JP2018161287A - Endoscope and medical device - Google Patents

Endoscope and medical device Download PDF

Info

Publication number
JP2018161287A
JP2018161287A JP2017060373A JP2017060373A JP2018161287A JP 2018161287 A JP2018161287 A JP 2018161287A JP 2017060373 A JP2017060373 A JP 2017060373A JP 2017060373 A JP2017060373 A JP 2017060373A JP 2018161287 A JP2018161287 A JP 2018161287A
Authority
JP
Japan
Prior art keywords
coil
endoscope
magnetic field
cover member
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017060373A
Other languages
Japanese (ja)
Inventor
水口 直志
Naoshi Mizuguchi
直志 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2017060373A priority Critical patent/JP2018161287A/en
Publication of JP2018161287A publication Critical patent/JP2018161287A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Endoscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the position of an endoscope correctly.SOLUTION: A plurality of magnetic detection coils 50, 50are arranged within an insertion section 10M of a video scope 10, and magnetic fields are generated from a magnetic field generation device 40 comprising a plurality of magnetic field generation coils 40-40, such that induction currents are generated from the magnetic detection coils 50, 50. The magnetic detection coil 50is configured as an induction coil having a copper wire 80 wound around a core 70, with a tubular cover member 90 opening in both ends arranged around the core 70.SELECTED DRAWING: Figure 3

Description

本発明は、スコープ(内視鏡)を備えた内視鏡装置、あるいはカテーテル、ステントなど体内に挿入される医療器具に関し、特に、内視鏡、医療器具の体内挿入時の位置検出に関する。   The present invention relates to an endoscope apparatus provided with a scope (endoscope), or a medical instrument inserted into a body such as a catheter or a stent, and particularly relates to position detection when the endoscope or medical instrument is inserted into the body.

内視鏡装置では、可撓性のある内視鏡挿入部を体内に挿入して消化器官など観察部位を観察し、必要に応じて処置、手術を行う。大腸、小腸のような管腔形状は複雑に曲がりくねった形状であるため、オペレータ(術者)にとって挿入部形状および先端部位置を把握することが難しい。そのため、操作容易化という観点から、内視鏡挿入部形状を検出する内視鏡操作支援システムが利用される(例えば、特許文献1参照)。   In an endoscope apparatus, a flexible endoscope insertion portion is inserted into the body, an observation site such as a digestive organ is observed, and treatment and surgery are performed as necessary. Since the lumen shape such as the large intestine and the small intestine is a complicated and winding shape, it is difficult for the operator (operator) to grasp the insertion portion shape and the distal end portion position. Therefore, an endoscope operation support system that detects an endoscope insertion portion shape is used from the viewpoint of facilitating operation (see, for example, Patent Document 1).

そこでは、内視鏡挿入部の先端部に複数のコイルを配置し、磁場発生装置を診療ベッド傍など所定位置に設置する。磁場発生装置のアンテナから交流磁界を発信させると、内視鏡挿入部のコイルに誘導電流が生じ、磁気検出信号(電流信号)が発生する。   There, a plurality of coils are arranged at the distal end portion of the endoscope insertion portion, and the magnetic field generator is installed at a predetermined position such as near the medical bed. When an alternating magnetic field is transmitted from the antenna of the magnetic field generator, an induced current is generated in the coil of the endoscope insertion portion, and a magnetic detection signal (current signal) is generated.

そして、磁気検出信号の振幅、位相情報などに基づいてコイルの相対位置を検出することにより、体内における内視鏡挿入部の位置、形状がモニタに表示される。位置センサとして用いられるコイルは、透磁率の高い材質で成形されたコアの周囲に銅線を巻くコイルで構成される(例えば、特許文献2参照)。   Then, by detecting the relative position of the coil based on the amplitude and phase information of the magnetic detection signal, the position and shape of the endoscope insertion portion in the body are displayed on the monitor. A coil used as a position sensor is composed of a coil in which a copper wire is wound around a core formed of a material having high magnetic permeability (see, for example, Patent Document 2).

