JP2018160649A - 垂直共振型面発光半導体レーザ - Google Patents

垂直共振型面発光半導体レーザ Download PDF

Info

Publication number
JP2018160649A
JP2018160649A JP2017109517A JP2017109517A JP2018160649A JP 2018160649 A JP2018160649 A JP 2018160649A JP 2017109517 A JP2017109517 A JP 2017109517A JP 2017109517 A JP2017109517 A JP 2017109517A JP 2018160649 A JP2018160649 A JP 2018160649A
Authority
JP
Japan
Prior art keywords
layer
composition
semiconductor
region
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017109517A
Other languages
English (en)
Inventor
ネイン イー リー
Nein-Yi Li
ネイン イー リー
リー ワン
Li Wang
リー ワン
裕 大西
Yutaka Onishi
裕 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JP2018160649A publication Critical patent/JP2018160649A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】微分抵抗を低減可能な構造を有する垂直共振型面発光半導体レーザを提供する。
【解決手段】垂直共振型面発光半導体レーザは、基板の主面上のポスト内に設けられた活性層と、ポスト内に設けられ狭窄層を含む第1積層を備え、活性層は、基板と第1積層との間に設けられ、狭窄層は、半導体の第1領域と第1領域を囲む第2領域とを含む。第1積層は、狭窄層に接触を成す遷移層と、第1アルミニウム組成を有し遷移層に接触を成す第1半導体層と、第1半導体層に接触を成す第1組成傾斜層と、第1アルミニウム組成より大きな第2アルミニウム組成を有し第1組成傾斜に接触を成す第2半導体層と、第2半導体層に接触を成す第2組成傾斜層とを含む。遷移層は、第1半導体層から狭窄層への方向に増加するアルミニウム組成の半導体領域を含む。第1組成傾斜層のアルミニウム組成は、第1半導体層から第2半導体層への方向に増加する。
【選択図】図1

