JP2018165685A - Phase characteristic calibration system and phase characteristic calibration method for millimeter wave band signal measurement circuit - Google Patents

Phase characteristic calibration system and phase characteristic calibration method for millimeter wave band signal measurement circuit Download PDF

Info

Publication number
JP2018165685A
JP2018165685A JP2017063396A JP2017063396A JP2018165685A JP 2018165685 A JP2018165685 A JP 2018165685A JP 2017063396 A JP2017063396 A JP 2017063396A JP 2017063396 A JP2017063396 A JP 2017063396A JP 2018165685 A JP2018165685 A JP 2018165685A
Authority
JP
Japan
Prior art keywords
signal
calibration
frequency
calibration signal
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017063396A
Other languages
Japanese (ja)
Other versions
JP6360582B1 (en
Inventor
幸泰 木村
Yukiyasu Kimura
幸泰 木村
森 隆
Takashi Mori
隆 森
誠範 待鳥
Shigenori Machitori
誠範 待鳥
匡章 布施
Tadaaki Fuse
匡章 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2017063396A priority Critical patent/JP6360582B1/en
Application granted granted Critical
Publication of JP6360582B1 publication Critical patent/JP6360582B1/en
Publication of JP2018165685A publication Critical patent/JP2018165685A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enable calibration of a phase characteristic of a millimeter wave band signal measurement circuit to be accurately performed.SOLUTION: A calibration signal generating unit 40 generates a calibration signal Er which is obtained by frequency-synchronizing an electric harmonic signal of a frequency at an integer multiple of a repetition frequency of short pulse light P0 and combining a plurality of continuous waves of frequencies different within a frequency domain of a millimeter wave band. A calibration signal waveform acquisition unit 60 samples the calibration signal Er while changing a delay time of sampling light Ps by the sampling light to acquire a waveform of the calibration signal in a time domain. Phase information calculation means 70 calculates a phase of the plurality of continuous waves on the basis of the waveform of the calibration signal obtained for each change of the frequency of the continuous waves to determine a phase characteristic Δφ(f) of a calibration target within the frequency domain. A calibration processing unit 90 determines a phase characteristic ΔΦ(f) of a millimeter wave band signal measurement circuit 1 itself from a difference between the determined phase characteristic Δφ(f) and a phase characteristic ΔΦ(f)' measured at the millimeter wave band signal measurement circuit 1 with respect to the calibration signal Er.SELECTED DRAWING: Figure 1

Description

本発明は、ミリ波帯やサブミリ波帯で使用されるミリ波帯信号測定回路の位相特性の校正を高精度に行えるようにするための技術に関する。   The present invention relates to a technique for enabling calibration of phase characteristics of a millimeter wave band signal measurement circuit used in a millimeter wave band or a submillimeter wave band with high accuracy.

近年、モバイルデータトラフィックは飛躍的に増大し、今後もさらに増大することが予想されており、通信容量の確保は喫緊の課題となっている。   In recent years, mobile data traffic has increased dramatically and is expected to increase further in the future, and securing communication capacity is an urgent issue.

これらの課題を解決し、増大するモバイルデータトラフィックの要求に応えるため、数10Gbps級の伝送速度の実現が可能なミリ波帯やサブミリ波帯(テラヘルツ帯を含む)の利用が強く求められている。なお、以下の説明では、ミリ波帯およびサブミリ波帯を総称してミリ波帯と呼ぶ。   In order to solve these problems and meet the increasing demand for mobile data traffic, the use of millimeter wave bands and submillimeter wave bands (including terahertz bands) capable of realizing transmission speeds of several tens of Gbps is strongly demanded. . In the following description, the millimeter wave band and the submillimeter wave band are collectively referred to as the millimeter wave band.

また、ミリ波帯の通信ではQPSK変調信号等の周波数効率が高い変調方式採用が予想されるものの、現状ではこれら周波数帯におけるQPSK等の位相変調に対応する測定手法は未検討であり、送信系を評価するための測定環境も実現されていない。   Further, although it is expected that a modulation scheme having high frequency efficiency such as a QPSK modulation signal is used in communication in the millimeter wave band, a measurement method corresponding to phase modulation such as QPSK in these frequency bands has not been studied yet. The measurement environment for evaluating is not realized.

このミリ波帯における変調信号の測定を行なうためには、これらの周波数帯の被測定信号をデジタル処理(A/D変換処理)が可能な周波数帯に変換するための測定回路としてダウンコンバータが必要となるが、ダウンコンバータの出力から得られた測定値には、被測定信号の真の特性とダウンコンバータを含む測定系の特性とが分離されず含まれ、測定系の周波数特性などを補償しない限り、正しい測定結果を得ることができない。   In order to measure the modulation signal in the millimeter wave band, a down converter is required as a measurement circuit for converting the signal under measurement in these frequency bands into a frequency band capable of digital processing (A / D conversion processing). However, the measurement value obtained from the output of the down converter does not include the true characteristics of the signal under measurement and the characteristics of the measurement system including the down converter, and does not compensate for the frequency characteristics of the measurement system. As long as the correct measurement results cannot be obtained.

特に、10Gbsを超えるような広帯域変調信号の場合、従来からの振幅特性だけでなく位相特性も補償する必要がある。   In particular, in the case of a broadband modulation signal exceeding 10 Gbs, it is necessary to compensate not only the conventional amplitude characteristic but also the phase characteristic.

ダウンコンバータ等の回路の位相特性を校正するための方式として、予め位相特性(位相に関する周波数特性)が既知の校正用信号を、校正対象回路に入力し、その校正対象回路の出力から校正用信号の位相特性の影響を取り除くことで、校正対象回路自体の位相特性を取得する方式が知られている。   As a method for calibrating the phase characteristics of circuits such as down converters, a calibration signal whose phase characteristics (frequency characteristics related to the phase) are known in advance is input to the calibration target circuit, and the calibration signal is output from the output of the calibration target circuit. A method is known in which the phase characteristic of the circuit to be calibrated is acquired by removing the influence of the phase characteristic.

この方式のうち、ミリ波のような高い周波数帯でダウンコンバータを含む測定回路の位相特性を校正するための方式として、時間領域分光測定の一種である電気光学サンプリング法を用いて、パルス光で励起されたO/E変換デバイス(例えばフォトダイオード、フォトコンダクタなどの光電変換素子)から出力される電気パルス信号の時間領域の波形を測定し、これをフーリエ変換等の信号処理により周波数領域に変換し、位相特性を求めるものが知られている。   Among these methods, as a method for calibrating the phase characteristics of a measurement circuit including a down converter in a high frequency band such as a millimeter wave, an electro-optic sampling method, which is a kind of time-domain spectroscopy measurement, is used. Measures the time domain waveform of the electrical pulse signal output from the excited O / E conversion device (for example, a photoelectric conversion element such as a photodiode or photoconductor), and converts it to the frequency domain by signal processing such as Fourier transform However, there are known ones that obtain phase characteristics.

図8は、上記電気光学サンプリング法を用いた校正システム10の概略構成を示すものである。この校正システム10は、短パルス光源11、分岐手段12、O/E変換デバイス13、電気光学結晶14、光可変遅延器15および偏光測定器16を含んでいる。   FIG. 8 shows a schematic configuration of the calibration system 10 using the electro-optic sampling method. The calibration system 10 includes a short pulse light source 11, a branching unit 12, an O / E conversion device 13, an electro-optic crystal 14, an optical variable delay device 15, and a polarization measuring device 16.

この校正システム10は、図9の(a)に示すように、短パルス光源11から所定周期Ts(繰り返し周波数fs)で出射される短パルス光(レーザ光)P0を分岐手段12により、ポンプ光P1とプローブ光P2に分け、ポンプ光P1をO/E変換デバイス13に入力して、O/E変換デバイス13を励起する。   As shown in FIG. 9A, the calibration system 10 uses a branching means 12 to pump light from a short pulse light (laser light) P0 emitted from a short pulse light source 11 at a predetermined cycle Ts (repetition frequency fs). The pump light P1 is divided into P1 and probe light P2, and the O / E conversion device 13 is excited by inputting the pump light P1 to the O / E conversion device 13.

ポンプ光P1で励起されたO/E変換デバイス13は、図9の(b)に示すような電気パルス信号E1を発生する。この電気パルス信号E1は、電気光学結晶14に構成したコプレナー導波路やマイクロストリップ線路等にプローブヘッド等(図示せず)を介して印可され、電気光学結晶14中に信号電界を発生させる。   The O / E conversion device 13 excited by the pump light P1 generates an electric pulse signal E1 as shown in FIG. 9B. The electric pulse signal E1 is applied to a coplanar waveguide, a microstrip line, or the like formed in the electro-optic crystal 14 via a probe head or the like (not shown), and generates a signal electric field in the electro-optic crystal 14.

一方、分岐手段12で分岐されたプローブ光P2は光可変遅延器15に入射し、可変遅延器15によって遅延を受けたプローブ光P2′が電気光学結晶14に入射し、電気光学結晶14を透過する。ここで、電気光学結晶14を透過したプローブ光P2″の偏光角θは、プローブ光P2′が入射したタイミングにおける電気光学結晶14中の電界強度に比例して変化する。電気光学結晶14を透過したプローブ光P2″の偏光角θは、偏光測定器16によって測定される。   On the other hand, the probe light P2 branched by the branching unit 12 enters the optical variable delay device 15, and the probe light P2 'delayed by the variable delay device 15 enters the electro-optical crystal 14 and is transmitted through the electro-optical crystal 14. To do. Here, the polarization angle θ of the probe light P2 ″ transmitted through the electro-optic crystal 14 changes in proportion to the electric field strength in the electro-optic crystal 14 at the timing when the probe light P2 ′ is incident. The polarization angle θ of the probe light P <b> 2 ″ is measured by the polarimeter 16.

この偏光測定器16で測定される偏光角θから、プローブ光P2′の入射タイミングにおける電界強度を特定できる。つまり、電気パルス信号E1の電界の強さを、プローブ光P2′の入射タイミングでサンプリングしていることになり、図9の(c)に示しているように、光可変遅延器15の遅延時間をΔt1、Δt2、……と順次変化させて、プローブ光P2′の入射タイミングをずらしながら、図9の(d)のように、遅延時間に対応して変化する偏光角θ1、θ2、……を測定し、その偏光角からプローブ光P2′入射時の電気パルス信号E1の電界強度e1、e2、……を求めれば、電気パルス信号E1の時間領域波形が得られる。   The electric field strength at the incident timing of the probe light P2 ′ can be specified from the polarization angle θ measured by the polarimeter 16. In other words, the electric field strength of the electric pulse signal E1 is sampled at the incident timing of the probe light P2 ′, and as shown in FIG. 9C, the delay time of the optical variable delay device 15 is obtained. Are sequentially changed to Δt1, Δt2,... And the incident timing of the probe light P2 ′ is shifted, and the polarization angles θ1, θ2,. , And the electric field strengths e1, e2,... Of the electric pulse signal E1 when the probe light P2 ′ is incident are obtained from the polarization angle, the time domain waveform of the electric pulse signal E1 can be obtained.

