JP2018163335A - Photomask and method for manufacturing display device - Google Patents

Photomask and method for manufacturing display device Download PDF

Info

Publication number
JP2018163335A
JP2018163335A JP2018026667A JP2018026667A JP2018163335A JP 2018163335 A JP2018163335 A JP 2018163335A JP 2018026667 A JP2018026667 A JP 2018026667A JP 2018026667 A JP2018026667 A JP 2018026667A JP 2018163335 A JP2018163335 A JP 2018163335A
Authority
JP
Japan
Prior art keywords
light
phase shift
photomask
transfer
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018026667A
Other languages
Japanese (ja)
Other versions
JP7080070B2 (en
JP2018163335A5 (en
Inventor
修久 今敷
Nobuhisa Imashiki
修久 今敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Publication of JP2018163335A publication Critical patent/JP2018163335A/en
Publication of JP2018163335A5 publication Critical patent/JP2018163335A5/ja
Application granted granted Critical
Publication of JP7080070B2 publication Critical patent/JP7080070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/76Patterning of masks by imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/001Phase modulating patterns, e.g. refractive index patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control

Abstract

PROBLEM TO BE SOLVED: To provide a photomask which can achieve both excellent resolution and production efficiency on exposure condition applied to manufacture of a display device.SOLUTION: A pattern for transfer of a photomask is a hole pattern for forming a hole onto a transferred body, and a photomask has a translucent part with a diameter W1 (μm) to which a transparent substrate is exposed, a light-shielding rim part with a width R (μm) surrounding the translucent part, and a phase shift part surrounding the light-shielding rim part. A phase difference with respect to light of a representative wavelength of exposure light between the phase shift part and the translucent part is approximately 180 degrees. In light intensity distribution in which exposure light penetrating through the phase shift part positioned on one side of the translucent part is formed on the transferred body, from a boundary position between the phase shift part and the light-shielding rim part toward the light-shielding rim part, a distance to a minimum value point B1 of a first valley is represented by d1 (μm) and a distance to a minimum value point B2 of a second valley is represented by d2 (μm), condition of (d1-0.5×W1)≤R≤(d2-0.5×W1) is satisfied.SELECTED DRAWING: Figure 3

Description

本発明は、電子デバイスを製造するためのフォトマスクであって、特にフラットパネルディスプレイ(FPD)製造用に好適なフォトマスクと、それを用いた表示装置の製造方法に関する。   The present invention relates to a photomask for manufacturing an electronic device, and particularly to a photomask suitable for manufacturing a flat panel display (FPD), and a method of manufacturing a display device using the photomask.

半導体装置を製造するためのフォトマスクとして、ハーフトーン型位相シフトマスクが知られている。図11は、従来型のハーフトーン型位相シフトマスクの構成例を示すもので、(a)は平面模式図、(b)は(a)のB−B位置の断面模式図である。   As a photomask for manufacturing a semiconductor device, a halftone phase shift mask is known. 11A and 11B show a configuration example of a conventional halftone phase shift mask. FIG. 11A is a schematic plan view, and FIG. 11B is a schematic cross-sectional view at the BB position in FIG.

図示したハーフトーン型位相シフトマスクでは、透明基板100上に位相シフト膜101が形成されるとともに、この位相シフト膜101がパターニングされてホールパターンが形成されている。ホールパターンは、透明基板100が露出した透光部103からなる。ホールパターンの周囲は位相シフト部104が取り囲んでいる。位相シフト部104は、透明基板100上に形成された位相シフト膜101からなる。   In the illustrated halftone phase shift mask, a phase shift film 101 is formed on a transparent substrate 100, and the phase shift film 101 is patterned to form a hole pattern. The hole pattern is composed of a light transmitting portion 103 where the transparent substrate 100 is exposed. A phase shift unit 104 surrounds the hole pattern. The phase shift unit 104 includes a phase shift film 101 formed on the transparent substrate 100.

位相シフト部104の露光光の透過率は、例えば6%程度とし、位相シフト量は、180度程度とする。このとき、透光部103を透過した光と、位相シフト部104を透過した光とが互いに逆位相となる。これら逆位相の光は、透光部103と位相シフト部104の境界付近で干渉し、解像性能を向上させる効果を奏する。このようなハーフトーン型位相シフトマスクは、いわゆるバイナリマスクと比較して、解像性能だけでなく焦点深度(DOF)についても改善効果を奏することが知られている。   The transmittance of the exposure light of the phase shift unit 104 is about 6%, for example, and the phase shift amount is about 180 degrees. At this time, the light transmitted through the light transmitting unit 103 and the light transmitted through the phase shift unit 104 are in opposite phases. These light beams having opposite phases interfere with each other in the vicinity of the boundary between the light transmitting unit 103 and the phase shift unit 104, and have an effect of improving the resolution performance. It is known that such a halftone phase shift mask has an effect of improving not only the resolution performance but also the depth of focus (DOF) as compared with a so-called binary mask.

田邊功、法元盛久、竹花洋一、「入門フォトマスク技術」、株式会社工業調査会、2006年12月15日、p.245Isao Tabuchi, Morihisa Homoto, Yoichi Takehana, “Introductory Photomask Technology”, Industrial Research Co., Ltd., December 15, 2006, p. 245

液晶表示装置(liquid crystal display)や有機EL(Organic ElectroLuminescence)表示装置などを含む表示装置においては、より明るく、かつ省電力であるとともに、高精細、高速表示、広視野角といった表示性能の向上が望まれている。   In display devices including liquid crystal display devices and organic EL (Organic ElectroLuminescence) display devices, it is brighter and more energy-saving, while improving display performance such as high definition, high-speed display, and wide viewing angle. It is desired.

例えば、上記表示装置に用いられる薄膜トランジスタ(Thin Film Transistor、「TFT」)で言えば、TFTを構成する複数のパターンのうち、層間絶縁膜に形成されたコンタクトホールが、確実に上層及び下層のパターンを接続させる作用をもたなければ正しい動作が保証されない。その一方、例えば液晶表示装置の開口率を極力大きくして、明るく、省電力の表示装置とするためには、コンタクトホールの径が十分に小さいことが求められるなど、表示装置の高密度化の要求に伴い、ホールパターンの径も微細化(例えば3μm未満)が望まれている。例えば、径が0.8μm以上2.5μm以下、更には、径が2.0μm以下のホールパターンが必要となり、具体的には0.8〜1.8μmの径をもつパターンの形成も望まれると考えられる。   For example, in the case of a thin film transistor (“TFT”) used in the display device, the contact holes formed in the interlayer insulating film among the plurality of patterns constituting the TFT are surely the upper layer and lower layer patterns. If there is no action to connect, correct operation is not guaranteed. On the other hand, for example, in order to increase the aperture ratio of a liquid crystal display device as much as possible to obtain a bright and power-saving display device, the diameter of the contact hole is required to be sufficiently small. Along with demands, it is desired to reduce the diameter of the hole pattern (for example, less than 3 μm). For example, a hole pattern having a diameter of 0.8 μm or more and 2.5 μm or less, and further a diameter of 2.0 μm or less is required. Specifically, formation of a pattern having a diameter of 0.8 to 1.8 μm is also desired. it is conceivable that.

ところで、表示装置に比べて、集積度が高く、パターンの微細化が顕著に進んだ半導体装置(LSI)製造用のフォトマスクの分野では、高い解像性を得るために、露光装置には高い開口数NA(例えば0.2を越える)の光学系を適用し、露光光の短波長化がすすめられた経緯がある。その結果、この分野では、KrFやArFのエキシマレーザー(それぞれ、248nm、193nmの単一波長)が多用されるようになった。   By the way, in the field of a photomask for manufacturing a semiconductor device (LSI), which has a higher degree of integration and a remarkably fine pattern than a display device, the exposure device is high in order to obtain high resolution. There is a history of applying an optical system with a numerical aperture NA (for example, exceeding 0.2) to shorten the wavelength of exposure light. As a result, in this field, KrF and ArF excimer lasers (single wavelengths of 248 nm and 193 nm, respectively) have been frequently used.

その一方、表示装置製造用のリソグラフィ分野では、解像性向上のために、上記のような手法が適用されることは、一般的ではない。例えばこの分野で用いられる露光装置がもつ光学系のNA(開口数)は、0.08〜0.12程度であり、今後を展望しても、0.08〜0.20程度が適用される環境にある。また、露光光源もi線、h線、又はg線が多用され、主にこれらを含んだブロード波長光源を使用することで、大面積を照射するための光量を得て、生産効率やコストを重視する傾向が強い。   On the other hand, in the lithography field for manufacturing a display device, it is not general that the above-described method is applied to improve the resolution. For example, the NA (numerical aperture) of an optical system included in an exposure apparatus used in this field is about 0.08 to 0.12, and about 0.08 to 0.20 is applied even in the future. In the environment. In addition, i-line, h-line, or g-line is often used as an exposure light source, and by using a broad wavelength light source mainly including these, a light amount for irradiating a large area can be obtained, and production efficiency and cost can be reduced. Strong tendency to emphasize.

また、表示装置の製造においても、上記のようにパターンの微細化要請が高くなっている。ここで、半導体装置製造用の技術を、表示装置の製造にそのまま適用することには、いくつかの問題がある。例えば、高NA(開口数)をもつ高解像度の露光装置への転換には、大きな投資が必要になり、表示装置の価格との整合性が得られない。また、露光波長の変更(ArFエキシマレーザーのような短波長を用いる)については、やはり相当の投資を必要とする点で不都合である。つまり、従来にないパターンの微細化を追求する一方、既存のメリットであるコストや効率を失うことはできないという点が、表示装置製造用のフォトマスクの問題点となっている。   Also in the manufacture of display devices, there is an increasing demand for pattern miniaturization as described above. Here, there are some problems in applying the technology for manufacturing a semiconductor device as it is to the manufacture of a display device. For example, conversion to a high-resolution exposure apparatus having a high NA (numerical aperture) requires a large investment and cannot be consistent with the price of the display apparatus. Also, changing the exposure wavelength (using a short wavelength such as ArF excimer laser) is disadvantageous in that it requires considerable investment. In other words, the problem of photomasks for manufacturing display devices is that, while pursuing unprecedented pattern miniaturization, it is not possible to lose cost and efficiency, which are existing merits.