Description

本発明は、垂直共振型面発光半導体レーザに関する。
非特許文献1は、垂直共振型面発光レーザ(Vertical−cavity surface−emitting laser:VCSEL)を開示する。
"30 Gb/s Over 100-m MMFs Using 1.1 μm Range VCSELs and Photodiodes" Kimiyoshi Fukatsu et al., IEEE Photonics Technology Letters, vol.20, no.11, pp.909-911, 2008.
垂直共振型の面発光半導体レーザは、上部ブラッグ反射器、下部ブラッグ反射器及び活性層を含み、活性層は、上部ブラッグ反射器と下部ブラッグ反射器との間に位置する。この面発光半導体レーザの変調速度は、光の応答速度(光子寿命)と電気(キャリア)の応答速度(キャリア寿命)の積で表される。キャリアの応答速度は素子の微分抵抗と寄生容量の積との逆数に依存する。微分抵抗を小さくすることは、高速変調に寄与する。以下の方法は、面発光半導体レーザの電気抵抗を低減できる。上部ブラッグ反射器の半導体に高い濃度のドーパントを添加すること;酸化狭窄構造に大きな開口径の電流アパ−チャーを用いること。高いドーパント濃度の半導体は、高い光吸収を示し、高い光吸収は、レーザ共振器の光損失を増大させるため、面発光半導体レーザのしきい値電流を増大させ、結果的に、光出力の低下になる。大きな開口径の酸化狭窄構造は、横方向の電流閉じ込めを弱めて、結果的に、しきい値電流の増大及び光の応答速度の低下になる。
非特許文献1では、酸化狭窄構造の開口径は、良好な電流閉じ込めを実現できる6.9μmである一方で、微分抵抗は、135オームと高くなった。
本発明の一側面は、微分抵抗を低減可能な構造を有する垂直共振型面発光半導体レーザを提供することを目的とする。
本発明の一側面に係る垂直共振型面発光半導体レーザは、基板の主面上のポスト内に設けられた活性層と、前記ポスト内に設けられ狭窄層を含む第1積層と、を備え、前記活性層は、前記基板と前記第1積層との間に設けられ、前記狭窄層は、半導体の第1領域と前記第1領域を囲む絶縁体の第2領域とを含み、前記第1積層は、前記狭窄層に接触を成す遷移層と、第1アルミニウム組成を有し前記遷移層に接触を成す第1半導体層と、前記第1半導体層に接触を成す第1組成傾斜層と、前記第1アルミニウム組成より大きな第2アルミニウム組成を有し前記第1組成傾斜に接触を成す第2半導体層と、前記第2半導体層に接触を成す第2組成傾斜層と、を含み、前記遷移層は、前記第1半導体層から前記狭窄層への方向に増加するアルミニウム組成の半導体領域を含み、前記第1組成傾斜層のアルミニウム組成は、前記第1半導体層から前記第2半導体層への方向に増加する。
本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らかになる。
以上説明したように、本発明の一側面によれば、微分抵抗を低減可能な構造を有する垂直共振型面発光半導体レーザが提供される。
図1は、本実施形態に係る垂直共振型の面発光半導体レーザを模式的に示す図面である。 図2は、本実施形態に係る面発光半導体レーザのポスト内の活性層及び第1積層を含む主要領域におけるアルミニウム組成のプロファイルを示す図面である。 図3は、本実施形態に係る面発光半導体レーザのポスト内の活性層及び第1積層を含む主要領域におけるアルミニウム組成のプロファイルを示す図面である。 図4は、本実施形態に係る面発光半導体レーザのポスト内の活性層及び第1積層を含む主要領域におけるアルミニウム組成のプロファイルを示す図面である。 図5は、本実施形態に係る面発光半導体レーザのポスト内の活性層及び第1積層を含む主要領域におけるアルミニウム組成のプロファイルを示す図面である。 図6は、遷移層を含まない面発光半導体レーザのポスト内の活性層、及び活性層上の半導体積層を含む主要領域におけるアルミニウム組成のプロファイルを示す図面である。 図7は、実施例5〜8の素子構造及び実験例の素子構造における反射率を示す図面である。 図8は、図1〜図5に示された面発光半導体レーザの狭窄層における第1領域及び第2領域の厚さの変化(動径方向における厚さの変化)を示す図面である。 図9は、A−A線及びA−B線に沿ってとられた断面の価電子帯のレベルを示す図面である。 図10は、実験例及び実施例の素子構造を示すモデルを用いたシミュレーションによって求められたキャリア密度の分布を示す図面である。
引き続き、いくつかの具体例を説明する。
具体例に係る垂直共振型面発光半導体レーザは、(a)基板の主面上のポスト内に設けられた活性層と、(b)前記ポスト内に設けられ狭窄層を含む第1積層と、を備え、前記活性層は、前記基板と前記第1積層との間に設けられ、前記狭窄層は、半導体の第1領域と前記第1領域を囲む絶縁体の第2領域とを含み、前記第1積層は、前記狭窄層に接触を成す遷移層と、第1アルミニウム組成を有し前記遷移層に接触を成す第1半導体層と、前記第1半導体層に接触を成す第1組成傾斜層と、前記第1アルミニウム組成より大きな第2アルミニウム組成を有し前記第1組成傾斜に接触を成す第2半導体層と、前記第2半導体層に接触を成す第2組成傾斜層と、を含み、前記遷移層は、前記第1半導体層から前記狭窄層への方向に増加するアルミニウム組成の半導体領域を含み、前記第1組成傾斜層のアルミニウム組成は、前記第1半導体層から前記第2半導体層への方向に増加する。
面発光半導体レーザによれば、第1積層の遷移層が、第1半導体層から狭窄層への方向に増加するアルミニウム組成の半導体領域を含む。遷移層は狭窄層に接触を成し、遷移層の半導体領域は第1半導体層に接触を成す。垂直共振型面発光半導体レーザにおいて、第1積層内のキャリア流は、狭窄層における電流アパーチャーの第1領域を通過して活性層に到達する。狭窄層における絶縁体の第2領域に沿って延在する遷移層によれば、狭窄層の電流アパーチャー領域と絶縁体領域との境界付近の半導体領域における高いキャリア密度の領域を小さくでき、高キャリア密度の領域の縮小により、面発光半導体レーザの微分抵抗が低減される。遷移層を第1積層に追加すると、狭窄層の電流アパーチャー領域におけるキャリア密度の均一性を高められる。
具体例に係る面発光半導体レーザでは、前記第1アルミニウム組成はゼロ以上である。
面発光半導体レーザによれば、分布反射のための第1半導体層は、例えばGaAs、AlGaAsといったIII−V化合物半導体からなることができる。
具体例に係る面発光半導体レーザでは、前記第1積層は、第3アルミニウム組成を有し前記第2組成傾斜層に接触を成す第3半導体層と、前記第3半導体層に接触を成す第3組成傾斜層と、を含み、前記第1アルミニウム組成は前記第3アルミニウム組成より大きい。
面発光半導体レーザによれば、第3アルミニウム組成より大きい第1アルミニウム組成の第1半導体層は、狭窄層の電流アパーチャー領域と第1半導体層とのアルミニウム組成の差を小さくできる。
具体例に係る面発光半導体レーザは、分布ブラッグ反射のための第2半導体積層を更に備え、前記活性層は、前記第1積層と前記第2半導体積層との間に設けられる。
面発光半導体レーザによれば、第2半導体積層は下部分布ブラッグ構造のために設けられる。
具体例に係る面発光半導体レーザでは、前記狭窄層は、当該垂直共振型面発光レーザが発振すべき波長λの四分の一(λ/4)より薄い。
面発光半導体レーザによれば、発振波長の四分の一(λ/4)より薄い狭窄層は、該狭窄層の絶縁体に起因するポスト内の応力を低減できる。
具体例に係る面発光半導体レーザでは、前記第2領域は、アルミニウム酸化物を備える。
面発光半導体レーザによれば、アルミニウム酸化物の高比抵抗は、狭窄層が電流の案内を行うことを可能にする。
具体例に係る面発光半導体レーザでは、前記遷移層は、AlGaAsを備える。
面発光半導体レーザによれば、遷移層は、例えばGaAs、AlGaAsといったIII−V化合物半導体からなることができる。
