維の総量に占めるガラス繊維の割合が成形品の強度及び耐衝撃性に及ぼす影響−
カーボン繊維樹脂ペレット及びガラス繊維樹脂ペレットによって、カーボン繊維の配合割合が異なる複数種の成形材料を調製した。各成形材料のカーボン繊維とガラス繊維を合わせた含有率はいずれも40質量%とした。それら成形材料による繊維強化樹脂成形品のMD(金型内を溶融樹脂が流れる方向)及びTD(MDの直角方向)各々のパンクチャーエネルギー吸収量、曲げ弾性率及び曲げ強度を測定した。
-Effect of the ratio of glass fiber to the total amount of carbon fiber and glass fiber on the strength and impact resistance of molded products-
A plurality of types of molding materials having different carbon fiber blending ratios were prepared using carbon fiber resin pellets and glass fiber resin pellets. The total content of carbon fibers and glass fibers in each molding material was 40% by mass. Puncture energy absorption amount, bending elastic modulus and bending strength of MD (direction in which the molten resin flows in the mold) and TD (direction perpendicular to MD) of the fiber reinforced resin molded products by these molding materials were measured.

カーボン繊維樹脂ペレットとしては、カーボン長繊維/PP=40/60質量比のダイセル社製PP-CF40-11(L8)を用い、ガラス繊維樹脂ペレットとしては、ガラス長繊維/PP=40/60質量比の日本ポリプロ社製LR24Aを用いた。それら樹脂ペレットの物性を表1に示す。   As carbon fiber resin pellets, PP-CF40-11 (L8) manufactured by Daicel with a carbon long fiber / PP = 40/60 mass ratio was used, and as glass fiber resin pellets, glass long fiber / PP = 40/60 mass was used. LR24A manufactured by Nippon Polypro Co., Ltd. was used. Table 1 shows the physical properties of these resin pellets.

Figure 2018167409
Figure 2018167409

射出成形機としては、表2に示す低せん断型スクリューのものを用いた。   As the injection molding machine, a low shear type screw shown in Table 2 was used.

Figure 2018167409
Figure 2018167409

測定結果を図4乃至図7に示す。なお、図4乃至図7において、「パンクチャーE」は「パンチャーエネルギー」の略号、「CF」は「カーボン繊維」の略号を、「GF」は「ガラス繊維」の略号である。   The measurement results are shown in FIGS. 4 to 7, “puncture E” is an abbreviation for “puncher energy”, “CF” is an abbreviation for “carbon fiber”, and “GF” is an abbreviation for “glass fiber”.

図4(MDでのパンクチャーエネルギー吸収量及び曲げ弾性率)及び図5(MDでのパンクチャーエネルギー吸収量及び曲げ強度)をみると、ガラス繊維の配合割合の増加に伴って、曲げ弾性率及び曲げ強度が略直線的に低下している。但し、ガラス繊維の配合割合が5質量%以上15質量%以下であるときは、ガラス繊維配合量零からの曲げ弾性率及び曲げ強度の低下率が5%未満であり、ガラス繊維の添加に拘わらず、高い強度が維持されていることがわかる。   When FIG. 4 (MD puncture energy absorption amount and bending elastic modulus) and FIG. 5 (MD puncture energy absorption amount and bending strength) are seen, the bending elastic modulus increases with the increase in the glass fiber content. In addition, the bending strength decreases substantially linearly. However, when the blending ratio of the glass fiber is 5% by mass or more and 15% by mass or less, the bending elastic modulus and the bending strength decrease rate from zero glass fiber blending amount are less than 5%, regardless of the addition of the glass fiber. It can be seen that high strength is maintained.

