JP2018159508A - Scrap preheating device of melting furnace - Google Patents

Scrap preheating device of melting furnace Download PDF

Info

Publication number
JP2018159508A
JP2018159508A JP2017056740A JP2017056740A JP2018159508A JP 2018159508 A JP2018159508 A JP 2018159508A JP 2017056740 A JP2017056740 A JP 2017056740A JP 2017056740 A JP2017056740 A JP 2017056740A JP 2018159508 A JP2018159508 A JP 2018159508A
Authority
JP
Japan
Prior art keywords
exhaust gas
scrap
preheating
preheating chamber
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017056740A
Other languages
Japanese (ja)
Other versions
JP2018159508A5 (en
Inventor
義昌 早川
Yoshimasa Hayakawa
義昌 早川
保 野村
Tamotsu Nomura
保 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2017056740A priority Critical patent/JP2018159508A/en
Publication of JP2018159508A publication Critical patent/JP2018159508A/en
Publication of JP2018159508A5 publication Critical patent/JP2018159508A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the scrap preheating device of a melting furnace provided with a single preheating chamber, capable of effectively preventing excessive oxidation of scrap.SOLUTION: A single preheating chamber 14 for preheating scrap pieces Sc is installed in a shaft 13 installed at the upper part of a furnace body 11, exhaust gas of an arc furnace 1 is circulated to the preheating chamber 14 in the shaft 13 to preheat the scrap pieces Sc, and a bypass passage 2 is installed for connecting an exhaust gas inlet side to an exhaust gas outlet side of the preheating chamber 14, and a flow controlling damper 21 is installed in the bypass passage 2.SELECTED DRAWING: Figure 1

Description

本発明は溶解炉のスクラップ予熱装置に関し、特に、予熱室を流通する排ガス量を適正に管理できるスクラップ予熱装置に関するものである。   The present invention relates to a scrap preheating device for a melting furnace, and more particularly to a scrap preheating device capable of appropriately managing the amount of exhaust gas flowing through a preheating chamber.

炉体の上方に設けたシャフト内にスクラップを予熱する単一の予熱室を設けた構造の溶解炉は例えば特許文献1に示されており、ここでは予熱室の下方を炉体側方から溶解室へ向けて開放して、予熱室内へ供給されたスクラップを溶解炉からの排ガスで予熱しつつ溶湯中へ供給している。   A melting furnace having a structure in which a single preheating chamber for preheating scrap is provided in a shaft provided above the furnace body is shown, for example, in Patent Document 1, in which a melting chamber is formed below the preheating chamber from the side of the furnace body. The scrap supplied to the preheating chamber is supplied to the molten metal while preheating with the exhaust gas from the melting furnace.

特開2004−84044JP2004-84044

しかし上記従来のスクラップ予熱装置では、溶解炉から予熱室へ流入する排ガスは全く管理されていない。このため、排ガス温度が1600℃前後に上昇する操業終盤の特に昇温還元期には、スクラップが排ガスで過度に加熱されて酸化し、歩留まりの低減や還元時間の長期化による生産性の低下を招くという問題がある。   However, in the conventional scrap preheating apparatus, exhaust gas flowing from the melting furnace into the preheating chamber is not managed at all. For this reason, especially at the end of the temperature increase and reduction period when the exhaust gas temperature rises to around 1600 ° C, the scrap is excessively heated and oxidized by the exhaust gas, reducing the yield and reducing the productivity due to the longer reduction time. There is a problem of inviting.