本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、垂直共振型面発光半導体レーザ、及びその製造方法に係る実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。
図1は、本実施形態に係る垂直共振型の面発光半導体レーザを模式的に示す図面である。面発光半導体レーザ11は、基板13と、活性層15と、第1積層17とを備える。活性層15及び第1積層17は、ポスト19内に設けられる。活性層15は、基板13と第1積層17との間に設けられる、第1積層17は、狭窄層21と、遷移層23と、第1半導体層25と、第1組成傾斜層27と、第2半導体層29と、第2組成傾斜層31とを含む。狭窄層21は、導電性の半導体からなる第1領域21aと、アルミニウム酸化物といった絶縁体を備える第2領域21bとを含み、第2領域21bは、第1領域21aを囲む。製造工程において、第1領域21aの高Al含有のIII−V化合物半導体が酸化されて、第2領域21bの絶縁体が形成される。アルミニウム酸化物の高比抵抗は、狭窄層21が電流の案内を行うことを可能にする。第1領域21aは電流アパーチャーとして働く。遷移層23は、狭窄層21に接触を成す。第1半導体層25は、遷移層23に接触を成す。第1組成傾斜層27は、第1半導体層25に接触を成す。第2半導体層29は、第1組成傾斜層27に接触を成す。第2組成傾斜層31は、第2半導体層29に接触を成す。
図2、図3、図4及び図5は、面発光半導体レーザ11のポスト19内の活性層15及び第1積層17を含む主要領域におけるアルミニウム組成のプロファイルを示す。例えば図2を参照すると、第1半導体層25の第1アルミニウム組成AL1は、第2半導体層29の第2アルミニウム組成AL2より小さく、第1アルミニウム組成AL1はゼロに等しい、又はゼロ以上である。遷移層23は、第1半導体層25から狭窄層21への方向に増加するアルミニウム組成の半導体領域を含む。第1組成傾斜層27のアルミニウム組成は、第1半導体層25から第2半導体層29への方向に増加しており、本実施例では、第1アルミニウム組成AL1から第2アルミニウム組成AL2まで変化する。第2組成傾斜層31のアルミニウム組成は、第1半導体層25から第2半導体層29への方向に減少しており、本実施例では、第2アルミニウム組成AL2から第3アルミニウム組成AL3まで変化する。
面発光半導体レーザ11によれば、第1積層17の遷移層23が、第1半導体層25から狭窄層21への方向に増加するアルミニウム組成の半導体領域を含む。遷移層23は狭窄層21に接触を成し、遷移層23の半導体領域は第1半導体層25に接触を成す。面発光半導体レーザ11において、第1積層17内を流れるキャリア(電子又は正孔)は、狭窄層21の電流アパーチャーのための第1領域21aを通過して活性層15に到達する。狭窄層21の絶縁体からなる第2領域21bに沿って延在する遷移層23によれば、狭窄層21の電流アパーチャー領域と絶縁体領域との境界付近の半導体領域における高いキャリア密度の領域を小さくでき、高キャリア密度の領域の縮小により、面発光半導体レーザ11の微分抵抗が低減される。また、遷移層23を第1積層17に追加すると、狭窄層21の電流アパーチャー領域におけるキャリア密度の均一性を高められる。
面発光半導体レーザ11では、第1積層17は、第3半導体層33及び第3組成傾斜層35を含むことができる。第3半導体層33は、第3アルミニウム組成AL3を有し、第2組成傾斜層31に接触を成す。第3組成傾斜層35は、第3半導体層33に接触を成す。第1アルミニウム組成AL1は第3アルミニウム組成AL3より大きい。第3組成傾斜層35は、第2半導体層29と実質的に同一の半導体層(引き続く説明では、これを「第2半導体層29」として参照する)に接触を成す。本実施形態では、第3組成傾斜層35のアルミニウム組成は、第1半導体層25から第2半導体層29への方向に増加しており、本実施例では、第1アルミニウム組成AL1から第2アルミニウム組成AL2まで変化する。第1上部ブラッグ反射器P1−DBRは、第2半導体層29、第2組成傾斜層31、第3半導体層33、第3組成傾斜層35からなる基本セルの配列を含む。第1上部ブラッグ反射器P1−DBRは、第1軸Nx上におけるアルミニウム組成0.5の点の間隔が当該面発光半導体レーザ11の発振すべき波長λの四分の一(λ/4)になるように設計される。
第1上部分布ブラッグ反射器P1−DBRの例示。
第2半導体層29:AlGaAs(Al組成:0.9)。
第3半導体層33:AlGaAs(Al組成:0.12)。
第1上部分布ブラッグ反射器P1−DBRは厚さ20nmの組成傾斜層を含む。
ペア数:22。
分布反射のための第1半導体層25は、例えばGaAs、AlGaAsといったIII−V化合物半導体からなることができる。分布反射のための第2半導体層29は、例えばAlGaAsといったIII−V化合物半導体からなることができる。分布反射のための第3半導体層33は、例えばGaAs、AlGaAsといったIII−V化合物半導体からなることができる。
ポスト19は、基板13の主面13aに交差する第1軸Nxの方向に延在する第1部分19aと、第1部分19aを囲むように基板13の主面13aに交差する方向に延在する第2部分19bとを含む。ポスト19の第1部分19aは電流アパーチャーのための第1領域21aを含み、ポスト19の第2部分19bは絶縁性の第2領域21bを含む。
ポスト19は、第4半導体層37、第4組成傾斜層39、第5半導体層41、第5組成傾斜層43、第6半導体層45及び第6組成傾斜層47を含み、第4半導体層37、第4組成傾斜層39、第5半導体層41、第5組成傾斜層43、第6半導体層45及び第6組成傾斜層47は、狭窄層21と活性層15との間に設けられる。狭窄層21は第4半導体層37に接触を成す。第4半導体層37は第4組成傾斜層39に接触を成し、第4組成傾斜層39は第5半導体層41に接触を成す。第5半導体層41は第5組成傾斜層43に接触を成し、第5組成傾斜層43は第6半導体層45に接触を成す。第6半導体層45は第6組成傾斜層47に接触を成す。第6組成傾斜層47は活性層15に接触を成す。第4半導体層37は、第4アルミニウム組成AL4を有し、第5半導体層41は、第4アルミニウム組成AL4より小さい第5アルミニウム組成AL5を有する。第6半導体層45は第5アルミニウム組成AL5より大きい第6アルミニウム組成AL6を有する。第4組成傾斜層39は、第4半導体層37から第5半導体層41への方向に減少するアルミニウム組成を有し、本実施例では、第4組成傾斜層39のアルミニウム組成は、第4アルミニウム組成AL4から第5アルミニウム組成AL5まで変化する。第5組成傾斜層43は、第5半導体層41から第6半導体層45への方向に増加するアルミニウム組成を有し、本実施例では、第5組成傾斜層43のアルミニウム組成は、第5アルミニウム組成AL5から第6アルミニウム組成AL6まで変化する。第6組成傾斜層47は、第6半導体層45から活性層15への方向に減少するアルミニウム組成を有し、本実施例では、第6組成傾斜層47のアルミニウム組成は、活性層15のスペーサ層15aのアルミニウム組成ALSPから第6アルミニウム組成AL6まで変化する。
狭窄層21の第1領域21a:AlGaAs(Al組成:0.98)、厚さ35nm。
第4半導体層37:AlGaAs(Al組成:0.9)。
第5半導体層41:AlGaAs(Al組成:0.12)。
第6半導体層45:AlGaAs(Al組成:0.9)。
第4組成傾斜層39:Al組成0.12から0.9まで連続的に変化、厚さ20nm。
第5組成傾斜層43:Al組成0.9から0.12まで連続的に変化、厚さ20nm。
第6組成傾斜層47:Al組成0.3から0.9まで連続的に変化、厚さ20nm。