これに対して、耐衝撃性はガラス繊維の少量の配合で大きく向上している。すなわち、ガラス繊維の配合割合が5質量%以上になると、ガラス繊維配合量零であるときに比べて、耐衝撃性が約1.4倍向上している。ガラス繊維の配合割合が20質量を超えると、その配合割合の増加に伴う耐衝撃性の向上は緩慢になっている。   On the other hand, impact resistance is greatly improved with a small amount of glass fiber. That is, when the glass fiber content is 5% by mass or more, the impact resistance is improved by about 1.4 times compared to when the glass fiber content is zero. When the blending ratio of the glass fiber exceeds 20 masses, the improvement in impact resistance accompanying the increase in the blending ratio is slow.

次に、図6(TDでのパンクチャーエネルギー吸収量及び曲げ弾性率)をみると、TDでの曲げ弾性率は、ガラス繊維配合割合の増加に伴って緩やかに低下している。ガラス繊維の配合割合が15質量になっても、ガラス繊維配合量零からの曲げ弾性率の低下率は数%に過ぎない。図7(TDでのパンクチャーエネルギー吸収量及び曲げ強度)をみると、TDでの曲げ強度は、ガラス繊維の配合割合を増やしても、ほとんど変わらないという結果になっている。TDでのガラス繊維の配合割合の増加に伴う耐衝撃性の変化はMDでのケースと略同じ特性になっている。   Next, looking at FIG. 6 (puncture energy absorption amount and bending elastic modulus at TD), the bending elastic modulus at TD gradually decreases as the glass fiber blending ratio increases. Even when the blending ratio of the glass fiber is 15 masses, the rate of decrease in the flexural modulus from zero glass fiber blending amount is only a few percent. Looking at FIG. 7 (Puncture energy absorption amount and bending strength at TD), the bending strength at TD is almost the same even when the blending ratio of glass fiber is increased. The change in impact resistance associated with the increase in the glass fiber blending ratio in TD has substantially the same characteristics as in the MD case.

以上の結果から、ガラス繊維の少量配合で繊維強化樹脂成形品の強度を大きく低下させることなく、その耐衝撃性を大きく高めることができることがわかる。   From the above results, it can be seen that the impact resistance can be greatly increased without greatly reducing the strength of the fiber-reinforced resin molded product by adding a small amount of glass fiber.

ここに、低せん断型スクリュー採用の効果は次のとおりである。シングルフライト13の採用により、カーボン繊維及びガラス繊維に大きな力が加わる成形材料のフライト乗越えが少なくなる。また、狭いフライト間でカーボン繊維及びガラス繊維に大きな力が加わることが防止される。圧縮比を小さくしたことにより、圧縮部で成形材料に加わるせん断力が小さくなり、カーボン繊維及びガラス繊維が受けるダメージが少なくなる。供給部14の溝深さdを大きくしたことにより、樹脂ペレットがスクリューに食い込む際のカーボン繊維及びガラス繊維の折損が抑制される。解繊を促進するミキシングヘッドがないため、カーボン繊維及びガラス繊維に強いダメージを与えることがない。L/D比が大きいため(供給部14が長いため)、カーボン繊維及びガラス繊維に強いダメージを与えることなく解繊が進む。逆流防止リング18がスクリューに共回りするため、カーボン繊維及びガラス繊維がスクリューヘッド12と逆流防止リング18の間の流路を通過するときに受けるダメージが小さくなる。スクリューヘッド12と逆流防止リング18の間の流路20を大きくしたため、該流路20を成形材料が通過し易くなり、カーボン繊維及びガラス繊維が受けるダメージが小さくなる。   Here, the effect of adopting the low shear type screw is as follows. By adopting the single flight 13, it is possible to reduce overriding of the molding material in which a large force is applied to the carbon fiber and the glass fiber. Further, it is possible to prevent a large force from being applied to the carbon fiber and the glass fiber between narrow flights. By reducing the compression ratio, the shearing force applied to the molding material at the compression portion is reduced, and damage to the carbon fiber and glass fiber is reduced. By increasing the groove depth d of the supply unit 14, the breakage of the carbon fiber and the glass fiber when the resin pellet bites into the screw is suppressed. Since there is no mixing head that promotes defibration, the carbon fibers and glass fibers are not strongly damaged. Since the L / D ratio is large (because the supply unit 14 is long), defibration proceeds without giving strong damage to the carbon fibers and glass fibers. Since the backflow prevention ring 18 rotates together with the screw, the damage received when the carbon fiber and the glass fiber pass through the flow path between the screw head 12 and the backflow prevention ring 18 is reduced. Since the flow path 20 between the screw head 12 and the backflow prevention ring 18 is enlarged, the molding material easily passes through the flow path 20 and the damage received by the carbon fiber and the glass fiber is reduced.