そこで、本発明はこのような問題を解決するもので、単一の予熱室を設けた溶解炉において、スクラップの過度な酸化を効果的に防止できる溶解炉のスクラップ予熱装置を提供することを目的とする。   Accordingly, the present invention solves such problems, and an object of the present invention is to provide a scrap preheating apparatus for a melting furnace that can effectively prevent excessive oxidation of scrap in a melting furnace provided with a single preheating chamber. And

上記目的を達成するために、本第1発明では、炉体(11)の上方に設けたシャフト(13)内にスクラップ(Sc)を予熱する単一の予熱室(14)を設けて、溶解炉(1)の排ガスをシャフト(13)内の予熱室(14)に流通させてスクラップ(Sc)を予熱し、かつ、予熱室(14)の排ガス流入側と排ガス流出側を結ぶバイパス路(2)を設けて、当該バイパス路(2)に流量調節手段(21,4)を設ける。   In order to achieve the above object, according to the first aspect of the present invention, a single preheating chamber (14) for preheating scrap (Sc) is provided in a shaft (13) provided above the furnace body (11) for melting. Bypassing the exhaust gas from the furnace (1) to the preheating chamber (14) in the shaft (13) to preheat the scrap (Sc) and connecting the exhaust gas inflow side to the exhaust gas outflow side of the preheating chamber (14) ( 2), and the flow rate adjusting means (21, 4) is provided in the bypass passage (2).

本第1発明において、溶解炉の排ガス温度が上昇し、あるいは排ガス量が増大すると、予熱室内のスクラップへの入熱量が過度に大きくなってその酸化が進行してしまう。そこで本発明ではバイパス路の流量調節手段によって排ガスの一部を、スクラップに供給することなくバイパス路に分流させる。これによって、スクラップの過度な予熱が防止されその酸化の進行が回避される。   In the first invention, when the temperature of the exhaust gas in the melting furnace rises or the amount of exhaust gas increases, the amount of heat input to the scrap in the preheating chamber becomes excessively large and the oxidation proceeds. Therefore, in the present invention, a part of the exhaust gas is diverted to the bypass passage without being supplied to the scrap by the flow rate adjusting means of the bypass passage. This prevents excessive preheating of the scrap and avoids its oxidation progress.

本第2発明では、前記流量調節手段として弁体(21)ないしファン(4)の少なくとも一方を設ける。   In the second invention, at least one of the valve body (21) and the fan (4) is provided as the flow rate adjusting means.

本第3発明では、前記バイパス路(2)を流れる排ガス量の上限が溶解炉(1)から排出される排ガス量の25〜35%になるように前記バイパス路(2)の圧損が設定されている。   In the third invention, the pressure loss of the bypass passage (2) is set so that the upper limit of the amount of exhaust gas flowing through the bypass passage (2) is 25 to 35% of the amount of exhaust gas discharged from the melting furnace (1). ing.

なお、本発明は以下の操業方法であっても良い。すなわち、炉体(11)の上方に設けたシャフト(13)内にスクラップ(Sc)を予熱する単一の予熱室(14)を設けて、溶解炉(1)の排ガスをシャフト(13)内の予熱室(14)に流通させてスクラップ(Sc)を予熱し、かつ、予熱室(14)の排ガス流入側と排ガス流出側を結ぶバイパス路(2)を設けた溶解炉のスクラップ予熱装置において、前記バイパス路(2)を流れる排ガス量の上限を溶解炉(1)から排出される排ガス量の25〜35%に設定することを特徴とする溶解炉のスクラップ予熱装置の操業方法。     In addition, the following operation methods may be sufficient as this invention. That is, a single preheating chamber (14) for preheating the scrap (Sc) is provided in the shaft (13) provided above the furnace body (11), and the exhaust gas from the melting furnace (1) is discharged into the shaft (13). In the preheating chamber (14) of the melting furnace, the scrap (Sc) is preheated, and a bypass passage (2) connecting the exhaust gas inflow side and the exhaust gas outflow side of the preheating chamber (14) is provided. The upper limit of the amount of exhaust gas flowing through the bypass passage (2) is set to 25 to 35% of the amount of exhaust gas discharged from the melting furnace (1).

上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を参考的に示すものである。   The reference numerals in the parentheses refer to the correspondence with specific means described in the embodiments described later.