そして、この電気パルス信号E1の時間領域波形に対し、フーリエ変換等の信号処理を行なうことで、周波数領域に変換し、振幅・位相特性を算出でき、算出した振幅・位相特性から、O/E変換デバイス13の出力特性を求めることができる(なお、これらの演算を行なう手段は省略している)。   Then, the time domain waveform of the electric pulse signal E1 is subjected to signal processing such as Fourier transform, so that it can be converted into the frequency domain and the amplitude / phase characteristics can be calculated. From the calculated amplitude / phase characteristics, the O / E The output characteristics of the conversion device 13 can be obtained (note that means for performing these operations are omitted).

そして、校正時には、O/E変換デバイス13の出力を、校正対象であるミリ波帯信号測定回路1に接続する。この例では校正対象のミリ波帯信号測定回路1が、ミキサ2aに対する入力信号をローカル信号発生器2bから出力されるローカル信号により低い周波数帯にヘテロダイン変換するダウンコバータ2と、そのダウンコンバータ2の出力信号に対してA/D変換処理および測定に必要な各種演算処理を実行する信号処理部(デジタイザ)3とで構成されており、実質的な校正対象は、アナログ回路構成のダウンコンバータ2の振幅特性、位相特性となる。   At the time of calibration, the output of the O / E conversion device 13 is connected to the millimeter waveband signal measurement circuit 1 that is the calibration target. In this example, the millimeter-wave band signal measurement circuit 1 to be calibrated includes a down-converter 2 that heterodyne-converts an input signal to the mixer 2a to a lower frequency band by a local signal output from the local signal generator 2b, and the down-converter 2 The signal processing unit (digitizer) 3 executes A / D conversion processing and various arithmetic processing necessary for measurement on the output signal, and the substantial calibration target is the down converter 2 of the analog circuit configuration. Amplitude characteristics and phase characteristics.

この構成の場合、O/E変換デバイス13の出力をミリ波帯信号測定回路1に与えたときに、信号処理部3でフーリエ変換処理等を行って周波数領域に変換し、入力信号の振幅・位相の特性を求め、予め求めたO/E変換デバイス13の出力信号E1の振幅・位相特性と比較することで、アナログ回路構成のダウンコンバータ2の振幅・位相に関する周波数特性を把握でき、その周波数特性を用いて、実際に被測定信号がミリ波帯信号測定回路1に入力したときに得られる測定結果を補償することで、被測定信号に対する正確な測定結果が得られる。   In the case of this configuration, when the output of the O / E conversion device 13 is given to the millimeter waveband signal measurement circuit 1, the signal processing unit 3 performs a Fourier transform process or the like to convert it to the frequency domain, By obtaining the phase characteristic and comparing it with the amplitude / phase characteristic of the output signal E1 of the O / E conversion device 13 obtained in advance, the frequency characteristic relating to the amplitude / phase of the down converter 2 of the analog circuit configuration can be grasped, and its frequency By using the characteristics to compensate the measurement result obtained when the signal under measurement is actually input to the millimeter waveband signal measurement circuit 1, an accurate measurement result for the signal under measurement can be obtained.

上記した電気光学サンプリング法を用いた校正システムの基本構成は、例えば非特許文献1に開示されている。   A basic configuration of a calibration system using the above-described electro-optic sampling method is disclosed in Non-Patent Document 1, for example.

D.F.Williams,P.D.Hales,T.S.Clement,and J.M.Morgan, "Calibrating electro-optical sampling systems,"in IEEE MTT-S Int. Microwave Symp.Dig.,vol.3,pp.1527-1530,May 2001D.F.Williams, P.D.Hales, T.S.Clement, and J.M.Morgan, "Calibrating electro-optical sampling systems," in IEEE MTT-S Int. Microwave Symp.Dig., Vol.3, pp.1527-1530, May 2001

前記したように、電気光学サンプリング法を用いた校正システムでは、O/E変換デバイスから出力される電気パルス信号の時間領域波形を求め、これを周波数領域に変換して、振幅および位相の特性を求めていたが、電気パルス信号の時間領域波形を周波数領域に変換するため、周波数領域での1波当たりの信号レベルが低下し、高精度な測定が困難となる問題があった。   As described above, in the calibration system using the electro-optic sampling method, the time-domain waveform of the electric pulse signal output from the O / E conversion device is obtained, converted into the frequency domain, and the amplitude and phase characteristics are obtained. However, since the time domain waveform of the electric pulse signal is converted to the frequency domain, the signal level per wave in the frequency domain is lowered, and there is a problem that high-precision measurement is difficult.

例えば、ミリ波帯で電気パルス信号は数100GHzの帯域を持つが、校正対象の周波数帯の帯域幅を100GHzとすると、この周波数領域での1波当たりの信号レベルは、元の電気パルス信号のレベルに対して110dBも低下してノイズレベルに近くなり、測定精度が著しく低下してしまう。なお、振幅の周波数特性に関しては、上記したミリ波帯の領域でもパワー測定等で正確な特性を得ることができるので、位相特性の校正を高精度に行なえるシステムが要求される。   For example, the electric pulse signal in the millimeter wave band has a band of several hundreds GHz, but if the bandwidth of the frequency band to be calibrated is 100 GHz, the signal level per wave in this frequency region is the same as that of the original electric pulse signal. The level is reduced by 110 dB to a level close to the noise level, and the measurement accuracy is significantly reduced. As for the frequency characteristics of the amplitude, an accurate characteristic can be obtained by power measurement or the like even in the above-described millimeter wave band region, and therefore a system capable of performing phase characteristic calibration with high accuracy is required.

本発明は、この問題を解決して、ミリ波帯信号測定回路の位相特性の校正を高精度に行えるミリ波帯信号測定回路の位相特性校正システムおよび位相特性校正方法を提供することを目的としている。   An object of the present invention is to solve this problem and provide a phase characteristic calibration system and a phase characteristic calibration method for a millimeter wave band signal measurement circuit that can calibrate the phase characteristic of the millimeter wave band signal measurement circuit with high accuracy. Yes.

前記目的を達成するために、本発明の請求項1のミリ波帯信号測定回路の位相特性校正システムは、
ミリ波帯またはサブミリ波帯の所定周波数領域の被測定信号を受け、該被測定信号をデジタル処理が可能な周波数帯に変換するダウンコンバータ(2)を含むミリ波帯信号測定回路(1)を校正対象とする位相特性校正システムであって、
短パルス光を所定の繰り返し周波数で出力する短パルス光源(21)と、
前記短パルス光を第1短パルス光と第2短パルス光に分岐する分岐手段(22)と、
前記所定周波数領域内で周波数が異なる複数の連続波が合成された校正用信号を生成する校正用信号生成部(40)と、
前記第1短パルス光を受けて、前記所定の繰り返し周波数の整数倍の電気の高調波信号を抽出し、該抽出した高調波信号を基準として、前記校正用信号生成部が出力する校正用信号の同期処理を行なう同期処理部(30)と、
前記第2短パルス光を受け、該第2短パルス光に所定の遅延時間を与えてサンプリング光として出力する光可変遅延器(50)と、
前記校正用信号と前記サンプリング光とを受け、前記光可変遅延器の遅延時間を変化させつつ前記校正用信号を前記サンプリング光に同期したタイミングでサンプリングし、前記校正用信号の時間領域の波形を取得する校正用信号波形取得部(60)と、
前記校正用信号生成部が生成する校正用信号に含まれる複数の連続波の周波数を、前記所定周波数領域内で順次変更させる連続波周波数変更手段(80)と、
前記連続波周波数変更手段による周波数変更毎に前記校正用信号波形取得部で得られる各校正用信号の時間領域の波形から、前記各校正用信号に含まれる複数の連続波の位相を求め、該位相から前記連続波の周波数間の位相差の特性を前記所定周波数領域全体に渡って求める位相情報算出手段(70)とを含み、
前記校正用信号を、前記校正対象のミリ波帯信号測定回路に与えたときの測定結果と、前記校正用信号について予め得られた位相差の特性とを比較して、前記ミリ波帯信号測定回路の前記ダウンコンバータを含めた位相特性を校正することを特徴する。
In order to achieve the above object, a phase characteristic calibration system for a millimeter waveband signal measurement circuit according to claim 1 of the present invention comprises:
A millimeter wave band signal measuring circuit (1) including a down converter (2) that receives a signal under measurement in a predetermined frequency region of a millimeter wave band or a submillimeter wave band and converts the signal under measurement into a frequency band that can be digitally processed. A phase characteristic calibration system to be calibrated,
A short pulse light source (21) for outputting short pulse light at a predetermined repetition frequency;
Branching means (22) for branching the short pulse light into a first short pulse light and a second short pulse light;
A calibration signal generator (40) for generating a calibration signal in which a plurality of continuous waves having different frequencies within the predetermined frequency region are combined;
Receiving the first short pulse light, extracting an electrical harmonic signal that is an integral multiple of the predetermined repetition frequency, and using the extracted harmonic signal as a reference, a calibration signal output by the calibration signal generator A synchronization processing unit (30) for performing synchronization processing of
An optical variable delay device (50) that receives the second short pulse light, gives a predetermined delay time to the second short pulse light, and outputs it as sampling light;
The calibration signal and the sampling light are received, the calibration signal is sampled at a timing synchronized with the sampling light while changing the delay time of the optical variable delay device, and the time domain waveform of the calibration signal is obtained. A calibration signal waveform acquisition unit (60) to acquire;
Continuous wave frequency changing means (80) for sequentially changing the frequencies of a plurality of continuous waves included in the calibration signal generated by the calibration signal generating unit within the predetermined frequency region;
From the time domain waveform of each calibration signal obtained by the calibration signal waveform acquisition unit for each frequency change by the continuous wave frequency changing means, obtain the phase of a plurality of continuous waves included in each calibration signal, Phase information calculation means (70) for obtaining the characteristic of the phase difference between the frequencies of the continuous wave from the phase over the entire predetermined frequency region,
The measurement result when the calibration signal is supplied to the calibration target millimeter-wave band signal measurement circuit is compared with the phase difference characteristic obtained in advance for the calibration signal, and the millimeter-wave band signal measurement is performed. The phase characteristic of the circuit including the down converter is calibrated.