特開2016−209343号公報JP 2006-209343 A 特開2003−90702号公報JP 2003-90702 A

内視鏡挿入部には金属部品が使用されており、加工時の応力変化などによって組成が変化し、磁性体になる場合がある。コイルの周囲に磁性体が存在すると、コイル軸方向に沿っていない不必要な磁界を発生させ、コイルに生じる誘導電流にノイズを生じさせる。その結果、誤ったコイルの相対位置、すなわち内視鏡位置を演算することになる。   Metal parts are used in the endoscope insertion portion, and the composition may change due to a change in stress during processing, resulting in a magnetic body. If a magnetic body exists around the coil, an unnecessary magnetic field not along the coil axis direction is generated, and noise is generated in the induced current generated in the coil. As a result, an incorrect relative position of the coil, that is, an endoscope position is calculated.

したがって、不必要な磁界発生によるノイズの影響を防ぐように、コイルを構成することが求められる。   Therefore, it is required to configure the coil so as to prevent the influence of noise due to unnecessary magnetic field generation.

本発明の内視鏡は、少なくとも1つのコイルと、コイルのコイル軸方向周りを覆う高透磁率の筒状カバー部材とを備える。例えば、コイルは、空気より透磁率の高い棒状のコアの周囲に巻き線を巻いたコイルで構成することが可能である。一方、本発明のプロセッサは、内視鏡のコイルから送られてくる電流信号を増幅処理して内視鏡位置を演算するプロセッサであり、例えば、複数の磁場発生コイルを備えた磁場発生装置に対し、複数の磁場発生コイルを時系列的に順次駆動する時分割パルス信号を出力する。   The endoscope of the present invention includes at least one coil and a high-permeability cylindrical cover member that covers around the coil axis direction of the coil. For example, the coil can be configured by a coil in which a winding is wound around a rod-shaped core having a higher permeability than air. On the other hand, the processor of the present invention is a processor that calculates an endoscope position by amplifying a current signal sent from an endoscope coil. On the other hand, a time division pulse signal for sequentially driving a plurality of magnetic field generating coils in time series is output.

少なくともコイル軸に垂直な方向に沿った磁力線に起因するノイズが生じないように、カバー部材は、コイル軸方向に沿って延びるように構成することができる。また、カバー部材は、コイルを全体的に覆うように構成することができる。カバー部材は、コアと同じ素材によって成形してもよい。また、カバー部材とコイルとの間に、絶縁材が介在させてもよい。   The cover member can be configured to extend along the coil axis direction so that noise due to magnetic field lines along a direction perpendicular to the coil axis does not occur. Further, the cover member can be configured to cover the coil as a whole. The cover member may be formed of the same material as the core. An insulating material may be interposed between the cover member and the coil.

本発明の他の態様における内視鏡システムは、少なくとも1つのコイルと、コイルのコイル軸方向周りを覆う高透磁率の筒状カバー部材とを設けた内視鏡と、複数の磁場発生コイルを備えた磁場発生装置と、複数の磁場発生コイルを時系列的に順次駆動する時分割パルス信号を出力し、内視鏡から送られてくる磁気検出信号を増幅処理して内視鏡位置を演算するプロセッサとを備える。   An endoscope system according to another aspect of the present invention includes an endoscope provided with at least one coil and a high-permeability cylindrical cover member that covers around the coil axial direction of the coil, and a plurality of magnetic field generating coils. Equipped with a magnetic field generator and a time-division pulse signal that sequentially drives multiple magnetic field generating coils in time series, and amplifies the magnetic detection signal sent from the endoscope to calculate the endoscope position Processor.

本発明の他の態様における医療器具は、少なくとも1つのコイルと、コイルのコイル軸方向周りを覆う高透磁率の筒状カバー部材とを備える。   A medical instrument according to another aspect of the present invention includes at least one coil and a high-permeability cylindrical cover member that covers around the coil axis direction of the coil.

このように本発明によれば、内視鏡の位置を適切に検出することができる。   Thus, according to the present invention, the position of the endoscope can be detected appropriately.