以上のように、本発明の溶解炉のスクラップ予熱装置によれば、単一の予熱室を設けた溶解炉において、スクラップの過度な酸化を効果的に防止することができる。   As described above, according to the scrap preheating apparatus for a melting furnace of the present invention, excessive oxidation of scrap can be effectively prevented in a melting furnace provided with a single preheating chamber.

本発明の第1実施形態における、スクラップ予熱装置を設けたアーク炉の概略断面図である。It is a schematic sectional drawing of the arc furnace which provided the scrap preheating apparatus in 1st Embodiment of this invention. 本発明の第2実施形態における、スクラップ予熱装置を設けたアーク炉の概略断面図である。It is a schematic sectional drawing of the arc furnace provided with the scrap preheating apparatus in 2nd Embodiment of this invention.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。   The embodiment described below is merely an example, and various design improvements made by those skilled in the art without departing from the gist of the present invention are also included in the scope of the present invention.

(第1実施形態)
図1には溶解炉の一例としてシャフト式アーク炉を示す。図1において、アーク炉1の炉体11内にその中心上方から電極12が挿入されてアーク放電によって炉内のスクラップScが溶融されている。炉体11上方の偏心位置に筒状のシャフト13が立設されて内部に単一の予熱室14が形成されている。予熱室14の下端開口には、下方へ開放可能なフォーク型ゲート15が設けられている。フォーク型ゲート15は複数の平行棒体をフォーク状に並べた構造のゲートで、平行棒体間の間隙を排ガスが流通できるようになっている。
(First embodiment)
FIG. 1 shows a shaft type arc furnace as an example of a melting furnace. In FIG. 1, an electrode 12 is inserted into the furnace body 11 of the arc furnace 1 from above the center, and the scrap Sc in the furnace is melted by arc discharge. A cylindrical shaft 13 is erected at an eccentric position above the furnace body 11, and a single preheating chamber 14 is formed therein. A fork type gate 15 that can be opened downward is provided at the lower end opening of the preheating chamber 14. The fork type gate 15 is a gate having a structure in which a plurality of parallel bars are arranged in a fork shape, and exhaust gas can flow through a gap between the parallel bars.

予熱室14の上端開口にはスライド開閉可能な扉体16が設けられている。予熱室14内にスクラップScを装入する場合には、扉体16を開いてバケット(図示略)で搬送されてきたスクラップScを予熱室14内へ落下供給する。操業中にアーク炉1の炉内で発生する高温の排ガスはゲート15を通過して予熱室14内を上昇しこの間にスクラップScを予熱する。予熱されたスクラップScは操業中の適当タイミングでゲート15が開放されて下方の炉体11内へ落下供給される。   A door body 16 that can be opened and closed is provided at the upper end opening of the preheating chamber 14. When charging the scrap Sc into the preheating chamber 14, the door Sc 16 is opened and the scrap Sc transported by a bucket (not shown) is dropped and supplied into the preheating chamber 14. During operation, the high-temperature exhaust gas generated in the furnace of the arc furnace 1 passes through the gate 15 and rises in the preheating chamber 14 to preheat the scrap Sc. The preheated scrap Sc is supplied by dropping into the lower furnace body 11 with the gate 15 opened at an appropriate timing during operation.

ここで、本実施形態ではバイパス路2が設けられており、当該バイパス路2は、排ガス流入側である、シャフト13の下端開口に近い下方の側壁に下端が開口している。バイパス路には途中に流量調節手段を構成する弁体としてのダンパ21が設けられており、当該ダンパ21は手動で開閉されても良いし、後述する計算式に基づいて自動で開閉されるようにしても良い。   Here, in this embodiment, the bypass path 2 is provided, and the lower end of the bypass path 2 is open on the side wall below the lower end opening of the shaft 13 on the exhaust gas inflow side. The bypass 21 is provided with a damper 21 as a valve body that constitutes a flow rate adjusting means in the middle. The damper 21 may be manually opened or closed, or may be automatically opened or closed based on a calculation formula described later. Anyway.