本発明者の検討によると、上記図11に示すハーフトーン型位相シフトマスクを表示装置製造用のフォトマスクとして使用する際に、後述する課題があり、更なる改善の余地があることが明らかになった。   According to the study by the present inventor, when the halftone phase shift mask shown in FIG. 11 is used as a photomask for manufacturing a display device, there is a problem to be described later and it is clear that there is room for further improvement. became.

フォトマスクに対して望まれる性能には、以下の(1)〜(3)の要素がある。   The desired performance for the photomask includes the following elements (1) to (3).

(1)焦点深度(DOF)
露光時に、デフォーカスが生じた場合に、目標CDに対し、CDの変動が所定範囲内(例えば±10%以内)となるための焦点深度の大きさをいう。DOFの数値が高ければ、被転写体の平坦度の影響を受けにくく、安定してパターン転写が行える。ここでCDとは、Critical Dimensionの略であり、パターン幅の意味で用いる。表示装置製造用のフォトマスクは、半導体装置製造用のフォトマスクと比較して、サイズが大きく、また、被転写体(ディスプレイパネル基板等)も大サイズであり、いずれも平坦性を完璧なものとすることが困難であるため、DOFの数値を高められるフォトマスクの意義が大きい。
(1) Depth of focus (DOF)
When defocusing occurs during exposure, this refers to the depth of focus for the CD variation within a predetermined range (for example, within ± 10%) with respect to the target CD. If the DOF value is high, the pattern transfer can be performed stably without being affected by the flatness of the transfer target. Here, “CD” is an abbreviation for “Critical Dimension” and is used in the meaning of pattern width. Photomasks for display device manufacture are larger in size than photomasks for semiconductor device manufacture, and the transfer target (display panel substrate, etc.) is also large in size, all of which have perfect flatness Therefore, the significance of a photomask that can increase the numerical value of DOF is great.

(2)マスク誤差増大係数(MEEF:Mask Error Enhancement Factor)
フォトマスク上のCD誤差と被転写体上に形成されるパターンのCD誤差の比率を示す数値である。一般に、パターンが微細化するほど、フォトマスク上のCD誤差が被転写体上で拡大されやすいが、極力これを抑えてMEEFを低くすることにより、被転写体上に形成されるパターンのCD精度を高めることができる。表示装置の仕様が進化し、パターンの微細化が要求されるとともに、露光装置の解像限界に近い寸法のパターンをもつフォトマスクが必要となったことから、表示装置製造用フォトマスクにおいても、今後MEEFが重要視される可能性が高い。
(2) Mask error enhancement factor (MEEF)
It is a numerical value indicating the ratio of the CD error on the photomask to the CD error of the pattern formed on the transfer target. In general, as the pattern becomes finer, the CD error on the photomask tends to be enlarged on the transferred object. However, the CD accuracy of the pattern formed on the transferred object can be reduced by suppressing this as much as possible to lower the MEEF. Can be increased. Since the specifications of display devices have evolved, pattern miniaturization is required, and a photomask having a pattern close to the resolution limit of an exposure device is required. There is a high possibility that MEEF will be regarded as important in the future.

(3)Eop
目標寸法のパターンを被転写体上に形成するために必要な露光光量である。表示装置の製造においては、フォトマスク基板のサイズが大きい(例えば主表面が一辺300〜2000mmの四角形)。このため、Eopの数値が高いフォトマスクを用いると、スキャン露光の速度を下げる必要が生じ、生産効率が阻害される。故に、表示装置を製造する際には、Eopの数値を低減できるフォトマスクを使用することが望まれる。
(3) Eop
This is the amount of exposure light necessary to form a pattern with a target dimension on the transfer target. In the manufacture of a display device, the size of the photomask substrate is large (for example, a main surface is a rectangle having a side of 300 to 2000 mm). For this reason, when a photomask having a high Eop value is used, it is necessary to reduce the speed of scan exposure, which hinders production efficiency. Therefore, when manufacturing a display device, it is desirable to use a photomask that can reduce the value of Eop.

本発明者の検討によると、上記図11に示すハーフトーン型位相シフトマスクでは、DOFの改善効果が得られる一方、EopやMEEFの点では、更に改善が望まれることが分かった。具体的には、上記ハーフトーン型位相シフトマスクを用いると、光強度の損失によって必要光量(Dose)が増えるため、Eopが大幅に増加し、これに伴ってMEEFも大きくなってしまう傾向があり、表示装置製造用のフォトマスクとしては課題が残ることがわかった。   According to the study by the present inventor, it has been found that the halftone phase shift mask shown in FIG. 11 can provide an improvement effect of DOF, while further improvement is desired in terms of Eop and MEEF. Specifically, when the halftone phase shift mask is used, the required amount of light (Dose) increases due to loss of light intensity, so that Eop increases significantly, and accordingly, MEEF tends to increase. It has been found that there remains a problem as a photomask for manufacturing a display device.

そこで本発明は、表示装置の製造に適用される露光条件において、優れた解像性と生産効率を両立できるフォトマスクを提供することを目的とする。   Therefore, an object of the present invention is to provide a photomask that can achieve both excellent resolution and production efficiency under the exposure conditions applied to the manufacture of a display device.

(第1の態様)
本発明の第1の態様は、
透明基板上に転写用パターンを備えた、表示装置製造用のフォトマスクであって、
前記転写用パターンは、被転写体上にホールを形成するためのホールパターンであって、
前記透明基板が露出した、径W1(μm)の透光部と、
前記透光部を囲む、幅R(μm)の遮光リム部と、
前記遮光リム部を囲む、位相シフト部からなり、
前記位相シフト部と前記透光部の、露光光の代表波長の光に対する位相差が略180度であり、
前記透光部の片側に位置する前記位相シフト部を透過する露光光が被転写体上に形成する光強度分布において、前記位相シフト部と前記遮光リム部の境界位置から前記遮光リム部側に向かって、第1の谷の極小値点B1までの距離をd1(μm)とし、第2の谷の極小値点B2までの距離をd2(μm)とするとき、
(d1−0.5×W1)≦R≦(d2−0.5×W1)
であることを特徴とする、フォトマスクである。
(第2の態様)
本発明の第2の態様は、
透明基板上に転写用パターンを備えた、表示装置製造用のフォトマスクであって、
前記転写用パターンは、被転写体上にホールを形成するためのホールパターンであって、
前記透明基板が露出した、径W1(μm)の透光部と、
前記透光部を囲む、幅R(μm)の遮光リム部と、
前記遮光リム部を囲む、位相シフト部からなり、
前記位相シフト部と前記透光部の、露光光の代表波長の光に対する位相差が略180度であり、
前記透光部の片側に位置する前記位相シフト部を透過する露光光が被転写体上に形成する光強度分布において、前記位相シフト部と前記遮光リム部の境界位置から前記遮光リム部側に向かって、第1の山の極大値点Pにおける光強度の1/2を示す2つの点のうち、前記山の前記遮光リム部に近い側の傾斜部にある点をQ1、遠い側の傾斜部にある点をQ2とし、前記境界位置からQ1までの距離をd3とし、Q2までの距離をd4とするとき、
(d3−0.5×W1)≦R≦(d4−0.5×W1)
であることを特徴とする、フォトマスクである。
(第3の態様)
本発明の第3の態様は、
前記転写用パターンは、前記被転写体上に、径W2(但しW2≦W1)のホールを形成するためのホールパターンであることを特徴とする、上記第1の態様又は第2の態様に記載のフォトマスクである。
(第4の態様)
本発明の第4の態様は、
前記位相シフト部は、前記代表波長の光に対して、2〜10%の透過率をもつことを特徴とする、上記第1〜第3の態様のいずれか1つに記載のフォトマスクである。
(第5の態様)
本発明の第5の態様は、
開口数(NA)が0.08以上、0.20未満であり、i線、h線、又はg線を含む露光光源をもつ等倍の投影露光装置を用いて、前記転写用パターンを露光し、被転写体上に、径W2が0.8〜3.0(μm)のホールを形成することに用いる、上記第1〜第4の態様のいずれか1つに記載のフォトマスクである。
(第6の態様)
上記第1〜第4の態様のいずれか1つに記載のフォトマスクを用意する工程と、
開口数(NA)が0.08〜0.15であり、i線、h線、又はg線を含む露光光源をもつ等倍の投影露光装置を用いて、前記転写用パターンを露光し、被転写体上に、径W2が0.8〜3.0(μm)のホールを形成する工程とを含む、表示装置の製造方法である。
(First aspect)
The first aspect of the present invention is:
A photomask for manufacturing a display device having a transfer pattern on a transparent substrate,
The transfer pattern is a hole pattern for forming a hole on a transfer object,
A transparent portion having a diameter W1 (μm) from which the transparent substrate is exposed;
A light shielding rim portion having a width R (μm) surrounding the light transmitting portion;
A phase shift part surrounding the light shielding rim part,
The phase difference between the phase shift portion and the light transmitting portion with respect to light having a representative wavelength of exposure light is approximately 180 degrees,
In the light intensity distribution formed on the transfer medium by the exposure light that passes through the phase shift portion located on one side of the light transmitting portion, the boundary position between the phase shift portion and the light shielding rim portion moves toward the light shielding rim portion side. On the other hand, when the distance to the minimum value point B1 of the first valley is d1 (μm) and the distance to the minimum value point B2 of the second valley is d2 (μm),
(D1-0.5 × W1) ≦ R ≦ (d2-0.5 × W1)
It is a photomask characterized by being.
(Second aspect)
The second aspect of the present invention is:
A photomask for manufacturing a display device having a transfer pattern on a transparent substrate,
The transfer pattern is a hole pattern for forming a hole on a transfer object,
A transparent portion having a diameter W1 (μm) from which the transparent substrate is exposed;
A light shielding rim portion having a width R (μm) surrounding the light transmitting portion;
A phase shift part surrounding the light shielding rim part,
The phase difference between the phase shift portion and the light transmitting portion with respect to light having a representative wavelength of exposure light is approximately 180 degrees,
In the light intensity distribution formed on the transfer medium by the exposure light that passes through the phase shift portion located on one side of the light transmitting portion, the boundary position between the phase shift portion and the light shielding rim portion moves toward the light shielding rim portion side. On the other hand, among the two points indicating 1/2 of the light intensity at the maximum point P of the first mountain, Q1 is a point on the inclined part near the light-shielding rim part of the mountain, and the inclination on the far side When the point in the part is Q2, the distance from the boundary position to Q1 is d3, and the distance to Q2 is d4,
(D3-0.5 × W1) ≦ R ≦ (d4-0.5 × W1)
It is a photomask characterized by being.
(Third aspect)
The third aspect of the present invention is:
The transfer pattern is a hole pattern for forming a hole having a diameter W2 (W2 ≦ W1) on the transfer object, according to the first aspect or the second aspect. This is a photomask.
(Fourth aspect)
The fourth aspect of the present invention is:
The photomask according to any one of the first to third aspects, wherein the phase shift unit has a transmittance of 2 to 10% with respect to the light of the representative wavelength. .
(Fifth aspect)
According to a fifth aspect of the present invention,
The transfer pattern is exposed using a projection exposure apparatus having a numerical aperture (NA) of 0.08 or more and less than 0.20 and having an exposure light source including i-line, h-line, or g-line. The photomask according to any one of the first to fourth aspects, which is used for forming a hole having a diameter W2 of 0.8 to 3.0 (μm) on a transfer target.
(Sixth aspect)
Preparing a photomask according to any one of the first to fourth aspects;
A numerical aperture (NA) of 0.08 to 0.15 is used, and the transfer pattern is exposed using an equal magnification projection exposure apparatus having an exposure light source including i-line, h-line, or g-line. Forming a hole having a diameter W2 of 0.8 to 3.0 (μm) on the transfer body.

