JP2018163006A - Spectrophotofluorometer - Google Patents

Spectrophotofluorometer Download PDF

Info

Publication number
JP2018163006A
JP2018163006A JP2017059577A JP2017059577A JP2018163006A JP 2018163006 A JP2018163006 A JP 2018163006A JP 2017059577 A JP2017059577 A JP 2017059577A JP 2017059577 A JP2017059577 A JP 2017059577A JP 2018163006 A JP2018163006 A JP 2018163006A
Authority
JP
Japan
Prior art keywords
sample container
sample
adjustment mechanism
adjusting
spectrofluorometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017059577A
Other languages
Japanese (ja)
Other versions
JP6829466B2 (en
Inventor
純 堀込
Jun Horigome
純 堀込
有香 岩谷
Yuka Iwatani
有香 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
Hitachi High Tech Science Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Science Corp filed Critical Hitachi High Tech Science Corp
Priority to JP2017059577A priority Critical patent/JP6829466B2/en
Publication of JP2018163006A publication Critical patent/JP2018163006A/en
Application granted granted Critical
Publication of JP6829466B2 publication Critical patent/JP6829466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spectrophotofluorometer with which it is possible to detect the fluorescence of a sample in a sample container at an optimum position free of obstacles on the surface of the sample container in a passage path of light (optical path).SOLUTION: A spectrophotofluorometer 1, designed to measure a sample stored in a sample container 100, comprises: a position adjusting mechanism 20 for adjusting the irradiation position of excitation light from an excitation-side spectroscope 12 and the sample container 100 to appropriate positions; a data processing unit 30 for controlling a photometer unit 10 and analyzing a sample; and an operation unit 40 for performing input/output. The position adjusting mechanism 20 includes a sample installation unit 21 for placing the sample container 100 and holding it in place, and a drive unit 22 for driving the sample installation unit 21, and has an in-plane adjustment mechanism 23 for adjusting the in-plane position of the sample container 100, a height adjustment mechanism 24 for adjusting the height position, and a circumferential position adjustment mechanism 25 for adjusting the circumferential position. The maximum output of a detector 16, reached while performing position adjustment, is determined as an optimum position for measurement.SELECTED DRAWING: Figure 1

Description

本発明は、試料容器内の試料を非破壊で測定する分光蛍光光度計に関する。   The present invention relates to a spectrofluorometer that measures a sample in a sample container in a nondestructive manner.

試料容器に封入(収容)された密封材料や液体などを分析する方法が知られている(特許文献1〜3)。また、高感度、情報量の観点から蛍光を用いる分光蛍光光度計が知られている(非特許文献1)。   A method for analyzing a sealing material or liquid sealed (contained) in a sample container is known (Patent Documents 1 to 3). Also, a spectrofluorometer using fluorescence is known from the viewpoint of high sensitivity and information content (Non-Patent Document 1).

特許文献1には、密封容器内のガス組成を非破壊的に測定する方法で特別形状の容器を用いていることが開示されている。特許文献2には、試験管に液体試料を入れて吸光光度計で液体試料を測定することが開示されている。特許文献3には、液体類が充填された液体充填製品に対して容器や内容物や付属物に欠陥がないことを検査する装置が開示されている。   Patent Document 1 discloses that a specially shaped container is used by a method of nondestructively measuring the gas composition in a sealed container. Patent Document 2 discloses that a liquid sample is put in a test tube and the liquid sample is measured with an absorptiometer. Patent Document 3 discloses an apparatus for inspecting a liquid-filled product filled with liquids for defects in containers, contents, and accessories.

特開平9−127001号公報JP-A-9-127001 特開2001−33387号公報JP 2001-33387 A 特開2003−130805号公報JP 2003-130805 A

日本分光学会測定法シリーズ3「蛍光測定―生物科学の応用」、45頁から77頁、1983年1月20日、株式会社学会出版センターSpectroscopical Society of Japan Series 3 “Fluorescence Measurement-Application of Biological Science”, pages 45-77, January 20, 1983

特許文献1〜3に示される測定、検査方法は、所定の容器のみに適用され、特に特許文献2では、測定の都度、試料を開封する必要があり、分析精度を低下させる可能性があった。また、異なる形状の試料容器に対応できない、試料容器に貼られたラベル、バーコード、刻印などの測定上の障害物を回避できないという課題があった。   The measurement and inspection methods shown in Patent Documents 1 to 3 are applied only to a predetermined container. In Patent Document 2, it is necessary to open the sample every time the measurement is performed, and the analysis accuracy may be lowered. . In addition, there is a problem that measurement obstacles such as labels, bar codes, and stamps attached to the sample containers cannot be avoided, which cannot be applied to sample containers having different shapes.

本発明は、光の通過路(光路)に試料容器の表面にある障害物がなく最適位置で試料容器の試料の蛍光を検出することができる分光蛍光光度計を提供することを目的とする。   An object of the present invention is to provide a spectrofluorometer capable of detecting fluorescence of a sample in a sample container at an optimal position without an obstacle on the surface of the sample container in a light passage (optical path).

本発明の分光蛍光光度計は、光源と、前記光源の光から分光して励起光を生成する励起側分光器と、測定対象の試料を収容した試料容器を保持するとともに、前記励起光の照射位置と前記試料容器が相対的に所定の位置関係になるように、前記試料容器の位置を調整可能な位置調整機構と、前記試料から放出された蛍光を検知する検知器と、を備える。   The spectrofluorophotometer of the present invention holds a light source, an excitation-side spectroscope that generates excitation light by splitting light from the light from the light source, and a sample container containing a sample to be measured, and irradiation of the excitation light. A position adjusting mechanism capable of adjusting the position of the sample container so that the position and the sample container are relatively in a predetermined positional relationship; and a detector for detecting fluorescence emitted from the sample.

本発明の分光蛍光光度計の一態様として例えば、前記位置調整機構が、前記試料容器の平面内位置を調整可能な面内調整機構と、前記試料容器の高さ位置を調整可能な高さ調整機構と、前記試料容器を回転させて周方向位置を調整可能な周方向調整機構とのうち少なくともいずれか一つを含む。   As one aspect of the spectrofluorometer of the present invention, for example, the position adjustment mechanism is an in-plane adjustment mechanism capable of adjusting the in-plane position of the sample container, and a height adjustment capable of adjusting the height position of the sample container. It includes at least one of a mechanism and a circumferential adjustment mechanism capable of adjusting the circumferential position by rotating the sample container.