ただし、発明者等の経験によると、ダンパ21を全開にした場合にも、アーク炉1から排出される排ガス量の30%程度のみがバイパス路2へ流れる上限排ガス量となるように当該バイパス路2の圧損を設定しておくのが良い。上記バイパス路2の上端は排ガス流出側である、予熱室14の上端部側壁に開口している。なお、この開口位置は予熱室14内にスクラップSrを充填した際のスクラップSrの高さよりも高い位置とする。予熱室14の上端部側壁には煙道3が連結されており、煙道3は図略の冷却塔からブロアを経て集塵機に至っている。   However, according to the experience of the inventors, even when the damper 21 is fully opened, only about 30% of the amount of exhaust gas discharged from the arc furnace 1 becomes the upper limit exhaust gas amount flowing to the bypass passage 2. It is good to set the pressure loss of 2. The upper end of the bypass passage 2 is open to the upper end side wall of the preheating chamber 14 on the exhaust gas outflow side. This opening position is set to a position higher than the height of the scrap Sr when the preheating chamber 14 is filled with the scrap Sr. A flue 3 is connected to an upper end side wall of the preheating chamber 14, and the flue 3 reaches a dust collector through a blower from a cooling tower (not shown).

ここで、アーク炉1から排出される排ガス量のどの程度をバイパス路2へ流すのが最適であるかをさらに詳細に実験した結果を表1に示す。表1によれば、予熱されたスクラップScの表面酸化を抑制する(スクラップの酸化抑制度)ためには、アーク炉1から排出される排ガス量の25%以上をバイパス路2へ流すのが良い。一方、スクラップScを十分予熱できる予熱時間を比較すると、アーク炉1から排出される排ガス量の5〜35%をバイパス路2へ流した場合の予熱時間がT(min)である場合に、35〜40%とした場合には予熱時間はT〜1.5T(min)と長くなり、43%以上にすると1.5T(min)以上の予熱時間を必要とする。したがって、スクラップSrの表面酸化を抑制しつつ予熱時間を可及的に短くするためには、アーク炉1から排出される排ガス量の25〜35%をバイパス路2へ流すのが最適である。   Here, Table 1 shows the results of experiments in more detail on how much of the amount of exhaust gas discharged from the arc furnace 1 is optimal to flow to the bypass passage 2. According to Table 1, in order to suppress the surface oxidation of the preheated scrap Sc (the degree of inhibition of scrap oxidation), 25% or more of the amount of exhaust gas discharged from the arc furnace 1 should flow to the bypass 2. . On the other hand, when the preheating time during which the scrap Sc can be sufficiently preheated is compared, when the preheating time when 5 to 35% of the amount of exhaust gas discharged from the arc furnace 1 flows to the bypass passage 2 is T (min), 35 When it is set to ˜40%, the preheating time is as long as T to 1.5 T (min), and when it is set to 43% or more, a preheating time of 1.5 T (min) or more is required. Therefore, in order to shorten the preheating time as much as possible while suppressing the surface oxidation of the scrap Sr, it is optimal to flow 25 to 35% of the amount of exhaust gas discharged from the arc furnace 1 to the bypass passage 2.

Figure 2018159508
Figure 2018159508

このような構造において、アーク炉1からの高温の排ガスが既述のようにゲート15を通過して予熱室14内を上昇してこの間にスクラップScを予熱し、その後、予熱室14の上端部から煙道3を経て排気される。排ガス温度が上昇し、あるいは排ガス量が増大すると、スクラップScへの入熱量が過度に大きくなってその酸化が進行してしまう。   In such a structure, the high-temperature exhaust gas from the arc furnace 1 passes through the gate 15 as described above and rises in the preheating chamber 14 to preheat the scrap Sc, and then the upper end of the preheating chamber 14. The air is exhausted through the flue 3. When the exhaust gas temperature rises or the amount of exhaust gas increases, the amount of heat input to the scrap Sc becomes excessively large and the oxidation proceeds.