本実施形態における内視鏡システムのブロック図である。It is a block diagram of the endoscope system in this embodiment. 磁場発生装置への駆動信号とそれに伴う磁気検出コイルの出力信号を時系列的に示した図である。It is the figure which showed in time series the drive signal to a magnetic field generator, and the output signal of a magnetic detection coil accompanying it. 磁気検出コイルの概略的断面図である。It is a schematic sectional drawing of a magnetic detection coil.

以下では、図面を参照して本実施形態である内視鏡システムについて説明する。   Below, the endoscope system which is this embodiment is demonstrated with reference to drawings.

図1は、本実施形態における内視鏡システムのブロック図である。   FIG. 1 is a block diagram of an endoscope system according to this embodiment.

内視鏡システムは、ビデオスコープ10と、ビデオスコープ10が着脱自在に接続されるプロセッサ20とを備え、患部の観察、処置などを行う場合、ビデオスコープ10の挿入部10Mが体内に挿入される。プロセッサ20には、観察画像を表示するモニタ60と、磁場発生装置40が接続されている。   The endoscope system includes a video scope 10 and a processor 20 to which the video scope 10 is detachably connected. When an affected part is observed and treated, the insertion part 10M of the video scope 10 is inserted into the body. . The processor 20 is connected to a monitor 60 that displays an observation image and a magnetic field generator 40.

プロセッサ20内に設けられた光源部(図示せず)から放射される光は、ビデオスコープ10内に設けられたライトガイドによってビデオスコープ10の先端部10Tに導かれ、先端部10Tから被写体に向けて照射される。被写体からの反射光は、先端部10Tに設けられた撮像素子(図示せず)に結像し、これによって被写体像が形成される。プロセッサ20の信号処理回路30は、撮像素子から読み出される1フィールド/フレーム分の画素信号に基づいてカラー画像信号を生成する。これによって、観察画像がモニタ60に表示される。   Light emitted from a light source unit (not shown) provided in the processor 20 is guided to the distal end portion 10T of the video scope 10 by a light guide provided in the video scope 10, and is directed from the distal end portion 10T toward the subject. Is irradiated. The reflected light from the subject forms an image on an image sensor (not shown) provided at the tip 10T, thereby forming a subject image. The signal processing circuit 30 of the processor 20 generates a color image signal based on the pixel signal for one field / frame read from the image sensor. As a result, the observation image is displayed on the monitor 60.

信号処理回路30は、画像信号処理を実行するとともに、プロセッサ20の動作全体を制御し、FPGAなどによって構成されている。信号処理回路30は、あらかじめROMなどに格納された動作制御プログラムに基づいて制御信号をプロセッサ20内の各回路へ出力する。   The signal processing circuit 30 executes image signal processing and controls the entire operation of the processor 20, and is configured by an FPGA or the like. The signal processing circuit 30 outputs a control signal to each circuit in the processor 20 based on an operation control program stored in advance in a ROM or the like.

ビデオスコープ10の挿入部10Mには、複数のインダクションコイル(以下では、磁気検出コイルという)50が所定間隔離れて配置されており、ここでは、2つの磁気検出コイル50、50が図示されている。磁気検出コイル50、50は、ここではコイル軸方向が互いに異なるように配置されている。 In the insertion portion 10M of the video scope 10, a plurality of induction coils (hereinafter referred to as magnetic detection coils) 50 are arranged at a predetermined interval. Here, two magnetic detection coils 50 1 and 50 2 are illustrated. ing. Here, the magnetic detection coils 50 1 and 50 2 are arranged so that the coil axis directions are different from each other.

一方、磁場発生装置40においても、複数のインダクションコイル(以下、磁場発生コイルという)40が配置されている。ここでは、n個の磁場発生コイル40、40、・・・40が互いに所定間隔離れ、コイル軸方向が互いに異なるように配置されている。信号処理回路30は、コイル駆動部26(26〜26)を経由して、時分割パルス信号を磁場発生装置40に出力する。 On the other hand, also in the magnetic field generator 40, a plurality of induction coils (hereinafter referred to as magnetic field generating coils) 40 are arranged. Here, the n magnetic field generating coils 40 1 , 40 2 ,... 40 n are arranged so as to be separated from each other by a predetermined interval and have different coil axis directions. The signal processing circuit 30 via the coil driver 26 (26 1 ~ 26 n), when outputting the divided pulse signal to the magnetic field generator 40.