本発明の分光蛍光光度計の一態様として例えば、前記位置調整機構が、前記試料容器を回転させて周方向位置を調整しながら、高さも同時に調整可能な回転式高さ調整機構を含む。   As one aspect of the spectrofluorometer of the present invention, for example, the position adjusting mechanism includes a rotary height adjusting mechanism that can adjust the height while simultaneously adjusting the circumferential position by rotating the sample container.

本発明の分光蛍光光度計の一態様として例えば、前記位置調整機構は、前記励起光と前記試料容器の断面中央部が一致する様に、前記試料容器の位置を調整可能である。   As one aspect of the spectrofluorometer of the present invention, for example, the position adjusting mechanism can adjust the position of the sample container so that the excitation light and the center of the cross section of the sample container coincide.

本発明の分光蛍光光度計の一態様として例えば、前記検知器にて検知された蛍光の強度を演算する制御部を有し、前記制御部は、前記蛍光の強度に基づき前記位置調整機構を制御して、前記試料容器を位置決めする。   As one aspect of the spectrofluorometer of the present invention, for example, it has a control unit that calculates the intensity of fluorescence detected by the detector, and the control unit controls the position adjustment mechanism based on the intensity of fluorescence. Then, the sample container is positioned.

本発明の分光蛍光光度計は、試料容器の異なる外形や試料容器の外周に施された刻印やラベルなどの測定妨害因子に対して、位置調整機構でそれぞれの設置位置における散乱光または蛍光を検出することで、蛍光特性を評価する上で最適な位置に試料容器を設定することができる。   The spectrofluorometer of the present invention detects scattered light or fluorescence at each installation position with a position adjustment mechanism against measurement disturbance factors such as different outlines of sample containers and markings and labels on the outer periphery of the sample containers. Thus, the sample container can be set at an optimum position for evaluating the fluorescence characteristics.

本発明に係る分光蛍光光度計の一例を示す構成ブロック図。The block diagram which shows an example of the spectrofluorometer which concerns on this invention. 本発明に係る分光蛍光光度計の位置調整機構の第1実施形態の一例を示し、(a)正面図、(b)側面図。An example of 1st Embodiment of the position adjustment mechanism of the spectrofluorometer which concerns on this invention is shown, (a) Front view, (b) Side view. 本発明に係る分光蛍光光度計の位置調整機構の第2実施形態の一例を示し、(a)正面図、(b)側面図。An example of 2nd Embodiment of the position adjustment mechanism of the spectrofluorimeter which concerns on this invention is shown, (a) Front view, (b) Side view. 位置調整機構の第1実施形態を用いて試料容器の高さ位置の相違による強度と時間変化を示すグラフ。The graph which shows the intensity | strength and time change by the difference in the height position of a sample container using 1st Embodiment of a position adjustment mechanism. 位置調整機構の第2実施形態を用いて試料容器の高さ位置の相違による強度と時間変化を示すグラフ。The graph which shows the intensity | strength and time change by the difference in the height position of a sample container using 2nd Embodiment of a position adjustment mechanism. 本発明に係る分光蛍光光度計の測定において、励起波長に対する蛍光の強度を示すグラフ。The graph which shows the intensity | strength of the fluorescence with respect to an excitation wavelength in the measurement of the spectrofluorometer which concerns on this invention. 本発明に係る分光蛍光光度計の測定において、特定の蛍光波長の強度を示すグラフ。The graph which shows the intensity | strength of a specific fluorescence wavelength in the measurement of the spectrofluorometer which concerns on this invention. 本発明に係る分光蛍光光度計の測定において、特定波長の励起光に対応した特定は長の蛍光の強度を示すグラフ。In the measurement of the spectrofluorometer according to the present invention, the specific corresponding to the excitation light of a specific wavelength is a graph showing the intensity of long fluorescence.

以下、本発明に係る分光蛍光光度計の好適な実施形態を、図1〜図8に基づいて詳述する。   Hereinafter, a preferred embodiment of a spectrofluorometer according to the present invention will be described in detail with reference to FIGS.

図1は、本発明に係る分光蛍光光度計の一例を示す構成ブロック図である。図1を用いて本実施形態の分光蛍光光度計の構成を詳述する。   FIG. 1 is a configuration block diagram showing an example of a spectrofluorometer according to the present invention. The configuration of the spectrofluorometer of this embodiment will be described in detail with reference to FIG.

本実施形態の分光蛍光光度計1は、試料容器100に収容した試料の測定を行う装置であり、光度計部10と、光度計部10内に配置され、試料容器100の試料を測定するために試料容器100を適切な位置に調整する位置調整機構20と、光度計部10をコントロールし試料を分析するデータ処理部30と、入出力を行う操作部40とを備える。   The spectrofluorometer 1 of the present embodiment is a device that measures a sample contained in a sample container 100. The spectrofluorometer 1 is disposed in the photometer unit 10 and the photometer unit 10, and measures a sample in the sample container 100. Are provided with a position adjusting mechanism 20 for adjusting the sample container 100 to an appropriate position, a data processing unit 30 for controlling the photometer unit 10 and analyzing the sample, and an operation unit 40 for inputting and outputting.

光度計部10は、光源11と、光源11の光から分光して励起光を生成する励起側分光器12と、励起側分光器12からの光を分光するビームスプリッタ13と、ビームスプリッタ13で分光された一部の光の強度を測定するモニタ検知器14と、試料から放出された蛍光を単色光に分光する蛍光側分光器15と、単色の蛍光の電気信号を検知する検知器(蛍光検知器)16と、励起側分光器12の回折格子を駆動する励起側パルスモータ17と、蛍光側分光器15の回折格子を駆動する蛍光側パルスモータ18とを備える。   The photometer unit 10 includes a light source 11, an excitation-side spectroscope 12 that splits light from the light source 11 to generate excitation light, a beam splitter 13 that splits light from the excitation-side spectrometer 12, and a beam splitter 13. A monitor detector 14 that measures the intensity of a part of the dispersed light, a fluorescence-side spectrometer 15 that separates fluorescence emitted from the sample into monochromatic light, and a detector that detects an electrical signal of monochromatic fluorescence (fluorescence) Detector 16), an excitation-side pulse motor 17 that drives the diffraction grating of the excitation-side spectrometer 12, and a fluorescence-side pulse motor 18 that drives the diffraction grating of the fluorescence-side spectrometer 15.