本発明によれば、表示装置の製造に適用される露光条件において、優れた解像性と生産効率を両立できるフォトマスクを提供することが可能となる。   According to the present invention, it is possible to provide a photomask that can achieve both excellent resolution and production efficiency under the exposure conditions applied to the manufacture of a display device.

(a)は、従来型のハーフトーン型位相シフトマスクの断面を示す図であり、(b)は、(a)において透光部の左側の位相シフト部を透過した光の振幅を示す図である。(A) is a figure which shows the cross section of the conventional halftone type | mold phase shift mask, (b) is a figure which shows the amplitude of the light which permeate | transmitted the phase shift part of the left side of the translucent part in (a). is there. 図1(b)において、光の位相が(+)側に転じた山の部分を、透光部から通過させて被転写体上に到達させるための手段についての考察を説明する図である。In FIG. 1B, it is a diagram for explaining a consideration about a means for allowing a peak portion whose light phase has turned to the (+) side to pass through a translucent portion and reach the transfer target. 本発明の実施形態に係るフォトマスクの構成例を示すもので、(a)は平面模式図、(b)は(a)のA−A位置の断面模式図である。1A and 1B show a configuration example of a photomask according to an embodiment of the present invention, in which FIG. 1A is a schematic plan view, and FIG. 1B is a schematic cross-sectional view taken along line AA in FIG. (a)は、本発明の実施形態に係るフォトマスクにおいて遮光リム部の幅を狭く設定した場合の転写用パターンの一部を示す平面図であり、(b)は、その場合にフォトマスクの左側の位相シフト部を透過する透過光が被転写体上に形成する光強度分布を示す図(その1)である。(A) is a top view which shows a part of pattern for a transfer at the time of setting the width | variety of the light-shielding rim part narrowly in the photomask which concerns on embodiment of this invention, (b) is a photomask in that case FIG. 6 is a diagram (No. 1) showing a light intensity distribution formed on the transfer target by transmitted light that passes through the left phase shift portion. (a)は、本発明の実施形態に係るフォトマスクにおいて遮光リム部の幅を広く設定した場合の転写用パターンの一部を示す平面図であり、(b)は、その場合にフォトマスクの左側の位相シフト部を透過する透過光が被転写体上に形成する光強度分布を示す図(その1)である。(A) is a top view which shows a part of transfer pattern at the time of setting the width | variety of the light-shielding rim part wide in the photomask which concerns on embodiment of this invention, (b) is a photomask in that case FIG. 6 is a diagram (No. 1) showing a light intensity distribution formed on the transfer target by transmitted light that passes through the left phase shift portion. (a)は、本発明の実施形態に係るフォトマスクにおいて遮光リム部の幅を狭く設定した場合の転写用パターンの一部を示す平面図であり、(b)は、その場合にフォトマスクの左側の位相シフト部を透過する透過光が被転写体上に形成する光強度分布を示す図(その2)である。(A) is a top view which shows a part of pattern for a transfer at the time of setting the width | variety of the light-shielding rim part narrowly in the photomask which concerns on embodiment of this invention, (b) is a photomask in that case FIG. 10 is a diagram (part 2) illustrating a light intensity distribution formed on the transfer target by transmitted light that passes through the left phase shift unit. (a)は、本発明の実施形態に係るフォトマスクにおいて遮光リム部の幅を広く設定した場合の転写用パターンの一部を示す平面図であり、(b)は、その場合にフォトマスクの左側の位相シフト部を透過する透過光が被転写体上に形成する光強度分布を示す図(その2)である。(A) is a top view which shows a part of transfer pattern at the time of setting the width | variety of the light-shielding rim part wide in the photomask which concerns on embodiment of this invention, (b) is a photomask in that case FIG. 10 is a diagram (part 2) illustrating a light intensity distribution formed on the transfer target by transmitted light that passes through the left phase shift unit. 遮光リム部の幅の変化によるMEEFの値についてのシミュレーション結果を示す図である。It is a figure which shows the simulation result about the value of MEEF by the change of the width | variety of a light-shielding rim part. 遮光リム部の幅の変化によるEopの値についてのシミュレーション結果を示す図である。It is a figure which shows the simulation result about the value of Eop by the change of the width | variety of a light shielding rim part. 本実施形態のフォトマスク(リム幅R=1.0μm)を、露光装置によって露光したときに、被転写体上に形成される光学像(すなわち、透過光の光強度分布)を、同じ径のホールパターンをもつバイナリマスク(Binary)、及び、従来型のハーフトーン型位相シフトマスク(Att.PSM)と比較した図である。When the photomask of the present embodiment (rim width R = 1.0 μm) is exposed by an exposure apparatus, an optical image (that is, the light intensity distribution of transmitted light) formed on the transfer target has the same diameter. It is the figure compared with the binary mask (Binary) which has a hole pattern, and the conventional halftone type phase shift mask (Att.PSM). 従来型のハーフトーン型位相シフトマスクの構成例を示すもので、(a)は平面模式図、(b)は(a)のB−B位置の断面模式図である。The structural example of the conventional halftone type | mold phase shift mask is shown, (a) is a plane schematic diagram, (b) is a cross-sectional schematic diagram of the BB position of (a).

図1(a)は、従来型のハーフトーン型位相シフトマスクの断面を示す図であり、(b)は、(a)において透光部の片側の位相シフト部を透過した光の振幅を示す図である。尚、図1(b)は透光部103の左側に位置する位相シフト部104を透過した光の振幅を示している。透光部103の右側に位置する位相シフト部104を透過した光は、透光部103の中心に対して図1(b)の透過光振幅とは左右対称な透過光振幅を示すが、ここでは図示を省略している。   FIG. 1A is a diagram showing a cross section of a conventional halftone phase shift mask, and FIG. 1B shows the amplitude of light transmitted through one phase shift portion of the light transmitting portion in FIG. FIG. FIG. 1B shows the amplitude of the light transmitted through the phase shift unit 104 located on the left side of the light transmitting unit 103. The light transmitted through the phase shift unit 104 located on the right side of the light transmitting part 103 exhibits a transmitted light amplitude that is symmetrical with respect to the transmitted light amplitude in FIG. However, illustration is abbreviate | omitted.

ここで、透光部103を透過する光(不図示)の位相を(+)位相とするとき、位相シフト部104を透過して、被転写体上の、透光部103の左側境界から中心付近に対応する領域に到達する光は、(−)位相となる。そしてこの光は、透光部103を透過する(+)位相の光と干渉する。このため、透光部103を透過する光の強度は相対的に弱められる。つまり、(+)位相の光と(−)位相の光の干渉によって、透光部103を透過して被転写体上に到達する光の強度が減少する。この現象は、透光部103の寸法が微細化すると顕著になる。   Here, when the phase of light (not shown) transmitted through the light transmitting portion 103 is (+) phase, the light is transmitted through the phase shift portion 104 and centered from the left boundary of the light transmitting portion 103 on the transfer target. The light reaching the area corresponding to the vicinity has a (−) phase. This light interferes with (+) phase light transmitted through the light transmitting portion 103. For this reason, the intensity | strength of the light which permeate | transmits the translucent part 103 is weakened relatively. That is, the intensity of the light that passes through the light transmitting portion 103 and reaches the transfer target is reduced by the interference between the (+) phase light and the (−) phase light. This phenomenon becomes prominent when the dimension of the light transmitting portion 103 is reduced.