磁場発生装置40による磁場発生によって磁気検出コイル50に誘導電流が生じると、電流信号はプロセッサ20内の増幅器22(22、22)において増幅処理され、A/D変換器24(24、24)によってA/D変換処理される。信号処理回路30は、入力された信号に基づいてセンサコイル50、50の相対位置を演算する。そして、体内における挿入部10Mの形状を現わす3D画像を生成し、モニタ60内に観察画像と共に表示する。なお、内視鏡装置のプロセッサ20とは別に位置検出、形状表示用の専用プロセッサ、及び専用モニタを設けてもよい。 When an induced current is generated in the magnetic detection coil 50 by the magnetic field generation by the magnetic field generator 40, the current signal is amplified in the amplifiers 22 (22 1 , 22 2 ) in the processor 20 and the A / D converter 24 (24 1 , 24 2 ), A / D conversion processing is performed. The signal processing circuit 30 calculates the relative positions of the sensor coils 50 1 and 50 2 based on the input signal. Then, a 3D image representing the shape of the insertion portion 10M in the body is generated and displayed together with the observation image in the monitor 60. A dedicated processor for position detection and shape display, and a dedicated monitor may be provided separately from the processor 20 of the endoscope apparatus.

図2は、磁場発生装置40への駆動信号とそれに伴う磁気検出コイル50の出力信号を時系列的に示した図である。プロセッサ20から磁場発生装置40へ時分割パルス信号が出されることにより、磁場発生装置40の各コイルは時系列的に駆動される。なお、図2では、磁場発生コイル40〜40を、「Coil〜Coil」と表している。 FIG. 2 is a diagram showing in time series the drive signal to the magnetic field generator 40 and the output signal of the magnetic detection coil 50 associated therewith. By outputting a time-division pulse signal from the processor 20 to the magnetic field generator 40, each coil of the magnetic field generator 40 is driven in time series. In FIG. 2, the magnetic field generating coils 40 1 to 40 n are represented as “Coil 1 to Coil n ”.

内視鏡作業中、スコープ挿入部10Mの体内での位置は移動し、これに伴って磁気検出コイル50、50の位置が変化する。そのため、磁場発生装置40の磁場発生コイル40〜40それぞれに対するセンサコイル50〜50の相対位置が変化し、磁気検出コイル50〜50に生じる電流信号も変化する。図2には、センサコイル50に発生する電流信号のパターンが図示されている。 During the endoscopic operation, the position of the scope insertion portion 10M in the body moves, and the positions of the magnetic detection coils 50 1 and 50 2 change accordingly. Therefore, the relative positions of the sensor coils 50 1 to 50 2 with respect to the magnetic field generating coils 40 1 to 40 n of the magnetic field generating device 40 change, and the current signals generated in the magnetic detection coils 50 1 to 50 2 also change. 2, the pattern of the current signal generated in the sensor coil 50 1 is shown.

一方、上述したように、磁場発生コイル40〜40はその固定位置およびコイル軸方向が互いに異なるように配置されていることから、磁気検出コイル50、50に生じる電流信号の波形は、スコープ挿入部10Mの位置変動だけでなく、磁場発生コイル40〜40それぞれとの相対的位置関係によって相違する。ただし、相対的位置関係には、相対的距離とコイル軸方向相対角度が含まれる。 On the other hand, as described above, since the magnetic field generating coils 40 1 to 40 n are arranged so that their fixed positions and coil axis directions are different from each other, the waveforms of current signals generated in the magnetic detection coils 50 1 and 50 2 are as follows. In addition to the change in position of the scope insertion portion 10M, the difference depends on the relative positional relationship with each of the magnetic field generating coils 40 1 to 40 n . However, the relative positional relationship includes a relative distance and a relative angle in the coil axis direction.