そこでこの場合、本実施例では、ダンパ21を適当量開放して、排ガスの一部を、スクラップScに供給することなくバイパス路2を介して直接予熱室14上端部に流入させ、ここから煙道3に排出させる。これによって、スクラップScの過度な予熱が防止されその酸化の進行が回避される。   In this case, in this embodiment, an appropriate amount of the damper 21 is opened, and a part of the exhaust gas is directly flowed into the upper end portion of the preheating chamber 14 via the bypass path 2 without being supplied to the scrap Sc. Drain to road 3. This prevents excessive preheating of the scrap Sc and avoids the progress of oxidation.

ここで、アーク炉1から排出される熱量速度Qvaは、アーク炉1の排ガス量をQ(m3/min)、排ガス温度をt(℃)とすると、下式(1)で示される。
Qva=(Q・t・ガス比熱)・K1(Kwh/min)…(1)
ここで、K1は適当な係数である(以下、同様)。
Here, the heat rate Qva discharged from the arc furnace 1 is represented by the following equation (1), where Q (m 3 / min) is the amount of exhaust gas in the arc furnace 1 and t (° C.) is the exhaust gas temperature.
Qva = (Q · t · gas specific heat) · K1 (Kwh / min) (1)
Here, K1 is an appropriate coefficient (the same applies hereinafter).

また、煙道3の持ち去り熱量速度Qveは、煙道3の排ガス温度をt1(℃)とすると、煙道3に設置された図略のブロアの回転数で決定される排気量(煙道3の気流量)をQ1として、下式(2)で示すようなものになる。
Qve=(Q1・t1・ガス比熱)・K1(Kwh/min)…(2)
The amount of heat Q Qve taken away from the flue 3 is the exhaust amount (flue) determined by the rotational speed of a blower (not shown) installed in the flue 3 when the exhaust gas temperature in the flue 3 is t1 (3 air flow rate) is Q1, and the following equation (2) is obtained.
Qve = (Q1, t1, gas specific heat), K1 (Kwh / min) (2)

さらに、バイパス路2の持ち去り熱量速度Qvbは、当該バイパス路2の排ガス温度はt(℃)であるから、ダンパ21の開度で決定されるバイパス路2の気流量をQ2として、下式(3)で示すようなものになる。
Qvb=(Q2・t・ガス比熱)・K1(Kwh/min)…(3)
Furthermore, since the exhaust gas temperature of the bypass path 2 is t (° C.), the carry heat rate Qvb of the bypass path 2 is expressed as It will be as shown in (3).
Qvb = (Q2 · t · gas specific heat) · K1 (Kwh / min) (3)

したがって、他の熱損失を考慮しなければ、予熱室14への入熱速度Qvpは下式(4)で得られる。
Qvp=Qva−(Qve+Qvb)…(4)
Therefore, if other heat loss is not taken into consideration, the heat input speed Qvp to the preheating chamber 14 is obtained by the following equation (4).
Qvp = Qva- (Qve + Qvb) (4)

これにより、予熱室14内のスクラップScの熱容量を予め算出しておけば、式(4)で算出される入熱速度QvpよりスクラップScの予熱温度変化を推定することができる。そこで、推定される予熱温度が適正範囲内に維持されるように、ダンパ21の開度を制御して式(3)における排気量Q2を調整する。この調整は例えば、排ガス量Qが増加した場合には排気量Q2をこれに応じて増加させ、温度tが高くなった場合にも排気量Q2をこれに応じて増加させるように行う。なお、式(1)〜(3)中の温度t,t1および排ガス量Qは適当な測定手段によって測定される。   Thereby, if the heat capacity of the scrap Sc in the preheating chamber 14 is calculated in advance, the preheating temperature change of the scrap Sc can be estimated from the heat input speed Qvp calculated by the equation (4). Therefore, the exhaust amount Q2 in the equation (3) is adjusted by controlling the opening degree of the damper 21 so that the estimated preheating temperature is maintained within an appropriate range. For example, this adjustment is performed such that when the exhaust gas amount Q increases, the exhaust amount Q2 is increased accordingly, and when the temperature t increases, the exhaust amount Q2 is increased accordingly. In addition, the temperature t, t1 and the exhaust gas amount Q in the formulas (1) to (3) are measured by an appropriate measuring means.