但し、位相シフト部104を透過する光の振幅カーブは、上記境界位置から更に透光部103側(図中、右側)において、その位相が(+)側に転じ、光振幅の極大値点をもつ山を形成する。そこで本発明者は、この山の部分を形成する(+)位相の透過光を利用することにより、上記した光強度減少の作用を抑え、むしろ光強度を増大させて、EopやMEEFの改善効果を得る可能性を検討した。   However, the amplitude curve of the light transmitted through the phase shift unit 104 further shifts from the boundary position to the (+) side on the light transmission unit 103 side (right side in the figure), and the maximum value point of the light amplitude is obtained. Form a mountain with. Therefore, the present inventor uses the (+) phase transmitted light that forms this peak portion to suppress the above-described effect of reducing the light intensity, but rather increase the light intensity, thereby improving Eop and MEEF. The possibility of obtaining was examined.

図2は、上記図1(b)において、光の位相が(+)側に転じた山の部分を、被転写体上における透光部に対応する位置に位置させるための手段について行った考察を説明する図である。ここでは、位相シフト部104の透光部103側のエッジ付近に、遮光膜106によって遮光リム部105を形成している。このように遮光リム部105を形成すると、遮光膜106で覆われた位相シフト膜101の部分は、位相シフト部104として機能しない。このため、位相シフト部104の透光部103側のエッジは、遮光リム部105を形成しない場合に比べて、より左側にシフトする。これは、位相シフト部104による光の振幅カーブを、左側にシフトさせることを意味する。   FIG. 2 is a view in which the means for positioning the crest portion where the light phase turned to the (+) side in FIG. 1B is located at a position corresponding to the translucent portion on the transferred body. FIG. Here, a light shielding rim portion 105 is formed by a light shielding film 106 near the edge of the phase shift portion 104 on the light transmitting portion 103 side. When the light shielding rim portion 105 is formed in this way, the portion of the phase shift film 101 covered with the light shielding film 106 does not function as the phase shift portion 104. For this reason, the edge of the phase shift unit 104 on the light transmitting part 103 side is shifted to the left as compared with the case where the light shielding rim part 105 is not formed. This means that the light amplitude curve by the phase shift unit 104 is shifted to the left.

これにより、位相シフト部104を透過した光の振幅カーブのうち、その位相が(+)側に転じた山の部分が左側にシフトする。このため、その山を形成する振幅カーブの極大値点付近を、透光部103の幅寸法内(好ましくは、透光部103の中心位置又はその近傍)に位置させることできる。このようにすれば、露光光をより効率的に利用することが可能となる。本発明は、このような本発明者の知見に基づいてなされたものである。   Thereby, in the amplitude curve of the light transmitted through the phase shift unit 104, the peak portion whose phase has turned to the (+) side is shifted to the left side. For this reason, the vicinity of the maximum value point of the amplitude curve forming the mountain can be positioned within the width dimension of the light transmitting portion 103 (preferably, the central position of the light transmitting portion 103 or the vicinity thereof). In this way, the exposure light can be used more efficiently. The present invention has been made based on such knowledge of the present inventors.

<実施形態のフォトマスクの構成>
図3は、本発明の実施形態に係るフォトマスクの構成例を示すもので、(a)は平面模式図、(b)は(a)のA−A位置の断面模式図である。
<Configuration of Photomask of Embodiment>
3A and 3B show a configuration example of a photomask according to an embodiment of the present invention, in which FIG. 3A is a schematic plan view, and FIG. 3B is a schematic cross-sectional view at the AA position in FIG.

図示したフォトマスクは、透明基板10上に転写用パターンを備えた、表示装置製造用のフォトマスクである。この転写用パターンは、被転写体上にホールを形成するためのホールパターンであって、透明基板10が露出した、径W1(μm)の透光部11と、透光部11を囲む、幅R(μm)の遮光リム部12と、遮光リム部12を囲む位相シフト部13とを有する。透明基板10は、透明なガラス等によって構成されている。   The illustrated photomask is a photomask for manufacturing a display device provided with a transfer pattern on the transparent substrate 10. This transfer pattern is a hole pattern for forming a hole on the transfer object, and the transparent substrate 10 is exposed, the transparent portion 11 having a diameter W1 (μm), and the width surrounding the transparent portion 11. It has a light shielding rim portion 12 of R (μm) and a phase shift portion 13 surrounding the light shielding rim portion 12. The transparent substrate 10 is made of transparent glass or the like.

遮光リム部12には、透明基板10上に遮光膜15が形成されている。遮光膜15の光学濃度(OD)は、好ましくは、OD≧2であり、より好ましくは、OD≧3である。遮光リム部12は、遮光膜15の単層でもよく、位相シフト膜14と遮光膜15の積層膜でもよい。位相シフト膜14と遮光膜15の積層順(透明基板10の厚さ方向の位置関係)に特に制限はない。遮光膜15の材料は、Cr又はその化合物(酸化物、窒化物、炭化物、酸化窒化物、又は酸化窒化炭化物)であっても良く、又は、Mo、W、Ta、Tiを含む金属化合物であってもよい。金属化合物としては、金属シリサイド、又は、該シリサイドの上記化合物であっても良い。また、遮光膜15の材料は、ウェットエッチングが可能であり、かつ、位相シフト膜14の材料(後述)に対してエッチング選択性をもつ材料が好ましい。また、遮光膜15や位相シフト膜14は、その表面側、及び/又は裏面側に、光の反射を制御する反射制御層を設けたものであってもよい。   A light shielding film 15 is formed on the transparent substrate 10 in the light shielding rim portion 12. The optical density (OD) of the light shielding film 15 is preferably OD ≧ 2, more preferably OD ≧ 3. The light shielding rim portion 12 may be a single layer of the light shielding film 15 or a laminated film of the phase shift film 14 and the light shielding film 15. There is no particular limitation on the stacking order of the phase shift film 14 and the light shielding film 15 (positional relationship in the thickness direction of the transparent substrate 10). The material of the light shielding film 15 may be Cr or a compound thereof (oxide, nitride, carbide, oxynitride, or oxynitride carbide), or may be a metal compound containing Mo, W, Ta, or Ti. May be. The metal compound may be metal silicide or the above compound of the silicide. The material of the light shielding film 15 is preferably a material that can be wet-etched and has etching selectivity with respect to the material of the phase shift film 14 (described later). Further, the light shielding film 15 and the phase shift film 14 may be provided with a reflection control layer for controlling light reflection on the front surface side and / or the back surface side thereof.

位相シフト部13は、透明基板10上に位相シフト膜14を形成してなるものである。位相シフト膜14は、Cr又はその化合物(酸化物、窒化物、炭化物、酸化窒化物、又は酸化窒化炭化物)であっても良く、又は、Mo、W、Ta、Tiを含む金属化合物であってもよい。金属化合物としては、金属のシリサイド、又は、該シリサイドの上記化合物であっても良い。位相シフト膜14の材料としては、Zr、Nb、Hf、Ta、Mo、TiのいずれかとSiを含む材料、又は、これらの材料の酸化物、窒化物、酸化窒化物、炭化物、又は酸化窒化炭化物を含む材料からなるとすることができ、更にSiの上記化合物であってもよい。また、位相シフト膜14の材料は、ウェットエッチングが可能な材料が好ましい。   The phase shift unit 13 is formed by forming a phase shift film 14 on the transparent substrate 10. The phase shift film 14 may be Cr or a compound thereof (oxide, nitride, carbide, oxynitride, or oxynitride carbide), or a metal compound containing Mo, W, Ta, or Ti. Also good. The metal compound may be a metal silicide or the above compound of the silicide. As a material of the phase shift film 14, a material containing any of Zr, Nb, Hf, Ta, Mo, Ti and Si, or an oxide, nitride, oxynitride, carbide, or oxynitride carbide of these materials It may be made of a material containing Si, and may be the above compound of Si. The material of the phase shift film 14 is preferably a material that can be wet-etched.

ここで、位相シフト部13と透光部11の、露光光の代表波長の光に対する位相差φ1は、略180度である。略180度とは、120〜240度を意味する。上記位相差φ1は、好ましくは、150〜210度である。
また、位相シフト膜のもつ、位相シフト量の波長依存性は、i線、h線、及びg線に対し、変動幅が40度以内であることが好ましい。
Here, the phase difference φ1 between the phase shift portion 13 and the light transmitting portion 11 with respect to the light having the representative wavelength of the exposure light is approximately 180 degrees. About 180 degrees means 120 to 240 degrees. The phase difference φ1 is preferably 150 to 210 degrees.
Further, the wavelength dependence of the phase shift amount of the phase shift film is preferably such that the fluctuation range is within 40 degrees with respect to the i-line, h-line, and g-line.