磁場発生コイル40〜40の(コイル軸方向を含めた)位置は、センサコイル50、50の相対的位置がその出力信号波形によって一義的に決定されるように定められている。したがって、時分割パルス信号に対して磁気検出コイル50、50に生じる電流信号によって、磁気検出コイル50、50の相対的位置が求められる。 The positions of the magnetic field generating coils 40 1 to 40 n (including the coil axis direction) are determined so that the relative positions of the sensor coils 50 1 and 50 2 are uniquely determined by their output signal waveforms. Therefore, the relative positions of the magnetic detection coils 50 1 and 50 2 are obtained from the current signals generated in the magnetic detection coils 50 1 and 50 2 with respect to the time-division pulse signal.

図3は、磁気検出コイル50の概略的断面図である。磁気検出コイル50も同様の構成になっている。なお、図1では、磁気検出コイル50の構成を概略的に描いており、図3と異なる。 Figure 3 is a schematic cross-sectional view of a magnetic detection coil 50 1. Magnetic detection coil 50 2 also have the same configuration. In FIG. 1, which schematically depicts the construction of a magnetic detection coil 50 1, differs from FIG.

磁気検出コイル50は、高透磁率であって断面円状の棒状(柱状)のコア70を備え、コア70の周囲に銅線80を巻いたインダクションコイルとして構成されており、銅線80はコア70の略全体に巻かれている。コア70は、ここではフェライトで成形されており、図示しない支持部材によって固定されている。 Magnetic detection coil 50 1 is a high permeability with a core 70 of circular cross-section of the bar-like (columnar) are constructed as induction coils wound with copper wire 80 around the core 70, copper 80 It is wound around substantially the entire core 70. Here, the core 70 is formed of ferrite and is fixed by a support member (not shown).

コア70の周囲、すなわち磁気検出コイル50の周囲には、筒状のカバー部材90がコイル軸方向Xの周りを覆うように配置されている。コア70に対して同軸配置されたカバー部材90は、その両端が開口し、コイル軸方向Xに沿って延びており、コア70の銅線80が巻かれた範囲、すなわちコア70の略全体を囲む軸方向長さをもつ。 Around the core 70, that is, around the magnetic detection coil 50 1, cylindrical cover member 90 is arranged so as to cover around the coil axis direction X. The cover member 90 arranged coaxially with respect to the core 70 is open at both ends thereof and extends along the coil axis direction X, and covers a range in which the copper wire 80 of the core 70 is wound, that is, substantially the entire core 70. It has a surrounding axial length.

カバー部材90は、高透磁率の高い材質で成形されており、ここではコア70と同じフェライトで成形されている。カバー部材90の内面90Iには、接着剤などの絶縁材85が塗布されており、カバー部材90は絶縁材85介してコイル50に取り付けられている。 The cover member 90 is formed of a material having a high magnetic permeability, and is formed of the same ferrite as the core 70 here. The inner surface 90I of the cover member 90, an insulating material 85 such as an adhesive has been applied, the cover member 90 is attached to the coil 50 1 via an insulating material 85.

このようなカバー部材90を設けることにより、以下述べるように、コイル軸方向以外の磁場発生に対して電流信号が発生するのを防ぐことができる。   By providing such a cover member 90, it is possible to prevent a current signal from being generated with respect to the generation of a magnetic field other than the direction of the coil axis as described below.

磁気検出コイル50周辺に設けられたステンレスなどの金属部材は、加工、組み立て時の応力などによって組成変化し、磁性体に変化することがある。このセンサコイル50周囲に存在する磁性体は、磁場発生装置40によって発生する磁場によって、コア軸方向Xとは異なる方向に対して不必要な磁場(磁力線)を生じさせる。 Metal member such as stainless provided in the magnetic detection coil 50 1 surrounding, machining, etc. by changing the composition stress during assembly, and may vary the magnetic. The magnetic substance present around the sensor coil 50 generates an unnecessary magnetic field (lines of magnetic force) in a direction different from the core axis direction X by the magnetic field generated by the magnetic field generator 40.