位置調整機構20は、測定対象の試料を収容した試料容器100を載置保持する試料設置部21と、試料設置部21を駆動する駆動部22とを備える。   The position adjustment mechanism 20 includes a sample placement unit 21 that places and holds a sample container 100 that contains a sample to be measured, and a drive unit 22 that drives the sample placement unit 21.

データ処理部30は、コンピュータ31と、コンピュータ31内に配置される制御部32と、試料からの蛍光をデジタル変換するA/D変換器33を備える。また、操作部40は、コンピュータ31の処理に必要な入力信号を入力する操作パネル41と、コンピュータ31により処理された各種分析結果を表示する表示部42と、操作パネル41及び表示部42とコンピュータ31とを連結するインターフェイス43とを備える。   The data processing unit 30 includes a computer 31, a control unit 32 arranged in the computer 31, and an A / D converter 33 that digitally converts fluorescence from the sample. The operation unit 40 includes an operation panel 41 for inputting an input signal necessary for processing of the computer 31, a display unit 42 for displaying various analysis results processed by the computer 31, an operation panel 41, the display unit 42, and the computer. And an interface 43 for connecting the terminal 31 to the terminal 31.

図2は、位置調整機構20の第1実施形態の一例を示し、(a)は正面図、(b)は側面図である。図3は、位置調整機構20の第2実施形態の一例を示し、(a)は正面図、(b)は側面図である。図2及び図3を用いて、位置調整機構20を詳述する。   2A and 2B show an example of the first embodiment of the position adjusting mechanism 20, wherein FIG. 2A is a front view and FIG. 2B is a side view. FIGS. 3A and 3B show an example of the second embodiment of the position adjusting mechanism 20, wherein FIG. 3A is a front view and FIG. 3B is a side view. The position adjustment mechanism 20 will be described in detail with reference to FIGS.

図2に示される第1実施形態において、位置調整機構20の上部には試料容器100を載置保持する試料設置部21が設けられ、試料設置部21は、試料容器100の底部を保持するために略円形状の凹部21aと、凹部21aを取り囲む保持部21bとを有する。本実施形態では、位置調整機構20は、面内調整機構23、高さ調整機構24、周方向調整機構25を含んでおり、試料設置部21は、試料容器100の平面内位置を調整可能な面内調整機構23に固定されている(図2(a)のX―Y方向参照)。   In the first embodiment shown in FIG. 2, a sample placement unit 21 for placing and holding the sample container 100 is provided on the top of the position adjustment mechanism 20, and the sample placement unit 21 is for holding the bottom of the sample container 100. Has a substantially circular recess 21a and a holding portion 21b surrounding the recess 21a. In the present embodiment, the position adjustment mechanism 20 includes an in-plane adjustment mechanism 23, a height adjustment mechanism 24, and a circumferential direction adjustment mechanism 25, and the sample placement unit 21 can adjust the in-plane position of the sample container 100. It is fixed to the in-plane adjustment mechanism 23 (see the XY direction in FIG. 2A).

また、位置調整機構20の駆動部22は、コンピュータ31の制御部32に電気的に接続され、第1実施形態では、高さパルスモータ22aと周パルスモータ22bとを有している。そして、面内調整機構23は、高さ調整機構24上に固定され、高さ調整機構24は、高さパルスモータ22aの駆動により高さ方向(図2(a)Z方向参照)に移動することにより、試料容器100の高さ位置を調整可能としている。また、周方向調整機構25は、高さ調整機構24上に固定され、周方向調整機構25は、周パルスモータ22bの駆動により周方向(図2(a)θ方向参照)に回転することにより、試料容器100の周方向位置を調整可能としている。   In addition, the drive unit 22 of the position adjustment mechanism 20 is electrically connected to the control unit 32 of the computer 31 and has a height pulse motor 22a and a circumferential pulse motor 22b in the first embodiment. The in-plane adjustment mechanism 23 is fixed on the height adjustment mechanism 24, and the height adjustment mechanism 24 moves in the height direction (see Z direction in FIG. 2A) by driving the height pulse motor 22a. Thus, the height position of the sample container 100 can be adjusted. Further, the circumferential direction adjustment mechanism 25 is fixed on the height adjustment mechanism 24, and the circumferential direction adjustment mechanism 25 is rotated in the circumferential direction (see the θ direction in FIG. 2A) by driving the circumferential pulse motor 22b. The circumferential position of the sample container 100 can be adjusted.

図3に示される第2実施形態において、試料設置部21と面内調整機構23は、第1実施形態と同様であるが、位置調整機構20は、高さ調整機構24と周方向調整機構25とが組み合わさった回転式高さ調整機構26を備えている。また、駆動部22は、第1実施形態と同様にパルスモータである。回転式高さ調整機構26は、試料容器100を回転させて周方向位置を調整しながら高さも同時に調整できる機構であり、例えば、ネジの組み合わせで延び縮みし、らせん状に試料容器100が回転しながら上下するらせん状にねじ切りされた駆動機構であるが、空気圧式、油圧式などの機構もあり、特に限定しない。   In the second embodiment shown in FIG. 3, the sample placement unit 21 and the in-plane adjustment mechanism 23 are the same as those in the first embodiment, but the position adjustment mechanism 20 is a height adjustment mechanism 24 and a circumferential direction adjustment mechanism 25. And a rotary height adjusting mechanism 26 combined with the above. Moreover, the drive part 22 is a pulse motor similarly to 1st Embodiment. The rotary height adjusting mechanism 26 is a mechanism that can simultaneously adjust the height while rotating the sample container 100 to adjust the circumferential position. For example, the sample container 100 can be extended and contracted by a combination of screws, and the sample container 100 can be rotated in a spiral shape. The drive mechanism is screwed in a spiral shape that moves up and down, but there are also pneumatic and hydraulic mechanisms, and there is no particular limitation.

上述の位置調整機構20は、試料容器100の設置について最適な測定部位を設定する機構である。試料容器100は、例えばバイアル瓶やアンプル瓶であり、試料容器100内に収容された溶液などの試料内容を示すラベルや刻印が試料容器100の表面に施されている。また、形状も種々で有り、試料容器100を未開封状態で試料の蛍光特定を正確に取得するため、本実施形態の位置調整機構20は非破壊検査の有力な手段である。即ち、試料容器100の異なる形状における測定誤差の影響やラベルや刻印による光量ロス、再現性低下の影響を最小限にする位置調整機構20である。   The position adjustment mechanism 20 described above is a mechanism that sets an optimal measurement site for the installation of the sample container 100. The sample container 100 is, for example, a vial bottle or an ampoule bottle, and a label or inscription indicating the sample content such as a solution contained in the sample container 100 is applied to the surface of the sample container 100. The position adjustment mechanism 20 of the present embodiment is an effective means for nondestructive inspection in order to accurately acquire the fluorescence specification of the sample with the sample container 100 unopened in various shapes. That is, the position adjustment mechanism 20 minimizes the influence of measurement errors in different shapes of the sample container 100, the loss of light amount due to labels and markings, and the influence of reproducibility degradation.