本実施例では、第4半導体層37、第4組成傾斜層39、第5半導体層41、第5組成傾斜層43、第6半導体層45及び第6組成傾斜層47の配列は、第2上部分布ブラッグ反射器P2−DBRとして働く。第2上部ブラッグ反射器P2−DBRは、第1軸Nx上におけるアルミニウム組成0.5の点の間隔が面発光半導体レーザ11が発振すべき波長λの四分の一(λ/4)になるように設計される。
第2上部ブラッグ反射器P2−DBRの例示。
第6半導体層45:AlGaAs(Al組成:0.9)。
第5半導体層41:AlGaAs(Al組成:0.12)。
第2上部分布ブラッグ反射器P1−DBRは厚さ20nmの組成傾斜層を含む。
ペア数:15。
第1上部ブラッグ反射器P1−DBR及び第2上部ブラッグ反射器P2−DBRは、上部ブラッグ反射器P−DBRを構成する。
面発光半導体レーザ11は、下部分布ブラッグ反射器N−DBRを含み、下部分布ブラッグ反射器N−DBRは、第1DBR半導体層49a及び第2DBR半導体層49bを含む。第1DBR半導体層49aは、例えばGaAs、AlGaAsといったIII−V化合物半導体からなることができる。第2DBR半導体層49bは、例えばAlGaAsといったIII−V化合物半導体からなることができる。必要な場合には、下部分布ブラッグ反射器N−DBRは、上部分布ブラッグ反射器P−DBRに用いられる組成傾斜層に同一又は類似の組成傾斜層を含むことができる。
下部分布ブラッグ反射器N−DBRの例示。
第1DBR半導体層49a:AlGaAs(Al組成:0.12)。
第2DBR半導体層49b:AlGaAs(Al組成:0.9)。
ペア数:35。
面発光半導体レーザ11の分布ブラッグ反射器は、レーザ共振器内における狭窄層21の位置が、発振されるべきレーザ光ビームの電界強度の最小値近傍になるように設けられる。この電界分布の配置は、下部分布ブラッグ反射器N−DBRと上部分布ブラッグ反射器P−DBRとの間隔を調整することにより行われる。この配置により、第1上部ブラッグ反射器P1−DBRと第2上部ブラッグ反射器P2−DBRとの間に遷移層23の追加による分布ブラッグ反射器の反射率低下を低減できる。
活性層15が下部分布ブラッグ反射器N−DBRと上部分布ブラッグ反射器P−DBRとの間に設けられる。活性層15は、井戸層15b及び障壁層15cを含む量子井戸構造MQWを備え、量子井戸構造MQWは、スペーサ層15aによって挟まれている。
活性層の例示。
スペーサ層15a:AlGaAs(Al組成:0.3)
井戸層15b:GaAs。
障壁層15c:AlGaAs。
面発光半導体レーザ11は、ポスト19及び下部分布ブラッグ反射器N−DBRの表面を覆うパッシベーション膜51を備え、パッシベーション膜51はシリコン系無機絶縁体(例えば、シリコン酸化膜)を備える。ポスト19の上面19c上には、ポスト19のコンタクト層53に接触を成す第1電極55aが設けられ、基板13の裏面13b上には、裏面13bに接触を成す第2電極55bが設けられる。
第1電極55a:Ti/Au。
第2電極55b:AuGe/Ni/Au。
基板13:n型GaAs。
ポスト19の第1部分19aにおいて、狭窄層21の電流アパーチャーの第1領域21aの厚さと第4半導体層37の厚さとの和は、当該面発光半導体レーザ11の発振すべき波長λの四分の一(λ/4)に対応する。この面発光半導体レーザ11によれば、第4半導体層37は、狭窄層21の電流アパーチャー領域の厚さが分布反射からの要求に制約されることを避けることができる。
(実施例1)
図2は、実施例1に係る電流狭窄構造の第1軸Nx上において近傍領域のAl組成プロファイルを示す図面である。第1部分19aにおいては、遷移層23のアルミニウム組成は、第1半導体層25の第1アルミニウム組成AL1から第4半導体層37の第4アルミニウム組成AL4まで変化する。また、面発光半導体レーザ11によれば、図2に示されるように、第1アルミニウム組成AL1はゼロより大きい。第3アルミニウム組成AL3より大きい第1アルミニウム組成AL1の第1半導体層25は、狭窄層21の電流アパーチャーの第1領域21aと第1半導体層25とのアルミニウム組成の差を小さくでき、この小さい組成差は内部応力を低減できる。
実施例1の素子構造。
遷移層23(ポスト19の第1部分19a):AlGaAs(Al組成0.5から0.9まで連続的に変化して第1領域21aに到達する半導体領域)、厚さ10nm。
遷移層23(ポスト19の第2部分19b): AlGaAs(Al組成0.5から連続的に変化して第2領域21bの酸化物に到達する半導体領域)。Al組成の上限は、第2領域21bの酸化物の厚さに依存する。遷移層23の半導体は、酸化されずに残った半導体残余。
第1組成傾斜層27:AlGaAs(Al組成0.5から0.9まで連続的に変化する)、厚さ10nm。
素子性能(25℃)。
微分抵抗:95オーム。
変調帯域:19GHz。
(実施例2)
実施例2に係る電流狭窄構造の第1軸Nx上において近傍領域は、図2に示されるAl組成プロファイルを有する。第1部分19aにおいては、遷移層23のアルミニウム組成は、第1半導体層25の第1アルミニウム組成AL1から第4半導体層37の第4アルミニウム組成AL4まで変化する。また、面発光半導体レーザ11によれば、図2に示されるように、第1アルミニウム組成はゼロより大きい。第3アルミニウム組成AL3より大きい第1アルミニウム組成AL1の第1半導体層25は、狭窄層21の電流アパーチャーの第1領域21aと第1半導体層25とのアルミニウム組成の差を小さくでき、この小さい組成差は内部応力を低減できる。
実施例2の素子構造。
遷移層23(ポスト19の第1部分19a):AlGaAs(Al組成0.5から0.9まで連続的に変化して第1領域21aに到達する半導体領域)、厚さ30nm(実施例1の素子には、厚さ10nmが適用された)。
遷移層23(ポスト19の第2部分19b): AlGaAs(Al組成0.5から連続的に変化して第2領域21bの酸化物に到達する半導体領域)。Al組成の上限は、第2領域21bの酸化物の厚さに依存する。遷移層23の半導体は、酸化されずに残った半導体残余。
第1組成傾斜層27:AlGaAs(Al組成0.5から0.9まで連続的に変化する)、厚さ30nm。
素子性能(25℃)。
微分抵抗:85オーム。
変調帯域:20.5GHz。
(実施例3)
図3は、実施例3に係る電流狭窄構造の第1軸Nx上において近傍領域のAl組成プロファイルを示す図面である。第1部分19aにおいては、遷移層23のアルミニウム組成は、第1半導体層25の第1アルミニウム組成AL1から狭窄層21の第1領域21aの高アルミニウム組成AL0まで変化する。また、面発光半導体レーザ11によれば、図3に示されるように、第1アルミニウム組成はゼロより大きい。第3アルミニウム組成AL3より大きい第1アルミニウム組成AL1の第1半導体層25は、狭窄層21の電流アパーチャーの第1領域21aと第1半導体層とのアルミニウム組成の差を小さくでき、この小さい組成差は内部応力を低減できる。
実施例3の素子構造。
遷移層23(ポスト19の第1部分19a):AlGaAs(Al組成0.5から0.9まで連続的に変化する部分)、厚さ10nm。AlGaAs(Al組成0.9から0.98まで連続的に変化して第1領域21aに到達する半導体領域)、厚さ5nm。
遷移層23(ポスト19の第2部分19b): AlGaAs(Al組成0.5から連続的に変化して第2領域21bの酸化物に到達する半導体領域)。Al組成の上限は、第2領域21bの酸化物の厚さに依存する。遷移層23の半導体は、酸化されずに残った半導体残余。
第1組成傾斜層27:AlGaAs(Al組成0.5から0.9まで連続的に変化する)、厚さ10nm。
素子性能(25℃)。
微分抵抗:90オーム。
変調帯域:19.5GHz。
(実施例4)