磁気検出コイル50は、コイル軸方向Xを貫く磁力線に対して感度が高い一方、コア軸方向Xに垂直な方向(以下、軸方向Yとする)に対しては感度が低い。従って、上述したように、磁気検出コイル50、50では、磁場発生コイル40〜40との相対的位置関係に基づく誘導電流が生じるので、その位置、コア軸方向によって電流信号の出力レベル差は大きくなる。さらに、磁気検出コイル50、50の位置(磁気発生コイルからの距離)によって出力レベルが非常に小さくなるため、プロセッサ20内の増幅器22の増幅率を高める必要がある。 Magnetic detection coil 50 1, one sensitive to the magnetic field lines passing through the coil axis direction X, perpendicular to the core axis X (hereinafter referred to as the axial direction Y) with respect to the low sensitivity. Therefore, as described above, in the magnetic detection coils 50 1 and 50 2 , an induced current is generated based on the relative positional relationship with the magnetic field generating coils 40 1 to 40 n , so that a current signal is output depending on the position and the core axis direction. The level difference increases. Furthermore, since the output level is very small depending on the positions of the magnetic detection coils 50 1 and 50 2 (distance from the magnetism generating coil), it is necessary to increase the amplification factor of the amplifier 22 in the processor 20.

この高増幅率ため、コイル50が軸方向Yに対して感度が低くても、センサコイル50周囲の磁性体によって生じる磁力線によって電流信号にノイズが生じる。特に、軸方向Yに沿った磁力線によるノイズが、影響を及ぼす。このノイズはセンサコイル50からの出力信号のSN比を低下させ、センサコイル50の相対的位置が誤って演算されることになる。 Therefore high gain, even a coil 50 1 is less sensitive to the axial direction Y, noise occurs in the current signal by the magnetic force lines generated by the sensor coil 50 1 around the magnetic body. In particular, noise due to magnetic field lines along the axial direction Y has an effect. This noise reduces the SN ratio of the output signal from the sensor coil 50 1, so that the relative position of the sensor coil 50 1 is incorrectly calculated.

しかしながら本実施形態では、コイル50を覆うようにカバー部材90を設けることにより、コイル軸方向X以外の方向、特に軸方向Yに対して磁力線が通りにくくなる。すなわち、カバー部材90が磁気シールドとして機能する。その結果、コア軸方向Xに沿った磁力線に対してコイル50に電流信号が生じることとなり、コイル50の相対位置を適正に算出することができる。 However, in the present embodiment, by providing the cover member 90 so as to cover the coil 50 1, the direction other than the direction of the coil axis X, difficult especially field lines as the axial direction Y. That is, the cover member 90 functions as a magnetic shield. As a result, it becomes possible to current signal to the coil 50 1 relative to the magnetic field lines along the core axis direction X occurs, it is possible to properly calculate the relative position of the coil 50 1.

一方、カバー部材90がコア70と同軸的に配置されているため、コイル軸方向Xに沿った磁力線に対する感度が増加し、磁気検出コイル50の正確な位置検出に寄与する。特に、カバー部材90がコア70と同じフェライトで構成されているため、磁束を集めやすくなる、すなわちインダクタンスを大きくすることができる。   On the other hand, since the cover member 90 is arranged coaxially with the core 70, the sensitivity to the magnetic field lines along the coil axis direction X increases, and contributes to accurate position detection of the magnetic detection coil 50. In particular, since the cover member 90 is made of the same ferrite as the core 70, the magnetic flux can be easily collected, that is, the inductance can be increased.

このように本実施形態によれば、複数の磁気検出コイル50、50がビデオスコープ10の挿入部10Mに配置される一方、複数の磁場発生コイル40〜40を備えた磁場発生装置40から磁場が発生し、磁気検出コイル50、50から誘導電流が発生する。磁気検出コイル50は、コア70に銅線80を巻いたインダクションコイルとして構成されるとともに、コア70の周囲には両端が開口した筒状のカバー部材90が配置される。 As described above, according to the present embodiment, a plurality of magnetic detection coils 50 1 and 50 2 are arranged in the insertion portion 10M of the video scope 10, and a magnetic field generation device including a plurality of magnetic field generation coils 40 1 to 40 n. A magnetic field is generated from 40, and an induced current is generated from the magnetic detection coils 50 1 and 50 2 . Magnetic detection coil 50 1, while being configured as induction coils wound with copper wire 80 to the core 70, a tubular cover member 90 having both ends open is disposed around the core 70.