また、本発明の請求項2記載のミリ波帯信号測定回路の位相特性校正方法は、
ミリ波帯またはサブミリ波帯の所定周波数領域の被測定信号を受け、該被測定信号をデジタル処理が可能な周波数帯に変換するダウンコンバータ(2)を含むミリ波帯信号測定回路(1)を校正対象とする位相特性校正方法であって、
所定の繰り返し周波数で出力される短パルス光を、第1短パルス光と第2短パルス光に分岐し、該第1短パルス光を基に、前記所定の繰り返し周波数の整数倍の電気の高調波信号を抽出する段階と、
前記所定周波数領域内で周波数が異なる複数の連続波が合成された校正用信号を、前記抽出した高調波信号を基準として周波数同期された状態で生成する段階と、
前記第2短パルス光に所定の遅延時間を与えてサンプリング光として出力する段階と、
前記サンプリング光の遅延時間を変化させつつ前記校正用信号を前記サンプリング光に同期したタイミングでサンプリングし、前記校正用信号の時間領域の波形を取得する段階と、
前記校正用信号に含まれる複数の連続波の周波数を、前記所定周波数領域内で順次変更させ、該周波数変更毎に得られる各校正用信号の時間領域の波形から、前記各校正用信号に含まれる複数の連続波の位相を求め、該位相から前記連続波の周波数間の位相差の特性を前記所定周波数領域全体に渡って求める段階と、
前記校正用信号を、前記校正対象のミリ波測定回路に与えたときの測定結果と、前記校正用信号について予め得られた位相差の特性とを比較して、前記ミリ波帯信号測定回路の前記ダウンコンバータを含めた位相特性を校正する段階とを含むことを特徴する。
A method for calibrating the phase characteristics of the millimeter waveband signal measuring circuit according to claim 2 of the present invention includes:
A millimeter wave band signal measuring circuit (1) including a down converter (2) that receives a signal under measurement in a predetermined frequency region of a millimeter wave band or a submillimeter wave band and converts the signal under measurement into a frequency band that can be digitally processed. A phase characteristic calibration method to be calibrated,
The short pulse light output at a predetermined repetition frequency is branched into a first short pulse light and a second short pulse light, and based on the first short pulse light, an electrical harmonic that is an integral multiple of the predetermined repetition frequency. Extracting a wave signal;
Generating a calibration signal in which a plurality of continuous waves having different frequencies within the predetermined frequency region are synthesized in a frequency-synchronized state with reference to the extracted harmonic signal;
Providing the second short pulse light with a predetermined delay time and outputting it as sampling light;
Sampling the calibration signal at a timing synchronized with the sampling light while changing the delay time of the sampling light, obtaining a time domain waveform of the calibration signal;
The frequency of a plurality of continuous waves included in the calibration signal is sequentially changed within the predetermined frequency domain, and is included in each calibration signal from the time domain waveform of each calibration signal obtained for each frequency change. Obtaining a phase of a plurality of continuous waves, and obtaining a characteristic of a phase difference between the frequencies of the continuous waves from the phase over the entire predetermined frequency region;
The measurement result when the calibration signal is supplied to the calibration target millimeter wave measurement circuit is compared with the characteristics of the phase difference obtained in advance for the calibration signal, and the millimeter wave band signal measurement circuit Calibrating phase characteristics including the down converter.

このように、本発明では、短パルス光を基に、その繰り返し周波数の整数倍の周波数の電気の高調波信号を抽出し、この高調波信号を基準として周波数同期し、且つ校正対象となる周波数領域内で異なる周波数の複数の連続波が合成された校正用信号を生成し、短パルス光から得られるサンプリング光の遅延時間を変化させつつ校正用信号をサンプリング光に同期したタイミングでサンプリングし、校正用信号の時間領域の波形を取得するという処理を、校正用信号に含まれる連続波の周波数を順次変更しながら行い、得られた各校正用信号の波形から、その校正用信号に含まれる複数の連続波についての位相を算出し、校正対象の周波数領域内の位相差の特性を求めている。   Thus, in the present invention, based on the short pulse light, an electrical harmonic signal having a frequency that is an integral multiple of the repetition frequency is extracted, the frequency is synchronized with the harmonic signal as a reference, and the frequency to be calibrated Generate a calibration signal in which multiple continuous waves of different frequencies in the region are combined, sample the calibration signal at the timing synchronized with the sampling light while changing the delay time of the sampling light obtained from the short pulse light, The process of obtaining the time domain waveform of the calibration signal is performed while sequentially changing the frequency of the continuous wave included in the calibration signal, and the calibration signal is included in the calibration signal from the obtained waveform of each calibration signal. The phase of a plurality of continuous waves is calculated, and the characteristics of the phase difference in the frequency domain to be calibrated are obtained.

つまり、校正用信号として、短パルス光の繰り返し周波数の整数倍に周波数同期され、ミリ波帯の周波数領域で周波数が異なる複数の連続波が合成されたものを用い、その連続波の周波数を順次変更して、校正対象のミリ波帯の周波数領域全体の位相特性を求めているので、従来のパルス信号を校正用信号として用いる方式に比べて、格段に高いレベルの信号により位相情報を高精度に取得でき、校正精度を格段に高くできる。   In other words, the calibration signal is a signal that is frequency-synchronized with an integral multiple of the repetition frequency of the short pulse light, and a combination of multiple continuous waves with different frequencies in the millimeter waveband frequency range. Since the phase characteristics of the entire frequency region of the millimeter wave band to be calibrated are calculated, the phase information can be obtained with a much higher level of signal than the conventional method using a pulse signal as the calibration signal. The calibration accuracy can be remarkably increased.

本発明の実施形態の全体構成図Overall configuration diagram of an embodiment of the present invention 本発明の実施形態の要部の構成例を示す図The figure which shows the structural example of the principal part of embodiment of this invention. 本発明の実施形態の動作説明図Operation explanatory diagram of the embodiment of the present invention 本発明の実施形態の要部の別の構成例を示す図The figure which shows another structural example of the principal part of embodiment of this invention. 本発明の実施形態の動作説明図Operation explanatory diagram of the embodiment of the present invention 本発明の実施形態の動作説明図Operation explanatory diagram of the embodiment of the present invention 本発明の実施形態の動作説明図Operation explanatory diagram of the embodiment of the present invention 従来の校正システムの概略構成図Schematic configuration diagram of a conventional calibration system 従来の校正システムの動作説明図Operation explanation diagram of conventional calibration system

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用したミリ波帯信号測定回路の位相特性校正システム(以下、単に校正システムと記す)20の全体構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an overall configuration of a phase characteristic calibration system (hereinafter simply referred to as a calibration system) 20 of a millimeter waveband signal measurement circuit to which the present invention is applied.

この校正システム20は、前記したように、ミキサ2aとローカル信号発生器2bを含み、ミリ波帯の所定周波数領域の被測定信号を受けて、デジタル処理が可能な周波数帯に変換するダウンコンバータ2と、ダウンコンバータ2の出力信号に対するA/D変換処理およびデジタル演算処理を行なう信号処理部3とを含むミリ波帯信号測定回路1を校正対象とするものであり、短パルス光源21、分岐手段22、同期処理部30、校正用信号生成部40、光可変遅延器50、校正用信号波形取得部60、位相情報算出手段70、連続波周波数変更手段80および校正処理部90を含んでいる。   As described above, the calibration system 20 includes the mixer 2a and the local signal generator 2b, receives a signal under measurement in a predetermined frequency region in the millimeter wave band, and converts it into a frequency band that can be digitally processed. And a millimeter-wave band signal measuring circuit 1 including a signal processing unit 3 that performs A / D conversion processing and digital arithmetic processing on the output signal of the down-converter 2, the short pulse light source 21, branching means 22, a synchronization processing unit 30, a calibration signal generation unit 40, an optical variable delay device 50, a calibration signal waveform acquisition unit 60, a phase information calculation unit 70, a continuous wave frequency change unit 80, and a calibration processing unit 90.

短パルス光源21は、例えば半導体レーザをパルス変調して、短パルス光P0を所定の繰り返し周期Ts(=1/fs:fsは例えば100MHz)で出射する。分岐手段22は、この短パルス光P0を受けて、第1短パルス光P1と第2短パルス光P2に分岐する。   The short pulse light source 21 performs pulse modulation on a semiconductor laser, for example, and emits short pulse light P0 at a predetermined repetition period Ts (= 1 / fs: fs is, for example, 100 MHz). The branching means 22 receives the short pulse light P0 and branches it into the first short pulse light P1 and the second short pulse light P2.

第1短パルス光P1を受けた同期処理部30は、校正用信号発生部40が出力する校正用信号Erに含まれる複数(ここでは3つとして説明するが2つあるいは4つ以上でもよい)の連続波の周波数を、短パルス光P0の繰り返し周波数の高調波に同期させるための処理を行なうものであり、その構成は校正用信号生成部40の構成に対応している。   The synchronization processing unit 30 that has received the first short pulse light P1 includes a plurality of calibration signals Er that are output from the calibration signal generation unit 40 (here, although described as three, two or four or more may be used). The processing for synchronizing the frequency of the continuous wave with the harmonic of the repetition frequency of the short pulse light P0 is performed, and its configuration corresponds to the configuration of the calibration signal generation unit 40.

この実施形態では、校正用信号生成部40は、前記所定周波数領域より低い中間周波数領域で周波数が異なる複数の連続波が合成された合成信号SUM(if)を生成出力する合成信号発生器41と、ローカル信号LOCを出力するローカル信号発生器42と、合成信号SUM(if)とローカル信号LOCを受けて、中間周波数領域の合成信号SUM(if)を前記ミリ波帯の所定周波数領域の校正用信号Erに変換するミキサ43と、ミキサ43の出力を増幅するアンプ44からなるアップコンバータ構成(和のヘテロダインとする)としている。   In this embodiment, the calibration signal generation unit 40 generates and outputs a combined signal SUM (if) in which a plurality of continuous waves having different frequencies are combined in an intermediate frequency region lower than the predetermined frequency region. The local signal generator 42 for outputting the local signal LOC, the synthesized signal SUM (if) and the local signal LOC are received, and the synthesized signal SUM (if) in the intermediate frequency domain is used for calibration in the predetermined frequency domain of the millimeter wave band. The up-converter configuration (sum heterodyne) includes a mixer 43 that converts the signal Er into an amplifier 44 and an amplifier 44 that amplifies the output of the mixer 43.