1 加熱シリンダ
2 スクリュー
11 スクリュー本体
12 スクリューヘッド
14 供給部
15 圧縮部
16 計量部
17 成形材料
18 逆流防止リング
DESCRIPTION OF SYMBOLS 1 Heating cylinder 2 Screw 11 Screw main body 12 Screw head 14 Supply part 15 Compression part 16 Weighing part 17 Molding material 18 Backflow prevention ring

Claims (2)

カーボン繊維を含有するカーボン繊維樹脂ペレットと、ガラス繊維を含有するガラス繊維樹脂ペレットとを含む成形材料を用いた射出成形による繊維強化樹脂成形品の製造方法であって、
上記カーボン繊維樹脂ペレット及び上記ガラス繊維樹脂ペレット各々が含有する繊維の重量平均長さは10mm以上であり、
上記成形材料における上記カーボン繊維と上記ガラス繊維を合わせた含有率を20質量%以上50%質量以下とし、
上記カーボン繊維と上記ガラス繊維の総量に占める上記ガラス繊維の割合を5質量%以上15質量%以下とし、
上記射出成形に、スクリューの長さLと径Dの比L/Dが22以上であり、圧縮比が1.6以上1.8以下であるシングルフライトの低せん断型スクリューを備えた射出成形機を用いることを特徴とする繊維強化樹脂成形品の製造方法。
A method for producing a fiber-reinforced resin molded article by injection molding using a molding material comprising carbon fiber resin pellets containing carbon fibers and glass fiber resin pellets containing glass fibers,
The weight average length of the fibers contained in each of the carbon fiber resin pellets and the glass fiber resin pellets is 10 mm or more,
The total content of the carbon fiber and the glass fiber in the molding material is 20% by mass to 50% by mass,
The ratio of the glass fiber to the total amount of the carbon fiber and the glass fiber is 5 mass% or more and 15 mass% or less,
An injection molding machine provided with a single flight low shear type screw having a ratio L / D of a screw length L to a diameter D of 22 or more and a compression ratio of 1.6 to 1.8. A method for producing a fiber-reinforced resin molded product, comprising using
請求項1において、
上記射出成形機の逆流防止リングが上記スクリューと共に回転する共回り型であることを特徴とする繊維強化樹脂成形品の製造方法。
In claim 1,
A method for producing a fiber-reinforced resin molded product, wherein the backflow prevention ring of the injection molding machine is a co-rotating type that rotates together with the screw.
JP2017064567A 2017-03-29 2017-03-29 Method of manufacturing fiber reinforced resin molded article Expired - Fee Related JP6504192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017064567A JP6504192B2 (en) 2017-03-29 2017-03-29 Method of manufacturing fiber reinforced resin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017064567A JP6504192B2 (en) 2017-03-29 2017-03-29 Method of manufacturing fiber reinforced resin molded article

Publications (2)

Publication Number Publication Date
JP2018167409A true JP2018167409A (en) 2018-11-01
JP6504192B2 JP6504192B2 (en) 2019-04-24

Family

ID=64017633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017064567A Expired - Fee Related JP6504192B2 (en) 2017-03-29 2017-03-29 Method of manufacturing fiber reinforced resin molded article

Country Status (1)