位置調整機構20を用いて、励起側分光器12で生成された励起光の照射位置と試料容器100が相対的に所定の位置関係(例えば、検知器16の検知が最大となる位置)になる試料容器100の設置方法及び調整方法の手順の一例を述べる。   Using the position adjustment mechanism 20, the irradiation position of the excitation light generated by the excitation-side spectroscope 12 and the sample container 100 are relatively in a predetermined positional relationship (for example, the position where the detection of the detector 16 is maximized). An example of the procedure for installing and adjusting the sample container 100 will be described.

(1)密封された試料容器100を位置調整機構20の試料設置部21に載置する。その際、試料設置部21の保持部21bが試料容器100の外周と周接して、試料容器100が試料設置部21に安定した状態で載置される。試料容器100は、医薬品や試料を封入(収容)してあるアンプル瓶やバイアル瓶等であり、励起光と蛍光を透過させるため、基本的に透明な試料容器100であり、着色した試料容器100を対象としていない。   (1) The sealed sample container 100 is placed on the sample setting part 21 of the position adjusting mechanism 20. At that time, the holding part 21 b of the sample setting part 21 is in contact with the outer periphery of the sample container 100, and the sample container 100 is placed on the sample setting part 21 in a stable state. The sample container 100 is an ampoule bottle, a vial bottle, or the like that encloses (accommodates) a medicine or sample, and is basically a transparent sample container 100 so as to transmit excitation light and fluorescence. Not intended for.

(2)次に、面内調整機構23で試料容器100を面内方向(X−Y方向)で調整し、試料容器100の底面中央部と光軸中心とを一致させる。   (2) Next, the sample container 100 is adjusted in the in-plane direction (XY direction) by the in-plane adjustment mechanism 23 so that the center of the bottom surface of the sample container 100 and the center of the optical axis coincide.

(3)そして、ビームスプリッタ13と位置調整機構20との間に励起光マスク50を挿入した後、0次光(透過光)の白色光を試料容器100に照射する。0次光を照射し、その散乱光にて位置検出を行う。尚、0次光はレーザー光などであっても良い。   (3) Then, after the excitation light mask 50 is inserted between the beam splitter 13 and the position adjusting mechanism 20, the sample container 100 is irradiated with white light of zero-order light (transmitted light). The zero-order light is irradiated, and position detection is performed using the scattered light. The 0th order light may be laser light or the like.

(4)高さ調整機構24で高さ方向(Z軸方向)に試料設置部21をZ軸原点に移動する。   (4) The sample placement unit 21 is moved to the Z-axis origin in the height direction (Z-axis direction) by the height adjustment mechanism 24.

(5)Z軸原点にて、周方向調整機構25で周方向(θ方向)に試料設置部21を回転させ、0次光における検知器16の出力を測定する。   (5) The sample setting portion 21 is rotated in the circumferential direction (θ direction) by the circumferential direction adjustment mechanism 25 at the Z-axis origin, and the output of the detector 16 in the 0th-order light is measured.

(6)高さ調整機構24でZ軸を変更し、周方向調整機構25で周方向に試料設置部21を回転させ検知器16の出力を測定する。第2実施形態では、当該(4)〜(6)の調整を回転式高さ調整機構26で、高さ位置と周方向を同時に移動(例えばらせん状)させて行う。例えば、試料容器100の高さ(入力値)とZ軸方向の移動距離(入力値)にてZ軸測定回数を算出し、回数分実施する。   (6) The Z-axis is changed by the height adjusting mechanism 24, and the sample setting section 21 is rotated in the circumferential direction by the circumferential direction adjusting mechanism 25 to measure the output of the detector 16. In the second embodiment, the adjustments (4) to (6) are performed by simultaneously moving (for example, spiraling) the height position and the circumferential direction with the rotary height adjusting mechanism 26. For example, the number of times of Z-axis measurement is calculated based on the height (input value) of the sample container 100 and the movement distance (input value) in the Z-axis direction, and the number of times is implemented.

検知器16の最大の出力値となった位置が、高さ方向の位置及び周方向の位置において試料容器100の試料を測定する最適な位置となり、当該位置で励起光の90度方向から生じる蛍光を最適状態で測定することができる。最も確実に励起光が試料を透過する位置(最適位置)は、ラベル、刻印など、試料容器100の表面に存在する障害物がなく、励起光の光軸中心と試料容器100の断面中央部、特に底面中央部が一致する位置である。   The position where the maximum output value of the detector 16 becomes the optimum position for measuring the sample in the sample container 100 at the position in the height direction and the position in the circumferential direction, and the fluorescence generated from the 90-degree direction of the excitation light at that position. Can be measured in an optimum state. The position (optimum position) through which the excitation light passes through the sample most reliably is free of obstructions existing on the surface of the sample container 100, such as a label or an inscription, and the center of the optical axis of the excitation light and the center of the cross section of the sample container 100, In particular, this is the position where the bottom center part matches.

上述の実施形態において0次光で説明したが、予め測定する試料の励起波長、蛍光波長が分かっている場合は、試料に最適な励起波長、蛍光波長で位置検出しても良い。また、0次光を使用できない励起側分光器12を利用する場合は、励起光として試料の吸収が少ない単色光を照射し、検知器16で同一の単色光の波長を検知しても良い。そして、同一形状の試料容器100を用意できる場合は、純水や蛍光試薬を用いて粗調整することで最適位置を狭めても良い。さらに、試料容器100に封入された純水を用いる場合は、ラマン散乱を位置検出に用いても良い。   In the above-described embodiment, the zero-order light has been described. However, when the excitation wavelength and fluorescence wavelength of the sample to be measured are known in advance, the position may be detected with the optimum excitation wavelength and fluorescence wavelength for the sample. When the excitation-side spectroscope 12 that cannot use the 0th-order light is used, monochromatic light with little sample absorption may be irradiated as excitation light, and the detector 16 may detect the wavelength of the same monochromatic light. And when the sample container 100 of the same shape can be prepared, you may narrow an optimal position by carrying out rough adjustment using a pure water or a fluorescent reagent. Furthermore, when using pure water sealed in the sample container 100, Raman scattering may be used for position detection.

