JP2018162999A - Method for inspecting safety valve operation and safety valve operation inspection device - Google Patents

Method for inspecting safety valve operation and safety valve operation inspection device Download PDF

Info

Publication number
JP2018162999A
JP2018162999A JP2017059319A JP2017059319A JP2018162999A JP 2018162999 A JP2018162999 A JP 2018162999A JP 2017059319 A JP2017059319 A JP 2017059319A JP 2017059319 A JP2017059319 A JP 2017059319A JP 2018162999 A JP2018162999 A JP 2018162999A
Authority
JP
Japan
Prior art keywords
safety valve
pressure
detected
time
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017059319A
Other languages
Japanese (ja)
Inventor
中澤 幸子
Sachiko Nakazawa
幸子 中澤
高木 誠司
Seiji Takagi
誠司 高木
真嗣 ▲高▼田
真嗣 ▲高▼田
Shinji Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017059319A priority Critical patent/JP2018162999A/en
Publication of JP2018162999A publication Critical patent/JP2018162999A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for inspecting safety valve operation and a safety valve operation inspection device with which it is possible to detect start-to-discharge, blowout and flow-stop with high accuracy.SOLUTION: A safety valve 2 to be inspected is immersed in a transparent water tank 1 filled with a liquid 13. A camera 3 is installed right above the safety valve 2. An illumination 4, with its illumination range limited to the vicinity of an opening of the safety valve 2, is installed on a side of the safety valve 2. The pressure of air supplied to the safety value 2 is gradually raised. An image processing unit 5 analyzes the captured image of the camera 3, detects generation and extinction of air bubbles near the opening of the safety valve 2, and detects a time when air bubbles are detected first as start-to-discharge, a time when air bubbles are generated in succession in a given duration of time as blowout, and a time when air bubbles are no longer generated for a given duration of time after gas supply is stopped, as flow-stop. A pressure monitoring unit 10 detects supplied pressure with a pressure gauge 11, and recognizes the pressure at the time of start-to-discharge as start-to-discharge pressure, the pressure when blowout is detected as blowout pressure, and the pressure at the time of flow-stop as flow-stop pressure.SELECTED DRAWING: Figure 1

Description

この発明は、安全弁の作動検査方法及び安全弁の作動検査装置に関する。   The present invention relates to a safety valve operation inspection method and a safety valve operation inspection device.

安全弁は流体の圧力が設定圧力になった時に、弁を開いて流体を逃すことで機器や配管等の破損を防止する役割を担っている。そのため安全性を確保する観点から、定期的な検査が法的に義務付けられている。   The safety valve plays a role of preventing damage to equipment or piping by opening the valve and releasing the fluid when the fluid pressure reaches the set pressure. Therefore, regular inspections are legally required from the viewpoint of ensuring safety.

安全弁の性能を示す指標として、吹始め圧力、吹出し圧力、吹止まり圧力、の3つの圧力がある。安全弁の入口側の圧力が増加して、出口側で流体の微量の流出が検出されたときが吹始めであり、このときの入口側の圧力が吹始め圧力である。さらに入口側の圧力が増加して、安全弁がポッピング、即ち、弁体の移動量が瞬間的に増大し、連続して内部の流体を吹出す動作を行ったときが吹出しであり、このときの入口側の圧力が吹出し圧力である。また、入口側の圧力が減少して、安全弁が閉じるときが吹止まりであり、このときの入口側の圧力が吹止まり圧力である。安全弁の性能試験のなかには、これらの圧力が適正な範囲内にあることを検査する作動検査がある。   As an index indicating the performance of the safety valve, there are three pressures: a blow start pressure, a blow pressure, and a blow stop pressure. When the pressure on the inlet side of the safety valve increases and a minute outflow of fluid is detected on the outlet side, the start of blowing is the pressure at the inlet side at this time. When the pressure on the inlet side further increases, the safety valve pops, that is, the amount of movement of the valve element increases momentarily, and the operation of continuously blowing out the internal fluid is the blowout. The pressure on the inlet side is the blowing pressure. Further, when the pressure on the inlet side is reduced and the safety valve is closed, the blowing is stopped, and the pressure on the inlet side at this time is the blowing stop pressure. Among safety valve performance tests is an operational test to check that these pressures are in the proper range.

従来は、安全弁から気体が洩れる際の音や振動、安全弁の出口開口部に張った石けん水の膜の膨らみ等によって吹始め、吹出し、吹止まりを検出していた。   Conventionally, blowing, blowing, and stopping are detected by sound and vibration when gas leaks from a safety valve, swelling of a soapy water film stretched at an outlet opening of the safety valve, and the like.

たとえば特許文献1には、供給する気体の圧力を徐々に上昇させ、安全弁から気体が吹始めたときに、安全弁から発せられる振動を加速度センサで検出し、そのときの圧力を圧力センサにて求め、設定圧力と比較する作動検査方法が開示されている。   For example, in Patent Document 1, when the pressure of the gas to be supplied is gradually increased, and the gas starts to blow from the safety valve, vibration generated from the safety valve is detected by an acceleration sensor, and the pressure at that time is obtained by the pressure sensor. An operation inspection method for comparing with a set pressure is disclosed.

特許文献2には、安全弁に供給する気体を昇圧する工程と供給を停止して放置する工程とを交互に繰返し、放置中に圧力変動を検出したときを吹始めとし、吹始め後に気体を放出して減圧する工程と減圧を停止して放置する工程とを交互に繰返し、放置中に圧力変動がないと検出したときを吹止まりとする作動検査方法が開示されている。   In Patent Document 2, the process of boosting the gas supplied to the safety valve and the process of stopping and leaving the gas are alternately repeated, and when the pressure fluctuation is detected while the gas is left, the blowing starts and the gas is released after the blowing starts. Then, an operation inspection method is disclosed in which the step of reducing pressure and the step of leaving the pressure reduction stopped are repeated alternately, and the blowout is stopped when it is detected that there is no pressure fluctuation during the time of leaving.

特開平6−137988号公報JP-A-6-137888 特開2010−43967号公報JP 2010-43967 A

特許文献1に開示された方法では、吹始め時の微量な気体の流出で生じる振動は僅かであるため、吹始めの瞬間を精度良く加速度センサで捉えることは困難である。精度良く捉えるために高精度なセンサを採用すると、非常に高価となる。   In the method disclosed in Patent Document 1, since the vibration generated by the outflow of a small amount of gas at the start of blowing is slight, it is difficult to accurately capture the moment of the beginning of blowing with the acceleration sensor. If a high-accuracy sensor is used to capture with good accuracy, it becomes very expensive.

また特許文献2に開示された方法では、気体の供給を停止する工程が必要であるため、連続した気体の流出が検出される状態である吹出しを精度良く検出することは困難である。   In addition, the method disclosed in Patent Document 2 requires a step of stopping the supply of gas, and thus it is difficult to accurately detect a blowout in a state where a continuous outflow of gas is detected.

本発明の目的は、上記事情に鑑み、吹始め、吹出し、吹止まりを精度良く検出できる安全弁の作動検査方法及び安全弁の作動検査装置を提供することにある。   In view of the above circumstances, an object of the present invention is to provide an operation inspection method for a safety valve and an operation inspection device for a safety valve that can accurately detect the start of blowing, blowing out, and blowing stop.

本発明に係る安全弁の作動検査方法は、検査対象の安全弁を、安全弁の開口部が浸かるように液体内に設置する工程と、安全弁を撮像する撮像工程と、安全弁に気体を供給する気体供給工程と、検出工程とを含む。検出工程では、まず気体供給工程の供給圧力を上昇し、撮像工程により得られた画像を解析して、気泡の発生を検出した時点を吹始めとして検出する。次に、吹始め検出後、第1の基準時間内に基準数以上の気泡の発生を検出した時点を吹出しとして検出する。そして吹出し検出後、気体供給工程による安全弁への気体の供給を停止し、撮像工程により得られた画像を解析して第2の基準時間以上気泡が発生しなかったことを検出した時点を吹止まりとして検出する。   The method for inspecting the operation of the safety valve according to the present invention includes a step of installing a safety valve to be inspected in a liquid so that an opening of the safety valve is immersed, an imaging step of imaging the safety valve, and a gas supply step of supplying gas to the safety valve And a detection step. In the detection step, first, the supply pressure in the gas supply step is increased, the image obtained in the imaging step is analyzed, and the point in time when the generation of bubbles is detected is detected as the start of blowing. Next, after the start of blowing is detected, the point in time when the generation of bubbles of the reference number or more is detected within the first reference time is detected as blowing. Then, after detecting the blowout, the supply of gas to the safety valve in the gas supply process is stopped, and the time point when it is detected that no bubbles are generated over the second reference time by analyzing the image obtained by the imaging process is stopped. Detect as.

本発明によれば、吹始め、吹出し、吹止まりを精度良く検出することができる。   According to the present invention, it is possible to accurately detect the start of blowing, blowing out, and stopping of blowing.

本発明の実施の形態1の安全弁の作動検査装置の正面図1 is a front view of a safety valve operation inspection device according to a first embodiment of the present invention. 本発明の実施の形態1の安全弁の作動検査装置における水面の気泡残留を示した正面図The front view which showed the bubble remaining of the water surface in the action | operation inspection apparatus of the safety valve of Embodiment 1 of this invention 本発明の実施の形態1の安全弁の作動検査装置における複数台のカメラを用いた時の正面図Front view when using a plurality of cameras in the safety valve operation inspection apparatus of Embodiment 1 of the present invention 本発明の実施の形態1の安全弁の作動検査装置における別の照明例を示した正面図The front view which showed another example of illumination in the operation | movement inspection apparatus of the safety valve of Embodiment 1 of this invention 本発明の実施の形態1の安全弁の作動検査装置における作動検査の流れを示すフローチャートThe flowchart which shows the flow of the operation | movement inspection in the operation inspection apparatus of the safety valve of Embodiment 1 of this invention. 本発明の実施の形態1の安全弁の作動検査装置におけるフラッシング工程での圧力変化を示すグラフThe graph which shows the pressure change in the flushing process in the operation | movement inspection apparatus of the safety valve of Embodiment 1 of this invention 本発明の実施の形態1の安全弁の作動検査装置におけるフラッシング工程のフローチャートThe flowchart of the flushing process in the operation inspection apparatus of the safety valve of Embodiment 1 of this invention 本発明の実施の形態1の安全弁の作動検査装置における気泡検出のフローチャートFlowchart of bubble detection in the safety valve operation inspection device of Embodiment 1 of the present invention (a)は本発明の実施の形態1の安全弁の作動検査装置における圧力粗調整工程での圧力変化を示すグラフ。(b)は圧力微調整工程での圧力変化を示すグラフ(A) is a graph which shows the pressure change in the pressure rough adjustment process in the operation | movement inspection apparatus of the safety valve of Embodiment 1 of this invention. (B) is a graph showing the pressure change in the pressure fine adjustment step. 本発明の実施の形態1の安全弁の作動検査装置における上面から見た照明の位置と撮像画像のイメージ図The position of the illumination seen from the upper surface and the image figure of a picked-up image in the operation inspection apparatus of the safety valve of Embodiment 1 of this invention 本発明の実施の形態1の安全弁の作動検査装置におけるマスタ画像Master image in safety valve operation inspection device of embodiment 1 of the present invention 本発明の実施の形態1の安全弁の作動検査装置における気泡発生時の画像The image at the time of bubble generation in the safety valve operation inspection device of Embodiment 1 of the present invention 本発明の実施の形態1の安全弁の作動検査装置における処理範囲例を示した画像The image which showed the processing range example in the operation inspection apparatus of the safety valve of Embodiment 1 of this invention 本発明の実施の形態1の安全弁の作動検査装置における吹始め検出工程のフローチャートThe flowchart of the blow start detection process in the operation inspection apparatus of the safety valve of Embodiment 1 of this invention 本発明の実施の形態1の安全弁の作動検査装置における吹出し検出工程のフローチャートThe flowchart of the blowing detection process in the operation inspection apparatus of the safety valve of Embodiment 1 of this invention 本発明の実施の形態1の安全弁の作動検査装置における吹止まり検出工程のフローチャートFlowchart of a blow-off detection process in the safety valve operation inspection device according to the first embodiment of the present invention. 本発明の実施の形態2の安全弁の作動検査装置の正面図Front view of the safety valve operation inspection device according to the second embodiment of the present invention. (a)は本発明の実施の形態3の安全弁の作動検査装置の正面図。(b)は上面から見た照明の位置と撮像画像のイメージ図(A) is a front view of the operation inspection apparatus of the safety valve of Embodiment 3 of this invention. (B) is the position of the illumination viewed from above and the image of the captured image (a)は本発明の実施の形態3の別の形態の安全弁の作動検査装置の正面図。(b)は上面から見た照明の位置と撮像画像のイメージ図(A) is a front view of the operation inspection device of the safety valve of another form of Embodiment 3 of the present invention. (B) is the position of the illumination viewed from above and the image of the captured image

(実施の形態1)
以下、この発明の実施の形態1に係る安全弁の作動検査方法と安全弁の作動検査装置を図面を参照して説明する。
図1は、実施の形態1に係る安全弁の作動検査装置の正面図である。図1において、検査対象である安全弁2が水槽1内の液体13の中に沈められている。水槽1の上部には安全弁2を撮像するカメラ3、側面には安全弁2の開口部を照射する照明4が設置され、カメラ3と照明4は画像処理部5に接続されている。また気体を供給する気体供給ボンベ9から、圧力を制御する電空レギュレータ8と、気体の供給あるいは停止を切り替える電磁弁7に接続された配管14を通して、安全弁2に気体が供給される。電空レギュレータ8と電磁弁7は圧力制御部6に接続されている。また、安全弁2は配管14を通じて圧力計11に接続され、圧力計11は圧力監視部10に接続されている。
(Embodiment 1)
Hereinafter, a safety valve operation inspection method and a safety valve operation inspection device according to Embodiment 1 of the present invention will be described with reference to the drawings.
1 is a front view of a safety valve operation inspection device according to Embodiment 1. FIG. In FIG. 1, a safety valve 2 to be inspected is submerged in a liquid 13 in a water tank 1. A camera 3 that images the safety valve 2 is installed at the top of the water tank 1, and an illumination 4 that illuminates the opening of the safety valve 2 is installed on the side surface. The camera 3 and the illumination 4 are connected to the image processing unit 5. Further, the gas is supplied to the safety valve 2 from the gas supply cylinder 9 for supplying the gas through the electropneumatic regulator 8 for controlling the pressure and the pipe 14 connected to the electromagnetic valve 7 for switching the supply or stop of the gas. The electropneumatic regulator 8 and the electromagnetic valve 7 are connected to the pressure control unit 6. The safety valve 2 is connected to the pressure gauge 11 through the pipe 14, and the pressure gauge 11 is connected to the pressure monitoring unit 10.

水槽1は、透光性材料、例えば、側面からの照明で照射可能なガラス材質、樹脂材質等から形成されている。水槽1の下には、水槽1の滑り止めや割れ防止を兼ねて黒色のゴム材質のシート12が敷かれている。シート12は黒色である必要はなく、鏡面などカメラ3に映る安全弁2の背景が明となるもの以外であればよい。シート12の材質はゴムに限らず、割れや滑りの対策ができれば、任意の材料でよい。あるいはシート12ではなく置き場となる台自体に滑り止めを持つ材質にすればよい。割れや滑りの懸念がない場合は、水槽1の底面自体に色を付けてもよいし、台の色を変えてもよい。水槽1に入れる液体13として、以下の説明では、水を例示するが、安全弁2に流す気体に対して不溶性をもつ液体であればよく、水に限らない。例えば、安全弁2に付着した油の影響で図2のように気泡13aが水面に残る場合には、液体13として、水の代わりに石鹸水などの界面活性剤を用いてもよい。   The water tank 1 is formed of a translucent material, for example, a glass material, a resin material, or the like that can be irradiated by illumination from a side surface. A black rubber sheet 12 is laid under the water tank 1 to prevent the water tank 1 from slipping and cracking. The seat 12 does not need to be black, and may be anything other than a mirror surface such as a mirror surface on which the background of the safety valve 2 is bright. The material of the sheet 12 is not limited to rubber, and any material may be used as long as measures against cracking and slipping can be taken. Alternatively, a material having a non-slip material may be used instead of the seat 12 instead of the seat itself. If there is no concern about cracking or slipping, the bottom surface of the water tank 1 may be colored or the color of the table may be changed. In the following description, water is exemplified as the liquid 13 to be placed in the water tank 1, but it is not limited to water as long as it is insoluble in the gas flowing through the safety valve 2. For example, when bubbles 13a remain on the water surface as shown in FIG. 2 due to the effect of oil attached to the safety valve 2, a surfactant such as soapy water may be used as the liquid 13 instead of water.

作動検査の対象となる安全弁2は、バネ式の安全弁を想定しており、安全弁2の作動時に弁体が鉛直上向きに上昇するように設置される。   The safety valve 2 to be subjected to the operation inspection is assumed to be a spring-type safety valve, and is installed so that the valve body rises vertically upward when the safety valve 2 is operated.

カメラ3は、図10に例示するように、安全弁2が一視野に収まる位置に設置される。安全弁2がカメラ3の一視野に収まらない場合には、図3に示すように、複数台のカメラ3で安全弁2を撮影してもよい。また、天井の水銀灯などからの光により撮影像に影ができたり、反射光が写り込む等の影響を受ける場合には、遮光板を設けてもよい。また、カメラ3はカラー情報が不要であるため、モノクロカメラを用いることができるが、カラーカメラを用いてもよい。   As illustrated in FIG. 10, the camera 3 is installed at a position where the safety valve 2 fits in one field of view. When the safety valve 2 does not fit in one field of view of the camera 3, the safety valve 2 may be photographed by a plurality of cameras 3 as shown in FIG. 3. In addition, a light-shielding plate may be provided in the case where the photographed image is shaded by reflected light from a ceiling mercury lamp or reflected light is reflected. In addition, since the camera 3 does not need color information, a monochrome camera can be used, but a color camera may be used.

照明4は、水槽1の側面のうち対向しない2面に、図10に平面図で示すように、照射面を水槽に向けて設置されている。照明4の光源は、例えば、バー状の白色LED(Light Emitting Diode)から構成される。ただし、発光色は白色に限らず、青や赤などでもよいし、形状は面状でもよい。さらに、光源はLEDに限らず、ハロゲンランプなどでもよい。照明4は、安全弁2の開口部のみを照射する位置と照射幅となるように設置されている。安全弁2からの気泡は開口部から発生する。従って、照明4をこのように設置することにより、発生直後の気泡が照射範囲に存在し、浮上中の気泡が照射範囲から外れることとなり、発生直後の気泡のみをカメラ3で撮像できる。   The illumination 4 is installed on two surfaces of the side surface of the water tank 1 that do not face each other with the irradiation surface facing the water tank as shown in a plan view in FIG. The light source of the illumination 4 is composed of, for example, a bar-shaped white LED (Light Emitting Diode). However, the emission color is not limited to white, but may be blue or red, and the shape may be planar. Further, the light source is not limited to the LED, but may be a halogen lamp or the like. The illumination 4 is installed so as to have a position and an irradiation width at which only the opening of the safety valve 2 is irradiated. Bubbles from the safety valve 2 are generated from the opening. Therefore, by installing the illumination 4 in this way, bubbles immediately after the occurrence are present in the irradiation range, and the floating bubbles are out of the irradiation range, and only the bubbles immediately after the occurrence can be imaged by the camera 3.

画像処理部5は、カメラ3が撮像した画像を処理することにより、気泡の有無を検出し、これにより、気泡の発生を検出した時点を吹始めとし、第1の基準時間内に基準数以上の気泡の発生を検出した時点を吹出しとし、前記吹出し検出後、第2の基準時間以上気泡が発生しなかったことを検出した時点を吹止まりとして検出する。画像処理と検出の具体的手法は後述する。   The image processing unit 5 processes the image captured by the camera 3 to detect the presence or absence of bubbles, thereby starting the blowing when the occurrence of bubbles is detected, and exceeding the reference number within the first reference time. The point in time when the generation of bubbles is detected is determined as blowing, and the point in time at which it is detected that bubbles have not been generated for the second reference time or more after the detection of blowing is detected as blowing stop. Specific methods of image processing and detection will be described later.

なお、図4に示すように、安全弁2から液体13の液面までの距離を短くし、照明4を、安全弁2の開口部から上を照射する位置と照射幅となるように設置してもよい。このように設置することにより浮上中の気泡はすぐに水面に達して消滅するため、発生直後の気泡のみをカメラ3で撮像できる。   In addition, as shown in FIG. 4, even if the distance from the safety valve 2 to the liquid level of the liquid 13 is shortened and the illumination 4 is installed so as to have an irradiation position and an irradiation width from the opening of the safety valve 2 Good. By installing the air bubbles in this way, the air bubbles that have risen immediately reach the water surface and disappear, so that only the air bubbles immediately after generation can be imaged by the camera 3.

電磁弁7は、電磁制御により弁を開閉して、気体供給ボンベ9から安全弁2への気体の供給と停止を切り替える装置である。気体供給ボンベ9は気体を蓄積している。
電空レギュレータ8は、電気信号を空気圧力に変換して圧力を制御する装置である。
電磁弁7と電空レギュレータ8は、圧力制御部6により制御される。電磁弁7と電空レギュレータ8とは、常に圧力制御部6により制御されているが、理解を容易にするため、以下の説明では、逐一の言及を省略する。また、ここでの気体は空気とするが、液体13に対して不溶性の気体であればよく、空気に限らない。
The electromagnetic valve 7 is a device that switches between supply and stop of gas from the gas supply cylinder 9 to the safety valve 2 by opening and closing the valve by electromagnetic control. The gas supply cylinder 9 stores gas.
The electropneumatic regulator 8 is a device that converts an electric signal into air pressure to control the pressure.
The solenoid valve 7 and the electropneumatic regulator 8 are controlled by the pressure control unit 6. Although the solenoid valve 7 and the electropneumatic regulator 8 are always controlled by the pressure control unit 6, in order to facilitate understanding, the following description is omitted one by one. Moreover, although the gas here is air, it should just be an insoluble gas with respect to the liquid 13, and is not restricted to air.

圧力計11は安全弁2内の圧力を測定し、圧力監視部10はその圧力値を取得する。圧力監視部10は、画像処理部5が、吹始めと検出した時点の圧力値を吹始め圧力とし、吹出しと検出した時点の圧力値を吹出し圧力とし、吹止まりと検出した時点の圧力値を吹止まり圧力とする。   The pressure gauge 11 measures the pressure in the safety valve 2, and the pressure monitoring unit 10 acquires the pressure value. The pressure monitoring unit 10 uses the pressure value at the time when the image processing unit 5 detects the start of blowing as the blowing start pressure, the pressure value at the time when the blowing is detected as the blowing pressure, and the pressure value at the time when the blowing stop is detected. Let the blow-off pressure.

画像処理部5、圧力制御部6、圧力監視部10は、例えば、コンピュータから構成されうる。この場合、コンピュータは、プロセッサとメモリとを備え、メモリは後述する各制御動作を実行するためのプログラム、後述するマスタ画像等の固定データを記憶する。プロセッサは、後述するプログラムを実行することにより、機能的に、画像処理部5、圧力制御部6、圧力監視部10として機能する。コンピュータ自体は、既知の一般的な構成のものでよい。   The image processing unit 5, the pressure control unit 6, and the pressure monitoring unit 10 can be configured from, for example, a computer. In this case, the computer includes a processor and a memory, and the memory stores fixed data such as a program for executing each control operation described later and a master image described later. The processor functionally functions as the image processing unit 5, the pressure control unit 6, and the pressure monitoring unit 10 by executing a program to be described later. The computer itself may have a known general configuration.

次に、上記構成の検査装置により、安全弁2の作動検査を行う方法を説明する。
図10は、図1に示す安全弁の作動検査装置を上面から見た照明4の位置と撮像画像のイメージ図である。検査対象の安全弁2から発生した気泡がない状態では、カメラ3がとらえる画像は、図11に例示するように、安全弁2の外形のみが明となる。一方、安全弁2から気泡が発生した場合は図12に例示するように、気泡が明となった画像が得られる。
Next, a method for inspecting the operation of the safety valve 2 by the inspection apparatus having the above configuration will be described.
FIG. 10 is an image diagram of the position of the illumination 4 and a captured image of the safety valve operation inspection apparatus shown in FIG. 1 as viewed from above. In the state where there is no air bubble generated from the safety valve 2 to be inspected, the image captured by the camera 3 is only the outer shape of the safety valve 2 as illustrated in FIG. On the other hand, when air bubbles are generated from the safety valve 2, an image in which the air bubbles are bright is obtained as illustrated in FIG.

検査開始前に、あらかじめカメラ3にて液体13中の安全弁2を、気泡が発生していない状態で撮像し、その撮像画像をマスタ画像として画像処理部5の記憶部に記録しておく。図11はマスタ画像の一例でもある。   Prior to the start of inspection, the safety valve 2 in the liquid 13 is imaged in advance with the camera 3 in a state where no bubbles are generated, and the captured image is recorded in the storage unit of the image processing unit 5 as a master image. FIG. 11 is also an example of a master image.

次に、図5のフローチャートを参照して、上記構成の作動検査装置を用いた作動検査方法を説明する。   Next, an operation inspection method using the operation inspection apparatus having the above configuration will be described with reference to the flowchart of FIG.

まず、安全弁2の作動検査に先立ち、ステップS1のフラッシング工程を実施して安全弁2内のバネに絡まりやねじれがないかを確認する。より具体的には、圧力制御部6は、安全弁2が開く圧力POPを超える圧力値を電空レギュレータ8に指定し、電磁弁7の開閉を予め設定されたn回(nは2以上の自然数)、例えば10回、繰り返す。これにより、図6に例示するようなパルス状の圧力が検査対象の安全弁2の入力端に印加される。画像処理部5は、そのときの気泡の有無を検出することで、バネの絡まりやねじれによる放出動作の異常の有無を確認する。電磁弁7の開閉で、安全弁2にパルス状の圧力を繰り返して印加したが、電空レギュレータ8の指定圧力値の上げ下げによって安全弁2に印加する圧力を変更してもよい。 First, prior to the operation check of the safety valve 2, the flushing step of Step S <b> 1 is performed to check whether the spring in the safety valve 2 is entangled or twisted. More specifically, the pressure control unit 6 designates a pressure value exceeding the pressure P OP at which the safety valve 2 opens to the electropneumatic regulator 8, and opens and closes the solenoid valve 7 n times (n is 2 or more). Natural number), for example, 10 times. Thereby, a pulsed pressure as illustrated in FIG. 6 is applied to the input end of the safety valve 2 to be inspected. The image processing unit 5 detects the presence / absence of bubbles at that time, thereby confirming the presence / absence of abnormality in the discharge operation due to the entanglement or twisting of the spring. Although the pulsed pressure is repeatedly applied to the safety valve 2 by opening and closing the electromagnetic valve 7, the pressure applied to the safety valve 2 may be changed by raising or lowering the specified pressure value of the electropneumatic regulator 8.

ここで、図7を参照して、フラッシング工程における処理の一例を詳細に説明する。フラッシング工程を開始すると、まずステップS1−1にて、圧力制御部6が、圧力POPを超える圧力値を電空レギュレータ8に指定し、ステップS1−2にて電磁弁7を開く。画像処理部5が、ステップS1−3にて安全弁2をカメラ3に撮像させ、ステップS1−4にてカメラ3が取得した画像を処理して、気泡があるかを調べる。 Here, an example of processing in the flushing process will be described in detail with reference to FIG. When you start the flushing process, first in step S1-1, the pressure control unit 6, to specify the pressure values exceeding the pressure P OP to the electropneumatic regulator 8, opening the solenoid valve 7 in step S1-2. The image processing unit 5 causes the camera 3 to image the safety valve 2 in step S1-3, processes the image acquired by the camera 3 in step S1-4, and checks whether there is a bubble.

ここで、気泡の有無を検出する工程の詳細を図8を参照して説明する。処理を開始すると、まず、ステップS101で、撮像画像とマスタ画像との差分を取り、ステップS102にて差分画像を二値化する。このとき、気泡とは関係のない変化を差分として取得しないよう、安全弁2の内側の領域は処理の対象とせず、安全弁2の外側のみを処理対象として、両画像を比較する。気泡が生じていなければ、撮像画像とマスタ画像との差分がなく、差分画像の二値化画像は、全ての画素が階調0、即ち黒一色となる。一方、撮像画像に気泡が生じている場合にはマスタ画像との差分があるため、二値化画像には白色の部分が存在する。よってステップS103にて二値化画像に白色の部分が存在するかを調べることにより気泡の有無を検出できる。   Here, details of the process of detecting the presence or absence of bubbles will be described with reference to FIG. When the process is started, first, in step S101, the difference between the captured image and the master image is taken, and in step S102, the difference image is binarized. At this time, in order not to acquire a change unrelated to the bubble as a difference, the area inside the safety valve 2 is not processed, and only the outside of the safety valve 2 is processed, and both images are compared. If no bubble is generated, there is no difference between the captured image and the master image, and the binary image of the difference image has a gradation of 0, that is, one black color for all pixels. On the other hand, when a bubble is generated in the captured image, there is a difference from the master image, so a white portion exists in the binarized image. Therefore, the presence / absence of bubbles can be detected by examining whether a white portion exists in the binarized image in step S103.

図7のステップS1−4において、気泡があると判別した場合は安全弁2が正常に開いたと判断できるため、ステップS1−5にて電磁弁7を閉じる。ステップS1−4で気泡がないと判別した場合は、ステップS1−6にて安全弁2の入力側圧力が指定値POPに到達しているか確認する。指定値POPに到達していれば安全弁2が正常に開かないと判断できるため動作異常として通知し、未達であればステップS1−3の撮像から処理を繰り返す。 In Step S1-4 of FIG. 7, when it is determined that there is a bubble, it can be determined that the safety valve 2 has been normally opened, so the electromagnetic valve 7 is closed in Step S1-5. If it is determined that there is no bubble in the step S1-4, the input side pressure of the safety valve 2 at step S1-6 to check whether the reached the specified value P OP. If reached the specified value P OP safety valve 2 is notified as abnormal operation it can be determined that does not open properly, and repeats the processing from the imaging of step S1-3 if not reached.

ステップS1−5にて電磁弁7を閉じたのち、ステップS1−7にてカメラ3を制御して撮像し、ステップS1−8にて撮像画像を解析して気泡があるかを調べる。気泡がないと判別した場合は、安全弁2が正常に閉じたと判断でき、今回のフラッシング動作について正常であると確認できたことになるので、ステップS1−9にて累積フラッシング回数を1増やす。ステップS1−8にて、撮像画像を解析して気泡があると判別した場合は、ステップS1−10にて入力側圧力が0に到達しているか確認する。0に到達している場合、安全弁2が正常に閉じないと判断できるため動作異常として通知し、未達であればステップS1−7の撮像から処理を繰り返す。   After the electromagnetic valve 7 is closed in step S1-5, the camera 3 is controlled to capture an image in step S1-7, and the captured image is analyzed in step S1-8 to check for bubbles. If it is determined that there is no bubble, it can be determined that the safety valve 2 has been normally closed, and it has been confirmed that the current flushing operation is normal, so the cumulative number of flushing is incremented by 1 in step S1-9. If it is determined in step S1-8 that the captured image is analyzed and air bubbles are present, it is confirmed in step S1-10 whether the input side pressure has reached zero. If it has reached 0, it can be determined that the safety valve 2 does not close normally, so that it is notified as an abnormal operation.

以上の流れで累積フラッシング回数が指定回数に到達したかをステップS1−11にて確認し、到達していなければステップS1−2に戻り電磁弁7を再び開く。指定回数に到達していればフラッシング工程は異常なしと判断し、フラッシング工程を終了する。   In step S1-11, it is confirmed whether the cumulative flushing number has reached the specified number in the above flow. If not, the process returns to step S1-2 and the electromagnetic valve 7 is opened again. If the specified number of times has been reached, it is determined that there is no abnormality in the flushing process, and the flushing process is terminated.

フラッシング工程が終了したら図5に示すように、ステップS2にて、フラッシング工程の際に閉じた電磁弁7を開く。   When the flushing process is completed, as shown in FIG. 5, the electromagnetic valve 7 closed in the flushing process is opened in step S2.

続いて、ステップS3にて圧力の粗調整を行う圧力粗調整工程を行う。図9(a)のグラフに示すように、圧力粗調整工程では、段階的に電空レギュレータ8に指定する圧力値を上昇させていく。段階的に圧力値を上昇させる際、安全弁2内の圧力を安定させるためにウェイト時間を設ける。   Subsequently, a rough pressure adjusting step for performing rough pressure adjustment is performed in step S3. As shown in the graph of FIG. 9A, in the rough pressure adjusting step, the pressure value designated for the electropneumatic regulator 8 is increased step by step. When the pressure value is increased step by step, a wait time is provided to stabilize the pressure in the safety valve 2.

ステップS3で圧力粗調整を行ったらステップS4にて指定圧力が上限圧力に到達したかを確認する。ここで上限圧力は圧力POPに満たない値で、十分に余裕のある値、例えば圧力POPの70〜80%程度である。指定圧力が上限圧力に到達していれば(ステップS4;Yes)、ステップS5の吹始め検出工程へ進み、未達であれば(ステップS4;No)ステップS3の圧力粗調整から処理を繰り返す。 If rough pressure adjustment is performed in step S3, it is confirmed in step S4 whether the designated pressure has reached the upper limit pressure. Here, the upper limit pressure is a value that is less than the pressure P OP and has a sufficient margin, for example, about 70 to 80% of the pressure P OP . If the specified pressure has reached the upper limit pressure (step S4; Yes), the process proceeds to the blow start detecting process in step S5, and if not reached (step S4; No), the process is repeated from the rough pressure adjustment in step S3.

なお、続いて実行される吹始め検出処理(ステップS5)とその後実行される吹出し検出処理(ステップS7)では、圧力微調整工程が実行される。ここで、この圧力微調整工程について、圧力粗調整と対比して説明する。圧力微調整工程でも、図9(b)に示すように、段階的に指定圧力を上昇させて一定時間待機する。この工程において、指定圧力の上昇幅は圧力粗調整工程と比べて小さくする。圧力粗調整工程と同様、安全弁2内の圧力を安定させるためにウェイト時間を設ける。   In the subsequent blow start detection process (step S5) and the blow detection process executed thereafter (step S7), the pressure fine adjustment process is executed. Here, the pressure fine adjustment step will be described in comparison with the rough pressure adjustment. Also in the pressure fine adjustment step, as shown in FIG. 9B, the designated pressure is increased step by step and the system waits for a certain period of time. In this process, the increase width of the specified pressure is made smaller than that in the rough pressure adjustment process. As in the rough pressure adjustment step, a wait time is provided to stabilize the pressure in the safety valve 2.

圧力粗調整、微調整の数値例を挙げると、POPが60kPaの場合、粗調整では10kPa毎に上昇させ、1秒間待機するのを繰り返し、40〜50kPaまで圧力を上昇させる。続いて微調整では1kPa毎に上昇させ、1秒間待機するのを繰り返す。 Pressure coarse adjustment, and numerical examples of the fine adjustment, if P OP is 60 kPa, the coarse adjustment is increased to every 10 kPa, repeated to wait for one second to raise the pressure to 40~50KPa. Subsequently, in fine adjustment, it is raised every 1 kPa, and waiting for 1 second is repeated.

図5のステップS5における吹始め検出工程では、圧力制御部6が圧力微調整工程を行い、画像処理部5が、撮像画像を処理して気泡を初めて検出した瞬間を吹始めとして検出する。圧力監視部10は、ステップS6の吹始め圧力取得工程で、その時の圧力計11の圧力を吹始め圧力として取得する。吹始め圧力取得後、ステップS7の吹出し検出工程ではさらに圧力微調整工程を続行し、気泡の発生が一定の間隔、例えば1秒以内の間隔で検出される状態を吹出しとして検出する。ステップS8の吹出し圧力取得工程ではその時の圧力計11の圧力を吹出し圧力として取得する。吹出し圧力取得後、ステップS9の吹止まり検出工程では電磁弁7を閉じ、一定時間以上、気泡が検出されない状態を吹止まりとして検出し、ステップS10の吹止まり圧力取得工程ではその時の圧力計11の圧力を吹止まり圧力として取得する。   In the blowing start detection process in step S5 of FIG. 5, the pressure control unit 6 performs a pressure fine adjustment process, and the image processing unit 5 detects the moment when the bubble is first detected by processing the captured image as the start of blowing. The pressure monitoring unit 10 acquires the pressure of the pressure gauge 11 at that time as the blowing start pressure in the blowing start pressure acquiring step of Step S6. After the blow start pressure is acquired, the fine pressure adjustment process is further continued in the blow detection process of step S7, and a state in which the generation of bubbles is detected at a constant interval, for example, within one second is detected as a blow. In the blowing pressure acquisition step in step S8, the pressure of the pressure gauge 11 at that time is acquired as the blowing pressure. After the blowout pressure is acquired, the solenoid valve 7 is closed in the blowout detection process of step S9, and a state where no bubbles are detected for a certain period of time is detected as blowout. In the blowout pressure acquisition process of step S10, the pressure gauge 11 at that time The pressure is acquired as the blow-off pressure.

以下、具体的な吹始め、吹出し、吹止まりの検出方法について説明する。図5に示したフロー概要のうち、ステップS5の吹始め検出工程のフローチャートを詳細に示したものが図14、ステップS7の吹出し検出工程のフローチャートを詳細に示したものが図15、ステップS9の吹止まり検出工程のフローチャートを詳細に示したものが図16である。   Hereinafter, a specific method for detecting the start of blowing, blowing out, and blowing stop will be described. Of the outline of the flow shown in FIG. 5, FIG. 14 shows in detail the flowchart of the blow start detection process in step S5, and FIG. 15 shows in detail the flowchart of the blow detection process in step S7. FIG. 16 shows a detailed flowchart of the blow-off detection process.

図14における吹始め検出工程では、まずステップS5−1にて前述の圧力微調整工程を行う。続いてステップS5−2にて撮像し、ステップS5−3にて撮像画像内の気泡の有無を調べる。気泡がある場合は吹始めとして検出し、気泡がない場合はステップS5−1の圧力微調整から処理を繰り返す。   In the blow start detection process in FIG. 14, the pressure fine adjustment process described above is first performed in step S5-1. Subsequently, an image is captured in step S5-2, and the presence or absence of bubbles in the captured image is checked in step S5-3. If there is a bubble, it is detected as the start of blowing, and if there is no bubble, the process is repeated from the pressure fine adjustment in step S5-1.

続いて図15における吹出し検出工程では、まず吹始めの検出と同様、ステップS7−1にて圧力微調整工程を行い、ステップS7−2にて撮像し、ステップS7−3にて気泡の有無を調べる。気泡がない場合にはステップS7−2の撮像から処理を繰り返す。気泡がある場合にはステップS7−4にて前回撮像時の気泡の有無を調べる。前回撮像時にも気泡がある場合、ステップS7−2の撮像から処理を繰り返す。前回撮像時に気泡がない場合、ステップS7−5にて現在時刻を取得し、ステップS7−6にて記録時刻が存在するかを調べる。ここで記録時刻とは後述のステップS7−8にて記録する時刻であり、初期状態では存在しない。記録時刻が存在しない場合、ステップS7−8にて現在時刻を記録時刻として記録し、ステップS7−2の撮像から処理を繰り返す。記録時刻が存在する場合、ステップS7−7にて現在時刻と記録時刻の差が指定時間以下、例えば1秒以下となるかを調べる。この時間差が、一つの気泡が発生してから、それが消滅してもう一つの気泡が発生するまでの時間ということになる。時刻差が指定時間以下であれば吹出しとして検出し、指定時間より大きければステップS7−9にて記録時刻を消去し、ステップS7−1の圧力微調整から処理を繰り返す。吹出し検出工程において、図13のように安全弁2の周囲における処理範囲15を狭めることで、発生直後の気泡と浮上する気泡を区別してもよい。また、発生した気泡単位で位置変化を追従して消滅を確認してもよい。   Subsequently, in the blowout detection step in FIG. 15, first, similarly to the detection of the start of blowing, the pressure fine adjustment step is performed in step S7-1, the image is taken in step S7-2, and the presence / absence of bubbles is detected in step S7-3. Investigate. If there is no bubble, the process is repeated from the imaging in step S7-2. If there is a bubble, in step S7-4, the presence or absence of the bubble at the previous imaging is checked. If there are bubbles even during the previous imaging, the process is repeated from the imaging in step S7-2. If there is no bubble at the time of previous imaging, the current time is acquired in step S7-5, and it is checked whether a recording time exists in step S7-6. Here, the recording time is the time recorded in step S7-8, which will be described later, and does not exist in the initial state. If the recording time does not exist, the current time is recorded as the recording time in step S7-8, and the process is repeated from the imaging in step S7-2. If the recording time exists, it is checked in step S7-7 if the difference between the current time and the recording time is equal to or less than a specified time, for example, 1 second. This time difference is the time from when one bubble is generated until it disappears and another bubble is generated. If the time difference is less than or equal to the specified time, it is detected as blowout, and if it is greater than the specified time, the recording time is erased in step S7-9, and the process is repeated from the fine pressure adjustment in step S7-1. In the blowout detection step, the bubble immediately after the occurrence and the bubble that rises may be distinguished by narrowing the processing range 15 around the safety valve 2 as shown in FIG. Further, disappearance may be confirmed by following a change in position in units of generated bubbles.