なお、合成信号発生器41としては、外部から入力されるクロック信号に同期して内部の信号合成処理を行なう任意波形発生器で構成することができる。また、ローカル信号発生器42としては、合成信号SUM(if)の周波数をミリ波帯に変換するためにミリ波帯に近い周波数(数100GHz)のローカル信号LOCを生成する必要があるが、これを実現するために、例えば、外部から入力される基準信号(リファレンス信号)REF(一般的に10MHzや100MHz)で周波数の同期制御が可能な10〜数10GHz帯の信号発生器42a、その信号発生器42bの出力信号SGout をN逓倍(例えばN=18)して、ミリ波帯に近い周波数のローカル信号LOCに変換する逓倍器42bとで構成することができる。   The synthesized signal generator 41 can be constituted by an arbitrary waveform generator that performs an internal signal synthesizing process in synchronization with an externally input clock signal. The local signal generator 42 needs to generate a local signal LOC having a frequency close to the millimeter wave band (several hundred GHz) in order to convert the frequency of the synthesized signal SUM (if) into the millimeter wave band. For example, a signal generator 42a in the 10 to several tens GHz band capable of synchronous control of the frequency by a reference signal (reference signal) REF (generally 10 MHz or 100 MHz) input from the outside, and its signal generation The output signal SGout of the multiplier 42b is multiplied by N (for example, N = 18), and can be constituted by a multiplier 42b that converts it into a local signal LOC having a frequency close to the millimeter wave band.

具体的な数値例をあげれば、合成信号発生器41は、2.6GHzのクロック信号CLKを受けて、例えばスタート周波数f0=24GHz、周波数間隔Δf=100MHzとし、f1=f0、f2=f1+Δf、f3=f1+2Δfの3つの連続波が合成された合成信号SUM(if)を生成する。なお、この連続波の周波数f1〜f3は、後述する連続波周波数変更手段80の制御で、スタート周波数f0の例えば200MHzステップ変化により順次高い方にシフトするが、3つ一組の連続波の周波数間隔Δf=100MHzに対し、スタート周波数f0を200MHzステップで変化させることで、ある一組の3つの周波数f1〜f3の高い方の周波数f3と、次の組の3つの周波数f1′〜f3′の低い方の周波数f1′とを重複させて、校正用信号Erに含まれる連続波の各周波数間の位相差の連続性を維持する。   As a specific numerical example, the synthesized signal generator 41 receives a 2.6 GHz clock signal CLK and sets, for example, a start frequency f0 = 24 GHz and a frequency interval Δf = 100 MHz, and f1 = f0, f2 = f1 + Δf, f3. A combined signal SUM (if) in which three continuous waves of = f1 + 2Δf are combined is generated. The continuous wave frequencies f1 to f3 are sequentially shifted to higher ones by, for example, a 200 MHz step change of the start frequency f0 under the control of the continuous wave frequency changing means 80 described later. By changing the start frequency f0 in 200 MHz steps with respect to the interval Δf = 100 MHz, the higher frequency f3 of a certain set of three frequencies f1 to f3 and the next set of three frequencies f1 ′ to f3 ′ The continuity of the phase difference between the frequencies of the continuous wave included in the calibration signal Er is maintained by overlapping the lower frequency f1 ′.

また、ローカル信号発生器42の信号発生器42aは、例えば15±2.5GHzの範囲の信号SGout を100MHz間隔で出力し、逓倍器42bは、信号発生器42aの出力信号SGout を18逓倍して、これをローカル信号LOCとして出力する。   The signal generator 42a of the local signal generator 42 outputs a signal SGout in the range of 15 ± 2.5 GHz, for example, at 100 MHz intervals, and the multiplier 42b multiplies the output signal SGout of the signal generator 42a by 18 times. This is output as a local signal LOC.

したがって、信号発生器42aの出力信号SGout の周波数が100MHzステップで、12.5GHz〜17.5GHzに変化する場合、ローカル信号LOCの周波数は225GHz〜315GHzの間を1.8GHzステップで変化することになる。この1.8GHzの間を100MHz間隔で埋めるために、前記したように、合成信号SUM(if)に含まれる3つの連続波の周波数f1〜f3は、初期値から200MHステップで8回変更される。これにより、校正用信号Erに含まれる連続波の周波数は、前の組のf3と次の組f1の重複を許しながら、(225+24)GHz〜(315+24+1.7)GHzの範囲内で100MHzステップで埋められることになる。   Therefore, when the frequency of the output signal SGout of the signal generator 42a is changed from 12.5 GHz to 17.5 GHz in a 100 MHz step, the frequency of the local signal LOC is changed in a 1.8 GHz step between 225 GHz and 315 GHz. Become. In order to fill this 1.8 GHz band at 100 MHz intervals, as described above, the frequencies f1 to f3 of the three continuous waves included in the synthesized signal SUM (if) are changed eight times in 200 MHz steps from the initial value. . As a result, the frequency of the continuous wave included in the calibration signal Er is 100 MHz step within the range of (225 + 24) GHz to (315 + 24 + 1.7) GHz while allowing overlap between the previous set f3 and the next set f1. Will be buried.

上記構成の校正用信号生成部40に対し、同期処理部30は、第1短パルス光P1を受け、その第1短パルス光P1の繰り返し周波数の整数倍の高調波信号を抽出し、その抽出した高調波信号を基準として、合成信号発生器(任意波形発生器)41が出力する合成信号に含まれる複数の連続波の周波数の同期に必要な所定周波数(例えば2.6GHz)のクロック信号CLKと、ローカル信号発生器42の信号発生器42aの出力信号SGout の周波数を同期制御するための基準信号REFを生成して、校正用信号生成部40が出力する校正用信号Erに含まれる複数の連続波に対する同期処理を行ない、校正用信号の波形が第1短パルス光P1に対してずれないようにしている。   For the calibration signal generation unit 40 having the above configuration, the synchronization processing unit 30 receives the first short pulse light P1, extracts a harmonic signal that is an integral multiple of the repetition frequency of the first short pulse light P1, and extracts the harmonic signal. The clock signal CLK having a predetermined frequency (for example, 2.6 GHz) necessary for synchronizing the frequencies of a plurality of continuous waves included in the synthesized signal output from the synthesized signal generator (arbitrary waveform generator) 41 on the basis of the generated harmonic signal. A reference signal REF for synchronously controlling the frequency of the output signal SGout of the signal generator 42a of the local signal generator 42, and a plurality of calibration signals Er included in the calibration signal generator 40 output by the calibration signal generator 40. Synchronization processing for the continuous wave is performed so that the waveform of the calibration signal does not shift with respect to the first short pulse light P1.

図2は、この同期処理部30の構成例を示すものであり、第1短パルス光P1を例えばフォトダイオードのような光電変換素子31で受け、図3の(a)に示すように第1短パルス光P1に同期した電気パルス信号E1を出力させ、これを2つの帯域通過フィルタ(以下、BPF)32、33に入力する。   FIG. 2 shows a configuration example of the synchronization processing unit 30. The first short pulse light P1 is received by a photoelectric conversion element 31 such as a photodiode, and the first short pulse light P1 is received as shown in FIG. An electric pulse signal E1 synchronized with the short pulse light P1 is output and input to two band pass filters (hereinafter referred to as BPF) 32 and 33.

BPF32は、図3の(b)に示す電気パルス信号E1に含まれる高調波から、クロック信号CLKを周波数同期させるための基準信号として2.6GHzの高調波信号E2を図3の(c)のように抽出する。また、BPF33は電気パルス信号E1に含まれる高調波のうち、ローカル信号発生器42の信号発生器42aの出力信号SGout の周波数を同期させるための基準となる15GHz近傍の高調波信号E3を図3の(d)のように抽出する。   The BPF 32 uses a harmonic signal E2 of 2.6 GHz as a reference signal for frequency-synchronizing the clock signal CLK from the harmonics included in the electric pulse signal E1 shown in FIG. 3B, as shown in FIG. Extract as follows. Further, the BPF 33 generates a harmonic signal E3 in the vicinity of 15 GHz, which is a reference for synchronizing the frequency of the output signal SGout of the signal generator 42a of the local signal generator 42 among the harmonics included in the electric pulse signal E1. Extract as shown in (d).

ここで、ローカル信号発生器42の信号発生器42aの出力信号SGout の周波数は、例えば100MHzステップで変更されるため、電気パルス信号E1から抽出される高調波信号E3の周波数も100MHzステップで抽出する必要がある。したがって、このBPF33としては、例えばYTF(YIG周波数可変フィルタ)等の通過中心周波数可変型のものを用いる。   Here, since the frequency of the output signal SGout of the signal generator 42a of the local signal generator 42 is changed, for example, in 100 MHz steps, the frequency of the harmonic signal E3 extracted from the electric pulse signal E1 is also extracted in 100 MHz steps. There is a need. Therefore, as the BPF 33, for example, a variable passing center frequency type such as YTF (YIG frequency variable filter) is used.

BPF32で抽出された周波数2.6GHzの高調波信号E2は、PLL同期処理を行なうための基準信号として同期回路34に入力される。同期回路34は、発振器34a、位相比較器34b、ループフィルタ34cからなり、位相比較器34bは、高調波信号E2と、発振器34aが出力する2.6GHzのクロック信号CLKとの位相比較を行い、その位相差と所定の位相基準値(例えば0あるいはπ/2)との差に応じた制御信号がループフィルタ34cにより抽出されて発振器34aに与えられ、位相差が位相基準値に一致するように発振器34aが制御される。   The harmonic signal E2 having a frequency of 2.6 GHz extracted by the BPF 32 is input to the synchronization circuit 34 as a reference signal for performing PLL synchronization processing. The synchronization circuit 34 includes an oscillator 34a, a phase comparator 34b, and a loop filter 34c. The phase comparator 34b performs phase comparison between the harmonic signal E2 and the 2.6 GHz clock signal CLK output from the oscillator 34a. A control signal corresponding to the difference between the phase difference and a predetermined phase reference value (for example, 0 or π / 2) is extracted by the loop filter 34c and applied to the oscillator 34a so that the phase difference matches the phase reference value. The oscillator 34a is controlled.

この同期回路34の作用により、発振器34aから出力されるクロック信号CLKの周波数は、電気パルス信号E1の繰り返し周波数(100MHz)に同期した状態が維持される。なお、上記2.6GHzの周波数帯では、発振器34aとして汎用的なVCO(電圧制御発振器でYIG発振器等も含む)が使用可能である。   By the action of the synchronizing circuit 34, the frequency of the clock signal CLK output from the oscillator 34a is maintained in a state synchronized with the repetition frequency (100 MHz) of the electric pulse signal E1. In the 2.6 GHz frequency band, a general-purpose VCO (including a YIG oscillator and the like, which is a voltage-controlled oscillator) can be used as the oscillator 34a.