遮光リム部12は、露光光の代表波長の光を実質的に透過しない遮光膜15であって、光学濃度OD≧2(好ましくはOD≧3)の膜を、透明基板10上に形成してなるものである。また、位相シフト部13は、露光光の代表波長の光に対して、2〜10%の透過率T1(%)をもつことが好ましい。より好ましくは3〜8%、更に好ましくは、3<T1<6である。透過率が過度に高い場合には、被転写体上に形成されるレジストパターンにおいて、残膜厚が損なわれる不都合が生じやすく、また、透過率が低すぎると、以下に説明する反転位相の透過光強度カーブの寄与が得にくくなる。
尚、ここでの透過率は、透明基板10の透過率を基準(100%)としたときの、上記代表波長の光の透過率とする。また、露光光には、i線、h線、g線のいずれかを含む光、又はi線、h線、g線のすべてを含むブロード波長光を用いることができる。代表波長とは、露光に用いる光に含まれる波長のうち、いずれかの波長(例えばi線)とする。
The light-shielding rim portion 12 is a light-shielding film 15 that does not substantially transmit light having a representative wavelength of exposure light, and a film having an optical density OD ≧ 2 (preferably OD ≧ 3) is formed on the transparent substrate 10. It will be. Moreover, it is preferable that the phase shift unit 13 has a transmittance T1 (%) of 2 to 10% with respect to light having a representative wavelength of exposure light. More preferably, it is 3 to 8%, and further preferably 3 <T1 <6. If the transmittance is excessively high, the resist pattern formed on the transfer material is liable to cause a disadvantage that the remaining film thickness is impaired. If the transmittance is too low, the transmission of the inversion phase described below will occur. The contribution of the light intensity curve is difficult to obtain.
Here, the transmittance is the transmittance of light having the above representative wavelength when the transmittance of the transparent substrate 10 is used as a reference (100%). In addition, as the exposure light, light including any of i-line, h-line, and g-line, or broad wavelength light including all of i-line, h-line, and g-line can be used. The representative wavelength is any wavelength (for example, i-line) among wavelengths included in light used for exposure.

本実施形態のフォトマスクにおいて、透光部11の径W1(μm)は、好ましくは、0.8≦W1≦4.0である。図3に例示する転写用パターンにおいては、透光部11の平面視形状が正方形であり、この場合径W1は、正方形の一辺の寸法である。透光部11の平面視形状が長方形の場合には、長辺の寸法を径W1とする。透光部11の形状は四角形が好ましく、特に正方形が好ましい。
W1が大きすぎると、表示装置用露光装置の解像限界寸法を十分に上回るために、従来のフォトマスクによって十分な解像性が得られ、本発明による向上効果は顕著には生じない。一方、W1が小さすぎると、フォトマスク製造時に安定して正確なCDを得にくい。 より好ましくは、0.8≦W1≦3.5である。また、更なる微細化が望まれる場合には、1.0<W1<3.0、更には、1.2<W1<2.5としてもよい。
In the photomask of this embodiment, the diameter W1 (μm) of the light transmitting portion 11 is preferably 0.8 ≦ W1 ≦ 4.0. In the transfer pattern illustrated in FIG. 3, the planar view shape of the light transmitting portion 11 is a square, and in this case, the diameter W <b> 1 is a dimension of one side of the square. When the planar view shape of the translucent part 11 is a rectangle, the dimension of a long side is set to the diameter W1. The shape of the light transmitting portion 11 is preferably a quadrangle, and particularly preferably a square.
If W1 is too large, the resolution limit dimension of the exposure apparatus for a display device is sufficiently exceeded, so that sufficient resolution can be obtained with a conventional photomask, and the improvement effect of the present invention does not remarkably occur. On the other hand, if W1 is too small, it is difficult to obtain a stable and accurate CD during photomask manufacturing. More preferably, 0.8 ≦ W1 ≦ 3.5. If further miniaturization is desired, 1.0 <W1 <3.0, or 1.2 <W1 <2.5 may be satisfied.

本実施形態のフォトマスクが備える転写用パターンによって、被転写体上に径W2(μm)のホールを形成する場合、好ましくは、0.8≦W2≦3.0である。被転写体上に形成されるホールの径W2は、対向する2つの辺の間の距離の、最も大きい部分の長さをいう。   In the case where a hole having a diameter W2 (μm) is formed on the transfer target by the transfer pattern provided in the photomask of this embodiment, preferably 0.8 ≦ W2 ≦ 3.0. The diameter W2 of the hole formed on the transferred body is the length of the largest portion of the distance between the two opposing sides.

すなわち、フォトマスクの透光部11の径W1と被転写体のホールの径W2との関係は、好ましくは、W1≧W2であり、より好ましくは、W1>W2である。また、β(μm)をマスクバイアス値(W1−W2)とし、β>0(μm)とすると、バイアス値β(μm)は、好ましくは、0.2≦β≦1.0であり、より好ましくは、0.2≦β≦0.8である。   That is, the relationship between the diameter W1 of the translucent portion 11 of the photomask and the diameter W2 of the hole of the transfer target is preferably W1 ≧ W2, and more preferably W1> W2. When β (μm) is a mask bias value (W1-W2) and β> 0 (μm), the bias value β (μm) is preferably 0.2 ≦ β ≦ 1.0, and more Preferably, 0.2 ≦ β ≦ 0.8.

図4(a)は、本発明の実施形態に係るフォトマスクにおいて遮光リム部の幅を相対的に狭く設定した場合の転写用パターンの一部(図3の点線で囲まれた部分)を示す平面図であり、(b)は、その場合にフォトマスクの左側の位相シフト部を透過する透過光が被転写体上に形成する光強度分布を示す図である。また、図5(a)は、本発明の実施形態に係るフォトマスクにおいて遮光リム部の幅を相対的に広く設定した場合の転写用パターンの一部(図3の点線で囲まれた部分)を示す平面図であり、(b)は、その場合にフォトマスクの左側の位相シフト部を透過する透過光が被転写体上に形成する光強度分布を示す図である。   FIG. 4A shows a part of the transfer pattern (portion surrounded by a dotted line in FIG. 3) when the width of the light-shielding rim portion is set relatively narrow in the photomask according to the embodiment of the present invention. FIG. 4B is a diagram illustrating a light intensity distribution formed on the transfer target by transmitted light that passes through the phase shift portion on the left side of the photomask in that case. FIG. 5A shows a part of the transfer pattern when the width of the light-shielding rim part is set relatively wide in the photomask according to the embodiment of the present invention (the part surrounded by the dotted line in FIG. 3). FIG. 6B is a diagram showing a light intensity distribution formed on the transferred body by transmitted light that passes through the phase shift portion on the left side of the photomask in that case.

図4(b)及び図5(b)に示すように、透光部11の片側(図中、左側)に位置する位相シフト部13を透過する露光光が被転写体上に形成する光強度分布を曲線で描くと、位相シフト部13と遮光リム部12の境界位置から遮光リム部12側(図中、右側)に向かって、第1の谷、第1の山、第2の谷が出現する。第1の山は、上記図1に示した光の振幅カーブにおいて、その位相が(+)側に転じた部分の山に対応する。   As shown in FIGS. 4B and 5B, the light intensity formed on the transfer target by the exposure light that passes through the phase shift unit 13 located on one side (left side in the drawing) of the light transmitting unit 11. When the distribution is drawn with a curve, the first valley, the first mountain, and the second valley are formed from the boundary position between the phase shift unit 13 and the light shielding rim portion 12 toward the light shielding rim portion 12 side (right side in the drawing). Appear. The first peak corresponds to the peak of the portion where the phase turns to the (+) side in the light amplitude curve shown in FIG.

ここで、上記境界位置から、第1の谷の極小値点B1(図4)までの距離をd1(μm)とし、第2の谷の極小値点B2(図5)までの距離をd2(μm)とするとき、遮光リム部12の幅R(μm)は、下記の(1)式を満たすように設定することが好ましい。
(d1−0.5×W1)≦R≦(d2−0.5×W1) ・・・(1)
尚、図4は上記(1)式における遮光リム部12の幅Rの下限について示し、図5は上限について示している。
Here, the distance from the boundary position to the minimum value point B1 (FIG. 4) of the first valley is d1 (μm), and the distance to the minimum value point B2 (FIG. 5) of the second valley is d2 ( μm), the width R (μm) of the light shielding rim portion 12 is preferably set so as to satisfy the following expression (1).
(D1-0.5 × W1) ≦ R ≦ (d2-0.5 × W1) (1)
4 shows the lower limit of the width R of the light shielding rim portion 12 in the above equation (1), and FIG. 5 shows the upper limit.

上記(1)式を満たすように遮光リム部12の幅Rを設定すると、位相シフト部13の透過光のうち、(+)位相の透過光を、透光部11の中央に位置させることができる。すなわち、位相シフト部13を透過する透過光のうち、(+)位相の部分の少なくとも一部によって、透光部11を透過する(+)位相の透過光とともに、被転写体上に到達させ、その光強度のピークを高める作用を得ることが可能となる。   When the width R of the light shielding rim portion 12 is set so as to satisfy the above formula (1), the transmitted light having the (+) phase among the transmitted light of the phase shift portion 13 can be positioned at the center of the light transmitting portion 11. it can. That is, of the transmitted light transmitted through the phase shift unit 13, at least a part of the (+) phase portion is caused to reach the transferred body together with the transmitted light of the (+) phase transmitted through the light transmitting unit 11. An effect of increasing the peak of the light intensity can be obtained.

次に、位相シフト部13を透過する透過光のうち、(+)位相のより多くの部分を、被転写体上に到達させるためのパターン構成について、図6及び図7を用いて考察する。   Next, a pattern configuration for causing more of the (+) phase of the transmitted light transmitted through the phase shift unit 13 to reach the transfer target will be considered with reference to FIGS. 6 and 7.

図6(a)は、本発明の実施形態に係るフォトマスクにおいて遮光リム部の幅を相対的に狭く設定した場合の転写用パターンの一部(図3の点線で囲まれた部分)を示す平面図であり、(b)は、その場合にフォトマスクの左側の位相シフト部を透過する透過光が被転写体上に形成する光強度分布を示す図である。また、図7(a)は、本発明の実施形態に係るフォトマスクにおいて遮光リム部の幅を相対的に広く設定した場合の転写用パターンの一部(図3の点線で囲まれた部分)を示す平面図であり、(b)は、その場合にフォトマスクの左側の位相シフト部を透過する透過光が被転写体上に形成する光強度分布を示す図である。   FIG. 6A shows a part of the transfer pattern (portion surrounded by a dotted line in FIG. 3) when the width of the light-shielding rim portion is set relatively narrow in the photomask according to the embodiment of the present invention. FIG. 4B is a diagram illustrating a light intensity distribution formed on the transfer target by transmitted light that passes through the phase shift portion on the left side of the photomask in that case. FIG. 7A shows a part of a transfer pattern (a part surrounded by a dotted line in FIG. 3) when the width of the light-shielding rim part is set relatively wide in the photomask according to the embodiment of the present invention. FIG. 6B is a diagram showing a light intensity distribution formed on the transferred body by transmitted light that passes through the phase shift portion on the left side of the photomask in that case.