排ガス量Qの直接的な測定が困難な場合には、アーク炉への投入電力、[C]吹込み速度、[O2]吹込み速度、助燃エネルギー吹精速度、先入れ[C]量、金属酸化量、想定スラグ生成熱、廃タイヤ量、廃プラスチック量、想定付着油分量から熱量速度Qvaを直接演算するようにしても良い。   When direct measurement of the exhaust gas quantity Q is difficult, the electric power input to the arc furnace, [C] blowing speed, [O2] blowing speed, auxiliary combustion energy blowing speed, first-in [C] quantity, metal The calorific value Qva may be directly calculated from the oxidation amount, assumed slag generation heat, waste tire amount, waste plastic amount, and assumed attached oil amount.

式(4)で他の熱損失を考慮する場合、当該熱損失としては、フォーク型ゲートの冷却水抜熱速度Q21、予熱室水冷パネル冷却水抜熱速度Q22(Kwh/min)、予熱室鉄皮表面からの放熱速度Q23(Kwh/min)、漏煙排ガスによる放熱速度Q24(Kwh/min)等があり、この場合には式(4)のQvaから、Qve,Qvbに加えてQ21〜Q24も減じてQvpを算出する。   When other heat losses are considered in equation (4), the heat losses include fork gate cooling water removal heat rate Q21, preheating chamber water cooling panel cooling water removal heat rate Q22 (Kwh / min), preheating chamber iron surface Heat dissipation rate Q23 (Kwh / min) from the air, and heat dissipation rate Q24 (Kwh / min) due to the flue gas, etc. In this case, in addition to Qve and Qvb, Q21 to Q24 are subtracted from Qva in equation (4) Qvp is calculated.

(第2実施形態)
図2に示すようにバイパス路2にダンパ21に直列に、自動で回転制御されるブースタファン4を設ける。このようにすると、予熱室内のスクラップの形状が変動してその圧損が大きく変化しても、ブースタファン4によってバイパス路2の気流量Q2を正確に制御することができるから、スクラップScの酸化の進行を効果的に防止することができる。
(Second Embodiment)
As shown in FIG. 2, a booster fan 4 that is automatically controlled in rotation is provided in the bypass path 2 in series with the damper 21. In this way, the booster fan 4 can accurately control the air flow rate Q2 of the bypass passage 2 even if the shape of the scrap in the preheating chamber fluctuates and its pressure loss changes greatly. Progress can be effectively prevented.

1…アーク炉(溶解炉)、11…炉体、13…シャフト、14…予熱室、2…バイパス路、21…ダンパ(流量調節手段)、4…ブースターファン、Sc…スクラップ。 DESCRIPTION OF SYMBOLS 1 ... Arc furnace (melting furnace), 11 ... Furnace body, 13 ... Shaft, 14 ... Preheating chamber, 2 ... Bypass path, 21 ... Damper (flow control means), 4 ... Booster fan, Sc ... Scrap.