一方、BPF33で抽出される高調波信号E3もPLL同期処理を行なうための基準信号として同期回路35に入力される。同期回路35は、発振器35a、位相比較器35bおよびループフィルタ35cからなり、位相比較器35bは、高調波信号E3と、校正用信号生成部40の信号発生器42aの出力信号SGout との位相比較を行い、その位相差と所定の位相基準値との差に応じた制御信号がループフィルタ35cにより抽出されて発振器35aに与えられ、位相差に応じた基準信号REFが生成されて信号発生器42aに与えられ、位相差が位相基準値に一致するように発振器35aが制御される。これにより、信号発生器42aの出力信号SGout の周波数が高調波信号E2に同期制御される。なお、発振器35aとしては、10MHzや100MHzで周波数安定度が極めて高い周波数可変型の水晶発振器等を用いることができる。   On the other hand, the harmonic signal E3 extracted by the BPF 33 is also input to the synchronization circuit 35 as a reference signal for performing PLL synchronization processing. The synchronization circuit 35 includes an oscillator 35a, a phase comparator 35b, and a loop filter 35c. The phase comparator 35b compares the phase of the harmonic signal E3 with the output signal SGout of the signal generator 42a of the calibration signal generator 40. The control signal corresponding to the difference between the phase difference and a predetermined phase reference value is extracted by the loop filter 35c and applied to the oscillator 35a, and the reference signal REF corresponding to the phase difference is generated to generate the signal generator 42a. The oscillator 35a is controlled so that the phase difference matches the phase reference value. As a result, the frequency of the output signal SGout of the signal generator 42a is synchronously controlled with the harmonic signal E2. As the oscillator 35a, a variable frequency crystal oscillator having a very high frequency stability at 10 MHz or 100 MHz can be used.

この同期回路35の作用により、高調波信号E3に周波数同期された信号発生器42aの出力信号SGout は、逓倍器42bにより、例えば18逓倍されて、ローカル信号LOCとなり、ミキサ43に入力される。なお、信号発生器42aの出力信号SGout の周波数変更(例えば100MHzステップの周波数変更)は、連続波周波数変更手段80からの周波数設定信号より行なわれる。   Due to the action of the synchronizing circuit 35, the output signal SGout of the signal generator 42a frequency-synchronized with the harmonic signal E3 is multiplied by, for example, 18 by the multiplier 42b to become the local signal LOC and input to the mixer 43. The frequency change of the output signal SGout of the signal generator 42a (for example, the frequency change of 100 MHz step) is performed by the frequency setting signal from the continuous wave frequency changing means 80.

したがって、校正用信号生成部40からは、電気パルス信号E1の繰り返し周波数(100MHz)の整数倍の周波数をもつ高調波信号に同期した複数の連続波が合成された校正用信号Erが生成されることになり、短パルス光P1に対して、校正用信号Erの波形が同期することになり、後述するサンプリング光Psによる波形のサンプリングを安定に行なうことができる。   Therefore, the calibration signal generator 40 generates a calibration signal Er in which a plurality of continuous waves synchronized with a harmonic signal having a frequency that is an integral multiple of the repetition frequency (100 MHz) of the electric pulse signal E1 is synthesized. As a result, the waveform of the calibration signal Er is synchronized with the short pulse light P1, and the waveform sampling by the sampling light Ps described later can be performed stably.

なお、上記のように生成された校正用信号Erは、校正対象のミリ波帯信号測定回路1および校正に必要な後述する電磁波検出器への信号供給を等価な環境で行なえるように、ホーンアンテナ45を介して放射されるものとする。   It should be noted that the calibration signal Er generated as described above is a horn so that the signal can be supplied to the millimeter waveband signal measuring circuit 1 to be calibrated and an electromagnetic wave detector (described later) necessary for calibration in an equivalent environment. It shall be radiated | emitted via the antenna 45. FIG.

ここで、校正用信号Erの位相変動は、校正用信号Er生成のための基準となる信号の位相変動の周波数比に比例する。例えば300GHzで位相変動を10度以内とする場合、基準の信号が100MHzとすると、3000分の1、すなわち、0.0033度以下の位相変動となり、VCO等で調整する場合、電圧が微小となり、実現困難であるが、本実施例のように、校正用信号Er生成のための基準となる信号を、短パルス光の繰返し周波数の整数倍の高調波信号を用いることで、実現を容易にしている。   Here, the phase fluctuation of the calibration signal Er is proportional to the frequency ratio of the phase fluctuation of the signal serving as a reference for generating the calibration signal Er. For example, when the phase fluctuation is within 10 degrees at 300 GHz, if the reference signal is 100 MHz, the phase fluctuation is 1/3000, that is, 0.0033 degrees or less, and when adjusting with a VCO or the like, the voltage becomes minute. Although it is difficult to realize, the signal that becomes the reference for generating the calibration signal Er as in the present embodiment can be easily realized by using a harmonic signal that is an integral multiple of the repetition frequency of the short pulse light. Yes.

上記した同期処理部30および校正用信号生成部40の構成は、一例であって、これ以外に種々の構成例が考えられる。例えば、上記同期処理部30では、第1短パルス光P1の繰り返し周波数の整数倍の高調波信号を抽出するために、二つのBPF32、33を用いていたが、クロック信号CLKおよび出力信号SGoutが繰返し周波数(100MHz)未満の精度で設定できる場合、同期回路34、35の位相比較器34b、35bの検波作用を用いることで、特定の高調波信号の抽出が可能であり、この場合、BPF32、33を省略できる。また、校正用信号に含まれる連続波の周波数およびその可変方法についても上記例に限らないことは勿論である。   The configurations of the synchronization processing unit 30 and the calibration signal generation unit 40 described above are merely examples, and various other configuration examples are conceivable. For example, in the synchronization processing unit 30, two BPFs 32 and 33 are used to extract a harmonic signal that is an integral multiple of the repetition frequency of the first short pulse light P1, but the clock signal CLK and the output signal SGout are When it can be set with an accuracy less than the repetition frequency (100 MHz), it is possible to extract a specific harmonic signal by using the detection action of the phase comparators 34b and 35b of the synchronization circuits 34 and 35. In this case, the BPF 32, 33 can be omitted. Of course, the frequency of the continuous wave included in the calibration signal and the variable method thereof are not limited to the above example.

一方、分岐手段22で分岐された第2短パルス光P2は、光可変遅延器50に入力され、所定の遅延時間Δtが与えられて、サンプリング光Psとして出力される。この光可変遅延器50は、例えば、ミラーを用いて形成した光路の一部の長さを、ミラーの移動などにより遅延時間Δtを可変する機構を用いて構成することができる。   On the other hand, the second short pulse light P2 branched by the branching means 22 is input to the optical variable delay device 50, given a predetermined delay time Δt, and output as sampling light Ps. The optical variable delay device 50 can be configured, for example, by using a mechanism that varies the delay time Δt by moving the mirror or the like in part of the length of the optical path formed using a mirror.

光可変遅延器50から出力されるサンプリング光Psは、校正用信号波形取得部60に入射される。校正用信号波形取得部60は、光可変遅延器50の遅延時間Δtを変化させつつ校正用信号生成部40から出力された校正用信号Erを受信し、その受信した校正用信号Er′をサンプリング光Psに同期したタイミングでサンプリングし、校正用信号Er′の時間領域の波形を取得する。このサンプリング方式は、基本的に前記した従来システムと同様であり、従来から提案されている種々の構成が採用できる。   The sampling light Ps output from the optical variable delay device 50 is incident on the calibration signal waveform acquisition unit 60. The calibration signal waveform acquisition unit 60 receives the calibration signal Er output from the calibration signal generation unit 40 while changing the delay time Δt of the optical variable delay device 50, and samples the received calibration signal Er ′. Sampling is performed at a timing synchronized with the light Ps, and a time-domain waveform of the calibration signal Er ′ is acquired. This sampling method is basically the same as that of the conventional system described above, and various conventionally proposed configurations can be adopted.

なお、校正用信号生成部40から出力された校正用信号Erの特性と、校正用信号波形取得部60で受信される校正用信号Er′の特性は、校正用信号生成部40から校正用信号波形取得部60までの電磁波の伝搬経路等の測定系の影響を受けて一致しないが、校正用信号Erを校正対象のミリ波帯信号測定回路1に与える際に、校正用信号生成部40から校正対象のミリ波帯信号測定回路1に至る電磁波の伝搬経路等を測定系に合わせておけばその影響を相殺できるので、ここではEr=Er′として説明する。   Note that the characteristics of the calibration signal Er output from the calibration signal generator 40 and the characteristics of the calibration signal Er ′ received by the calibration signal waveform acquisition unit 60 are the same as those obtained from the calibration signal generator 40. Although not matched due to the influence of the measurement system such as the propagation path of the electromagnetic wave to the waveform acquisition unit 60, when the calibration signal Er is given to the millimeter waveband signal measurement circuit 1 to be calibrated, from the calibration signal generation unit 40 If the propagation path of the electromagnetic wave reaching the millimeter waveband signal measurement circuit 1 to be calibrated is matched with the measurement system, the influence can be canceled out, so here, explanation will be made assuming that Er = Er ′.

校正用信号波形取得部60は、校正用信号Erを電磁波検出器で受けるが、この電磁波検出器としては、例えば図1に示しているように、電気光学結晶61(E/0結晶)を用いることができる。前記したように、電気光学結晶61は、所定の光路に電界が発生しているとその光路を進む光の偏光角を電界強度に比例して変化させる作用を有するものである。この場合、光可変遅延器50から出力されたサンプリング光Psを、偏光ビームスプリッタ(以下、PBS)62を通過させて電気光学結晶61に入射させ、その結晶端面の反射膜で反射してPBS62に戻るように構成している。ここで、電気光学結晶61中に校正用信号Erによる電界が発生していると、電気光学結晶61から戻ってきたサンプリング光Ps′の偏光角θが電界強度に比例して変化するので、PBS62に戻ったサンプリング光Ps′のうち偏光方向が変化した光成分が分離されて偏光測定器63に入射され、その偏光角θが検出される。   The calibration signal waveform acquisition unit 60 receives the calibration signal Er with an electromagnetic wave detector. As the electromagnetic wave detector, for example, as shown in FIG. 1, an electro-optic crystal 61 (E / 0 crystal) is used. be able to. As described above, the electro-optic crystal 61 has an action of changing the polarization angle of light traveling along the optical path in proportion to the electric field intensity when an electric field is generated in the predetermined optical path. In this case, the sampling light Ps output from the optical variable delay device 50 passes through a polarization beam splitter (hereinafter referred to as PBS) 62 and is incident on the electro-optic crystal 61, is reflected by the reflection film on the crystal end face, and is reflected on the PBS 62. It is configured to return. Here, if an electric field is generated in the electro-optic crystal 61 by the calibration signal Er, the polarization angle θ of the sampling light Ps ′ returned from the electro-optic crystal 61 changes in proportion to the electric field strength. The light component whose polarization direction has changed is separated from the sampling light Ps ′ returned to, and is incident on the polarization measuring device 63, and its polarization angle θ is detected.