なお、絶縁材85を介さずにカバー部材90を位置固定してもよい。一方、カバー部材90を、コア70とは異なる非磁性体で構成してもよく、空気より透磁率の高いフェライト以外の素材によって成形すればよい。あるいは磁気検出コイル50を空芯コイルで構成してもよい。   The position of the cover member 90 may be fixed without using the insulating material 85. On the other hand, the cover member 90 may be made of a nonmagnetic material different from the core 70, and may be formed of a material other than ferrite having a higher permeability than air. Or you may comprise the magnetic detection coil 50 by an air-core coil.

スコープ以外の非侵襲医療機器、あるいは侵襲的な医療器具にも適用可能である。例えば、カテーテル、ステント、マーカーなどの位置検出に利用可能である。   The present invention can also be applied to non-invasive medical devices other than scopes or invasive medical devices. For example, it can be used for detecting the position of a catheter, stent, marker, or the like.

10 ビデオスコープ
20 プロセッサ
40 磁場発生装置
40n 磁場発生コイル
50 磁気検出コイル(コイル)
70 コア
80 銅線(巻き線)
90 カバー部材
DESCRIPTION OF SYMBOLS 10 Videoscope 20 Processor 40 Magnetic field generator 40n Magnetic field generating coil 50 Magnetic detection coil (coil)
70 core 80 copper wire (winding)
90 Cover member

Claims (10)

少なくとも1つのコイルと、
前記コイルのコイル軸方向の周りを覆う高透磁率の筒状カバー部材と
を備えたことを特徴とする内視鏡。
At least one coil;
An endoscope comprising: a high-permeability cylindrical cover member that covers the coil in the coil axis direction.
前記カバー部材が、コイル軸方向に沿って延びていることを特徴とする請求項1に記載の内視鏡。   The endoscope according to claim 1, wherein the cover member extends along a coil axis direction. 前記カバー部材が、前記コイルを全体的に覆うことを特徴とする請求項1または2に記載の内視鏡。   The endoscope according to claim 1, wherein the cover member entirely covers the coil. 前記コイルが、棒状のコアを備え、前記コアの周囲に巻き線を巻いたコイルであることを特徴とする請求項1乃至3のいずれかに記載の内視鏡。   The endoscope according to any one of claims 1 to 3, wherein the coil includes a rod-shaped core, and a coil is wound around the core. 前記カバー部材が、前記コアと同じ素材によって成形されていることを特徴とする請求項4に記載の内視鏡。   The endoscope according to claim 4, wherein the cover member is formed of the same material as the core. 前記カバー部材と前記コイルとの間に、絶縁材が介在することを特徴とする請求項1乃至5のいずれかに記載の内視鏡。   The endoscope according to any one of claims 1 to 5, wherein an insulating material is interposed between the cover member and the coil. 請求項1乃至6のいずれかに記載された内視鏡のコイルから送られてくる電流信号を増幅処理して内視鏡位置を演算することを特徴とするプロセッサ。   A processor, comprising: amplifying a current signal sent from a coil of an endoscope according to any one of claims 1 to 6 to calculate an endoscope position. 複数の磁場発生コイルを備えた磁場発生装置に対し、前記複数の磁場発生コイルを時系列的に順次駆動する時分割パルス信号を出力することを特徴とする請求項7に記載のプロセッサ。   The processor according to claim 7, wherein a time division pulse signal for sequentially driving the plurality of magnetic field generation coils in time series is output to a magnetic field generation device including a plurality of magnetic field generation coils. 少なくとも1つのコイルと、前記コイルのコイル軸方向周りを覆う高透磁率の筒状カバー部材とを設けた内視鏡と、
複数の磁場発生コイルを備えた磁場発生装置と、
前記複数の磁場発生コイルを時系列的に順次駆動する時分割パルス信号を出力し、前記内視鏡から送られてくる磁気検出信号を増幅処理して内視鏡位置を演算するプロセッサと
を備えたことを特徴とする内視鏡システム。
An endoscope provided with at least one coil and a high-permeability cylindrical cover member that covers around the coil axis direction of the coil;
A magnetic field generator comprising a plurality of magnetic field generating coils;
A processor that outputs a time-division pulse signal that sequentially drives the plurality of magnetic field generating coils in time series, amplifies a magnetic detection signal sent from the endoscope, and calculates an endoscope position; An endoscope system characterized by that.
少なくとも1つのコイルと、
前記コイルのコイル軸方向周りを覆う高透磁率の筒状カバー部材と
を備えたことを特徴とする体内挿入可能な医療器具。