本実施形態の試料設置部21は、略円形の凹部21aと凹部21aを取り囲む保持部21bとを有している例を説明しているが、試料容器100が安定して載置できれば良く、略円形状に限らず略楕円形状や略四角形状でも良く、また、試料容器100の外周を保持可能な保持部21bであれば良く、弾性変形するゴムやシリコンでの周接保持、複数の爪等の保持、絞り形状保持、スライドバー式保持などがあり、本実施形態に限定されない。   Although the sample installation part 21 of this embodiment has explained the example which has the substantially circular recessed part 21a and the holding | maintenance part 21b surrounding the recessed part 21a, what is necessary is just to be able to mount the sample container 100 stably, and substantially. The holding portion 21b is not limited to a circular shape, and may be a substantially elliptical shape or a substantially rectangular shape, and may be any holding portion 21b that can hold the outer periphery of the sample container 100. Holding, diaphragm shape holding, slide bar type holding, etc., and are not limited to this embodiment.

最適位置を求めるために、位置調整機構20を駆動させることを上述したが、位置調整は自動式でも手動式でも良い。自動式の場合は、検知器16にて検知された蛍光の強度を演算する制御部32を用いて、蛍光の強度に基づき位置調整機構20を制御することが可能である。   As described above, the position adjustment mechanism 20 is driven to obtain the optimum position. However, the position adjustment may be automatic or manual. In the case of the automatic type, it is possible to control the position adjustment mechanism 20 based on the intensity of the fluorescence using the control unit 32 that calculates the intensity of the fluorescence detected by the detector 16.

高さ調整機構24は、ネジ送り式、ラックピニオン式、ジャッキ式などの機構があり、自動式の場合はステッピングモータを使用することも可能である。周方向調整機構25では、ネジ送り式などの機構があり、自動式の場合はステッピングモータを使用することも可能である。高さ調整機構24、周方向調整機構25、回転式高さ調整機構26の機構は種々あり機構方式に限定されない。   The height adjusting mechanism 24 has a mechanism such as a screw feed type, a rack and pinion type, and a jack type. In the case of an automatic type, a stepping motor can be used. The circumferential direction adjusting mechanism 25 includes a mechanism such as a screw feed type. In the case of an automatic type, a stepping motor can be used. There are various height adjusting mechanisms 24, circumferential direction adjusting mechanisms 25, and rotary height adjusting mechanisms 26, and the mechanism is not limited to the mechanism.

励起光の90度方向に設置された検知器16にて最適位置を検知しているが、透過率測定をする際には、励起光と180度方向に透過検知器を設置して、同様のフローにて最適位置を検出しても良い。また、主に励起側分光器12及び蛍光側分光器15に回折格子を用い、検知器16にはホトマルを使用するが、透過検知器ではシリコンフォトダイオードやホトマルを用い、蛍光側分光器15を搭載していなくても良い。   The optimum position is detected by the detector 16 installed in the 90-degree direction of the excitation light. When measuring the transmittance, a transmission detector is installed in the direction of the excitation light and 180 degrees. The optimum position may be detected by the flow. In addition, a diffraction grating is mainly used for the excitation-side spectroscope 12 and the fluorescence-side spectroscope 15, and a photomultiplier is used for the detector 16. However, a silicon photodiode or photomultiplier is used for the transmission detector, and the fluorescence-side spectroscope 15 is used. It does not have to be installed.

ビームスプリッタ13と位置調整機構20との間に挿入される励起光マスク50は、位置の確認精度を高めるために励起光束を小さくする目的で使用する。通常の励起光は10mm角セルのサイズに合うように、横方向10mm、縦方向5mm程度である。励起光出射レンズと試料容器100との間に励起光マスク50を入れることで励起光束を小さくすることができる。サイズとしては、試料容器100の直径の1/5以下とすることが望ましい(例えば、試料容器100の外径が20mmの場合、4mm程度である)。ただし、励起光束が小さすぎるとノイズが大きくなるため、下限を設けた方が良いことがある(例えば2mm程度)。   The excitation light mask 50 inserted between the beam splitter 13 and the position adjusting mechanism 20 is used for the purpose of reducing the excitation light flux in order to increase the position confirmation accuracy. Normal excitation light is about 10 mm in the horizontal direction and about 5 mm in the vertical direction so as to fit the size of the 10 mm square cell. The excitation light beam can be reduced by inserting the excitation light mask 50 between the excitation light emitting lens and the sample container 100. The size is desirably 1/5 or less of the diameter of the sample container 100 (for example, about 4 mm when the outer diameter of the sample container 100 is 20 mm). However, if the excitation light beam is too small, noise increases, so it may be better to set a lower limit (for example, about 2 mm).

試料容器100に収容された試料を測定するための最適位置を決めるために、それぞれの高さにおける検知器16の出力を調べた結果のグラフを図4及び図5に示す。縦軸に強度(I)、横軸に時間(s)を取り、高さ位置は、Z1からZ6までの6カ所を選定した。   4 and 5 are graphs showing the results of examining the output of the detector 16 at each height in order to determine the optimum position for measuring the sample accommodated in the sample container 100. FIG. The vertical axis represents intensity (I), the horizontal axis represents time (s), and six height positions from Z1 to Z6 were selected.

試料容器100を位置調整機構20に載置し、それぞれの高さ位置(Zn:n=1〜6)において周方向に回転させ強度の変化をグラフ化した。図4は、第1実施形態における位置調整機構20での測定であり、各高さ位置Znの変化位置に置いて不連続なグラフとなる。また、図5は、第2実施形態における位置調整機構20であり、各高さ位置Znの変化位置においても連続なグラフとなる。図4及び図5に示されるグラフの結果に基づいて、測定対象となる試料容器100は、ピークの周方向の位置θ(例では180度付近)において最も強度の高いZ2の高さ位置で、測定が行われることが最適であることが理解される。   The sample container 100 was placed on the position adjustment mechanism 20 and rotated in the circumferential direction at each height position (Zn: n = 1 to 6), and the change in strength was graphed. FIG. 4 is a measurement by the position adjustment mechanism 20 in the first embodiment, and becomes a discontinuous graph placed at the change position of each height position Zn. FIG. 5 shows the position adjusting mechanism 20 in the second embodiment, and a continuous graph is obtained even at the change position of each height position Zn. Based on the results of the graphs shown in FIG. 4 and FIG. 5, the sample container 100 to be measured is at the height position of Z2 having the highest intensity at the peak circumferential position θ (in the example, around 180 degrees), It is understood that it is optimal that the measurement is made.