そして、波形取得手段64は、偏光測定器63で測定された偏光角θから校正用信号Erによって電気光学結晶61中に発生している電界強度eを求め、これを光可変遅延器50の遅延時間Δtを変化させつつ連続的に行なうことで、校正用信号波形を求める。   Then, the waveform acquisition means 64 obtains the electric field strength e generated in the electro-optic crystal 61 from the polarization angle θ measured by the polarization measuring device 63 by the calibration signal Er, and uses this to determine the delay of the optical variable delay device 50. A calibration signal waveform is obtained by continuously performing the process while changing the time Δt.

なお、校正用信号波形取得部60の構成は、上記構成例の他に、図4のように、電磁波検出器として、ダイポール型の光伝導アンテナ61′を用いることもできる。光伝導アンテナ61′は、GaAs等の半導体基板65の表面に平行伝送路66、67が形成され、その中間部から互いに近づくように突出部(ダイポールアンテナ素子)66a、67aが形成されており、その突出部66a、67aの先端間の隙間である光伝導ギャップGに電界が発生しているとその光伝導ギャップGに光が入射したときの電界強度に比例した電流が平行伝送路66、67に流れるという作用を有するものである。   In addition to the above configuration example, the calibration signal waveform acquisition unit 60 can also use a dipole photoconductive antenna 61 ′ as an electromagnetic wave detector, as shown in FIG. In the photoconductive antenna 61 ', parallel transmission paths 66 and 67 are formed on the surface of a semiconductor substrate 65 such as GaAs, and projecting portions (dipole antenna elements) 66a and 67a are formed so as to approach each other from an intermediate portion thereof. When an electric field is generated in the photoconductive gap G, which is a gap between the tips of the protrusions 66a and 67a, a current proportional to the electric field strength when light enters the photoconductive gap G is parallel transmission lines 66 and 67. It has the effect | action of flowing into.

図4に示しているように、校正用信号Erを受信している状態で、サンプリング光Psを光伝導アンテナ61′の光伝導ギャップGに照射して平行伝送路66、67に流れる電流Iを電流測定器68により測定して波形取得手段64′に与え、その電流Iからサンプリング光Psが入射したタイミングにおける校正用信号Erの電界を求めて、その波形情報を取得する。なお、光伝導アンテナの実現手段としては、上記ダイポール型の他に従来から提案されている種々の構成が採用できる。   As shown in FIG. 4, the current I flowing through the parallel transmission paths 66 and 67 by irradiating the photoconductive gap G of the photoconductive antenna 61 'with the sampling light Ps while receiving the calibration signal Er is obtained. The current is measured by the current measuring device 68 and given to the waveform acquisition means 64 ′, the electric field of the calibration signal Er at the timing when the sampling light Ps is incident is obtained from the current I, and the waveform information is acquired. As a means for realizing the photoconductive antenna, various conventionally proposed configurations can be adopted in addition to the dipole type.

位相情報算出手段70は、校正用信号波形取得部60で取得された校正用信号波形から、その校正用信号に含まれる複数の連続波についての位相φ(fa)〜φ(fc)を算出し、これに基づいて各周波数間の位相差の特性を求める。この位相φ(fa)〜φ(fc)の算出処理は、時間領域の校正用信号波形に対するフーリエ変換処理により、その複数の連続波の周波数についての位相を算出するものであり、前記したように、周波数が異なる複数の連続波が合成された信号波形に対するフーリエ変換処理であるので、その位相φ(fa)〜φ(fc)を正確に求めることができる。   The phase information calculation means 70 calculates phases φ (fa) to φ (fc) for a plurality of continuous waves included in the calibration signal from the calibration signal waveform acquired by the calibration signal waveform acquisition unit 60. Based on this, the characteristics of the phase difference between the frequencies are obtained. The calculation processing of the phases φ (fa) to φ (fc) is to calculate phases for the frequencies of the plurality of continuous waves by Fourier transform processing for the calibration signal waveform in the time domain, as described above. Since the Fourier transform processing is performed on a signal waveform obtained by synthesizing a plurality of continuous waves having different frequencies, the phases φ (fa) to φ (fc) can be accurately obtained.

また、位相差の算出処理は、例えば1つの校正用信号の波形から得られた1組の位相をφ(fa1)〜φ(fc1)とすると、周波数fa1、fb1における位相差Δφ(fa1)、Δφ(fb1)を、次の演算で求める。   Further, the phase difference calculation process is performed, for example, assuming that a set of phases obtained from the waveform of one calibration signal is φ (fa1) to φ (fc1), a phase difference Δφ (fa1) at frequencies fa1 and fb1, Δφ (fb1) is obtained by the following calculation.

Δφ(fa1)=φ(fb1)−φ(fa1)
Δφ(fb1)=φ(fc1)−φ(fb1)
Δφ (fa1) = φ (fb1) −φ (fa1)
Δφ (fb1) = φ (fc1) −φ (fb1)

そして、次の組の位相をφ(fa2)〜φ(fc2)とすると、fa2=fc1であるから、周波数fa2(=fc1)、fb2における位相差Δφ(fa2)、Δφ(fb2)を、次の演算で求める。   If the phase of the next set is φ (fa2) to φ (fc2), since fa2 = fc1, the phase differences Δφ (fa2) and Δφ (fb2) at frequencies fa2 (= fc1) and fb2 are Calculate by

Δφ(fa2)=Δφ(fc1)=φ(fb2)−φ(fa2)
Δφ(fb2)=φ(fc2)−φ(fb2)
Δφ (fa2) = Δφ (fc1) = φ (fb2) −φ (fa2)
Δφ (fb2) = φ (fc2) −φ (fb2)

以下同様の処理を行なうことで、校正対象領域全体で周波数的に連続性を維持した位相差の特性を求めることができる。   Thereafter, by performing the same processing, it is possible to obtain the characteristics of the phase difference that maintains the continuity in frequency over the entire calibration target region.

なお、以下の説明では、位相および位相差の算出処理を、校正用信号Erの波形が取得される毎に毎回行なう場合について説明するが、ミリ波帯の所定周波数領域全体をカバーする全ての校正用信号についての波形が取得されてから位相および位相差の算出処理をまとめて行なう方法や、校正用信号Erの波形が取得される毎に各連続波についての位相だけ求めておき、ミリ波帯の所定周波数領域全体をカバーする全ての校正用信号について全ての位相が得られてから、領域全体の位相差の算出処理をまとめて行なってもよい。   In the following description, the calculation process of the phase and the phase difference is described every time the waveform of the calibration signal Er is acquired. However, all calibrations covering the entire predetermined frequency region of the millimeter wave band are described. A method of performing the calculation processing of the phase and the phase difference after the waveform of the calibration signal is acquired, or obtaining the phase of each continuous wave every time the waveform of the calibration signal Er is acquired, After all the phases have been obtained for all the calibration signals covering the entire predetermined frequency region, the phase difference calculation process for the entire region may be performed collectively.

連続波周波数変更手段80は、前記したように、校正用信号生成部40が生成する校正用信号Erに含まれる複数の連続波の周波数fa〜fcを、ミリ波帯の所定周波数領域内で順次変更させ、位相情報算出手段70に、連続波の各周波数毎の位相と、所定周波数領域全体の位相差の特性Δφ(f)を算出させる。この周波数変更は、前記したように、校正用信号生成部40の合成信号発生器41および信号発生器42aの周波数設定情報の切替によって行なう。   As described above, the continuous wave frequency changing unit 80 sequentially sets the frequencies fa to fc of the plurality of continuous waves included in the calibration signal Er generated by the calibration signal generation unit 40 within a predetermined frequency region of the millimeter wave band. The phase information calculation means 70 calculates the phase difference characteristic Δφ (f) of the phase for each frequency of the continuous wave and the phase difference of the entire predetermined frequency region. As described above, this frequency change is performed by switching the frequency setting information of the combined signal generator 41 and the signal generator 42a of the calibration signal generator 40.

次に、この周波数変更処理と位相の算出処理の一例について説明する。
始めに、信号発生器42aの出力信号SGout の周波数を12.5GHzに設定し、それに合わせて同期処理部30のBPF33の通過中心周波数を12.5GHzに設定した状態で、合成信号発生器41で合成される連続波の周波数f1〜f3のスタート周波数f0を24GHzに設定する。
Next, an example of the frequency change process and the phase calculation process will be described.
First, in the state where the frequency of the output signal SGout of the signal generator 42a is set to 12.5 GHz and the passing center frequency of the BPF 33 of the synchronization processing unit 30 is set to 12.5 GHz accordingly, the synthesized signal generator 41 The start frequency f0 of the frequencies f1 to f3 of the continuous wave to be synthesized is set to 24 GHz.

この状態で、図5の(a)のように、fa1=(225+24)GHz、fb1=(225+24+0.1)GHz、fc1=(225+24+0.2)GHzの連続波が合成された校正用信号Er1が生成出力され、サンプリング光Psの遅延時間ΔtをΔTずつ変更することにより、校正用信号Erの波形が取得され、その波形に対する演算処理により、例えば図5の(b)のように、各連続波の周波数fa1〜fc1についての位相φ(fa1)〜φ(fc1)が算出される。また、この位相から図5の(c)のように、周波数間の位相差Δφ(fa1)、Δφ(fb1)が求められる。   In this state, as shown in FIG. 5A, the calibration signal Er1 obtained by synthesizing continuous waves of fa1 = (225 + 24) GHz, fb1 = (225 + 24 + 0.1) GHz, and fc1 = (225 + 24 + 0.2) GHz is obtained. The waveform of the calibration signal Er is obtained by changing the delay time Δt of the sampling light Ps generated and output by ΔT, and each continuous wave is obtained by arithmetic processing on the waveform, for example, as shown in FIG. The phases φ (fa1) to φ (fc1) for the frequencies fa1 to fc1 are calculated. Further, as shown in FIG. 5C, phase differences Δφ (fa1) and Δφ (fb1) between frequencies are obtained from this phase.

そして、合成信号発生器41で合成される連続波のスタート周波数f0を200MHz高く設定して、図6の(a)のように、周波数がそれぞれfa2=(225+24+0.2)GHz、fb2=(225+24+0.3)GHz、fc2=(225+24+0.4)GHzの連続波が合成された校正用信号Er2が生成されて、その波形が取得され、図6の(b)のように、これらの連続波の周波数についての位相φ(fa2)〜φ(fc2)が算出され、その位相から、図6の(c)のように、周波数間の位相差Δφ(fa2)=Δφ(fc1)、Δφ(fb2)が求められる。   Then, the start frequency f0 of the continuous wave synthesized by the synthesized signal generator 41 is set higher by 200 MHz, and the frequencies are fa2 = (225 + 24 + 0.2) GHz and fb2 = (225 + 24 + 0) as shown in FIG. .3) Calibration signal Er2 in which continuous waves of GHz, fc2 = (225 + 24 + 0.4) GHz are synthesized is generated, and the waveform is acquired. As shown in FIG. Phases φ (fa2) to φ (fc2) with respect to the frequency are calculated, and the phase difference between the frequencies Δφ (fa2) = Δφ (fc1), Δφ (fb2) as shown in FIG. Is required.