実施例4に係る電流狭窄構造の第1軸Nx上において近傍領域は、図3に示されるAl組成プロファイルを有する。第1部分19aにおいては、遷移層23のアルミニウム組成は、第1半導体層25の第1アルミニウム組成AL1から狭窄層21の第1領域21aにおける高アルミニウム組成AL0まで変化する。また、面発光半導体レーザ11によれば、図3に示されるように、第1アルミニウム組成AL1はゼロより大きい。第3アルミニウム組成AL3より大きい第1アルミニウム組成AL1の第1半導体層25は、狭窄層21の電流アパーチャーの第1領域21aと第1半導体層とのアルミニウム組成の差を小さくでき、この小さい組成差は内部応力を低減できる。
実施例4の素子構造。
遷移層23(ポスト19の第1部分19a):AlGaAs(Al組成0.5から0.9まで連続的に変化する部分)、厚さ30nm(実施例3では、厚さ10nm)。AlGaAs(Al組成0.9から0.98まで連続的に変化して第1領域21aに到達する)、厚さ5nm。
遷移層23(ポスト19の第2部分19b): AlGaAs(Al組成0.5から連続的に変化して第2領域21bの酸化物に到達する半導体領域)。Al組成の上限は、第2領域21bの酸化物の厚さに依存する。遷移層23の半導体は、酸化されずに残った半導体残余。
第1組成傾斜層27:AlGaAs(Al組成0.5から0.9まで連続的に変化する)、厚さ30nm(実施例3では厚さ10nm)。
素子性能(25℃)。
微分抵抗:82オーム。
変調帯域:20.1GHz。
(実施例5)
図4は、実施例5に係る電流狭窄構造の第1軸Nx上において近傍領域のAl組成プロファイルを示す図面である。第1部分19aにおいては、遷移層23のアルミニウム組成は、第1半導体層25の第1アルミニウム組成AL1から第4半導体層37の第4アルミニウム組成AL4まで変化する。また、面発光半導体レーザ11によれば、図4に示されるように、第1アルミニウム組成AL1はゼロより大きい。第3アルミニウム組成AL3に実質的に等しい第1アルミニウム組成AL1の第1半導体層25は、第2アルミニウム組成AL2との屈折率差を大きく保てるため、分布ブラッグ反射器の反射率低下を防ぐことができる。
実施例5の素子構造。
遷移層23(ポスト19の第1部分19a):AlGaAs(Al組成0.12から0.9まで連続的に変化して第1領域21aに到達する)、厚さ20nm。
遷移層23(ポスト19の第2部分19b):AlGaAs(Al組成0.12から連続的に変化して第2領域21bの酸化物に到達する半導体領域)。Al組成の上限は、第2領域21bの酸化物の厚さに依存する。遷移層23の半導体は、酸化されずに残った半導体残余。
第1組成傾斜層27:AlGaAs(Al組成0.12から0.9まで連続的に変化する)、厚さ20nm。
素子性能(25℃)。
微分抵抗:92オーム。
変調帯域:18.9GHz。
(実施例6)
実施例6に係る電流狭窄構造の第1軸Nx上において近傍領域は、図4に示されるAl組成プロファイルを有する。第1部分19aにおいては、遷移層23のアルミニウム組成は、第1半導体層25の第1アルミニウム組成AL1から第4半導体層37の第4アルミニウム組成AL4まで変化する。また、面発光半導体レーザ11によれば、図4に示されるように、第1アルミニウム組成AL1はゼロより大きい。第3アルミニウム組成AL3に実施的に等しい第1アルミニウム組成AL1の第1半導体層25は、第2アルミニウム組成AL2との屈折率差を大きく保てるため、分布ブラッグ反射器の反射率低下を防ぐことができる。
実施例6の素子構造。
遷移層23(ポスト19の第1部分19a):AlGaAs(Al組成0.12から0.9まで連続的に変化して第1領域21aに到達する半導体領域)、厚さ30nm(実施例5では厚さ10nm)。
遷移層23(ポスト19の第2部分19b): AlGaAs(Al組成0.5から連続的に変化して第2領域21bの酸化物に到達する半導体領域)。Al組成の上限は、第2領域21bの酸化物の厚さに依存する。遷移層23の半導体は、酸化されずに残った半導体残余。
第1組成傾斜層27:AlGaAs(Al組成0.12から0.9まで連続的に変化する)、厚さ10nm。
素子性能(25℃)。
微分抵抗:86オーム。
変調帯域:20.0GHz。
(実施例7)
図5は、実施例7に係る電流狭窄構造の第1軸Nx上において近傍領域のAl組成プロファイルを示す図面である。第1部分19aにおいては、遷移層23のアルミニウム組成は、第1半導体層25の第1アルミニウム組成AL1から第4半導体層37の第4アルミニウム組成AL4まで変化する。また、面発光半導体レーザ11によれば、図5に示されるように、第1アルミニウム組成はゼロより大きい。第3アルミニウム組成AL3に実質的に等しい第1アルミニウム組成AL1の第1半導体層25は、第2アルミニウム組成AL2との屈折率差を大きく保てるため、分布ブラッグ反射器の反射率低下を防ぐことができる。
実施例7の素子構造。
遷移層23(ポスト19の第1部分19a):AlGaAs(Al組成0.12から0.9まで連続的に変化する部分)、厚さ20nm。AlGaAs(Al組成0.9から0.98まで連続的に変化して第1領域21aに到達する半導体領域)、厚さ5nm。
遷移層23(ポスト19の第2部分19b): AlGaAs(Al組成0.5から連続的に変化して第2領域21bの酸化物に到達する半導体領域)。Al組成の上限は、第2領域21bの酸化物の厚さに依存する。遷移層23の半導体は、酸化されずに残った半導体残余。
第1組成傾斜層27:AlGaAs(Al組成0.12から0.9まで連続的に変化する)、厚さ20nm。
素子性能(25℃)。
微分抵抗:90オーム。
変調帯域:19.8GHz。
(実施例8)
実施例8に係る電流狭窄構造の第1軸Nx上において近傍領域は、図5に示されるAl組成プロファイルを有する。第1部分19aにおいては、遷移層23のアルミニウム組成は、第1半導体層25の第1アルミニウム組成AL1から第4半導体層37の第4アルミニウム組成AL4まで変化する。また、面発光半導体レーザ11によれば、図5に示されるように、第1アルミニウム組成AL1はゼロより大きい。第3アルミニウム組成AL3に実質的に等しい第1アルミニウム組成AL1の第1半導体層25は、第2アルミニウム組成AL2との屈折率差を大きく保てるため、分布ブラッグ反射器の反射率低下を防ぐことができる。
実施例8の素子構造。
遷移層23(ポスト19の第1部分19a):AlGaAs(Al組成0.12から0.9まで連続的に変化する部分)、厚さ30nm。AlGaAs(Al組成0.9から0.98まで連続的に変化して第1領域21aに到達する半導体領域)、厚さ5nm。
遷移層23(ポスト19の第2部分19b): AlGaAs(Al組成0.5から連続的に変化して第2領域21bの酸化物に到達する半導体領域)。Al組成の上限は、第2領域21bの酸化物の厚さに依存する。遷移層23の半導体は、酸化されずに残った半導体残余。
第1組成傾斜層27:AlGaAs(Al組成0.12から0.9まで連続的に変化する)、厚さ20nm。
素子性能(25℃)。
微分抵抗:83オーム。
変調帯域:20.2GHz。
(実験例)
図6は、遷移層を含まない面発光半導体レーザCのポスト内の活性層、及び活性層上の半導体積層を含む主要領域におけるアルミニウム組成のプロファイルを示す。狭窄層の界面において、アルミニウム組成のプロファイルは急峻に(ステップ状に)変化している。Al組成プロファイルの急峻な変化は、狭窄層の界面に急峻な屈折率変化を提供でき、この変化によって分布ブラッグ反射器の反射率が高められる。
素子性能(25℃)。
微分抵抗:120オーム。
変調帯域:18GHz。
いずれの実施例においても、狭窄層21の第1領域21aの厚さは、面発光半導体レーザ11の発振すべき波長λの四分の一(λ/4)の値より薄い。薄い第1領域21aは、狭窄層21の第2領域21bの絶縁体を薄くすることに役立つ。薄い第2領域21bは、半導体領域内の絶縁物に起因する応力を低減できる。