At least one coil;
A medical device that can be inserted into the body, comprising: a cylindrical cover member having a high magnetic permeability that covers the coil in the axial direction.

JP2017060373A 2017-03-27 2017-03-27 Endoscope and medical device Pending JP2018161287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017060373A JP2018161287A (en) 2017-03-27 2017-03-27 Endoscope and medical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017060373A JP2018161287A (en) 2017-03-27 2017-03-27 Endoscope and medical device

Publications (1)

Publication Number Publication Date
JP2018161287A true JP2018161287A (en) 2018-10-18

Family

ID=63859451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017060373A Pending JP2018161287A (en) 2017-03-27 2017-03-27 Endoscope and medical device

Country Status (1)

Country Link
JP (1) JP2018161287A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263831A (en) * 1991-02-19 1992-09-18 Olympus Optical Co Ltd Detecting device for curvature shape of inserting part of endoscope
JPH0928662A (en) * 1995-07-17 1997-02-04 Olympus Optical Co Ltd Endscope shape sensing system
WO2016149388A1 (en) * 2015-03-16 2016-09-22 St. Jude Medical, Cardiology Division, Inc. Field concentrating antennas for magnetic position sensors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263831A (en) * 1991-02-19 1992-09-18 Olympus Optical Co Ltd Detecting device for curvature shape of inserting part of endoscope
JPH0928662A (en) * 1995-07-17 1997-02-04 Olympus Optical Co Ltd Endscope shape sensing system
WO2016149388A1 (en) * 2015-03-16 2016-09-22 St. Jude Medical, Cardiology Division, Inc. Field concentrating antennas for magnetic position sensors

Similar Documents

Publication Publication Date Title
US7686767B2 (en) Catheter with variable magnetic field generator for catheter guidance in a subject
JP4880264B2 (en) POSITION DETECTION DEVICE AND MEDICAL DEVICE POSITION DETECTION SYSTEM
US20100134096A1 (en) Position detecting device, medical device guiding system, position detecting method, and medical device guiding method
US11020017B2 (en) Angioplasty guidewire
JP6861236B2 (en) Electric field centralized antenna for magnetic position sensor
CA2246341C (en) Precise position determination of endoscopes
EP1955644B1 (en) Medical device position detecting system, medical device guiding system, and position detecting method for medical device
US20220359978A1 (en) Field concentrating antennas for magnetic position sensors
KR20080043866A (en) Position detection system
JP5226319B2 (en) Arrangement and method for determining the spatial distribution of magnetic particles
US20130109920A1 (en) Arrangement and method for navigating an endoscopic capsule
JP5430799B2 (en) Display system
JPWO2012002206A1 (en) Probe shape detection device and method of operating probe shape detection device
JP2016059549A (en) Catheter and guide wire
US20160081583A1 (en) Position detecting apparatus and position detecting method for medical device and endoscope apparatus
JP2018161287A (en) Endoscope and medical device
JP2007130132A (en) Endoscope insertion part shape recognition system
JP6400221B2 (en) Endoscope shape grasp system
JP2018171356A (en) Endoscope insertion shape detection device, endoscope system, and endoscope manufacturing method
JP4647972B2 (en) Endoscope shape detection device
JP2011056280A (en) Endoscope-shape detecting device
US20240164657A1 (en) Localized magnetic field transmitter
JPH04259438A (en) Device for detecting inserted state of endoscope
WO2024142054A1 (en) Demagnetization of working-channel tools in an electromagnetically tracked endoscope
JP2006102177A (en) Endoscopic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210518