図6(b)及び図7(b)に示すように、透光部11の片側(図中、左側)に位置する位相シフト部13を透過する露光光が被転写体上に形成する光強度分布を曲線で描くと、上記同様に、位相シフト部13と遮光リム部12の境界位置から遮光リム部12側(図中、右側)に向かって、第1の谷、第1の山、第2の谷が出現する。
この場合、第1の山の極大値点Pにおける光強度の1/2を示す2つの点のうち、第1の山の遮光リム部12に近い側(図中、左側)の傾斜部にある点をQ1、遠い側(図中、右側)の傾斜部にある点をQ2とし、上記境界位置からQ1までの距離をd3(図6)とし、Q2までの距離をd4(図7)とするとき、遮光リム部12の幅R(μm)は、下記の(2)式を満たすように設定することが好ましい。
(d3−0.5×W1)≦R≦(d4−0.5×W1) ・・・(2)
尚、図6は上記(2)式における遮光リム部12の幅Rの下限について示し、図7は上限について示している。
As shown in FIGS. 6B and 7B, the light intensity formed on the transfer target by the exposure light that passes through the phase shift unit 13 located on one side (left side in the drawing) of the light transmitting unit 11. When the distribution is drawn in a curved line, the first valley, the first mountain, the first peak from the boundary position between the phase shift unit 13 and the light shielding rim portion 12 toward the light shielding rim portion 12 side (right side in the figure), as described above. A valley of 2 appears.
In this case, of the two points indicating ½ of the light intensity at the local maximum point P of the first mountain, the slope is on the side closer to the light shielding rim portion 12 (left side in the figure) of the first mountain. The point is Q1, the point on the far side (right side in the figure) is Q2, the distance from the boundary position to Q1 is d3 (FIG. 6), and the distance to Q2 is d4 (FIG. 7). At this time, the width R (μm) of the light shielding rim portion 12 is preferably set so as to satisfy the following expression (2).
(D3-0.5 × W1) ≦ R ≦ (d4-0.5 × W1) (2)
6 shows the lower limit of the width R of the light shielding rim portion 12 in the equation (2), and FIG. 7 shows the upper limit.

上記(2)式を満たすように遮光リム部12の幅Rを設定すると、位相シフト部13の透過光のうち、(+)位相であって、その光強度が大きい部分(上方の約半分)を、透光部11の中央に位置させることができる。すなわち、位相シフト部13を透過する透過光のうち、(+)位相の山のピーク(極大値点P)に近い部分を確実に透光部11の寸法内中央付近に位置させて、被転写体上に到達させ、その光強度のピークを、より効率的に高める作用を得ることができる。   When the width R of the light shielding rim portion 12 is set so as to satisfy the above expression (2), the portion of the transmitted light of the phase shift portion 13 that is in the (+) phase and has a high light intensity (about half above) Can be positioned at the center of the light transmitting portion 11. That is, of the transmitted light that passes through the phase shift unit 13, a portion close to the peak of the (+) phase peak (maximum point P) is surely positioned near the center in the dimension of the light transmitting unit 11 to be transferred. An effect of increasing the peak of the light intensity more efficiently can be obtained.

本実施形態のフォトマスクによれば、位相シフト部13を透過した光の振幅カーブのうち、(+)位相に転じた山の部分の位置をシフトさせ、(+)位相の山のより多くの部分を、透光部11の寸法内に位置させることができる。これにより、露光光をより効率的に利用することが可能となる。その結果、表示装置の製造に適用される露光条件において、優れた解像性と生産効率を両立することができる。具体的には、例えば、開口数(NA)が0.08≦NA≦0.20、コヒーレンスファクタ(σ)が0.4≦σ≦0.9の露光条件において、MEEF及びEopに優れたフォトマスクを実現することができる。
より好ましくは、0.08<NA <0.20
更には、0.10<NA<0.15
であることが望ましい。
また、より好ましくは、
0.4<σ<0.7
更に好ましくは、
0.4<σ<0.6
である。
本実施形態のフォトマスクが有する転写用パターンは、被転写体上にホールを形成するためのものであり、透明基板が露出した、径W1(μm)の透光部と、透光部を囲む、幅R(μm)の遮光リム部と、遮光リム部を囲む、位相シフト部からなる。換言すれば、このホールを形成するための他の構成(転写性を補助するための補助パターンなど)を含むことなく、MEEFやEopの改善効果が得られる。
本実施形態のフォトマスクは、被転写体上に孤立ホールを形成するためのフォトマスクとして好適に用いられる。又は、被転写体上に密集ホールを形成するためのフォトマスクとすることもできる。密集ホールとは、複数のホールパターンが規則的に配列し、互いに光学的な作用を及ぼすものをいう。
According to the photomask of this embodiment, among the amplitude curves of the light transmitted through the phase shift unit 13, the position of the peak portion that has changed to the (+) phase is shifted, and more of the (+) phase peaks. The portion can be positioned within the dimension of the light transmitting portion 11. This makes it possible to use the exposure light more efficiently. As a result, it is possible to achieve both excellent resolution and production efficiency under the exposure conditions applied to the manufacture of the display device. Specifically, for example, in an exposure condition where the numerical aperture (NA) is 0.08 ≦ NA ≦ 0.20 and the coherence factor (σ) is 0.4 ≦ σ ≦ 0.9, a photo excellent in MEEF and Eop. A mask can be realized.
More preferably, 0.08 <NA <0.20.
Furthermore, 0.10 <NA <0.15
It is desirable that
More preferably,
0.4 <σ <0.7
More preferably,
0.4 <σ <0.6
It is.
The transfer pattern included in the photomask of this embodiment is for forming holes on the transfer target, and surrounds the light-transmitting portion having a diameter W1 (μm) with the transparent substrate exposed and the light-transmitting portion. , A light shielding rim portion having a width R (μm) and a phase shift portion surrounding the light shielding rim portion. In other words, the MEEF and Eop improving effects can be obtained without including other configurations (such as auxiliary patterns for assisting transferability) for forming the holes.
The photomask of this embodiment is suitably used as a photomask for forming isolated holes on the transfer target. Alternatively, a photomask for forming dense holes on the transfer target can be used. A dense hole is one in which a plurality of hole patterns are regularly arranged and have an optical effect on each other.

本発明は、本実施形態のフォトマスクを用いて、露光装置により露光し、被転写体上に、上記転写用パターンを転写する、表示装置の製造方法を含む。   The present invention includes a method for manufacturing a display device, in which the photomask of the present embodiment is used for exposure by an exposure apparatus, and the transfer pattern is transferred onto a transfer target.

本発明の表示装置の製造方法では、まず、本実施形態のフォトマスクを用意する。次に、露光装置を用いて、前記転写用パターンを露光し、被転写体上に、径W2が0.8〜3.0(μm)のホールを形成する。露光には、開口数(NA)が0.08〜0.20であり、i線、h線、又はg線を含む露光光源をもつ露光装置を用いる。また、露光には、等倍のプロジェクション露光を行う投影露光装置であって、光学系の開口数(NA)が0.08〜0.15(コヒーレンスファクタ(σ)が0.4〜0.9)であり、i線、h線及びg線の少なくとも一つを露光光に含む露光光源をもつ露光装置を用いることが好ましい。露光光として単一波長を適用する場合には、i線を用いることが好ましい。また、露光光には、i線、h線、g線のすべてを含むブロード波長光を用いてもよい。使用する露光装置の光源は、垂直入射成分を除いた斜光照明(輪帯照明など)を使用しても良いが、斜光照明を適用せず、垂直入射成分を含む通常照明を用いても本発明の優れた効果が十分に得られる。   In the display device manufacturing method of the present invention, first, the photomask of this embodiment is prepared. Next, the transfer pattern is exposed using an exposure apparatus to form holes having a diameter W2 of 0.8 to 3.0 (μm) on the transfer target. For exposure, an exposure apparatus having a numerical aperture (NA) of 0.08 to 0.20 and an exposure light source including i-line, h-line, or g-line is used. The exposure is a projection exposure apparatus that performs projection exposure at the same magnification, and the numerical aperture (NA) of the optical system is 0.08 to 0.15 (coherence factor (σ) is 0.4 to 0.9. It is preferable to use an exposure apparatus having an exposure light source that includes at least one of i-line, h-line, and g-line in exposure light. When applying a single wavelength as the exposure light, it is preferable to use i-line. Further, the exposure light may be broad wavelength light including all of i-line, h-line, and g-line. The light source of the exposure apparatus to be used may use oblique illumination (annular illumination or the like) excluding the normal incident component, but the present invention may be applied to normal illumination including the normal incident component without applying oblique illumination. The excellent effect of is sufficiently obtained.