図7は、上部分布ブラッグ反射器の反射率が、実験例の素子構造にそのまま追加されるAl組成傾斜層の厚さに応じて変化する反射特性と、実施例5〜8の素子構造に含まれる組成傾斜層の厚さに応じて変化する反射特性とを示す図面である。実施例5〜8の素子構造及び実験例を示す図面では、Al組成傾斜層の厚さを「d1」として参照し、Al組成傾斜層に接する定アルミニウム組成層の厚さを「d2」として参照する。実験例の素子構造における反射率は、組成傾斜層の厚さを増加させる(定アルミニウム組成層の厚さd2を変えずに、組成傾斜層の厚さd1を増加させる)と、実施例5〜8の素子構造(Al組成傾斜層の厚さと定アルミニウム組成層の厚さとの和を一定に保つ素子構造)における反射率に比べて大きく低下する。「d1=0」は、アルミニウム組成のプロファイルが狭窄層の界面において急峻に(ステップ状に)変化することを示す。
面発光半導体レーザ11の作製方法の概要を説明する。n型GaAsウエハ上に面発光半導体レーザ11のための半導体積層をエピタキシャル成長方法を用いて成長する。この成長においては、狭窄層のための半導体層の直上に遷移層のための半導体層を形成する。半導体積層上に、ポスト19を規定するパターンを有するマスクを形成する。このマスクを用いて、半導体積層をエッチングして、ポストの配列をウエハ上に形成する。エッチングの後に、マスクを除去して半導体生産物を形成する。酸化雰囲気中において半導体生産物を熱処理して、個々のポストにおいて、狭窄層21及び遷移層23を形成する。狭窄層21は、高Al組成半導体の第1領域21aとアルミニウム酸化物の第2領域21bを含む。遷移層23のための半導体において、高Al組成の半導体は、酸化雰囲気中において、狭窄層21のための半導体と同様に酸化されて、残余の半導体が遷移層23を構成する。
狭窄層21のための半導体:厚さ10〜40nm。
遷移層23のための半導体:厚さ5〜35nm。
図8は、図1〜図5に示された狭窄層21における第1領域及び第2領域の厚さの変化(ポスト19の中心軸から側面への動径方向における厚さの変化)を模式的に示す図面である。絶縁体の第2領域21bは、ポスト19の第2部分19bにおいて第1軸Nx上の点からポスト19の側面への方向に徐々に厚くなるアルミニウム酸化物層を含むことができる。第2領域21bの絶縁体は、半導体の構成元素アルミニウムを含むAl化合物である。面発光半導体レーザ11によれば、ポスト19の側面からの酸化により、エピタキシャル成長された際の遷移層のための半導体の一部も酸化されて、アルミニウム酸化物層の厚さは、動径方向に変化する。第2領域21bの絶縁体の厚さの変化は、絶縁体の先端部の応力を抑制したまま、メサの寄生容量を低減できる。
遷移層23は、第1部分19aにおいて第1軸Nx上の点からポスト19の側面への方向に徐々に薄くなる。ポスト19の側面からの酸化により、エピタキシャル成長された際の遷移層の一部も酸化されると、遷移層23の厚さは、動径方向に変化する。
面発光半導体レーザ11の作製方法の概要の説明に戻る。狭窄層を形成した後に、ウエハ全体にパッシベーション膜51のための絶縁膜を形成する。フォトリソグラフィ及びエッチングを用いて絶縁膜にコンタクト開口を形成すると共に、ポスト19の上部面上に第1電極55aを形成する。基板13の裏面(必要な場合には、研磨した面)上に第2電極55bを形成して基板生産物を作製する。これらの工程により、面発光半導体レーザ11のための基板生産物を分離して、面発光半導体レーザ11のチップを形成する。
実施例3、4、7、及び8では、狭窄層21と第1半導体層25と繋ぐ組成傾斜層に、第1半導体層25の第1アルミニウム組成AL1から狭窄層21のアルミニウム組成まで連続的に変化するAlプロファイルを適用している。連続的なAlプロファイルは、バンド構造においてノッチ及びスパイクによる電位障壁の生成を回避できる。Alプロファイルは、結晶成長炉における原料ラインの流量コントローラを連続的に変化させることによって提供される。
組成傾斜層の成長に際して、Al組成プロファイルが、図2〜図5においては連続的な単一線形関数で表される組成傾斜を表す。Al組成プロファイルが、階段状の関数を用いて複数の定組成の段階的なAl組成の減少で表される組成傾斜を表すことができ、ほぼ直線で表される組成傾斜を含むことができ、複数の線形関数で表される組成傾斜を含むことができる。
図9の(a)部及び(b)部は、それぞれ、図9の(c)部に示されたA−A線及びB−B線に沿ってとられた断面における価電子帯のエネルギーレベルを示す。これらのエネルギーレベルは、実施例6及び実験例の組成構造を示すモデルを用いてシミュレーションによって求められた。
図9の(a)部を参照すると、活性層から狭窄層への方向に横軸が規定される。縦軸は、ある基準レベルに対してエレクトロンボルト単位で表された価電子バンドのエネルギーレベルを示す。破線は、実験例のAl組成プロファイルを有する構造を示すモデルのシミュレーション結果を表し、実線は、実施例6のAl組成プロファイルを有する構造を示すモデルのシミュレーション結果を表す。実験例における素子構造では、一定のAl組成層が直接に酸化アルミニウム層に接しているので、半導体層と酸化アルミニウム層との界面における電位が固定されている。この固定により、組成傾斜層の一部において、価電子帯のレベルが大きく歪んでいる。実施例6における素子構造では、遷移層のバンドギャップ変化(酸化アルミニウム層から離れるにつれて、グラフ上において上側に向けて働く変化)が酸化アルミニウム層によるポテンシャル変形(酸化アルミニウム層から離れるにつれて、グラフ上において下側に働く変化)を補償するので、補償された伝導帯レベルは、実験例に比べて平坦なエネルギーレベルを示す。
また、キャリアの流れの観点からは、実験例の構造では、アノード電極からの正孔は、酸化アルミニウム層と半導体層との界面に生成されたスパイクに蓄積されて、この界面のスパイク内を電流アパ−チャーに向かって流れる。このキャリアの流れは、電流アパーチャー近傍において電流集中を引き起こす。実施例6の構造では、半導体領域のポテンシャルは、酸化アルミニウム層近傍において正孔に対しやや障壁として作用する。この障壁によれば、アノード電極からの正孔は、酸化アルミニウム層に到達する前に、ポスト19の第2部分19bから第1部分19aへの方向に流れる。酸化アルミニウム層近傍の障壁ポテンシャルは、酸化アルミニウム層から離れた領域においてキャリアを電流アパーチャーに向かうように案内する。この案内により、電流アパーチャー近傍における電流集中を回避できる。
図10の(a)部及び(b)部は、それぞれ、実験例及び実施例の組成構造を示すモデルを用いたシミュレーションによってキャリア密度求められた。これらの図面において、参照符合「R」は、非常に大きなキャリア密度の領域を示し、参照符合「Y」は、やや大きなキャリア密度の領域を示す。図10の(a)部を参照すると、酸化アルミニウム層と電流アパーチャーとの境界付近において、非常に大きなキャリア密度の領域(R)と、この回りに大きなキャリア密度の領域(Y)とが生じており、この分布は、全体的に広いエリアにキャリア集中が発生したことを示している。一方、図10の(b)部を参照すると、電流アパーチャーの全体にわたって高Al組成の半導体層に沿って大きなキャリア密度の領域(Y)が生じており、この領域(Y)の中心に僅かに領域(R)が生じている。
このキャリア分布は、図9の(a)部及び(b)部に示された価電子帯のバンド構造の形状から導かれるキャリア分布に整合する。
好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
以上説明したように、本実施形態によれば、微分抵抗を低減可能な構造を有する垂直共振型面発光半導体レーザが提供される。
11…面発光半導体レーザ、13…基板、15…活性層、17…第1積層、19…ポスト、21…狭窄層、21a…第1領域、21b…第2領域、23…遷移層、25…第1半導体層、27…第1組成傾斜層、29…第2半導体層、31…第2組成傾斜層。