Claims (3)

炉体の上方に設けたシャフト内にスクラップを予熱する単一の予熱室を設けて、溶解炉の排ガスをシャフト内の予熱室に流通させてスクラップを予熱し、かつ、予熱室の排ガス流入側と排ガス流出側を結ぶバイパス路を設けて、当該バイパス路に流量調節手段を設けた溶解炉のスクラップ予熱装置。 A single preheating chamber is provided in the shaft above the furnace body to preheat the scrap, and the exhaust gas from the melting furnace is circulated through the preheating chamber in the shaft to preheat the scrap, and the exhaust gas inflow side of the preheating chamber A scrap preheating device for a melting furnace in which a bypass path is provided to connect the exhaust gas to the exhaust gas outflow side, and a flow rate adjusting means is provided in the bypass path. 前記流量調節手段として弁体ないしファンの少なくとも一方を設けた請求項1に記載の溶解炉のスクラップ予熱装置。 The scrap preheating apparatus for a melting furnace according to claim 1, wherein at least one of a valve body and a fan is provided as the flow rate adjusting means. 前記バイパス路を流れる排ガス量の上限が溶解炉から排出される排ガス量の25〜35%になるように前記バイパス路の圧損が設定されている請求項1又は2に記載のスクラップ予熱装置。 The scrap preheating device according to claim 1 or 2, wherein the pressure loss of the bypass passage is set so that the upper limit of the amount of exhaust gas flowing through the bypass passage is 25 to 35% of the amount of exhaust gas discharged from the melting furnace.
JP2017056740A 2017-03-23 2017-03-23 Scrap preheating device of melting furnace Pending JP2018159508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017056740A JP2018159508A (en) 2017-03-23 2017-03-23 Scrap preheating device of melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017056740A JP2018159508A (en) 2017-03-23 2017-03-23 Scrap preheating device of melting furnace

Publications (2)

Publication Number Publication Date
JP2018159508A true JP2018159508A (en) 2018-10-11
JP2018159508A5 JP2018159508A5 (en) 2019-10-03

Family

ID=63796549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017056740A Pending JP2018159508A (en) 2017-03-23 2017-03-23 Scrap preheating device of melting furnace

Country Status (1)

Country Link
JP (1) JP2018159508A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022172771A1 (en) * 2021-02-10 2022-08-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022172771A1 (en) * 2021-02-10 2022-08-18

Similar Documents

Publication Publication Date Title
JP3796617B2 (en) Melting and holding furnace such as aluminum ingot
CN206469667U (en) A kind of energy-conserving and environment-protective mineral hot furnace for being easy to feed
CN104344710A (en) Metal melting furnace
TW201114917A (en) Arc melting equipment and molten metal manufacturing method using arc melting equipment
JP2018159508A (en) Scrap preheating device of melting furnace
CN105452420A (en) Coke dry-quenching device and coke dry-quenching method
US10767929B2 (en) Furnace
CN209113961U (en) A kind of two-phase steel casting solution device
CN105861846A (en) Energy-saving smelting device for aluminum processing
CN108754176B (en) Continuous refining furnace and process method for refining secondary copper by using same
JP2018017474A (en) Scrap preheating device of melting furnace
CN104344726B (en) Vanadium goods raw material preheating system
CN107421329A (en) A kind of casting furnace heating plant
CN207779149U (en) A kind of heating recovery of liquid slag utilizes device
CN206875967U (en) A kind of hardware smelts melting furnace
CN103162539B (en) Method of transferring and pouring aluminum liquid in process of preparation of electrician round aluminum rod
JP2017075069A (en) Glass melting furnace, glass melting method and method for manufacturing glass
CN209726790U (en) Smelting apparatus
JP2020139180A (en) Slag discharging method and molten metal producing method in an arc-type electric furnace
KR102012099B1 (en) Hot air suppling device for furnace
JP4362712B2 (en) Crucible melting and holding furnace
CN216482225U (en) Novel crucible type smelting heat preservation furnace hearth structure
JP2012193922A (en) Metal melting furnace and metal melting method
CN211527059U (en) Cupola furnace for casting speed reducer box
KR100598920B1 (en) nonferrous metals rapidity smelting furnace

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190814

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210706