本発明の実施形態に係るフォトマスクは、例えば、透明基板10上に位相シフト膜14と遮光膜15を順に積層した構成のフォトマスクブランクを用意した後、両膜をそれぞれパターニングして製造することができる。位相シフト膜14及び遮光膜15の成膜には、スパッタ法等の公知の成膜法を適用すれば良い。また、フォトマスクの製造に際して、フォトリソグラフィー工程においては、公知のフォトレジストを用い、レーザー描画装置等を使用することができる。図3のフォトマスクを製造する際には、遮光リム部12の幅Rが精緻に制御されることが望まれる。これによって、露光時に被転写体上に形成される空間像のプロファイルが影響されるからである。
好ましくは、図3のフォトマスクを製造する際には、レジスト膜を形成した上記フォトマスクブランクに対して描画を行ない、まず遮光膜15をエッチングして遮光リム部12を形成し(遮光リム部が画定される)、次に、再度レジスト膜を形成するとともに、描画を行なって位相シフト膜14をエッチングし、透光部12を形成する事が好ましい。
The photomask according to the embodiment of the present invention is manufactured, for example, by preparing a photomask blank having a structure in which the phase shift film 14 and the light shielding film 15 are sequentially laminated on the transparent substrate 10 and then patterning both films. Can do. For the formation of the phase shift film 14 and the light shielding film 15, a known film formation method such as a sputtering method may be applied. In manufacturing a photomask, a known lithography can be used in a photolithography process, and a laser drawing apparatus or the like can be used. When the photomask of FIG. 3 is manufactured, it is desired that the width R of the light shielding rim portion 12 be precisely controlled. This is because the profile of the aerial image formed on the transfer medium during exposure is affected.
Preferably, when the photomask of FIG. 3 is manufactured, drawing is performed on the photomask blank on which the resist film is formed, and the light shielding film 15 is first etched to form the light shielding rim portion 12 (light shielding rim portion). Next, it is preferable that a resist film is formed again and drawing is performed to etch the phase shift film 14 to form the light transmitting portion 12.

次に、本発明の実施形態に係るフォトマスクを用いて実施した光学シミュレーションについて説明する。
光学シミュレーションでは、上記図3に示すものと同様の転写用パターン(ホールパターン)を有するフォトマスクを用いた。この場合、透光部11の径W1を2μmとし、被転写体上にW2が1.5μmのホールを転写(バイアスβ=0.5μm)する際に、遮光リム部12の幅Rの寸法によって、MEEF及びEopの光学性能がどのように変化するかを検証した。尚、位相シフト部13の露光光の透過率は、対i線で、5.2%とした。
Next, an optical simulation performed using the photomask according to the embodiment of the present invention will be described.
In the optical simulation, a photomask having a transfer pattern (hole pattern) similar to that shown in FIG. 3 was used. In this case, when the diameter W1 of the light transmitting portion 11 is 2 μm and a hole having a W2 of 1.5 μm is transferred onto the transfer target (bias β = 0.5 μm), depending on the width R of the light shielding rim portion 12 We examined how the optical performance of MEEF and Eop changes. Note that the transmittance of the exposure light of the phase shift unit 13 is 5.2% with respect to the i line.

シミュレーションに用いた光学条件は、以下のとおりである。
露光装置の光学系は、開口数NAが0.1であり、コヒーレンスファクタσが0.5である。また、露光光源には、i線、h線、g線のすべてを含む光源(ブロード波長光源)を用い、強度比は、g:h:i=1:1:1とした。
The optical conditions used for the simulation are as follows.
The optical system of the exposure apparatus has a numerical aperture NA of 0.1 and a coherence factor σ of 0.5. Further, a light source (broad wavelength light source) including all of i-line, h-line, and g-line was used as the exposure light source, and the intensity ratio was g: h: i = 1: 1: 1.

図8は、遮光リム部の幅の変化によるMEEFの値についてのシミュレーション結果を示す図であり、図9は、遮光リム部の幅の変化によるEopの値についてのシミュレーション結果を示す図である。図8及び図9においては、横軸のRim Size(μm)が、遮光リム部12の幅Rを表す。そして、遮光リム部12の幅Rが0の場合は、上記図11と同様の従来型のハーフトーン型位相シフトマスクを用いた場合に相当する。   FIG. 8 is a diagram showing a simulation result for the MEEF value due to a change in the width of the light shielding rim portion, and FIG. 9 is a diagram showing a simulation result for the Eop value due to a change in the width of the light shielding rim portion. 8 and 9, Rim Size (μm) on the horizontal axis represents the width R of the light shielding rim portion 12. The case where the width R of the light shielding rim portion 12 is 0 corresponds to the case where the conventional halftone phase shift mask similar to that shown in FIG. 11 is used.

図8によると、遮光リム部12の幅Rの変化によって、MEEFの値が変動し、特に、幅Rが0.5〜1.5μmのときに、MEEFの値は6未満となり、また、幅Rが0.5〜1.0μmのときに、MEEFの値が更に低く抑えられることがわかる。このときのMEEFの値は、5.25を下回り、同じ径W1の透光部(ホールパターン)を有する従来型のハーフトーン位相シフトマスクに比較して、半分以下の低い値となっている。   According to FIG. 8, the MEEF value fluctuates due to the change in the width R of the light-shielding rim portion 12. In particular, when the width R is 0.5 to 1.5 μm, the MEEF value is less than 6, and the width It can be seen that when R is 0.5 to 1.0 μm, the MEEF value is further suppressed. The value of MEEF at this time is lower than 5.25, and is a value lower than half compared to a conventional halftone phase shift mask having a translucent portion (hole pattern) having the same diameter W1.

また、図9によると、本実施形態のフォトマスクは、従来型のハーフトーン型位相シフトマスクより大幅にEopが低減され、特に、遮光リム部12の幅Rが0.5〜2.0μm、の範囲にわたって、露光に必要なDose量が25%以上削減されることがわかる。特に、遮光リム部12の幅が0.75〜1.5のときに、35%以上削減される。   Further, according to FIG. 9, the photomask of the present embodiment has a significantly reduced Eop compared to the conventional halftone phase shift mask, and in particular, the width R of the light shielding rim portion 12 is 0.5 to 2.0 μm. It can be seen that the amount of dose required for exposure is reduced by 25% or more over the range. In particular, when the width of the light shielding rim portion 12 is 0.75 to 1.5, it is reduced by 35% or more.

図10は、上記シミュレーションに用いた本実施形態のフォトマスク(リム幅R=1.0μmとしたもの)を、露光装置によって露光したときに、被転写体上に形成される光学像(すなわち、透過光の光強度分布)を、同じ径のホールパターンをもつバイナリマスク(Binary)、及び、従来型のハーフトーン型位相シフトマスク(Att.PSM)と比較した図である。   FIG. 10 shows an optical image (that is, an image formed on a transfer target when the photomask of the present embodiment used in the simulation (with a rim width R = 1.0 μm) is exposed by an exposure apparatus (that is, It is the figure which compared the light intensity distribution of the transmitted light with the binary mask (Binary) which has the hole pattern of the same diameter, and the conventional halftone type phase shift mask (Att.PSM).

上記図10によると、本実施形態のフォトマスクが形成する空間像は、他のフォトマスクが形成する空間像にくらべてピークが高く、更に傾斜が急峻であり(垂直に近く)、微細なホールを形成するために有利な、優れたプロファイルであることがわかる。   According to FIG. 10 described above, the aerial image formed by the photomask of this embodiment has a higher peak than the aerial image formed by other photomasks, and has a steeper slope (nearly vertical), and a fine hole. It can be seen that this is an excellent profile that is advantageous for forming.

10…透明基板
11…透光部
12…遮光リム部
13…位相シフト部
14…位相シフト膜
15…遮光膜
DESCRIPTION OF SYMBOLS 10 ... Transparent substrate 11 ... Translucent part 12 ... Light shielding rim part 13 ... Phase shift part 14 ... Phase shift film 15 ... Light shielding film

Claims (6)