Claims (7)

  1. 垂直共振型面発光半導体レーザであって、
    基板の主面上のポスト内に設けられた活性層と、
    前記ポスト内に設けられ狭窄層を含む第1積層と、
    を備え、
    前記活性層は、前記基板と前記第1積層との間に設けられ、
    前記狭窄層は、半導体の第1領域と前記第1領域を囲む絶縁体の第2領域とを含み、
    前記第1積層は、前記狭窄層に接触を成す遷移層と、第1アルミニウム組成を有し前記遷移層に接触を成す第1半導体層と、前記第1半導体層に接触を成す第1組成傾斜層と、前記第1アルミニウム組成より大きな第2アルミニウム組成を有し前記第1組成傾斜に接触を成す第2半導体層と、前記第2半導体層に接触を成す第2組成傾斜層と、
    を含み、
    前記遷移層は、前記第1半導体層から前記狭窄層への方向に増加するアルミニウム組成の半導体領域を含み、
    前記第1組成傾斜層のアルミニウム組成は、前記第1半導体層から前記第2半導体層への方向に増加する、垂直共振型面発光半導体レーザ。
  2. 前記第1アルミニウム組成はゼロ以上である、請求項1に記載された垂直共振型面発光半導体レーザ。
  3. 前記第1積層は、第3アルミニウム組成を有し前記第2組成傾斜層に接触を成す第3半導体層と、前記第3半導体層に接触を成す第3組成傾斜層と、を含み、
    前記第1アルミニウム組成は前記第3アルミニウム組成より大きい、請求項1又は請求項2に記載された垂直共振型面発光半導体レーザ。
  4. 分布ブラッグ反射のための第2半導体積層を更に備え、
    前記活性層は、前記第1積層と前記第2半導体積層との間に設けられる、請求項1〜請求項3のいずれか一項に記載された垂直共振型面発光半導体レーザ。
  5. 前記狭窄層は、当該垂直共振型面発光半導体レーザが発振すべき波長λの四分の一(λ/4)より薄い、請求項1〜請求項4のいずれか一項に記載された垂直共振型面発光半導体レーザ。
  6. 前記第2領域は、アルミニウム酸化物を備える、請求項1〜請求項5のいずれか一項に記載された垂直共振型面発光半導体レーザ。
  7. 前記遷移層は、AlGaAsを備える、請求項1〜請求項5のいずれか一項に記載された垂直共振型面発光半導体レーザ。
JP2017109517A 2017-03-23 2017-06-01 垂直共振型面発光半導体レーザ Pending JP2018160649A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201715467524A 2017-03-23 2017-03-23
US15/467,524 2017-03-23