以下同様に、合成信号発生器41で合成される連続波のスタート周波数f0を200MHステップで8回増加させることで、(225+24)〜(225+24+1.7)GHzの範囲を100MHzステップで埋める連続波についての位相とその周波数間の位相差を求めることができ、この合成信号発生器41の周波数変更と、信号発生器42aの出力信号SGoutの周波数およびBPF33の通過中心周波数の100MHzステップの周波数変更とを組合せることで、図7に示すように、およそ245〜340GHzまでのミリ波帯の範囲で、100MHz周波数間隔での位相特性Δφ(f)を取得することができる。図7は、3つの連続波の最終のM組目の周波数をfaM〜fcMで表したものである。   Similarly, the continuous wave that fills the range of (225 + 24) to (225 + 24 + 1.7) GHz in 100 MHz steps by increasing the start frequency f0 of the continuous wave synthesized by the synthesized signal generator 41 8 times in 200 MHz steps. And the phase change between these frequencies, the frequency change of the synthesized signal generator 41, the frequency change of the output signal SGout of the signal generator 42a and the frequency change of 100 MHz steps of the passing center frequency of the BPF 33 are obtained. By combining, as shown in FIG. 7, phase characteristics Δφ (f) at a frequency interval of 100 MHz can be acquired in a millimeter wave band range of approximately 245 to 340 GHz. FIG. 7 shows the final M sets of frequencies of three continuous waves represented by faM to fcM.

このようにして得られた校正用信号Erについての位相特性Δφ(f)は、校正処理部90に与えられる。   The phase characteristic Δφ (f) for the calibration signal Er obtained in this way is given to the calibration processing unit 90.

校正処理部90は、ミリ波帯信号測定回路1の位相特性の校正に必要な処理を行なうものであり、校正用信号生成部40に対して、波形取得部60の電磁波検出器と等価な環境に配置(具体的には電磁波検出器と置換する)されたミリ波帯信号測定回路1に対して校正用信号Erを送信させるとともに、ミリ波帯信号測定回路1に対して校正モードを指定する。   The calibration processing unit 90 performs processing necessary for calibration of the phase characteristics of the millimeter waveband signal measurement circuit 1, and has an environment equivalent to the electromagnetic wave detector of the waveform acquisition unit 60 with respect to the calibration signal generation unit 40. The calibration signal Er is transmitted to the millimeter waveband signal measurement circuit 1 arranged at (1) (specifically, replaced with an electromagnetic wave detector), and the calibration mode is designated to the millimeter waveband signal measurement circuit 1. .

校正モードが指定されたミリ波帯信号測定回路1は、受信した校正用信号Erをダウンコンバータ2によりデジタル処理可能な中間周波数帯の信号Er(if)に変換し、フーリエ変換等の処理を行い、校正用信号Erに含まれる複数の連続波の位相情報を取得する。なお、ここでは、ダウンコンバータ2が、校正用信号Erをホーンアンテナ2cにより受信する構成としている。   The millimeter waveband signal measurement circuit 1 for which the calibration mode is designated converts the received calibration signal Er into a signal Er (if) in an intermediate frequency band that can be digitally processed by the down converter 2 and performs processing such as Fourier transform. The phase information of a plurality of continuous waves included in the calibration signal Er is acquired. Here, the down converter 2 is configured to receive the calibration signal Er by the horn antenna 2c.

そして、校正処理部90は、連続波周波数変更手段80により、校正用信号Erに含まれる連続波の周波数を、校正対象のミリ波帯の周波数領域内で変化させて、校正用信号Erを受けたミリ波帯信号測定回路1の位相特性Δφ(f)′を取得させる。   Then, the calibration processing unit 90 receives the calibration signal Er by changing the frequency of the continuous wave included in the calibration signal Er within the frequency region of the millimeter wave band to be calibrated by the continuous wave frequency changing means 80. Further, the phase characteristic Δφ (f) ′ of the millimeter waveband signal measuring circuit 1 is acquired.

校正処理部90は、ミリ波帯信号測定回路1で検出された位相特性Δφ(f)′と、校正用信号Erについて予め得られた位相特性Δφ(f)とを比較し、例えばその差分を求めることで、ミリ波帯信号測定回路1のみの位相特性ΔΦ(f)を求め、この位相特性ΔΦ(f)の情報を、ミリ波帯信号測定回路1の信号処理部3に設定する。   The calibration processing unit 90 compares the phase characteristic Δφ (f) ′ detected by the millimeter waveband signal measurement circuit 1 with the phase characteristic Δφ (f) obtained in advance for the calibration signal Er, and, for example, calculates the difference. Thus, the phase characteristic ΔΦ (f) of only the millimeter wave band signal measurement circuit 1 is obtained, and information on the phase characteristic ΔΦ (f) is set in the signal processing unit 3 of the millimeter wave band signal measurement circuit 1.

なお、ミリ波帯信号測定回路1の位相特性ΔΦ(f)は、アナログ回路のダウンコンバータ2部分の位相特性が支配的となるから、実質的にダウンコンバータ2の位相特性とみなすことができる。   Note that the phase characteristic ΔΦ (f) of the millimeter waveband signal measurement circuit 1 can be regarded substantially as the phase characteristic of the down converter 2 because the phase characteristic of the down converter 2 portion of the analog circuit is dominant.

このようにして、ミリ波帯信号測定回路1の位相特性ΔΦ(f)が得られれば、校正用信号の代わりに被測定信号をミリ波帯信号測定回路1に入力してその測定を行う際に、信号処理部3において、位相に関する情報を位相特性ΔΦ(f)で補償することで、被測定信号についての正確な測定結果を得ることができる。   When the phase characteristic ΔΦ (f) of the millimeter waveband signal measurement circuit 1 is obtained in this way, the signal under measurement is input to the millimeter waveband signal measurement circuit 1 instead of the calibration signal and the measurement is performed. In addition, the signal processing unit 3 compensates the information regarding the phase with the phase characteristic ΔΦ (f), so that an accurate measurement result for the signal under measurement can be obtained.

なお、上記説明では、校正対象を位相に限定して説明したが、校正用信号波形取得部60で取得された時間領域の波形から、校正用信号に含まれる連続波の振幅も正確に把握できるので、振幅に関する校正も同様に行なうことができる。   In the above description, the calibration target is limited to the phase. However, the amplitude of the continuous wave included in the calibration signal can be accurately grasped from the time-domain waveform acquired by the calibration signal waveform acquisition unit 60. Therefore, calibration related to amplitude can be performed in the same manner.

1……ミリ波帯信号測定回路、2……ダウンコンバータ、20……位相特性校正システム、21……短パルス光源、22……分岐手段、30……同期処理部、31……光電変換素子、32、33……BPF、34、35……同期回路、40……校正用信号生成部、41……合成信号発生器、42……ローカル信号発生器、42a……信号発生器、42b……逓倍器、43……ミキサ、50……光可変遅延器、60……校正用信号波形取得部、61……電気光学結晶、61′……光伝導アンテナ、62……PBS、63……偏光測定器、64、64′……波形取得手段、68……電流測定器、70……位相情報算出手段、80……連続波周波数変更手段、90……校正処理部   DESCRIPTION OF SYMBOLS 1 ... Millimeter-wave signal measurement circuit, 2 ... Down converter, 20 ... Phase characteristic calibration system, 21 ... Short pulse light source, 22 ... Branch means, 30 ... Synchronization processing part, 31 ... Photoelectric conversion element 32, 33... BPF, 34, 35... Synchronous circuit, 40... Calibration signal generation unit, 41... Composite signal generator, 42... Local signal generator, 42 a. ... multiplier, 43 ... mixer, 50 ... optical variable delay device, 60 ... calibration signal waveform acquisition unit, 61 ... electro-optic crystal, 61 '... photoconductive antenna, 62 ... PBS, 63 ... Polarization measuring device, 64, 64 '... waveform acquisition means, 68 ... current measuring device, 70 ... phase information calculation means, 80 ... continuous wave frequency changing means, 90 ... calibration processing section

Claims (2)