透明基板上に転写用パターンを備えた、表示装置製造用のフォトマスクであって、
前記転写用パターンは、被転写体上にホールを形成するためのホールパターンであって、
前記透明基板が露出した、径W1(μm)の透光部と、
前記透光部を囲む、幅R(μm)の遮光リム部と、
前記遮光リム部を囲む、位相シフト部からなり、
前記位相シフト部と前記透光部の、露光光の代表波長の光に対する位相差が略180度であり、
前記透光部の片側に位置する前記位相シフト部を透過する露光光が被転写体上に形成する光強度分布において、前記位相シフト部と前記遮光リム部の境界位置から前記遮光リム部側に向かって、第1の谷の極小値点B1までの距離をd1(μm)とし、第2の谷の極小値点B2までの距離をd2(μm)とするとき、
(d1−0.5×W1)≦R≦(d2−0.5×W1)
であることを特徴とする、フォトマスク。
A photomask for manufacturing a display device having a transfer pattern on a transparent substrate,
The transfer pattern is a hole pattern for forming a hole on a transfer object,
A transparent portion having a diameter W1 (μm) from which the transparent substrate is exposed;
A light shielding rim portion having a width R (μm) surrounding the light transmitting portion;
A phase shift part surrounding the light shielding rim part,
The phase difference between the phase shift portion and the light transmitting portion with respect to light having a representative wavelength of exposure light is approximately 180 degrees,
In the light intensity distribution formed on the transfer medium by the exposure light that passes through the phase shift portion located on one side of the light transmitting portion, the boundary position between the phase shift portion and the light shielding rim portion moves toward the light shielding rim portion side. On the other hand, when the distance to the minimum value point B1 of the first valley is d1 (μm) and the distance to the minimum value point B2 of the second valley is d2 (μm),
(D1-0.5 × W1) ≦ R ≦ (d2-0.5 × W1)
A photomask characterized by being.
透明基板上に転写用パターンを備えた、表示装置製造用のフォトマスクであって、
前記転写用パターンは、被転写体上にホールを形成するためのホールパターンであって、
前記透明基板が露出した、径W1(μm)の透光部と、
前記透光部を囲む、幅R(μm)の遮光リム部と、
前記遮光リム部を囲む、位相シフト部からなり、
前記位相シフト部と前記透光部の、露光光の代表波長の光に対する位相差が略180度であり、
前記透光部の片側に位置する前記位相シフト部を透過する露光光が被転写体上に形成する光強度分布において、前記位相シフト部と前記遮光リム部の境界位置から前記遮光リム部側に向かって、第1の山の極大値点Pにおける光強度の1/2を示す2つの点のうち、前記山の前記遮光リム部に近い側の傾斜部にある点をQ1、遠い側の傾斜部にある点をQ2とし、前記境界位置からQ1までの距離をd3とし、Q2までの距離をd4とするとき、
(d3−0.5×W1)≦R≦(d4−0.5×W1)
であることを特徴とする、フォトマスク。
A photomask for manufacturing a display device having a transfer pattern on a transparent substrate,
The transfer pattern is a hole pattern for forming a hole on a transfer object,
A transparent portion having a diameter W1 (μm) from which the transparent substrate is exposed;
A light shielding rim portion having a width R (μm) surrounding the light transmitting portion;
A phase shift part surrounding the light shielding rim part,
The phase difference between the phase shift portion and the light transmitting portion with respect to light having a representative wavelength of exposure light is approximately 180 degrees,
In the light intensity distribution formed on the transfer medium by the exposure light that passes through the phase shift portion located on one side of the light transmitting portion, the boundary position between the phase shift portion and the light shielding rim portion moves toward the light shielding rim portion side. On the other hand, among the two points indicating 1/2 of the light intensity at the maximum point P of the first mountain, Q1 is a point on the inclined part near the light-shielding rim part of the mountain, and the inclination on the far side When the point in the part is Q2, the distance from the boundary position to Q1 is d3, and the distance to Q2 is d4,
(D3-0.5 × W1) ≦ R ≦ (d4-0.5 × W1)
A photomask characterized by being.
前記転写用パターンは、前記被転写体上に、径W2(但しW2≦W1)のホールを形成するためのホールパターンであることを特徴とする、請求項1又は2に記載のフォトマスク。   3. The photomask according to claim 1, wherein the transfer pattern is a hole pattern for forming a hole having a diameter W2 (W2 ≦ W1) on the transfer target. 前記位相シフト部は、前記代表波長の光に対して、2〜10%の透過率をもつことを特徴とする、請求項1〜3のいずれか1項に記載のフォトマスク。   The photomask according to claim 1, wherein the phase shift unit has a transmittance of 2 to 10% with respect to the light of the representative wavelength. 開口数(NA)が0.08〜0.20であり、i線、h線、又はg線を含む露光光源をもつ等倍の投影露光装置を用いて、前記転写用パターンを露光し、被転写体上に、径W2が0.8〜3.0(μm)のホールを形成することに用いる、請求項1〜4のいずれか1項に記載のフォトマスク。   The transfer pattern is exposed using an equal magnification projection exposure apparatus having a numerical aperture (NA) of 0.08 to 0.20 and having an exposure light source including i-line, h-line, or g-line. The photomask according to any one of claims 1 to 4, which is used for forming a hole having a diameter W2 of 0.8 to 3.0 (µm) on a transfer body. 請求項1〜5のいずれか1項に記載のフォトマスクを用意する工程と、
開口数(NA)が0.08〜0.20であり、i線、h線、又はg線を含む露光光源をもつ等倍の投影露光装置を用いて、前記転写用パターンを露光し、被転写体上に、径W2が0.8〜3.0(μm)のホールを形成する工程とを含む、表示装置の製造方法。
Preparing the photomask according to any one of claims 1 to 5,
The transfer pattern is exposed using an equal magnification projection exposure apparatus having a numerical aperture (NA) of 0.08 to 0.20 and having an exposure light source including i-line, h-line, or g-line. Forming a hole having a diameter W2 of 0.8 to 3.0 (μm) on the transfer body.
JP2018026667A 2017-03-24 2018-02-19 Manufacturing method of photomask and display device Active JP7080070B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017059685 2017-03-24
JP2017059685 2017-03-24

Publications (3)

Publication Number Publication Date
JP2018163335A true JP2018163335A (en) 2018-10-18
JP2018163335A5 JP2018163335A5 (en) 2021-03-11
JP7080070B2 JP7080070B2 (en) 2022-06-03

Family

ID=63706266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018026667A Active JP7080070B2 (en) 2017-03-24 2018-02-19 Manufacturing method of photomask and display device

Country Status (4)

Country Link
JP (1) JP7080070B2 (en)
KR (1) KR102638753B1 (en)
CN (1) CN108628089B (en)
TW (2) TWI691783B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210089086A (en) 2020-01-07 2021-07-15 가부시키가이샤 에스케이 일렉트로닉스 Photomask
KR102360105B1 (en) * 2020-12-29 2022-02-14 주식회사 포커스비전 Method for generating 3D image using blur of image

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322949A (en) * 2002-04-30 2003-11-14 Matsushita Electric Ind Co Ltd Photomask and pattern forming method using the same
JP2005107082A (en) * 2003-09-30 2005-04-21 Sanyo Electric Co Ltd Phase shift mask and method for forming pattern
JP2017010059A (en) * 2016-10-05 2017-01-12 Hoya株式会社 Photomask, method for manufacturing photomask, and transfer method of pattern

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296647A (en) * 2000-02-10 2001-10-26 Nec Corp Photomask and exposure method using the same
KR100568403B1 (en) * 2001-12-26 2006-04-05 마츠시타 덴끼 산교 가부시키가이샤 Photomask, method of producing a mask data
US8134685B2 (en) * 2007-03-23 2012-03-13 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
WO2008139904A1 (en) * 2007-04-27 2008-11-20 Hoya Corporation Photomask blank and photomask
CN110083008A (en) * 2011-10-21 2019-08-02 大日本印刷株式会社 The manufacturing method of large-scale phase shifting mask and large-scale phase shifting mask
JP5605917B2 (en) * 2011-12-27 2014-10-15 Hoya株式会社 Photomask manufacturing method, pattern transfer method, and flat panel display manufacturing method
JP6139826B2 (en) * 2012-05-02 2017-05-31 Hoya株式会社 Photomask, pattern transfer method, and flat panel display manufacturing method
JP6093117B2 (en) * 2012-06-01 2017-03-08 Hoya株式会社 Photomask, photomask manufacturing method, and pattern transfer method
JP6063650B2 (en) * 2012-06-18 2017-01-18 Hoya株式会社 Photomask manufacturing method
JP6106579B2 (en) * 2013-11-25 2017-04-05 Hoya株式会社 Photomask manufacturing method, photomask and pattern transfer method
JP6581759B2 (en) * 2014-07-17 2019-09-25 Hoya株式会社 Photomask, photomask manufacturing method, photomask blank, and display device manufacturing method
JP6335735B2 (en) * 2014-09-29 2018-05-30 Hoya株式会社 Photomask and display device manufacturing method
JP6391495B2 (en) * 2015-02-23 2018-09-19 Hoya株式会社 Photomask, photomask set, photomask manufacturing method, and display device manufacturing method
KR102564650B1 (en) * 2015-03-24 2023-08-08 호야 가부시키가이샤 Mask blank, phase shift mask, manufacturing method of phase shift mask, and manufacturing method of semiconductor device
JP6767735B2 (en) * 2015-06-30 2020-10-14 Hoya株式会社 Photomasks, photomask design methods, photomask blanks, and display device manufacturing methods
WO2017038213A1 (en) * 2015-08-31 2017-03-09 Hoya株式会社 Mask blank, phase shift mask, phase shift mask manufacturing method, and semiconductor device manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322949A (en) * 2002-04-30 2003-11-14 Matsushita Electric Ind Co Ltd Photomask and pattern forming method using the same
JP2005107082A (en) * 2003-09-30 2005-04-21 Sanyo Electric Co Ltd Phase shift mask and method for forming pattern
JP2017010059A (en) * 2016-10-05 2017-01-12 Hoya株式会社 Photomask, method for manufacturing photomask, and transfer method of pattern

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210089086A (en) 2020-01-07 2021-07-15 가부시키가이샤 에스케이 일렉트로닉스 Photomask
CN113156758A (en) * 2020-01-07 2021-07-23 株式会社Sk电子 Photomask and method of manufacturing the same
KR102555946B1 (en) * 2020-01-07 2023-07-17 가부시키가이샤 에스케이 일렉트로닉스 Photomask
JP7383490B2 (en) 2020-01-07 2023-11-20 株式会社エスケーエレクトロニクス photo mask
KR102360105B1 (en) * 2020-12-29 2022-02-14 주식회사 포커스비전 Method for generating 3D image using blur of image

Also Published As

Publication number Publication date
JP7080070B2 (en) 2022-06-03
TW202024776A (en) 2020-07-01
TWI758694B (en) 2022-03-21
TWI691783B (en) 2020-04-21
CN108628089A (en) 2018-10-09
CN108628089B (en) 2023-09-12
TW201837553A (en) 2018-10-16
KR20180108459A (en) 2018-10-04
KR102638753B1 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
KR102304206B1 (en) Photomask and method for manufacturing display device
KR102195658B1 (en) Photomask, the method of manufacturing photomask, photomask blank and the method of manufacturing display device
KR101895122B1 (en) Method of manufacturing a photomask, a photomask and method of manufacturing a display device
JP2016071059A5 (en)
JP2016024264A5 (en)
KR20170010032A (en) Method of manufacturing a photomask, photomask, pattern transfer method and method of manufacturing a display device
KR102245531B1 (en) Photomask for use in manufacturing a display device and method of manufacturing a display device
JP7080070B2 (en) Manufacturing method of photomask and display device
JP6872061B2 (en) Manufacturing method of photomask and display device
KR101703395B1 (en) Method of manufacturing a photomask, pattern transfer method and method of manufacturing a display device
JP2021117496A (en) Photomask, method for producing photomask, and method for producing display device
JP6731441B2 (en) Photomask and display device manufacturing method
JP2019012280A (en) Photomask, production method thereof, photomask blank, and production method of display device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220524

R150 Certificate of patent or registration of utility model

Ref document number: 7080070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150