以上の方法により、試料容器100は、本実施形態の位置調整機構20により、測定上の最適位置で試料の品質確認や疑似試料の判別など、非破壊検査において継続的な安定性評価を行うことが可能となる。また、同一試料を用いて追加の検討や別の試験を行うことも可能である。   With the above method, the sample container 100 performs the continuous stability evaluation in the nondestructive inspection such as the quality check of the sample and the discrimination of the pseudo sample at the optimum position in the measurement by the position adjusting mechanism 20 of the present embodiment. Is possible. It is also possible to perform additional studies or other tests using the same sample.

位置調整機構20で最適位置にセットされた試料容器100を用いて、本実施形態の分光蛍光光度計1で分析が行われる。分析方法の一例を図1及び図6〜図8を用いて説明する。   Analysis is performed by the spectrofluorometer 1 of the present embodiment using the sample container 100 set at the optimum position by the position adjusting mechanism 20. An example of the analysis method will be described with reference to FIGS. 1 and 6 to 8.

分光蛍光光度計1のキセノンランプなど光源11から発せられた連続光は、励起側分光器12により励起光として分光され、ビームスプリッタ13を経て位置調整機構20に設置された試料容器100の試料に照射される。この時、ビームスプリッタ13で一部が分光された励起光は、モニタ検知器14にて光量(光の強度)が測定され、光源11の変動補正がなされる。   Continuous light emitted from a light source 11 such as a xenon lamp of the spectrofluorometer 1 is split as excitation light by an excitation-side spectroscope 12 and passes through a beam splitter 13 to a sample in a sample container 100 installed in a position adjusting mechanism 20. Irradiated. At this time, the excitation light partially divided by the beam splitter 13 is measured by the monitor detector 14 for the amount of light (light intensity), and the fluctuation of the light source 11 is corrected.

試料から放出された蛍光は、蛍光側分光器15にて単色光に分光され、検知器16にてその蛍光の強度に応じた電気信号として検出される。当該蛍光の強度信号は、A/D変換器33を介してデジタルデータに変換され、コンピュータ31に信号強度として取り込まれ、表示部42に測定結果が表示される。   The fluorescence emitted from the sample is split into monochromatic light by the fluorescence side spectroscope 15 and detected as an electrical signal corresponding to the intensity of the fluorescence by the detector 16. The fluorescence intensity signal is converted into digital data via the A / D converter 33, and is taken in as signal intensity by the computer 31, and the measurement result is displayed on the display unit 42.

本実施形態の分光蛍光光度計1は、波長駆動系であり、コンピュータ31の指令により制御部32を介して励起側パルスモータ17が駆動することで、目的の波長位置に励起側分光器12がセットされる。また、蛍光側分光器15もコンピュータ31の指令により制御部32を介して蛍光側パルスモータ18が駆動することで、目的の波長位置にセットされる。   The spectrofluorometer 1 of this embodiment is a wavelength drive system, and the excitation side spectroscope 12 is placed at a target wavelength position by driving the excitation side pulse motor 17 via the control unit 32 according to a command from the computer 31. Set. Further, the fluorescence side spectroscope 15 is also set to the target wavelength position by driving the fluorescence side pulse motor 18 through the control unit 32 in accordance with an instruction from the computer 31.

励起側分光器12や蛍光側分光器15は、回折格子やプリズムなどの光学素子が用いられており、励起側パルスモータ17や蛍光側パルスモータ18を動力とし、例えばギヤとカムなどの機構により、回折格子やプリズムなどを回転運動させることでスペクトルスキャンすることができる。   The excitation-side spectroscope 12 and the fluorescence-side spectroscope 15 use optical elements such as diffraction gratings and prisms, and are powered by the excitation-side pulse motor 17 and the fluorescence-side pulse motor 18, for example, by a mechanism such as a gear and a cam. Spectral scanning can be performed by rotating a diffraction grating or a prism.

一般に、試料容器100内の測定試料に対し励起光の励起波長を変化させた際の蛍光強度を測定する励起スペクトルは、励起側分光器12により励起波長を測定開始波長から測定終了波長まで変化させ、各波長の励起光を測定試料に照射し、その時の固定波長に設定されている蛍光側分光器15を経て特定波長の蛍光の変化を検知器16で検出し、A/D変換器33を介してコンピュータ31に信号強度として取り込まれる。   In general, in the excitation spectrum for measuring the fluorescence intensity when the excitation wavelength of the excitation light is changed with respect to the measurement sample in the sample container 100, the excitation wavelength is changed from the measurement start wavelength to the measurement end wavelength by the excitation side spectroscope 12. Then, the excitation light of each wavelength is irradiated to the measurement sample, the change in the fluorescence of the specific wavelength is detected by the detector 16 through the fluorescence side spectroscope 15 set to the fixed wavelength at that time, and the A / D converter 33 is Via the computer 31 as signal strength.

表示部42には、測定結果として、励起波長と蛍光強度の図6に示されるような2次元のスペクトルが表示される。図6のグラフは、特定の蛍光波長において励起波長を変化させた際の蛍光強度を示している。   On the display unit 42, a two-dimensional spectrum as shown in FIG. 6 of the excitation wavelength and the fluorescence intensity is displayed as a measurement result. The graph of FIG. 6 shows the fluorescence intensity when the excitation wavelength is changed at a specific fluorescence wavelength.

また、試料容器100内の測定試料に対し、固定波長の励起光を照射し、蛍光波長を変化させた際の波長毎の蛍光強度を測定する蛍光スペクトルは、固定波長に設定された励起側分光器12からの励起光を測定試料に照射し、その時の蛍光を蛍光側分光器15にて、測定開始波長から測定終了波長まで変化させ波長毎の蛍光の変化を検知器16で検出し、A/D変換器33を介してコンピュータ31に信号強度として取り込まれる。   In addition, the fluorescence spectrum for measuring the fluorescence intensity for each wavelength when the measurement sample in the sample container 100 is irradiated with excitation light having a fixed wavelength and the fluorescence wavelength is changed is the excitation-side spectrum set to the fixed wavelength. Excitation light from the detector 12 is irradiated onto the measurement sample, and the fluorescence at that time is changed from the measurement start wavelength to the measurement end wavelength by the fluorescence side spectroscope 15, and the change in fluorescence for each wavelength is detected by the detector 16. The signal intensity is taken into the computer 31 via the / D converter 33.