Country Link
JP (1) JP6504192B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032633A (en) * 2018-08-30 2020-03-05 アイシン精機株式会社 Manufacturing apparatus and manufacturing method of reinforced resin molding
WO2022153589A1 (en) 2021-01-15 2022-07-21 株式会社日本製鋼所 Injection molding device and injection molding method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565716A (en) * 1979-06-28 1981-01-21 Aisin Seiki Co Ltd Reinforced thermoplastic resin pellet
JP2013159703A (en) * 2012-02-06 2013-08-19 Mitsubishi Engineering Plastics Corp Composite fiber-reinforced polycarbonate resin composition
JP2015145090A (en) * 2014-02-03 2015-08-13 ダイキョーニシカワ株式会社 Method for manufacturing fiber reinforced resin molded article
JP2016117840A (en) * 2014-12-22 2016-06-30 ダイキョーニシカワ株式会社 Molten molding pellet mixture and molding manufactured using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565716A (en) * 1979-06-28 1981-01-21 Aisin Seiki Co Ltd Reinforced thermoplastic resin pellet
JP2013159703A (en) * 2012-02-06 2013-08-19 Mitsubishi Engineering Plastics Corp Composite fiber-reinforced polycarbonate resin composition
JP2015145090A (en) * 2014-02-03 2015-08-13 ダイキョーニシカワ株式会社 Method for manufacturing fiber reinforced resin molded article
JP2016117840A (en) * 2014-12-22 2016-06-30 ダイキョーニシカワ株式会社 Molten molding pellet mixture and molding manufactured using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032633A (en) * 2018-08-30 2020-03-05 アイシン精機株式会社 Manufacturing apparatus and manufacturing method of reinforced resin molding
JP7125604B2 (en) 2018-08-30 2022-08-25 学校法人同志社 Reinforced resin molding manufacturing apparatus and manufacturing method
WO2022153589A1 (en) 2021-01-15 2022-07-21 株式会社日本製鋼所 Injection molding device and injection molding method

Also Published As

Publication number Publication date
JP6504192B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
KR20160045111A (en) Twin screw extruder for use in manufacturing fiber-reinforced resin composition and process for manufacturing fiber-reinforced resin composition
US20170050359A1 (en) Injection molding apparatus
JP2018167409A (en) Method of producing fiber-reinforced resin mold article
JP6933951B2 (en) Fiber reinforced thermoplastic resin kneading method and plasticizing equipment
JP6426460B2 (en) Melt molding pellet mixture and molded article produced using the same
JP6404035B2 (en) Injection molding machine screw
JP6301666B2 (en) Manufacturing method of fiber reinforced resin molded product
JP2004291409A (en) In-line screw type plasticizing injection equipment
JP2016123412A (en) Top rod and fishing rod having the same
KR102323052B1 (en) Fiber-reinforced thermoplastic resin kneading method, plasticizer and extruder
JP2017105184A (en) Injection molding machine for injecting molten resin mixedly melted with thermoplastic resin and reinforcing fiber, and screw for injection molding machine
JPH08318561A (en) Resin plasticizing screw
JP6238785B2 (en) INJECTION MOLDING DEVICE AND METHOD FOR PRODUCING FIBER-REINFORCED RESIN MOLD
JP6212022B2 (en) fishing rod
JP4272502B2 (en) Injection molding method
JP6173996B2 (en) Twin screw extruder used for the production of fiber reinforced resin composition
EP3434093B1 (en) Cutting filament for a vegetation cutting machine
JP7125604B2 (en) Reinforced resin molding manufacturing apparatus and manufacturing method
JP2012131042A (en) Injection molding machine
JP6875959B2 (en) Manufacturing method of injection molding equipment and reinforced resin molded product
Hawley et al. In-line compounding of long-fiber thermoplastics for injection molding
WO2017094740A1 (en) Injection molding machine and injection molding machine screw for injecting molten resin in which thermoplastic resin and reinforcing fibers have been mixed and melted
JP6137071B2 (en) Method for producing thermoplastic resin composition and method for producing pellets
JP6522456B2 (en) Method and apparatus for molding composite material molding
US9597820B2 (en) Method for producing a natural fiber-reinforced plastic part

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R150 Certificate of patent or registration of utility model

Ref document number: 6504192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees