JP2008039479A - Method and apparatus for inspecting water leakage of breathable membrane, and method for manufacturing breathable member - Google Patents

Method and apparatus for inspecting water leakage of breathable membrane, and method for manufacturing breathable member Download PDF

Info

Publication number
JP2008039479A
JP2008039479A JP2006211283A JP2006211283A JP2008039479A JP 2008039479 A JP2008039479 A JP 2008039479A JP 2006211283 A JP2006211283 A JP 2006211283A JP 2006211283 A JP2006211283 A JP 2006211283A JP 2008039479 A JP2008039479 A JP 2008039479A
Authority
JP
Japan
Prior art keywords
image
water
inspection
main surface
gas permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006211283A
Other languages
Japanese (ja)
Inventor
Kosuke Murakami
巧丞 村上
Masaki Shikami
正樹 爾見
Hirofumi Nakada
裕文 仲田
Masashi Kobayashi
正史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2006211283A priority Critical patent/JP2008039479A/en
Publication of JP2008039479A publication Critical patent/JP2008039479A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for inspecting water leakage of a breathable membrane, which judges presence or absence of water leakage accurately and promptly, unaffected by a change in shape or brightness of the breathable membrane itself. <P>SOLUTION: The inspection method related to the present invention comprises: a process A in which hydraulic pressure is applied from an internal bottom face 18p side to the breathable membrane 22; a process B in which an image of the internal bottom face 18p is acquired by the breathable membrane 22 in chronological order; and a process C in which presence or absence of water leakage from an external bottom face 18q side to the internal bottom face 18p side is judged, based on the difference image between an image last acquired and an image presently acquired. The acquisition of an image by the process B and the judgment by process C are alternately performed so that the judgement is performed k times for (k+1) times of acquisitions of the images (where k is an integer of two or more) while hydraulic pressure is kept applied to the breathable membrane 22. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、通気膜の水漏れの有無を検査する方法、およびその方法に好適に用いることができる装置に関する。本発明は、さらに、その方法を用いた検査工程を含む通気部材の製造方法に関する。   The present invention relates to a method for inspecting the presence or absence of water leakage in a gas permeable membrane, and an apparatus that can be suitably used for the method. The present invention further relates to a method for manufacturing a ventilation member including an inspection step using the method.

水漏れ検査を実施する対象として、自動車のECUボックスやヘッドライトハウジングに取り付けられる通気部材がある。通気部材の代表例を図7Aに示す。通気部材18は、筒状の本体20と、その本体20に取り付けられた通気膜22とを有する。この通気部材18の水漏れ検査は、通気膜22に外部底面18q側から水圧をかけ、内部底面18p側に水漏れが生ずるかどうかを調べる検査とされる。   There are ventilation members attached to an ECU box or a headlight housing of an automobile as a target for performing a water leak inspection. A representative example of the ventilation member is shown in FIG. 7A. The ventilation member 18 includes a cylindrical main body 20 and a ventilation film 22 attached to the main body 20. The water leakage inspection of the ventilation member 18 is an inspection in which water pressure is applied to the ventilation film 22 from the outer bottom surface 18q side to check whether water leakage occurs on the inner bottom surface 18p side.

水漏れ検査の方法として、目視による方法と画像処理による方法があるが、近年は画像処理による方法が主流になりはじめている。例えば、特許文献1には、水が赤外線を吸収することを利用した検査方法が記載されている。特許文献2には、可視画像および赤外画像を用いることにより、漏洩の種類を特定しうる検査方法が記載されている。
特許3331932号公報 特開平6−331480号公報
As a method of water leakage inspection, there are a visual method and an image processing method, but in recent years, an image processing method has become mainstream. For example, Patent Document 1 describes an inspection method that utilizes the fact that water absorbs infrared rays. Patent Document 2 describes an inspection method that can identify the type of leakage by using a visible image and an infrared image.
Japanese Patent No. 3333132 JP-A-6-331480

ところで、図7Aに例示した通気部材18の水漏れ検査の最中、水圧が加わることによって通気膜22の形状や輝度が徐々に変化することがある。このような変化は、水漏れが発生していないときにも普通に起こる。したがって、画像処理による検査方法を採用するにあたっては、上記のような変化を誤ってNG判定しないように対策を講ずることが重要である。   By the way, during the water leakage inspection of the ventilation member 18 illustrated in FIG. 7A, the shape and brightness of the ventilation film 22 may gradually change due to the application of water pressure. Such a change usually occurs even when there is no water leak. Therefore, when adopting an inspection method based on image processing, it is important to take measures so that the above change is not erroneously judged as NG.

上記特許文献1に記載されている方法は、水漏れがないときの赤外線反射強度分布を基準として、水漏れの有無を判定している。そのため、通気膜自身の変化が誤判定を招くという問題に対しては、何ら解決策を提供することができない。   The method described in Patent Document 1 determines the presence or absence of water leakage based on the infrared reflection intensity distribution when there is no water leakage. Therefore, no solution can be provided for the problem that a change in the gas permeable membrane itself causes an erroneous determination.

上記特許文献2(特に、段落0008、図4および図5)には、差分画像を2値化することによって得た2値画像の面積値に基づいて漏洩の有無を判定する、と記載されている。特許文献2に記載されている方法は、図8のタイムチャートに概要を示すように、差分画像から得た2値画像を累積していき、その累積した2値画像を用いて漏洩の有無および種類を特定するというものである。この方法は、通気膜の形状や輝度の経時変化の影響が判定結果に及びにくいものの、2値画像の累積中は水漏れの発生を検出できないという問題がある。   Patent Document 2 (particularly, paragraph 0008, FIG. 4 and FIG. 5) describes that the presence or absence of leakage is determined based on the area value of a binary image obtained by binarizing the difference image. Yes. As shown in the time chart of FIG. 8, the method described in Patent Document 2 accumulates binary images obtained from difference images, and uses the accumulated binary images to determine whether or not there is leakage. The type is specified. This method has a problem that the occurrence of water leakage cannot be detected during the accumulation of binary images, although the influence of changes in the shape of the gas permeable membrane and the luminance over time hardly affects the determination result.

そこで本発明は、通気膜自身の形状や輝度の変化に左右されず、水漏れの発生を迅速かつ正確に検出できるようになる、通気膜の水漏れ検査方法および検査装置を提供することを目的とする。また、その方法を用いた検査工程を含む通気部材の製造方法を提供する。   Accordingly, an object of the present invention is to provide a method and an apparatus for inspecting water leaks in a gas permeable membrane, which can detect the occurrence of water leaks quickly and accurately regardless of changes in the shape and brightness of the gas permeable membrane itself. And Moreover, the manufacturing method of the ventilation member including the test | inspection process using the method is provided.

すなわち、本発明は、
水の通過を禁止し、気体の通過を許容する通気膜に、第1主面側から水圧をかける工程Aと、
通気膜の第2主面の画像を時系列で取得する工程Bと、
直近の過去に取得した画像と、現在取得した画像との差分画像に基づいて、第1主面側から第2主面側への水漏れの有無を判定する工程Cと、を含み、
通気膜に水圧をかけた状態を継続しつつ、(k+1)回の画像の取得に対して判定がk回実行されるように、工程Bによる画像の取得と工程Cによる判定とを交互に実行する、水漏れ検査方法を提供する。(ただしkは2以上の整数である。)
That is, the present invention
Step A for applying water pressure from the first main surface side to the gas permeable membrane that prohibits the passage of water and allows the passage of gas;
Step B for acquiring an image of the second main surface of the ventilation membrane in time series,
A step C of determining the presence or absence of water leakage from the first main surface side to the second main surface side based on a difference image between the most recently acquired image and the currently acquired image,
The acquisition of the image by the process B and the determination by the process C are alternately performed so that the determination is executed k times for the (k + 1) times of image acquisition while continuing the state in which the water pressure is applied to the ventilation membrane. Provide a water leak inspection method. (However, k is an integer of 2 or more.)

また、本発明は、
水の通過を禁止し、気体の通過を許容する通気膜を支持するとともに、その第1主面側から水圧をかける検査治具と、
検査治具に支持された通気膜と対向する位置に配置され、通気膜の第2主面を撮像するカメラと、
通気膜の第2主面の画像をカメラから時系列で取得する手段と、直近の過去に取得した画像と、現在取得した画像との差分画像に基づいて第1主面側から第2主面側への水漏れの有無を判定する手段とを含む画像処理装置と、
を備え、
通気膜に水圧をかけた状態を継続しつつ、(k+1)回の画像の取得に対して判定がk回実行されるように、画像の取得と判定とを交互に実行する、水漏れ検査装置を提供する。(ただしkは2以上の整数である。)
The present invention also provides:
An inspection jig that prohibits the passage of water and supports a gas permeable membrane that allows the passage of gas, and that applies water pressure from the first main surface side;
A camera that is disposed at a position facing the gas permeable membrane supported by the inspection jig and images the second main surface of the gas permeable membrane;
The second main surface from the first main surface side based on the difference image between the means for acquiring the image of the second main surface of the air permeable membrane in time series from the camera, the image acquired in the past in the past, and the currently acquired image An image processing apparatus including means for determining the presence or absence of water leakage to the side,
With
A water leak inspection apparatus that alternately executes image acquisition and determination so that determination is executed k times for (k + 1) image acquisition while continuing the state in which water pressure is applied to the ventilation membrane. I will provide a. (However, k is an integer of 2 or more.)

さらに、本発明は、
両端に開口部を有する筒状の本体と、本体に取り付けられて底面を形成する通気膜とを含む通気部材を製造する工程と、
通気部材に取り付けられた通気膜を検査対象として、上記した方法によって検査する工程と、
検査の結果に基づいて通気部材を良品と不良品とに選別する工程と、
を含む、通気部材の製造方法を提供する。
Furthermore, the present invention provides:
Producing a ventilation member including a cylindrical main body having openings at both ends, and a ventilation film attached to the main body to form a bottom surface;
Inspecting the ventilation membrane attached to the ventilation member as an inspection target by the method described above,
A process of sorting the ventilation member into a non-defective product and a defective product based on the result of the inspection;
A method for manufacturing a ventilation member is provided.

上記検査方法によれば、通気膜の第2主面を時系列で撮像する工程Bと並行して、直近の過去に取得した画像と、現在取得した画像との差分画像に基づいて、第1主面側から第2主面側への水漏れの有無を判定する工程Cを複数回繰り返し実施する。直近の過去に取得した画像と、現在取得した画像との差分画像は、この差分画像のもとになっている2つの画像が、時間的に近接したものとなるため、通気膜自身の変化の情報を含みにくい。つまり、差分画像を時系列で作成するとともに、それら差分画像を用いた判定を時間軸に沿って複数回繰り返し実施することにより、通気膜自身の微小な形状変化や輝度変化の影響を受けることなく、通気膜から漏れている水を検出することが可能となる。さらに、判定自体も時系列で実行することになるので、水漏れの発生が発生した場合には直ちにこれを検出することが可能である。また、画像の取得回数(撮像回数)を(k+1)回とし、差分画像を作成して判定を行う回数をk回とすることにより、画像処理を行うコンピュータの負担を最大限に軽減できる。   According to the inspection method, in parallel with the process B of imaging the second main surface of the gas permeable membrane in time series, the first image is obtained based on the difference image between the most recently acquired image and the currently acquired image. Step C for determining the presence or absence of water leakage from the main surface side to the second main surface side is repeated a plurality of times. The difference image between the most recently acquired image and the currently acquired image is that the two images that are the basis of this difference image are close in time. It is difficult to include information. In other words, by creating difference images in time series and repeatedly performing the determination using these difference images several times along the time axis, it is not affected by minute shape changes or brightness changes of the ventilation membrane itself. It becomes possible to detect water leaking from the gas permeable membrane. Furthermore, since the determination itself is also performed in time series, it is possible to immediately detect the occurrence of water leakage. Further, by setting the number of image acquisition times (number of imaging times) to (k + 1) times and the number of times of creating and determining a difference image to be k times, the burden on the computer that performs image processing can be reduced to the maximum.

以下、添付の図面を参照しつつ本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、通気膜の水漏れ検査装置の概要を示す模式図である。検査対象の一例は、自動車のECUボックスやヘッドライトハウジングに取り付けられる通気部材18である。水漏れ検査装置100は、通気部材18を装着する検査治具16と、検査治具16に装着された通気部材18に向けて光を照射する照明15と、検査治具16に装着された通気部材18の内部底面18pを撮像するカメラ12と、カメラ12から取得する画像を処理して水漏れの有無を判定する画像処理装置38とを備えている。   FIG. 1 is a schematic diagram showing an outline of a water leak inspection apparatus for a gas permeable membrane. An example of an inspection object is a ventilation member 18 attached to an ECU box or a headlight housing of an automobile. The water leak inspection apparatus 100 includes an inspection jig 16 for attaching the ventilation member 18, an illumination 15 for irradiating light toward the ventilation member 18 attached to the inspection jig 16, and a ventilation attached to the inspection jig 16. The camera 12 which images the internal bottom face 18p of the member 18 and the image processing apparatus 38 which processes the image acquired from the camera 12 and determines the presence or absence of water leak are provided.

図7Aに示すごとく、通気部材18は、両端に開口部を有する筒状の本体20と、その本体20の一端に取り付けられて内部底面18pを形成する通気膜22とを含む。通気膜22が取り付けられた通気部材18は、一端に通気膜22からなる底部を有し、他端の開口部から内部底面18pを視認可能である。   As shown in FIG. 7A, the ventilation member 18 includes a cylindrical main body 20 having openings at both ends, and a ventilation film 22 attached to one end of the main body 20 to form an inner bottom surface 18p. The ventilation member 18 to which the gas permeable membrane 22 is attached has a bottom portion made of the gas permeable membrane 22 at one end, and the inner bottom surface 18p is visible from the opening at the other end.

通気部材18の本体20は、例えばゴム弾性を有する樹脂からなる円筒部品である。通気膜22は、水の通過を禁止し、気体の通過を許容する機能を持った樹脂多孔質膜であり、熱溶着により、または接着剤を用いて本体20に固定されている。通気膜22が本体20にしっかり取り付けられているかどうか、言い換えれば、通気膜22に水圧をかけても本体20内に水が入り込まないかどうかを画像処理によって検査する。   The main body 20 of the ventilation member 18 is a cylindrical part made of, for example, a resin having rubber elasticity. The gas permeable membrane 22 is a resin porous membrane having a function of prohibiting the passage of water and allowing the passage of gas, and is fixed to the main body 20 by heat welding or using an adhesive. Whether or not the gas permeable membrane 22 is firmly attached to the main body 20, in other words, whether or not water enters the main body 20 even when water pressure is applied to the gas permeable membrane 22 is inspected by image processing.

通気膜22に水圧をかけながらカメラ12による撮像を行うために、検査治具16を使用することができる。検査治具16は、水を収容することが可能なチャンバ16hが内部に形成され、通気部材18を装着するための開口部161と、チャンバ16hに水Wを注入するための注水口162とがチャンバ16hの上下に設けられている。   The inspection jig 16 can be used to perform imaging by the camera 12 while applying water pressure to the gas permeable membrane 22. The inspection jig 16 has a chamber 16h capable of containing water therein, and has an opening 161 for mounting the ventilation member 18 and a water injection port 162 for injecting water W into the chamber 16h. It is provided above and below the chamber 16h.

図1に示すごとく、通気部材18は、通気膜22がチャンバ16h内に露出し、反対側の開口部がチャンバ16h外に露出するように、検査治具16の開口部161に装着される。開口部161には、検査治具16と通気部材18との隙間を埋めるシールリング163が配置されており、チャンバ16h内の水Wが隙間から漏れてこないようになっている。通気部材18を開口部161に装着したのち、注水口162からチャンバ16hに水Wを注入することにより、通気部材18の通気膜22に適切な水圧がかかる仕組みである。通気膜22が損傷していたり、本体20への接着が不十分だったりする場合には、水Wが内側に漏れてくるので、その漏れをカメラ12でとらえる。   As shown in FIG. 1, the ventilation member 18 is attached to the opening 161 of the inspection jig 16 such that the ventilation film 22 is exposed inside the chamber 16h and the opening on the opposite side is exposed outside the chamber 16h. The opening 161 is provided with a seal ring 163 that fills the gap between the inspection jig 16 and the ventilation member 18 so that water W in the chamber 16h does not leak from the gap. After the ventilation member 18 is attached to the opening 161, water W is injected into the chamber 16h from the water injection port 162, whereby an appropriate water pressure is applied to the ventilation film 22 of the ventilation member 18. When the air permeable membrane 22 is damaged or the adhesion to the main body 20 is insufficient, the water W leaks inward, and the leak is caught by the camera 12.

水漏れの有無の判定材料となる画像は、カメラ12から取得する。通気部材18が配置された領域を撮像するカメラ12は、例えば2次元CCDを撮像素子として備えたものであり、検査治具16に装着された通気部材18と対向する位置に準備される。具体的には、通気部材18の真上にカメラ12を設置する。これにより、通気部材18の内部底面18p全体を画像に収めることが可能となる。   An image serving as a determination material for the presence or absence of water leakage is acquired from the camera 12. The camera 12 that images the region where the ventilation member 18 is arranged includes, for example, a two-dimensional CCD as an imaging element, and is prepared at a position facing the ventilation member 18 attached to the inspection jig 16. Specifically, the camera 12 is installed directly above the ventilation member 18. As a result, the entire inner bottom surface 18p of the ventilation member 18 can be stored in the image.

照明15は、例えば、蛍光灯、ハロゲンランプ、メタルハライドランプ、LEDランプ等であり、通気部材18の内部底面18pに斜め方向から光(可視光および/または赤外光)を照射する配置となっている。照明15の種類は、撮像対象の通気膜22の種類に応じて上記から選択することができる。また、通気部材18の中心とカメラ12の中心とを結ぶ線と略平行な方向から光を照射する配置を採用してもよい。   The illumination 15 is, for example, a fluorescent lamp, a halogen lamp, a metal halide lamp, an LED lamp, or the like, and is arranged to irradiate light (visible light and / or infrared light) from an oblique direction to the inner bottom surface 18p of the ventilation member 18. Yes. The type of the illumination 15 can be selected from the above according to the type of the ventilation film 22 to be imaged. Further, an arrangement in which light is irradiated from a direction substantially parallel to a line connecting the center of the ventilation member 18 and the center of the camera 12 may be employed.

次に、図2に示すのは、図1に示す水漏れ検査装置100のブロック図である。水漏れ検査装置100は、カメラ12、画像処理モジュール30、解析用コンピュータ32およびモニタ34を含む。画像処理モジュール30は、解析用コンピュータ32のPCIブリッジに接続されており、カメラ12から取得した画像を解析用コンピュータ32に転送する。解析用コンピュータ32は、画像処理モジュール30から転送されてくる画像を解析して水漏れの有無を判定する。また、解析用コンピュータ32は、検査治具16(図3参照)に注水を行うためのポンプ36のコントローラも兼ねている。モニタ34は、解析用コンピュータ32の判定結果を出力する表示部として機能する。画像処理モジュール30、解析用コンピュータ32およびモニタ34は、画像処理装置38を構成する。   Next, FIG. 2 is a block diagram of the water leak inspection apparatus 100 shown in FIG. The water leak inspection apparatus 100 includes a camera 12, an image processing module 30, an analysis computer 32, and a monitor 34. The image processing module 30 is connected to the PCI bridge of the analysis computer 32 and transfers an image acquired from the camera 12 to the analysis computer 32. The analysis computer 32 analyzes the image transferred from the image processing module 30 and determines the presence or absence of water leakage. The analysis computer 32 also serves as a controller for the pump 36 for injecting water into the inspection jig 16 (see FIG. 3). The monitor 34 functions as a display unit that outputs the determination result of the analysis computer 32. The image processing module 30, the analysis computer 32, and the monitor 34 constitute an image processing device 38.

図3は、解析用コンピュータで実行される検査プログラムのフローチャートである。この検査プログラムが起動すると、まず、検査治具16のチャンバ16hに注水が行なわれる(ステップS1)。これにより、通気部材18の通気膜22に所定の水圧がかかる。通気膜22に水圧がかかった状態は一定時間保たれる。その間に水漏れがないかをステップS2以下の処理でチェックする。   FIG. 3 is a flowchart of an inspection program executed by the analysis computer. When this inspection program is started, water is first poured into the chamber 16h of the inspection jig 16 (step S1). Thereby, a predetermined water pressure is applied to the ventilation film 22 of the ventilation member 18. The state where water pressure is applied to the gas permeable membrane 22 is maintained for a certain period of time. In the meantime, it is checked whether or not there is a water leak by the processing in step S2 and subsequent steps.

注水が完了したら、カメラ12に撮像指令を与える。カメラ12によって撮像された画像は、画像処理モジュール30のメモリに格納される。解析用コンピュータ32は、画像処理モジュール30のメモリに格納された画像を第1組(n=1)の画像として取得し、自身のメインメモリに格納する(ステップS2)。次に、予め定めた所定時間(例えば数秒)待機するとともに、組番号nを計測するカウンタをインクリメントする(ステップS3,S4)。   When water injection is completed, an imaging command is given to the camera 12. An image captured by the camera 12 is stored in the memory of the image processing module 30. The analysis computer 32 acquires the images stored in the memory of the image processing module 30 as a first set (n = 1) of images and stores them in its own main memory (step S2). Next, while waiting for a predetermined time (for example, several seconds), a counter for measuring the set number n is incremented (steps S3 and S4).

所定時間Tn待機したのち、第2組(n=2)の画像を、第1組の画像と同様の手順で取得する(ステップS5)。このように、通気部材18とカメラ12との相対位置関係を維持しつつ、予め定めた時間スケジュールでカメラ12による通気部材18の撮像を行う。待機時間Tnは、一定であってもよいし、画像の組ごとに異なっていてもよい。   After waiting for a predetermined time Tn, the second set (n = 2) of images are acquired in the same procedure as the first set of images (step S5). In this manner, the ventilation member 18 is imaged by the camera 12 in a predetermined time schedule while maintaining the relative positional relationship between the ventilation member 18 and the camera 12. The standby time Tn may be constant or may be different for each set of images.

次に、解析用コンピュータ32は、メインメモリに格納されている第1組(n=1)の画像と、同じくメインメモリに格納されている第2組(n=2)の画像との差分画像を生成する(ステップS6)。生成した差分画像を、予め定めた閾値で2値化する(ステップS7)。こうして得られた2値化画像より、水漏れの有無を判定する(ステップS8)。つまり、直近の過去に取得した画像と現在取得した画像との差分画像に基づいて、内部底面18pに欠陥(水漏れ)が生じているかどうかを判定する。水漏れありとの判定を下す基準は、例えば、2値化画像の面積または寸法が予め定めた所定値を上回ることである。   Next, the analysis computer 32 calculates a difference image between the first set (n = 1) of images stored in the main memory and the second set (n = 2) of images stored in the main memory. Is generated (step S6). The generated difference image is binarized with a predetermined threshold value (step S7). The presence or absence of water leakage is determined from the binarized image thus obtained (step S8). That is, based on the difference image between the most recently acquired image and the currently acquired image, it is determined whether or not a defect (water leakage) has occurred on the inner bottom surface 18p. The criterion for determining that there is water leakage is, for example, that the area or size of the binarized image exceeds a predetermined value.

ステップS8において、水漏れありと判定した場合には、水漏れが発生している旨の目セージをモニタ34に表示する(ステップS10)。さらに、ステップS9において、規定の判定回数に達したかどうかを確かめ、達していない場合にはステップS3からの処理を繰り返し行う。判定回数は、例えば10回程度に設定することができる。判定回数に代えて、所定の検査時間が経過したかどうかを検査終了の条件としてもよい。   If it is determined in step S8 that there is a water leak, an eye sage indicating that a water leak has occurred is displayed on the monitor 34 (step S10). Further, in step S9, it is confirmed whether or not the predetermined number of determinations has been reached. If not, the processing from step S3 is repeated. The number of determinations can be set to about 10 times, for example. Instead of the number of determinations, whether or not a predetermined inspection time has passed may be used as a condition for the inspection end.

検査の最中、水圧が加わることで通気膜22の形状や輝度が徐々に変化する場合がある。このような変化は水漏れが発生していない場合にも起こる可能性があり、このような変化を誤ってNGと判定しないようにする工夫が必要である。図3のフローチャートに示す本実施形態によれば、時系列で取得した第n組の画像と第(n+1)組の画像との差分画像を生成し、生成した差分画像を適切な閾値で2値化することによって得た2値化画像を用いて、水漏れの有無を判定する。   During the inspection, the shape and brightness of the gas permeable membrane 22 may gradually change due to application of water pressure. Such a change may occur even when there is no water leakage, and it is necessary to devise a method for preventing such a change from being erroneously determined as NG. According to the present embodiment shown in the flowchart of FIG. 3, a difference image between the n-th set of images and the (n + 1) -th set of images acquired in time series is generated, and the generated difference image is binarized with an appropriate threshold value. The presence or absence of water leakage is determined using the binarized image obtained by the conversion.

つまり、図3のタイムチャートに示すごとく、通気部材18の通気膜22に水圧をかけた状態を継続しつつ、予め定めた時間間隔で通気膜22による内部底面18p(第2主面)の画像をカメラ12より取得する処理を実行し、この処理と平行する形で、直近の過去に取得した画像と、現在取得した画像との差分画像に基づいて、外部底面18q側から内部底面18p側への水漏れの有無を判定する処理を複数回繰り返し実行する。   That is, as shown in the time chart of FIG. 3, an image of the inner bottom surface 18p (second main surface) by the gas permeable membrane 22 at a predetermined time interval while continuing the state in which the water pressure is applied to the gas permeable membrane 22 of the gas permeable member 18. Is acquired from the camera 12, and in parallel with this process, based on the difference image between the most recently acquired image and the currently acquired image, from the external bottom surface 18q side to the internal bottom surface 18p side. The process of determining the presence or absence of water leakage is repeated a plurality of times.

このように、決められた時間ごとに連続して(時系列で)画像を取得し、これらの画像間の違いを見出す。このような手法を採用すると、通気膜22の変形が判定結果に影響をほとんど及ぼさず、誤判定の発生確率を相当低くできる。また、差分画像を時系列で生成して逐次判定を行うので、突発的に水漏れが発生した場合にも、これを見逃さずに、直ちにNG判定を下すことができる。また、フローチャートに示される本実施形態の方法によれば、(k+1)回の撮像を行う間にk回の判定を行うので非常に効率的であり、画像処理装置38の負荷軽減という観点からも好ましい(ただしkは2以上の整数である)。   In this way, images are acquired continuously (in time series) at predetermined times, and differences between these images are found. When such a method is employed, the deformation of the gas permeable membrane 22 hardly affects the determination result, and the occurrence probability of erroneous determination can be considerably reduced. In addition, since the difference images are generated in time series and sequentially determined, even if water leaks suddenly, it is possible to make an NG determination immediately without overlooking this. In addition, according to the method of the present embodiment shown in the flowchart, the determination is performed k times during (k + 1) times of imaging, which is very efficient, and also from the viewpoint of reducing the load on the image processing device 38. Preferred (where k is an integer of 2 or more).

また、図5に示すように、撮像対象が複雑な形状を有していたとしても、過去の画像40と現在の画像41との差分画像を生成し、その差分画像の2値化を行うことで、簡単に欠陥42(水漏れ)を抽出することが可能となる。   Further, as shown in FIG. 5, even if the imaging target has a complicated shape, a difference image between the past image 40 and the current image 41 is generated, and the difference image is binarized. Thus, it becomes possible to easily extract the defect 42 (water leakage).

なお、本実施形態では、検査の開始から終了まで通気膜22にかける水圧を一定としているが、チャンバ16hへの注水量を徐々に増加したりすることによって、通気膜22にかかる水圧が経時変化する(具体的には徐々に高くなる)ようにしてもよい。また、本実施形態では、判定回数が規定回数に達するまでは水漏れ判定を繰り返し行うようにしているが、水漏れを検出した時点で検査を停止するようにしてもよい。具体的には、図3のフローチャートに示す検査プログラムの実行を停止し、検査治具16のチャンバ16h内の水を排水する。そのようにすれば、周囲に水が溢れ出し、装置に水がかかったり作業エリアが水で濡れたりすることを防止できる。   In this embodiment, the water pressure applied to the gas permeable membrane 22 is constant from the start to the end of the inspection, but the water pressure applied to the gas permeable membrane 22 changes with time by gradually increasing the amount of water injected into the chamber 16h. (Specifically, it gradually increases). In the present embodiment, the water leak determination is repeatedly performed until the number of determinations reaches the specified number. However, the inspection may be stopped when the water leak is detected. Specifically, the execution of the inspection program shown in the flowchart of FIG. 3 is stopped, and the water in the chamber 16h of the inspection jig 16 is drained. By doing so, it is possible to prevent water from overflowing to the surroundings and from splashing the apparatus or getting the work area wet with water.

また、水圧をかけている期間における通気膜22自身の変化が判定結果に及ぼす影響をさらに小さくするために、下記(1)(2)のような工夫を講ずることができる。
(1)水圧をかけ始めた後に、予め定めた待機時間が経過することを条件として、図3のフローチャートのステップS2からの処理を開始する。
(2)水圧をかけ始めた時点から一定時間が経過するまでの初期段階では画像取得の時間間隔を短くし、上記一定時間が経過した後は画像取得の時間間隔を長くする。
Further, in order to further reduce the influence of the change of the gas permeable membrane 22 itself during the period of applying the water pressure on the determination result, the following measures (1) and (2) can be taken.
(1) The process from step S2 in the flowchart of FIG. 3 is started on the condition that a predetermined waiting time elapses after the water pressure is started.
(2) The image acquisition time interval is shortened in an initial stage from when the water pressure starts to be applied until a predetermined time elapses, and after the predetermined time has elapsed, the image acquisition time interval is increased.

また、より高精度な検査を行うためには、撮像するべき通気部材18の内部に影が生じないように照明することが望ましい。例えば、図6に示すごとく、ハーフミラー24を用いた同軸落射照明によれば、そうした影が通気部材18の内部に生じないので、本発明の方法に好適である。   In order to perform a more accurate inspection, it is desirable to illuminate so that no shadow is generated inside the ventilation member 18 to be imaged. For example, as shown in FIG. 6, according to the coaxial epi-illumination using the half mirror 24, such a shadow does not occur inside the ventilation member 18, which is suitable for the method of the present invention.

本実施形態の検査方法を通気部材18の製造工程に適用する場合には、通気部材18を製造する工程をまず行う。次に、通気膜22を含む通気部材18を検査対象として、本実施形態の方法によって水漏れ検査を行う(検査工程)。そして、その検査工程の結果に基づいて、通気部材18を良品と不良品とに選別する(選別工程)。   When applying the inspection method of this embodiment to the manufacturing process of the ventilation member 18, the process of manufacturing the ventilation member 18 is performed first. Next, a water leak inspection is performed by the method of the present embodiment with the ventilation member 18 including the ventilation film 22 as an inspection target (inspection process). Based on the result of the inspection process, the ventilation member 18 is sorted into a non-defective product and a defective product (sorting process).

良品として選別された通気部材18には、図7Bに示す通気部材18Bのように、通気膜22を保護するカバー21を取り付ける工程をさらに実施することができる。カバー21は、検査工程で水漏れが認められず、良品として選別された通気部材18にのみ取り付けられる。図7Bの通気部材18Bからみると、図7Aの通気部材18は中間製品なので、その中間製品の時点で良否を判定することにより、カバー21が無駄にならずに済む。   The ventilation member 18 selected as a non-defective product may be further subjected to a process of attaching a cover 21 that protects the ventilation film 22 as in the ventilation member 18B shown in FIG. 7B. The cover 21 is attached only to the ventilation member 18 selected as a non-defective product without water leakage in the inspection process. When viewed from the ventilation member 18B of FIG. 7B, the ventilation member 18 of FIG. 7A is an intermediate product, and therefore, the cover 21 is not wasted by determining pass / fail at the time of the intermediate product.

本発明にかかる検査方法は、単独の通気膜の検査や通気部材以外の通気膜を用いた製品にも好適に採用できる。   The inspection method according to the present invention can be suitably applied to inspection of a single gas permeable membrane and products using a gas permeable membrane other than the gas permeable member.

本発明にかかる検査方法の概要を示す模式図The schematic diagram which shows the outline | summary of the inspection method concerning this invention 検査装置のブロック図Block diagram of inspection equipment 検査プログラムのフローチャートFlow chart of inspection program 図3のフローチャートに対応するタイムチャートTime chart corresponding to the flowchart of FIG. NG判定となる画像例Image example for NG determination 光源の好適な配置を示す模式図Schematic diagram showing preferred arrangement of light sources 検査対象である通気部材の断面図Cross-sectional view of the ventilation member to be inspected 通気部材の他の例の断面図Sectional drawing of other examples of ventilation member 従来の検査方法の概要を示すタイムチャートTime chart showing an overview of conventional inspection methods

符号の説明Explanation of symbols

12 カメラ
16 検査治具
18 通気部材
20 本体
22 通気膜
18p 内部底面
18q 外部底面
30 画像処理モジュール
32 解析用コンピュータ
34 モニタ
38 画像処理装置
100 水漏れ検査装置
W 水
12 Camera 16 Inspection jig 18 Ventilation member 20 Main body 22 Venting membrane 18p Internal bottom surface 18q External bottom surface 30 Image processing module 32 Analysis computer 34 Monitor 38 Image processing device 100 Water leak inspection device W Water

Claims (4)

水の通過を禁止し、気体の通過を許容する通気膜に、第1主面側から水圧をかける工程Aと、
前記通気膜の第2主面の画像を時系列で取得する工程Bと、
直近の過去に取得した前記画像と、現在取得した前記画像との差分画像に基づいて、前記第1主面側から前記第2主面側への水漏れの有無を判定する工程Cと、を含み、
前記通気膜に前記水圧をかけた状態を継続しつつ、(k+1)回の前記画像の取得に対して前記判定がk回実行されるように、前記工程Bによる前記画像の取得と前記工程Cによる前記判定とを交互に実行する、水漏れ検査方法。(ただしkは2以上の整数である。)
Step A for applying water pressure from the first main surface side to the gas permeable membrane that prohibits the passage of water and allows the passage of gas;
Step B for acquiring an image of the second main surface of the gas permeable membrane in time series;
A step C of determining the presence or absence of water leakage from the first main surface side to the second main surface side based on a difference image between the image acquired in the latest past and the currently acquired image; Including
The acquisition of the image by the process B and the process C are performed so that the determination is performed k times with respect to (k + 1) acquisitions of the image while continuing the state in which the water pressure is applied to the ventilation membrane. A water leakage inspection method that alternately executes the determination by the method. (However, k is an integer of 2 or more.)
前記工程Cにおいて、前記差分画像を予め定めた閾値で2値化することによって得た2値化画像の面積が所定値以上である場合に水漏れありと判定する、請求項1記載の水漏れ検査方法。   The water leakage according to claim 1, wherein in step C, it is determined that there is water leakage when the area of the binarized image obtained by binarizing the difference image with a predetermined threshold value is greater than or equal to a predetermined value. Inspection method. 水の通過を禁止し、気体の通過を許容する通気膜を支持するとともに、その第1主面側から水圧をかける検査治具と、
前記検査治具に支持された前記通気膜と対向する位置に配置され、前記通気膜の第2主面を撮像するカメラと、
前記通気膜の第2主面の画像を前記カメラから時系列で取得する手段と、直近の過去に取得した前記画像と、現在取得した前記画像との差分画像に基づいて前記第1主面側から前記第2主面側への水漏れの有無を判定する手段とを含む画像処理装置と、を備え、
前記通気膜に前記水圧をかけた状態を継続しつつ、(k+1)回の前記画像の取得に対して前記判定がk回実行されるように、前記画像の取得と前記判定とを交互に実行する、水漏れ検査装置。(ただしkは2以上の整数である。)
An inspection jig that prohibits the passage of water and supports a gas permeable membrane that allows the passage of gas, and that applies water pressure from the first main surface side;
A camera that is disposed at a position facing the gas permeable membrane supported by the inspection jig and that images the second main surface of the gas permeable membrane;
The first main surface side based on a difference image between the image acquired on the second main surface of the gas permeable membrane in time series from the camera, the image acquired in the last past, and the image acquired at present And an image processing device including means for determining the presence or absence of water leakage from the second main surface side,
The acquisition of the image and the determination are alternately performed so that the determination is performed k times for the (k + 1) acquisition of the image while continuing the state in which the water pressure is applied to the ventilation membrane. Water leak inspection device. (However, k is an integer of 2 or more.)
両端に開口部を有する筒状の本体と、前記本体に取り付けられて底面を形成する通気膜とを含む通気部材を製造する工程と、
前記通気部材に取り付けられた前記通気膜を検査対象として、請求項1または請求項2に記載の方法によって検査する工程と、
前記検査の結果に基づいて前記通気部材を良品と不良品とに選別する工程と、
を含む、通気部材の製造方法。
Producing a ventilation member including a cylindrical main body having openings at both ends, and a ventilation film attached to the main body to form a bottom surface;
Inspecting the ventilation membrane attached to the ventilation member as an inspection target by the method according to claim 1 or 2,
A step of sorting the ventilation member into a non-defective product and a defective product based on the result of the inspection;
A method for manufacturing a ventilation member.
JP2006211283A 2006-08-02 2006-08-02 Method and apparatus for inspecting water leakage of breathable membrane, and method for manufacturing breathable member Pending JP2008039479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006211283A JP2008039479A (en) 2006-08-02 2006-08-02 Method and apparatus for inspecting water leakage of breathable membrane, and method for manufacturing breathable member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006211283A JP2008039479A (en) 2006-08-02 2006-08-02 Method and apparatus for inspecting water leakage of breathable membrane, and method for manufacturing breathable member