Publications (1)

Publication Number Publication Date
JP2018160649A true JP2018160649A (ja) 2018-10-11

Family

ID=63795727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017109517A Pending JP2018160649A (ja) 2017-03-23 2017-06-01 垂直共振型面発光半導体レーザ

Country Status (1)

Country Link
JP (1) JP2018160649A (ja)

Similar Documents

Publication Publication Date Title
US10340659B1 (en) Electronically pumped surface-emitting photonic crystal laser
US9014225B2 (en) Vertical cavity surface emitting laser device
US10116115B2 (en) Integrated circuit implementing a VCSEL array or VCSEL device
JP5029254B2 (ja) 面発光レーザ
US20210057881A1 (en) Vertical-cavity surface-emitting laser
JP5735765B2 (ja) 面発光レーザ、面発光レーザアレイ、面発光レーザアレイを光源とする表示装置、プリンタヘッドおよびプリンタ
JP5665504B2 (ja) 垂直共振器型面発光レーザおよび垂直共振器型面発光レーザアレイ
JP4548345B2 (ja) 面発光型半導体レーザ
CN211929898U (zh) 垂直腔面发射激光器件
JP5304136B2 (ja) 面発光レーザ及びその製造方法
JP3188658B2 (ja) 面発光半導体レーザおよびその製造方法
US6906353B1 (en) High speed implanted VCSEL
US8389308B2 (en) Method for producing surface emitting semiconductor device
US8228964B2 (en) Surface emitting laser, surface emitting laser array, and image formation apparatus
WO2017212887A1 (ja) 垂直共振器面発光レーザ
JP4087152B2 (ja) 面発光半導体レーザ素子及びレーザアレイ
JP2001332812A (ja) 面発光半導体レーザ素子
US7817691B2 (en) Light emitting device
JP4224981B2 (ja) 面発光半導体レーザ素子およびその製造方法
US10847950B2 (en) Vertical cavity surface emitting laser, method for fabricating vertical cavity surface emitting laser
US20070127533A1 (en) Long-wavelength vertical cavity surface emitting lasers having oxide aperture and method for manufacturing the same
JPWO2008078595A1 (ja) 面発光レーザ
US20230006421A1 (en) Vertical cavity surface emitting laser element, vertical cavity surface emitting laser element array, vertical cavity surface emitting laser module, and method of producing vertical cavity surface emitting laser element
JP2018160649A (ja) 垂直共振型面発光半導体レーザ
US20210006039A1 (en) Electrically pumped photonic-crystal surface-emitting lasers with optical detector