表示部42には、測定結果として、励起波長と蛍光強度の図7に示されるような2次元のスペクトルが表示される。図7のグラフは、励起光が特定波長であり、拡がりのある波長帯域の蛍光の強度を検知した結果を示している。   On the display unit 42, a two-dimensional spectrum as shown in FIG. 7 of the excitation wavelength and the fluorescence intensity is displayed as a measurement result. The graph of FIG. 7 shows the result of detecting the intensity of fluorescence in the broad wavelength band where the excitation light has a specific wavelength.

一方、試料容器100内の測定試料に対し、固定波長の励起光を照射し、固定波長の蛍光の強度を単位時間毎に測定する時間変化スペクトルは、固定波長に設定された励起側分光器12からの励起光を測定試料に照射し、その時に生じる蛍光を蛍光側分光器15の波長を固定し、時間毎の蛍光の強度変化を検知器16で検出し、A/D変換器33を介してコンピュータ31に信号強度として取り込まれる。   On the other hand, the time-varying spectrum in which the measurement sample in the sample container 100 is irradiated with excitation light having a fixed wavelength and the intensity of fluorescence having a fixed wavelength is measured every unit time is an excitation-side spectroscope 12 set to a fixed wavelength. The measurement sample is irradiated with the excitation light from the light, the wavelength of the fluorescence-side spectroscope 15 is fixed for the fluorescence generated at that time, the intensity change of the fluorescence for each time is detected by the detector 16, and the A / D converter 33 is passed through. Is taken into the computer 31 as signal intensity.

表示部42には、測定結果として、励起波長と蛍光強度の図8に示されるような2次元のスペクトルが表示される。図8のグラフは、特定波長の励起光に対応した特定波長の蛍光の強度を検知した結果を示している。試料容器100の位置関係の変動や試料の分解などが無ければパターンは実質的に一定である。   On the display unit 42, a two-dimensional spectrum as shown in FIG. 8 of the excitation wavelength and the fluorescence intensity is displayed as a measurement result. The graph of FIG. 8 shows the result of detecting the intensity of fluorescence of a specific wavelength corresponding to excitation light of a specific wavelength. If there is no change in the positional relationship of the sample container 100 or decomposition of the sample, the pattern is substantially constant.

尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

本発明に係る分光蛍光光度計は、形状が異なりラベルや刻印などがなされた試料容器内の試料を非破壊検査で行う場合、試料容器を最適な位置で測定を行う分野に適用可能である。   The spectrofluorometer according to the present invention can be applied to the field in which a sample container is measured at an optimal position when a sample in a sample container having a different shape and labeled or engraved is subjected to nondestructive inspection.

1 分光蛍光光度計
10 光度計部
11 光源
12 励起側分光器
13 ビームスプリッタ
14 モニタ検知器
15 蛍光側分光器
16 検知器
20 位置調整機構
21 試料設置部
22 駆動部
23 面内調整機構
24 高さ調整機構
25 周方向調整機構
26 回転式高さ調整機構
30 データ処理部
31 コンピュータ
32 制御部
40 操作部
100 試料容器
DESCRIPTION OF SYMBOLS 1 Spectrofluorometer 10 Photometer part 11 Light source 12 Excitation side spectroscope 13 Beam splitter 14 Monitor detector 15 Fluorescence side spectroscope 16 Detector 20 Position adjustment mechanism 21 Sample installation part 22 Drive part 23 In-plane adjustment mechanism 24 Height Adjustment mechanism 25 Circumferential adjustment mechanism 26 Rotary height adjustment mechanism 30 Data processing unit 31 Computer 32 Control unit 40 Operation unit 100 Sample container

Claims (5)

光源と、
前記光源の光から分光して励起光を生成する励起側分光器と、
測定対象の試料を収容した試料容器を保持するとともに、前記励起光の照射位置と前記試料容器が相対的に所定の位置関係になるように、前記試料容器の位置を調整可能な位置調整機構と、
前記試料から放出された蛍光を検知する検知器と、
を備える分光蛍光光度計。
A light source;
An excitation-side spectroscope that generates excitation light by splitting light from the light source;
A position adjusting mechanism capable of holding a sample container containing a sample to be measured and adjusting the position of the sample container so that the irradiation position of the excitation light and the sample container are relatively in a predetermined positional relationship; ,
A detector for detecting fluorescence emitted from the sample;
A spectrofluorometer comprising:
請求項1に記載の分光蛍光光度計であって、
前記位置調整機構が、前記試料容器の平面内位置を調整可能な面内調整機構と、前記試料容器の高さ位置を調整可能な高さ調整機構と、前記試料容器を回転させて周方向位置を調整可能な周方向調整機構とのうち少なくともいずれか一つを含む、分光蛍光光度計。
The spectrofluorometer according to claim 1, wherein
The position adjustment mechanism includes an in-plane adjustment mechanism capable of adjusting an in-plane position of the sample container, a height adjustment mechanism capable of adjusting a height position of the sample container, and a circumferential position by rotating the sample container. A spectrofluorometer including at least one of a circumferential direction adjustment mechanism capable of adjusting the angle.
請求項1に記載の分光蛍光光度計であって、
前記位置調整機構が、前記試料容器を回転させて周方向位置を調整しながら、高さも同時に調整可能な回転式高さ調整機構を含む、分光蛍光光度計。
The spectrofluorometer according to claim 1, wherein
The spectrofluorometer, wherein the position adjustment mechanism includes a rotary height adjustment mechanism that can simultaneously adjust the height while rotating the sample container to adjust the circumferential position.
請求項1に記載の分光蛍光光度計であって、
前記位置調整機構は、前記励起光の光軸中心と前記試料容器の断面中央部が一致する様に、前記試料容器の位置を調整可能である、分光蛍光光度計。
The spectrofluorometer according to claim 1, wherein
The spectrofluorometer, wherein the position adjusting mechanism is capable of adjusting the position of the sample container so that the center of the optical axis of the excitation light coincides with the center of the cross section of the sample container.
請求項1に記載の分光蛍光光度計であって、
前記検知器にて検知された蛍光の強度を演算する制御部を有し、
前記制御部は、前記蛍光の強度に基づき前記位置調整機構を制御して、前記試料容器を位置決めする、分光蛍光光度計。

The spectrofluorometer according to claim 1, wherein
Having a controller that calculates the intensity of the fluorescence detected by the detector;
The said control part is a spectrofluorometer which controls the said position adjustment mechanism based on the said fluorescence intensity, and positions the said sample container.