Publications (1)

Publication Number Publication Date
JP2008039479A true JP2008039479A (en) 2008-02-21

Family

ID=39174676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006211283A Pending JP2008039479A (en) 2006-08-02 2006-08-02 Method and apparatus for inspecting water leakage of breathable membrane, and method for manufacturing breathable member

Country Status (1)

Country Link
JP (1) JP2008039479A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190360A (en) * 2014-03-28 2015-11-02 ヤンマー株式会社 Fuel injection pump testing device
KR101727715B1 (en) 2015-07-31 2017-05-02 우창산업(주) Water sealing test equipment for automotive lamp aircap
CN107806993A (en) * 2017-12-12 2018-03-16 中国地质大学(北京) Hydrodynamic film experimental apparatus for testing under multi-state
CN112268663A (en) * 2020-09-10 2021-01-26 杭州电子科技大学 Machine vision soap bubble method air tightness inspection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333171A (en) * 1994-06-14 1995-12-22 Hitachi Ltd Leak detection method and device
JP2000310577A (en) * 1999-04-27 2000-11-07 Toshiba Corp Device and method for measuring amount of leakage
WO2002082056A1 (en) * 2001-04-02 2002-10-17 Kunitaka Mizobe Low water-pressure water-resistance tester and testing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333171A (en) * 1994-06-14 1995-12-22 Hitachi Ltd Leak detection method and device
JP2000310577A (en) * 1999-04-27 2000-11-07 Toshiba Corp Device and method for measuring amount of leakage
WO2002082056A1 (en) * 2001-04-02 2002-10-17 Kunitaka Mizobe Low water-pressure water-resistance tester and testing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190360A (en) * 2014-03-28 2015-11-02 ヤンマー株式会社 Fuel injection pump testing device
KR101727715B1 (en) 2015-07-31 2017-05-02 우창산업(주) Water sealing test equipment for automotive lamp aircap
CN107806993A (en) * 2017-12-12 2018-03-16 中国地质大学(北京) Hydrodynamic film experimental apparatus for testing under multi-state
CN107806993B (en) * 2017-12-12 2023-09-01 中国地质大学(北京) Liquid dynamic pressure film test experimental device under multiple working conditions
CN112268663A (en) * 2020-09-10 2021-01-26 杭州电子科技大学 Machine vision soap bubble method air tightness inspection method

Similar Documents

Publication Publication Date Title
TW200604518A (en) Method and system for the inspection of a wafer
JP2007010620A (en) Screw part inspection device and screw part test method
US20140064599A1 (en) Method of Automatic Optical Inspection for Detection of Macro Defects of Sub-Pixel Defect Size in Pattern Wafers and Non-Pattern Wafers
JPWO2011117984A1 (en) Filter inspection method and apparatus
JP2008039479A (en) Method and apparatus for inspecting water leakage of breathable membrane, and method for manufacturing breathable member
CN108720967B (en) Intraocular lens inspector
JP2007017376A (en) Fluorescent flaw detector and fluorescent flaw detecting method
JP2012237680A (en) Device and method for inspecting coated state, and program
KR101802812B1 (en) Inspecting apparatus for product appearance and inspection method for product appearance using the same
WO2017104201A1 (en) Optical element and optical device, device for inspecting optical element and optical device, and method of inspecting optical element and optical device
JP2009236760A (en) Image detection device and inspection apparatus
JP2008304231A (en) Inspection method for mounting state of shrink label
KR20160149883A (en) An apparatus for inspecting a lens defect
JP4279855B2 (en) Cylindrical component inspection method and ventilation member manufacturing method
JP4876758B2 (en) Inspection method and inspection apparatus for hollow fiber membrane module
JP2015184019A (en) Inspection method and inspection device of hollow fiber module
JP7362324B2 (en) Inspection method, manufacturing method and inspection device for image display device
JP2004113894A (en) Method and apparatus for producing hollow fiber membrane module
JP2017090346A (en) Appearance inspection device, appearance inspection method and inspection program
JP2017075838A (en) Wafer inspection device and wafer inspection method
JP2004212353A (en) Optical inspection apparatus
JP2001349843A (en) Method for detecting surface discontinuity of round bar
JP2009244118A (en) Device for inspecting oil seal
JP2005077272A (en) Method for inspecting defect
JP2009257905A (en) Quality inspection device equipped with self-diagnostic function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

A131 Notification of reasons for refusal

Effective date: 20100810

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207