最後に図16における吹止まり検出工程では、まずステップS9−1にて電磁弁7を閉じ、ステップS9−2にて撮像をし、ステップS9−3にて気泡の有無を調べる。気泡がある場合、ステップS9−5にて記録時刻を消去し、ステップS9−2の撮像から処理を繰り返す。気泡がない場合、ステップS9−4にて現在時刻を取得し、ステップS9−6にて記録時刻の有無を調べる。記録時刻が存在しない場合、ステップS9−8にて現在時刻を記録時刻として記録し、ステップS9−2の撮像から処理を繰り返す。記録時刻が存在する場合、ステップS9−7にて現在時刻と記録時刻の差が指定時間以上となるかを調べる。この時間差が、気泡の発生が停止している時間となる。時間差が指定時間以上であれば、弁が閉じて気泡が発生しなくなったと判断できるので、吹止まりとして検出し、指定時間未満であればステップS9−2の撮像から処理を繰り返す。   Finally, in the blowing stop detection process in FIG. 16, first, the electromagnetic valve 7 is closed in step S9-1, an image is taken in step S9-2, and the presence or absence of bubbles is examined in step S9-3. If there is a bubble, the recording time is erased in step S9-5, and the process is repeated from the imaging in step S9-2. If there is no bubble, the current time is acquired in step S9-4, and the presence or absence of the recording time is checked in step S9-6. If the recording time does not exist, the current time is recorded as the recording time in step S9-8, and the process is repeated from the imaging in step S9-2. If the recording time exists, it is checked in step S9-7 if the difference between the current time and the recording time is equal to or greater than the specified time. This time difference is the time during which the generation of bubbles is stopped. If the time difference is greater than or equal to the specified time, it can be determined that the valve is closed and bubbles are no longer generated. Therefore, it is detected as a blow-off, and if it is less than the specified time, the processing is repeated from the imaging in step S9-2.

以上により吹始め、吹出し、吹止まり各々が検出された時点で、圧力計11から圧力値を取得することで、吹始め圧力、吹出し圧力、吹止まり圧力を記録し、得られた結果から作動検査における良否を判定する。吹始め、吹出し検出時においては圧力微調整工程によって安全弁2内の圧力が安定しているため、精度良くこの時点での圧力値を得ることができる。また、吹止まり検出時においては安全弁2、電磁弁7はともに閉じられているため、安全弁2内の圧力は安定しており、精度良く吹止まり時点での圧力値を得ることができる。   At the point when each of the blowing start, blowing, and blowing stop is detected as described above, the pressure value is obtained from the pressure gauge 11 to record the blowing start pressure, the blowing pressure, and the blowing stop pressure, and the operation inspection is performed from the obtained results. Pass / fail is determined. Since the pressure in the safety valve 2 is stabilized by the pressure fine adjustment process at the start of blowing and at the time of blowing detection, the pressure value at this time can be obtained with high accuracy. Further, since both the safety valve 2 and the electromagnetic valve 7 are closed when the blow-off is detected, the pressure in the safety valve 2 is stable, and the pressure value at the time of the blow-off can be obtained with high accuracy.

この実施の形態1において、圧力の粗調整と微調整の組み合わせにより徐々に圧力を上昇させつつ、昇圧の度にウェイト時間を入れることで、気体の供給を停止させることなく、安全弁2の圧力値を安定して取得できる。そのため、吹始め圧力、吹止まり圧力が精度よく検出できる。また、連続的な気体の放出を検出する必要がある吹出し圧力も精度良く検出できる。さらに圧力粗調整工程と圧力微調整工程の組み合わせにより、検出時間の短縮が見込まれる。   In the first embodiment, the pressure value of the safety valve 2 can be increased without stopping the gas supply by increasing the pressure gradually by a combination of rough pressure adjustment and fine adjustment and adding a wait time for each pressure increase. Can be obtained stably. Therefore, the blow start pressure and the blow stop pressure can be accurately detected. Further, it is possible to accurately detect the blowing pressure that needs to detect continuous gas release. Furthermore, the detection time can be shortened by a combination of the rough pressure adjustment step and the fine pressure adjustment step.

また、カメラ3を安全弁2の真上に設置し安全弁2の全周囲を捉え、照明4で照射する範囲を限定して発生直後の気泡と浮上してくる気泡を区別するので、吹始め、吹出し、吹止まりのタイミングや発生箇所を精度良く把握できる。   In addition, the camera 3 is installed directly above the safety valve 2 to capture the entire periphery of the safety valve 2 and limit the range irradiated with the illumination 4 to distinguish the bubble immediately after the occurrence from the rising bubble. It is possible to accurately grasp the timing of the blowout and the occurrence location.

なお、この実施の形態1においては照明4により安全弁2の周囲を照射し、マスタ画像との差分を取り二値化することによる気泡検出方法を用いたが、気泡検出方法はこれに限られない。例えば安全弁の側面を照射することなく安全弁を上方から撮像し、高性能なコンピュータを用いた高度な画像処理により各々の気泡の発生、消滅を検出してもよい。一方、この実施の形態1による方法では照射が必要ではあるが、画像処理の方法が単純であり、高性能なコンピュータを用いなくとも容易に気泡が検出できる利点がある。   In the first embodiment, the bubble detection method is used in which the periphery of the safety valve 2 is illuminated by the illumination 4 and the difference from the master image is taken and binarized. However, the bubble detection method is not limited to this. . For example, the safety valve may be imaged from above without irradiating the side of the safety valve, and the generation and disappearance of each bubble may be detected by advanced image processing using a high-performance computer. On the other hand, although the method according to the first embodiment requires irradiation, the image processing method is simple, and there is an advantage that bubbles can be easily detected without using a high-performance computer.

(実施の形態2)
以下、この発明の実施の形態2を図にもとづいて説明する。図17は、この発明を実施するための実施の形態2による安全弁の作動検査装置の正面図である。実施の形態1では安全弁2の作動時に弁体が鉛直上向きに上昇するように設置し、カメラ3を水槽1の上部に設置しているのに対し、実施の形態2では、作動時に弁体が鉛直下向きに下降するように安全弁2を設置し、カメラ3を水槽1の下部に設置する。その際、実施の形態1で水槽下部に設置していたシート12についても、実施の形態2においては、天井など外乱光の影響を回避するため、黒色のシート12を水槽1の上部に設置する。このとき、シート12は必ずしも黒色である必要はなく、鏡面などカメラ3に映る安全弁2の背景が明となるもの以外であればよい。一方、下部からの撮像のため、水槽1はガラス台などの上に設置するか、側面から固定するなどして宙づりにする必要がある。また、図17では安全弁2の全体を水中に沈めているが、開口部だけを水中に沈めてもよい。その他の構成や動作・作用に関しては、実施の形態1と同様である。
(Embodiment 2)
The second embodiment of the present invention will be described below with reference to the drawings. FIG. 17 is a front view of a safety valve operation inspection device according to Embodiment 2 for carrying out the present invention. In the first embodiment, when the safety valve 2 is operated, the valve body is installed so as to rise vertically upward, and the camera 3 is installed on the upper part of the water tank 1, whereas in the second embodiment, the valve body is not operated during operation. The safety valve 2 is installed so as to descend vertically downward, and the camera 3 is installed in the lower part of the water tank 1. At that time, the sheet 12 installed in the lower part of the water tank in the first embodiment is also installed in the upper part of the water tank 1 in the second embodiment in order to avoid the influence of ambient light such as the ceiling. . At this time, the sheet 12 does not necessarily need to be black, and may be anything other than a mirror surface such as a mirror surface on which the background of the safety valve 2 is bright. On the other hand, in order to capture an image from the lower part, the water tank 1 needs to be suspended by being installed on a glass stand or fixed from the side. In FIG. 17, the entire safety valve 2 is submerged, but only the opening may be submerged. Other configurations and operations / actions are the same as those in the first embodiment.

この実施の形態2において、気泡は撮像側から遠ざかるように上昇するため、水面の影響を受けにくく、水面に残る気泡について考慮する必要がなくなるので画像処理部5での処理時間が短縮される。また、配管14の接続部が上部に来るため、折り曲げが少なく、配管14への負荷が低減される。また、開口部だけを水中に沈める場合、後の乾燥作業が軽減される。よってメンテナンスや後工程での作業などの時間を短縮できる。   In the second embodiment, since the bubbles rise away from the imaging side, they are not easily affected by the water surface, and it is not necessary to consider the bubbles remaining on the water surface, so that the processing time in the image processing unit 5 is shortened. Moreover, since the connection part of the piping 14 comes to the upper part, there are few bendings and the load to the piping 14 is reduced. Further, when only the opening is submerged in water, subsequent drying work is reduced. Therefore, it is possible to shorten the time for maintenance and subsequent work.

(実施の形態3)
以下、この発明の実施の形態3を図にもとづいて説明する。図18は、この発明を実施するための実施の形態3による安全弁の作動検査装置の正面図及び上面から見た照明の位置と撮像画像のイメージ図である。図18(b)に示すように、実施の形態1で示した2方向からの照明4の代わりに、水槽1の周囲360度方向から、水槽1に向けて水平方向に照射できるリング状の照明4を用いている。あるいは、図19のように実施の形態1で示した2方向からの照明4に加えて、水槽1の対向する側面も含めた4面に、照射面を水槽1に向けてバー状の照明4を設置してもよい。リング照明、バー状の照明いずれの場合も、白色LEDのバー状のものを用いているが、色は白色に限らず、青や赤などでもよいし、形状は面状でもよく、光源はLEDに限らず、ハロゲンランプなどでもよい。設置位置は、安全弁2の開口部のみを照射する位置と照射幅とするか、あるいは安全弁2から水面までの距離を短くし、安全弁2の開口部から上を照射する位置と照射幅でもよい。その他の構成や動作・作用に関しては、実施の形態1と同様である。
(Embodiment 3)
Embodiment 3 of the present invention will be described below with reference to the drawings. FIG. 18 is a front view of a safety valve operation inspection apparatus according to Embodiment 3 for carrying out the present invention, and an illumination position and an image view of a captured image viewed from above. As shown in FIG. 18 (b), instead of the illumination 4 from the two directions shown in the first embodiment, a ring-shaped illumination that can be irradiated in the horizontal direction toward the aquarium 1 from the direction of 360 degrees around the aquarium 1. 4 is used. Or, in addition to the illumination 4 from the two directions shown in the first embodiment as shown in FIG. 19, the bar-shaped illumination 4 with the irradiation surface directed toward the water tank 1 on the four surfaces including the opposite side surfaces of the water tank 1. May be installed. In both cases of ring illumination and bar-shaped illumination, white LED bars are used, but the color is not limited to white, and may be blue or red, the shape may be planar, and the light source is LED Not limited to this, a halogen lamp may be used. The installation position may be a position and an irradiation width at which only the opening of the safety valve 2 is irradiated, or may be a position and an irradiation width at which the distance from the safety valve 2 to the water surface is shortened and the upper portion is irradiated from the opening of the safety valve 2. Other configurations and operations / actions are the same as those in the first embodiment.

実施の形態1では2方向からの照射なので、照明4の設置されていない側面は、設置されている側面に比べて輝度が低くなる。一方、360度方向からのリング状の照明4による照射、あるいは4方向からのバー状の照明4の照射の場合、側面全周囲から同等の輝度で照射するので、安全弁の全周囲において輝度を同程度にできる。よって気泡の発生する箇所によらず、安定して精度よく気泡を検出でき、つまりは吹始め、吹出し、吹止まりを精度よく検出できる。   In Embodiment 1, since the irradiation is from two directions, the luminance of the side surface where the illumination 4 is not installed is lower than that of the installed side surface. On the other hand, in the case of irradiation with the ring-shaped illumination 4 from the 360-degree direction, or irradiation with the bar-shaped illumination 4 from the four directions, the same luminance is applied from the entire periphery of the side surface. To the extent possible. Therefore, the bubble can be detected stably and accurately regardless of the location where the bubble is generated, that is, it is possible to accurately detect the start of blowing, blowing out, and blowing stop.

1 水槽、2 安全弁、3 カメラ、4 照明、5 画像処理部、6 圧力制御部、7 電磁弁、8 電空レギュレータ、9 気体供給ボンベ、10 圧力監視部、11 圧力計、12 シート、13 液体、13a 気泡、14 配管、15 処理範囲   DESCRIPTION OF SYMBOLS 1 Water tank, 2 Safety valve, 3 Camera, 4 Illumination, 5 Image processing part, 6 Pressure control part, 7 Electromagnetic valve, 8 Electropneumatic regulator, 9 Gas supply cylinder, 10 Pressure monitoring part, 11 Pressure gauge, 12 Sheet, 13 Liquid , 13a Air bubbles, 14 piping, 15 processing range

Claims (13)

検査対象の安全弁を、前記安全弁の開口部が浸かるように液体内に設置する工程と、
前記安全弁を撮像する撮像工程と、
前記安全弁に気体を供給する気体供給工程と、
前記気体供給工程の供給圧力を上昇し、前記撮像工程により得られた画像を解析して、気泡の発生を検出した時点を吹始めとし、吹始め検出後、第1の基準時間内に基準数以上の気泡の発生を検出した時点を吹出しとし、吹出し検出後、前記気体供給工程による前記安全弁への気体の供給を停止し、前記撮像工程により得られた画像を解析して第2の基準時間以上気泡が発生しなかったことを検出した時点を吹止まりとして検出する検出工程と、
を備える安全弁の作動検査方法。
Installing the safety valve to be inspected in the liquid so that the opening of the safety valve is immersed;
An imaging step of imaging the safety valve;
A gas supply step for supplying gas to the safety valve;
The supply pressure of the gas supply step is increased, the image obtained by the imaging step is analyzed, the time when the generation of bubbles is detected is set as the start of blowing, and the reference number is detected within the first reference time after the start of blowing is detected. The point in time when the occurrence of the above bubbles is detected is regarded as a blowout. After the blowout is detected, the supply of gas to the safety valve in the gas supply step is stopped, and the image obtained by the imaging step is analyzed for a second reference time. A detection step of detecting the time when it is detected that no bubbles are generated as a blow-off,
A method for inspecting the operation of a safety valve.
前記安全弁を、作動時に弁体が鉛直方向に移動するように槽内に設置し、
前記撮像工程において前記安全弁を前記弁体の移動方向から撮像する、
請求項1に記載の安全弁の作動検査方法。
The safety valve is installed in the tank so that the valve body moves in the vertical direction during operation,
In the imaging step, the safety valve is imaged from the moving direction of the valve body,
The operation check method of the safety valve according to claim 1.
前記安全弁を、前記開口部を含む領域に限定して側面から照明する照明工程をさらに備える、
請求項1又は2に記載の安全弁の作動検査方法。
Further comprising an illumination step of illuminating the safety valve from a side surface limited to a region including the opening,
The operation check method of the safety valve according to claim 1 or 2.
前記照明工程は、前記安全弁の側面を180度から360度方向から照明する、
請求項3に記載の安全弁の作動検査方法。
The lighting step illuminates a side surface of the safety valve from a direction of 180 degrees to 360 degrees.
The operation inspection method of the safety valve according to claim 3.
前記安全弁の開口部を液体に浸しつつ、前記安全弁の一部を液面より上に維持する、
請求項1から4のいずれか1項に記載の安全弁の作動検査方法。
Maintaining a part of the safety valve above the liquid level while immersing the opening of the safety valve in liquid;
The operation inspection method of the safety valve according to any one of claims 1 to 4.
前記液体は界面活性剤を含む、
請求項1から5のいずれか1項に記載の安全弁の作動検査方法。
The liquid includes a surfactant;
The operation inspection method of the safety valve according to any one of claims 1 to 5.
前記検出工程において、前記撮像工程で取得された画像の処理範囲を制限することにより、発生直後の気泡と浮上する気泡を区別する、
請求項1から6のいずれか1項に記載の安全弁の作動検査方法。
In the detection step, by limiting the processing range of the image acquired in the imaging step, the bubble immediately after the occurrence is distinguished from the rising bubble.
The operation check method of the safety valve according to any one of claims 1 to 6.
前記安全弁へ供給する気体の供給圧力を繰り返し上下させて前記安全弁の開閉を繰り返すフラッシング工程をさらに含む、
請求項1から7のいずれか1項に記載の安全弁の作動検査方法。
A flushing step of repeatedly opening and closing the safety valve by repeatedly raising and lowering the supply pressure of the gas supplied to the safety valve;
The operation inspection method of the safety valve according to any one of claims 1 to 7.
前記液体内に設置された前記安全弁を撮像した画像をマスタ画像として取得するマスタ画像取得工程を含み、
前記検出工程において、前記撮像工程で取得した画像と前記マスタ画像との差分に基づいて気泡の発生の有無を検出する、
請求項1から8のいずれか1項に記載の安全弁の作動検査方法。
Including a master image acquisition step of acquiring an image obtained by imaging the safety valve installed in the liquid as a master image;
In the detection step, the presence or absence of occurrence of bubbles is detected based on the difference between the image acquired in the imaging step and the master image.
The operation inspection method of the safety valve according to any one of claims 1 to 8.
前記検出工程では、前記撮像工程で取得した画像と前記マスタ画像との差分がない状態が続いている時間を測定し、基準時間以上気泡が発生しなかったかを検出する、
請求項9に記載の安全弁の作動検査方法。
In the detection step, the time during which there is no difference between the image acquired in the imaging step and the master image is measured, and it is detected whether bubbles have occurred over a reference time.
The operation check method of the safety valve according to claim 9.
前記検出工程において、前記撮像工程による最新の画像とその前の撮像画像とを比較して、前の画像において存在していた気泡の消滅を検出し、検出済みの気泡と新規に発生した気泡とを判別することにより、気泡が発生してから次の気泡が発生するまでの所要時間を測定し、前記第1の基準時間内に基準数の気泡が発生したかを検出する、
請求項1から10のいずれか1項に記載の安全弁の作動検査方法。
In the detection step, the latest image obtained by the imaging step and the previous captured image are compared to detect the disappearance of bubbles existing in the previous image, and the detected bubbles and newly generated bubbles By measuring the time required from the occurrence of a bubble until the next bubble is generated, and detecting whether a reference number of bubbles is generated within the first reference time,
The method for inspecting the operation of the safety valve according to any one of claims 1 to 10.
前記気体供給工程での供給圧力を検出する圧力検出工程をさらに備え、
前記検出工程で吹始めを検出したときの前記圧力検出工程の検出圧力を吹始め圧力とし、
前記検出工程で吹出しを検出したときの前記圧力検出工程の検出圧力を吹出し圧力とし、
前記検出工程で吹止まりを検出したときの前記圧力検出工程の検出圧力を吹止まり圧力とする、
請求項1から11のいずれか1項に記載の安全弁の作動検査方法。
A pressure detection step of detecting a supply pressure in the gas supply step;
The detected pressure of the pressure detecting step when the start of blowing is detected in the detecting step is set as the blowing start pressure,
The detection pressure of the pressure detection step when the blowout is detected in the detection step is the blowout pressure,
The detection pressure in the pressure detection step when the blowout is detected in the detection step is set as the blowout pressure,
The method for inspecting the operation of the safety valve according to any one of claims 1 to 11.
検査対象の安全弁を、前記安全弁の開口部が浸かるように液体内に設置して検査を行う安全弁の作動検査装置であって、
前記安全弁に気体を供給する気体供給部と、
前記安全弁を撮像する撮像部と、
前記気体供給部を制御して供給する気体の圧力を昇圧し、前記撮像部が取得した画像を処理して、気泡の発生を検出したときを吹始めとし、前記吹始め検出後に、昇圧を継続し、前記撮像部が取得した画像を処理して、第1の基準時間内に基準数以上の気泡が発生したことを検出したときを吹出しとし、前記吹出し検出後に前記気体供給部を制御して気体の供給を停止し、第2の基準時間以上気泡が発生しなかったことを検出したときを吹止まりとして検出する制御手段と、
を含む安全弁の作動検査装置。
A safety valve operation inspection device that performs inspection by installing a safety valve to be inspected in a liquid so that an opening of the safety valve is immersed,
A gas supply unit for supplying gas to the safety valve;
An imaging unit for imaging the safety valve;
The pressure of the gas supplied by controlling the gas supply unit is increased, the image acquired by the imaging unit is processed, and when the occurrence of bubbles is detected, the start of blowing is started, and the pressure increase is continued after the detection of the start of blowing Then, when the image acquired by the imaging unit is processed and it is detected that bubbles of a reference number or more are generated within the first reference time, the blowing is performed, and the gas supply unit is controlled after the blowing is detected. Control means for detecting when the supply of gas is stopped and when it is detected that bubbles are not generated for a second reference time or more as a blow-off,
Inspecting device for safety valve operation.
JP2017059319A 2017-03-24 2017-03-24 Method for inspecting safety valve operation and safety valve operation inspection device Pending JP2018162999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017059319A JP2018162999A (en) 2017-03-24 2017-03-24 Method for inspecting safety valve operation and safety valve operation inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017059319A JP2018162999A (en) 2017-03-24 2017-03-24 Method for inspecting safety valve operation and safety valve operation inspection device

Publications (1)

Publication Number Publication Date
JP2018162999A true JP2018162999A (en) 2018-10-18

Family

ID=63860011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017059319A Pending JP2018162999A (en) 2017-03-24 2017-03-24 Method for inspecting safety valve operation and safety valve operation inspection device

Country Status (1)

Country Link
JP (1) JP2018162999A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109459231A (en) * 2018-10-31 2019-03-12 潍柴动力股份有限公司 A kind of engine main oil gallery pressure limiting valve test macro and method
CN110987309A (en) * 2019-12-25 2020-04-10 深圳金信诺高新技术股份有限公司 Sealing detection system and method for underwater full-sealing device
CN111157237A (en) * 2020-01-15 2020-05-15 苏州测维自动化科技有限公司 Safety valve blasting test system and method
EP4145845A1 (en) * 2021-09-03 2023-03-08 Carrier Corporation An optical monitoring device
WO2023120621A1 (en) * 2021-12-24 2023-06-29 株式会社キッツ Valve seat inspection method and valve seat inspection device using image recognition camera

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109459231A (en) * 2018-10-31 2019-03-12 潍柴动力股份有限公司 A kind of engine main oil gallery pressure limiting valve test macro and method
CN109459231B (en) * 2018-10-31 2020-11-20 潍柴动力股份有限公司 Engine main oil gallery pressure limiting valve testing system and method
CN110987309A (en) * 2019-12-25 2020-04-10 深圳金信诺高新技术股份有限公司 Sealing detection system and method for underwater full-sealing device
CN110987309B (en) * 2019-12-25 2021-09-10 深圳金信诺高新技术股份有限公司 Sealing detection system and method for underwater full-sealing device
CN111157237A (en) * 2020-01-15 2020-05-15 苏州测维自动化科技有限公司 Safety valve blasting test system and method
EP4145845A1 (en) * 2021-09-03 2023-03-08 Carrier Corporation An optical monitoring device
WO2023120621A1 (en) * 2021-12-24 2023-06-29 株式会社キッツ Valve seat inspection method and valve seat inspection device using image recognition camera

Similar Documents

Publication Publication Date Title
JP2018162999A (en) Method for inspecting safety valve operation and safety valve operation inspection device
TWI706143B (en) Testing device and method for circuit board dispensing
JP2005214962A (en) System and method for testing of display panel
JP6639896B2 (en) Airtightness inspection device
BR112020001269B1 (en) METHOD FOR INSPECTING CONTAINERS FOR CONTAMINATIONS AND THREE-DIMENSIONAL CONTAINER STRUCTURES
CN108490001B (en) Inspection of contact lenses in plastic housings
CN106226270B (en) The method of the dirty defect of detection image sensor surface
CA2969834C (en) Defect inspection method and apparatus therefor
TWI639977B (en) Inspection device, inspection method and computer-readable recording medium
JP2017023126A (en) Device and method for inspecting egg stored in container
US11123773B2 (en) Apparatus for and a method of removing contaminant particles from a component of an apparatus
JP2013171291A (en) Method for preparing sample for microscopic inspection and device for inspecting fitting quality of cover glass for sample
JP6908123B2 (en) Visual inspection equipment and visual inspection method
US10345713B2 (en) Inspection substrate and an inspection method
JPH06201046A (en) O-ring testing device for air flow-rate sensor
US11099490B2 (en) Inspection substrate and an inspection method
KR102136671B1 (en) Method of detecting a defect of a substrate and apparatus for performing the same
EP3105542A1 (en) Apparatus for acquiring images of elements to be inspected and method of inspections of such elements
KR101289826B1 (en) Apparatus for testing led, and its method
CN104134618B (en) The size detecting device and size detecting method of a kind of key graphic
JP2008039479A (en) Method and apparatus for inspecting water leakage of breathable membrane, and method for manufacturing breathable member
CN210269641U (en) Concave-convex defect detection equipment
CN107505742A (en) Mechanism for testing and its method of testing
KR20160008721A (en) reel tape inspection device
KR100951790B1 (en) Apparatus and method of a wafer alignment confirmation at plasma reactor