ミリ波帯またはサブミリ波帯の所定周波数領域の被測定信号を受け、該被測定信号をデジタル処理が可能な周波数帯に変換するダウンコンバータ(2)を含むミリ波帯信号測定回路(1)を校正対象とする位相特性校正システムであって、
短パルス光を所定の繰り返し周波数で出力する短パルス光源(21)と、
前記短パルス光を第1短パルス光と第2短パルス光に分岐する分岐手段(22)と、
前記所定周波数領域内で周波数が異なる複数の連続波が合成された校正用信号を生成する校正用信号生成部(40)と、
前記第1短パルス光を受けて、前記所定の繰り返し周波数の整数倍の電気の高調波信号を抽出し、該抽出した高調波信号を基準として、前記校正用信号生成部が出力する校正用信号の同期処理を行なう同期処理部(30)と、
前記第2短パルス光を受け、該第2短パルス光に所定の遅延時間を与えてサンプリング光として出力する光可変遅延器(50)と、
前記校正用信号と前記サンプリング光とを受け、前記光可変遅延器の遅延時間を変化させつつ前記校正用信号を前記サンプリング光に同期したタイミングでサンプリングし、前記校正用信号の時間領域の波形を取得する校正用信号波形取得部(60)と、
前記校正用信号生成部が生成する校正用信号に含まれる複数の連続波の周波数を、前記所定周波数領域内で順次変更させる連続波周波数変更手段(80)と、
前記連続波周波数変更手段による周波数変更毎に前記校正用信号波形取得部で得られる各校正用信号の時間領域の波形から、前記各校正用信号に含まれる複数の連続波の位相を求め、該位相から前記連続波の周波数間の位相差の特性を前記所定周波数領域全体に渡って求める位相情報算出手段(70)とを含み、
前記校正用信号を、前記校正対象のミリ波帯信号測定回路に与えたときの測定結果と、前記校正用信号について予め得られた位相差の特性とを比較して、前記ミリ波帯信号測定回路の前記ダウンコンバータを含めた位相特性を校正することを特徴するミリ波帯信号測定回路の位相特性校正システム。
A millimeter wave band signal measuring circuit (1) including a down converter (2) that receives a signal under measurement in a predetermined frequency region of a millimeter wave band or a submillimeter wave band and converts the signal under measurement into a frequency band that can be digitally processed. A phase characteristic calibration system to be calibrated,
A short pulse light source (21) for outputting short pulse light at a predetermined repetition frequency;
Branching means (22) for branching the short pulse light into a first short pulse light and a second short pulse light;
A calibration signal generator (40) for generating a calibration signal in which a plurality of continuous waves having different frequencies within the predetermined frequency region are combined;
Receiving the first short pulse light, extracting an electrical harmonic signal that is an integral multiple of the predetermined repetition frequency, and using the extracted harmonic signal as a reference, a calibration signal output by the calibration signal generator A synchronization processing unit (30) for performing synchronization processing of
An optical variable delay device (50) that receives the second short pulse light, gives a predetermined delay time to the second short pulse light, and outputs it as sampling light;
The calibration signal and the sampling light are received, the calibration signal is sampled at a timing synchronized with the sampling light while changing the delay time of the optical variable delay device, and the time domain waveform of the calibration signal is obtained. A calibration signal waveform acquisition unit (60) to acquire;
Continuous wave frequency changing means (80) for sequentially changing the frequencies of a plurality of continuous waves included in the calibration signal generated by the calibration signal generating unit within the predetermined frequency region;
From the time domain waveform of each calibration signal obtained by the calibration signal waveform acquisition unit for each frequency change by the continuous wave frequency changing means, obtain the phase of a plurality of continuous waves included in each calibration signal, Phase information calculation means (70) for obtaining the characteristic of the phase difference between the frequencies of the continuous wave from the phase over the entire predetermined frequency region,
The measurement result when the calibration signal is supplied to the calibration target millimeter-wave band signal measurement circuit is compared with the phase difference characteristic obtained in advance for the calibration signal, and the millimeter-wave band signal measurement is performed. A phase characteristic calibration system for a millimeter waveband signal measurement circuit, wherein the phase characteristic of the circuit including the down converter is calibrated.
ミリ波帯またはサブミリ波帯の所定周波数領域の被測定信号を受け、該被測定信号をデジタル処理が可能な周波数帯に変換するダウンコンバータ(2)を含むミリ波帯信号測定回路(1)を校正対象とする位相特性校正方法であって、
所定の繰り返し周波数で出力される短パルス光を、第1短パルス光と第2短パルス光に分岐し、該第1短パルス光を基に、前記所定の繰り返し周波数の整数倍の電気の高調波信号を抽出する段階と、
前記所定周波数領域内で周波数が異なる複数の連続波が合成された校正用信号を、前記抽出した高調波信号を基準として周波数同期された状態で生成する段階と、
前記第2短パルス光に所定の遅延時間を与えてサンプリング光として出力する段階と、
前記サンプリング光の遅延時間を変化させつつ前記校正用信号を前記サンプリング光に同期したタイミングでサンプリングし、前記校正用信号の時間領域の波形を取得する段階と、
前記校正用信号に含まれる複数の連続波の周波数を、前記所定周波数領域内で順次変更させ、該周波数変更毎に得られる各校正用信号の時間領域の波形から、前記各校正用信号に含まれる複数の連続波の位相を求め、該位相から前記連続波の周波数間の位相差の特性を前記所定周波数領域全体に渡って求める段階と、
前記校正用信号を、前記校正対象のミリ波測定回路に与えたときの測定結果と、前記校正用信号について予め得られた位相差の特性とを比較して、前記ミリ波帯信号測定回路の前記ダウンコンバータを含めた位相特性を校正する段階とを含むことを特徴するミリ波帯信号測定回路の位相特性校正方法。
A millimeter wave band signal measuring circuit (1) including a down converter (2) that receives a signal under measurement in a predetermined frequency region of a millimeter wave band or a submillimeter wave band and converts the signal under measurement into a frequency band that can be digitally processed. A phase characteristic calibration method to be calibrated,
The short pulse light output at a predetermined repetition frequency is branched into a first short pulse light and a second short pulse light, and based on the first short pulse light, an electrical harmonic that is an integral multiple of the predetermined repetition frequency. Extracting a wave signal;
Generating a calibration signal in which a plurality of continuous waves having different frequencies within the predetermined frequency region are synthesized in a frequency-synchronized state with reference to the extracted harmonic signal;
Providing the second short pulse light with a predetermined delay time and outputting it as sampling light;
Sampling the calibration signal at a timing synchronized with the sampling light while changing the delay time of the sampling light, obtaining a time domain waveform of the calibration signal;
The frequency of a plurality of continuous waves included in the calibration signal is sequentially changed within the predetermined frequency domain, and is included in each calibration signal from the time domain waveform of each calibration signal obtained for each frequency change. Obtaining a phase of a plurality of continuous waves, and obtaining a characteristic of a phase difference between the frequencies of the continuous waves from the phase over the entire predetermined frequency region;
The measurement result when the calibration signal is supplied to the calibration target millimeter wave measurement circuit is compared with the characteristics of the phase difference obtained in advance for the calibration signal, and the millimeter wave band signal measurement circuit Calibrating phase characteristics including the down converter, and a phase characteristic calibration method for a millimeter waveband signal measurement circuit.
JP2017063396A 2017-03-28 2017-03-28 Phase characteristic calibration system and phase characteristic calibration method for millimeter waveband signal measurement circuit Active JP6360582B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017063396A JP6360582B1 (en) 2017-03-28 2017-03-28 Phase characteristic calibration system and phase characteristic calibration method for millimeter waveband signal measurement circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017063396A JP6360582B1 (en) 2017-03-28 2017-03-28 Phase characteristic calibration system and phase characteristic calibration method for millimeter waveband signal measurement circuit

Publications (2)

Publication Number Publication Date
JP6360582B1 JP6360582B1 (en) 2018-07-18
JP2018165685A true JP2018165685A (en) 2018-10-25

Family

ID=62904901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017063396A Active JP6360582B1 (en) 2017-03-28 2017-03-28 Phase characteristic calibration system and phase characteristic calibration method for millimeter waveband signal measurement circuit

Country Status (1)

Country Link
JP (1) JP6360582B1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510622A (en) * 1982-06-14 1985-04-09 The United States Of America As Represented By The Secretary Of The Air Force High sensitivity millimeter-wave measurement apparatus
US6211663B1 (en) * 1999-05-28 2001-04-03 The Aerospace Corporation Baseband time-domain waveform measurement method
US20070216394A1 (en) * 2006-01-24 2007-09-20 Jan Verspecht Measure the mutual phase relationship of a set of spectral components generated by a signal generator
JP2013174452A (en) * 2012-02-23 2013-09-05 Anritsu Corp Signal analyzer and frequency extension method using the device
US8841923B1 (en) * 2007-08-30 2014-09-23 Agilent Technologies, Inc. Device and method for performing remote frequency response measurements
JP2014190964A (en) * 2013-03-28 2014-10-06 Anritsu Corp Millimeter-wave band spectrum analysis device and analysis method
JP2014228504A (en) * 2013-05-27 2014-12-08 アンリツ株式会社 Light sampling device and light sampling method
JP2015087233A (en) * 2013-10-30 2015-05-07 アンリツ株式会社 Signal analysis device and signal analysis method
JP2017034443A (en) * 2015-07-31 2017-02-09 アンリツ株式会社 Signal processing apparatus and signal processing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510622A (en) * 1982-06-14 1985-04-09 The United States Of America As Represented By The Secretary Of The Air Force High sensitivity millimeter-wave measurement apparatus
US6211663B1 (en) * 1999-05-28 2001-04-03 The Aerospace Corporation Baseband time-domain waveform measurement method
US20070216394A1 (en) * 2006-01-24 2007-09-20 Jan Verspecht Measure the mutual phase relationship of a set of spectral components generated by a signal generator
US8841923B1 (en) * 2007-08-30 2014-09-23 Agilent Technologies, Inc. Device and method for performing remote frequency response measurements
JP2013174452A (en) * 2012-02-23 2013-09-05 Anritsu Corp Signal analyzer and frequency extension method using the device
JP2014190964A (en) * 2013-03-28 2014-10-06 Anritsu Corp Millimeter-wave band spectrum analysis device and analysis method
JP2014228504A (en) * 2013-05-27 2014-12-08 アンリツ株式会社 Light sampling device and light sampling method
JP2015087233A (en) * 2013-10-30 2015-05-07 アンリツ株式会社 Signal analysis device and signal analysis method
JP2017034443A (en) * 2015-07-31 2017-02-09 アンリツ株式会社 Signal processing apparatus and signal processing method

Also Published As

Publication number Publication date
JP6360582B1 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
US8565347B2 (en) Antenna measurement system and method
JP2022504605A (en) Small microcavity frequency comb
JP3394902B2 (en) Chromatic dispersion measuring device and polarization dispersion measuring device
JP2011080860A (en) Terahertz radar apparatus
JP6933604B2 (en) Phase characteristic calibration device and phase characteristic calibration method
WO2017216942A1 (en) Terahertz wave measuring device
Zhang et al. Software-defined six-port radar technique for precision range measurements
Lin et al. Development of sub-100 femtosecond timing and synchronization system
Cupido et al. Frequency hopping millimeter wave reflectometer
Olvera et al. A true optoelectronic spectrum analyzer for millimeter waves with Hz resolution
JP6940839B2 (en) Electromagnetic wave measuring device and electromagnetic wave measuring method
JP6360582B1 (en) Phase characteristic calibration system and phase characteristic calibration method for millimeter waveband signal measurement circuit
US4093380A (en) Optical systems utilizing three-wave heterodyne detectors
EP3070874A1 (en) A system for synchronizing oscillating signals and a method of operating the system
US9673900B2 (en) Optically synthesized tracking signal source and network analyzer using same
CN109347549B (en) High-bandwidth radio frequency signal arrival time measuring device and method
Hati et al. PM noise measurement at W-band
CN106199623B (en) A kind of femtosecond laser intermode beat frequency method range-measurement system
US11668796B2 (en) Radar system and method for determining at least one calibration parameter for a radar system
US10879911B2 (en) Phase detector with enhanced sensitivity
Vala et al. Phase detection system based on digital signal processing in millimeter wave interferometer for fusion plasma diagnostics
Yee et al. Phase detection using AD8302 evaluation board in the superheterodyne microwave interferometer for line average plasma electron density measurements
RU2362180C2 (en) Short-range radiolocator with ultra high resolution (versions)
JP6532632B1 (en) Electromagnetic field measuring apparatus and electromagnetic field measuring method
KR101766765B1 (en) System for Linear Phase shift Type Reflectometer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180622

R150 Certificate of patent or registration of utility model

Ref document number: 6360582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250