JP2017059577A 2017-03-24 2017-03-24 Spectral fluorometer Active JP6829466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017059577A JP6829466B2 (en) 2017-03-24 2017-03-24 Spectral fluorometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017059577A JP6829466B2 (en) 2017-03-24 2017-03-24 Spectral fluorometer

Publications (2)

Publication Number Publication Date
JP2018163006A true JP2018163006A (en) 2018-10-18
JP6829466B2 JP6829466B2 (en) 2021-02-10

Family

ID=63859267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017059577A Active JP6829466B2 (en) 2017-03-24 2017-03-24 Spectral fluorometer

Country Status (1)

Country Link
JP (1) JP6829466B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2948924A1 (en) * 2023-03-09 2023-09-21 Univ Cartagena Politecnica EQUIPMENT AND PROCEDURE FOR PERFORMING SPECTROPHOTOMETRY AND MOLECULAR FLUORIMETRY USING LED TECHNOLOGY (Machine-translation by Google Translate, not legally binding)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021108A2 (en) * 2000-09-08 2002-03-14 Large Scale Proteomics Corporation Method for detecting molecules or chemical reactions by determining variation of conductance
US20060268276A1 (en) * 2003-01-31 2006-11-30 Hideji Tajima Continuous optical measuring apparatus and continous optical measuring method
US20070008536A1 (en) * 2004-03-17 2007-01-11 Olympus Corporation Light measurement apparatus and light measurement method
JP2009222588A (en) * 2008-03-17 2009-10-01 Panasonic Corp Microplate reading device and microplate reading method
JP2012058047A (en) * 2010-09-08 2012-03-22 Hitachi High-Technologies Corp Fluorospectro-photometer, measuring method for fluorospectro-photometer, and sample cell switch device
JP2012098209A (en) * 2010-11-04 2012-05-24 Marcom:Kk Light emission property measuring device for white led manufacturing seal material and light emission property measuring method
JP2014119762A (en) * 2012-12-13 2014-06-30 Olympus Corp Method for observing a cell by using optical microscope system and optical microscope
JP2015534049A (en) * 2012-09-03 2015-11-26 ヨハン、ウォルフガング、ゲーテ−ウニベルジテートJohann Wolfgang Goethe−Universitaet Capillary cell, apparatus and method for receiving, positioning and testing a microscope sample
WO2016077741A1 (en) * 2014-11-13 2016-05-19 Marquette University Adapter for a cell holder of a spectrofluorometer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021108A2 (en) * 2000-09-08 2002-03-14 Large Scale Proteomics Corporation Method for detecting molecules or chemical reactions by determining variation of conductance
US20060268276A1 (en) * 2003-01-31 2006-11-30 Hideji Tajima Continuous optical measuring apparatus and continous optical measuring method
US20070008536A1 (en) * 2004-03-17 2007-01-11 Olympus Corporation Light measurement apparatus and light measurement method
JP2009222588A (en) * 2008-03-17 2009-10-01 Panasonic Corp Microplate reading device and microplate reading method
JP2012058047A (en) * 2010-09-08 2012-03-22 Hitachi High-Technologies Corp Fluorospectro-photometer, measuring method for fluorospectro-photometer, and sample cell switch device
JP2012098209A (en) * 2010-11-04 2012-05-24 Marcom:Kk Light emission property measuring device for white led manufacturing seal material and light emission property measuring method
JP2015534049A (en) * 2012-09-03 2015-11-26 ヨハン、ウォルフガング、ゲーテ−ウニベルジテートJohann Wolfgang Goethe−Universitaet Capillary cell, apparatus and method for receiving, positioning and testing a microscope sample
JP2014119762A (en) * 2012-12-13 2014-06-30 Olympus Corp Method for observing a cell by using optical microscope system and optical microscope
WO2016077741A1 (en) * 2014-11-13 2016-05-19 Marquette University Adapter for a cell holder of a spectrofluorometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2948924A1 (en) * 2023-03-09 2023-09-21 Univ Cartagena Politecnica EQUIPMENT AND PROCEDURE FOR PERFORMING SPECTROPHOTOMETRY AND MOLECULAR FLUORIMETRY USING LED TECHNOLOGY (Machine-translation by Google Translate, not legally binding)

Also Published As

Publication number Publication date
JP6829466B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
US6292532B1 (en) Fluorescent X-ray analyzer useable as wavelength dispersive type and energy dispersive type
JP6336710B2 (en) Optical device for detecting inhomogeneities in the sample, in particular the polarimeter
CN106645134A (en) Color measurement instrument for chemical analysis
US7456951B2 (en) Fluorescence detection method, detection apparatus and fluorescence detection program
EP0795129B1 (en) Apparatus for analysing blood and other samples
JP6985730B2 (en) Sample analysis system, display method and sample analysis method
US6295333B1 (en) Fluorescent X-ray analyzer
JP2016017823A (en) Sample plate for x-ray analysis and fluorescent x-ray analyzer
US20120298881A1 (en) Spectrophotofluorometer and fluorescence detector for liquid chromatograph
EP3673256B1 (en) A fluorescence measurement apparatus, a system and a method for determining composition of a sample
JP4592023B2 (en) Online spectral transmission color measurement method and online spectral transmission color measurement device
JP6829466B2 (en) Spectral fluorometer
JP5002980B2 (en) Rice quality measuring method and rice quality measuring device
JP2015007548A (en) Spectrophotofluorometer
WO2014175363A1 (en) Component-concentration measurement device and method
EP2320211B1 (en) Spectrometer
US20210048391A1 (en) Determining composition of a sample
JP2006275901A (en) Device and method for crystal evaluation
JPS58143254A (en) Substance identifying device
JP2010019626A (en) Element analyzer and element analysis method
JP2006317465A (en) X-ray analysis method and x-ray analysis device
WO2018198364A1 (en) Fluorescence spectrophotometer, spectrometry method, and control software for fluorescence spectrophotometer
JPH0961355A (en) Optical axis moving type fluorometer and measuring method
JP5397352B2 (en) Fluorescence spectrophotometer
CN2627499Y (en) Laser induced breakdown spectrum coaly analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210107

R150 Certificate of patent or registration of utility model

Ref document number: 6829466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250