JP2018159286A - Air-fuel ratio control device for internal combustion engine and control method for the same - Google Patents

Air-fuel ratio control device for internal combustion engine and control method for the same Download PDF

Info

Publication number
JP2018159286A
JP2018159286A JP2017055568A JP2017055568A JP2018159286A JP 2018159286 A JP2018159286 A JP 2018159286A JP 2017055568 A JP2017055568 A JP 2017055568A JP 2017055568 A JP2017055568 A JP 2017055568A JP 2018159286 A JP2018159286 A JP 2018159286A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
catalyst
sensor
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017055568A
Other languages
Japanese (ja)
Inventor
真二郎 石田
Shinjiro Ishida
真二郎 石田
裕士 宮本
Yuji Miyamoto
裕士 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2017055568A priority Critical patent/JP2018159286A/en
Publication of JP2018159286A publication Critical patent/JP2018159286A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air-fuel ratio control device for an internal combustion engine capable of accurately estimating a state of an air-fuel ratio sensor and controlling an air-fuel ratio with good controllability by making an adjustment by using feedback correction amount corresponding to the state of the air-fuel ratio sensor, and a control method for the air-fuel ratio control device.SOLUTION: In an internal combustion engine for performing air-fuel ratio feedback control by adjusting fuel injection amount by using a catalyst-prior air-fuel ratio sensor 11 and a catalyst-posterior oxygen sensor 15, correction amounts of a catalyst inner central air-fuel ratio and a target air-fuel ratio are calculated based on a catalyst-prior air-fuel ratio sensor signal RABF, a catalyst-posterior oxygen sensor signal VO2R and intake air amount QAR, and a feedback gain corresponding to the catalyst inner central air-fuel ratio and the air-fuel ratio sensor state is adjusted by using the calculated correction amounts. At this time, the feedback gain is corrected by using a gain for determining feedback amount for shift correction of the air-fuel ratio sensor.SELECTED DRAWING: Figure 2

Description

本発明は、自動車の車載自己診断規制対応技術に係り、特に内燃機関の空燃比を制御する空燃比制御装置及びその制御方法に関する。   The present invention relates to a vehicle-mounted self-diagnosis regulation technology, and more particularly, to an air-fuel ratio control apparatus for controlling an air-fuel ratio of an internal combustion engine and a control method therefor.

自動車の有害排気ガスを減少させ、且つ燃費や運転性を向上させるための手段として、エンジン等の内燃機関の排気ガス成分に関する情報によって、空燃比を制御するフィードバック方式の空燃比制御装置が実用化されている(例えば特許文献1参照)。   Practical use of feedback-type air-fuel ratio control device that controls air-fuel ratio based on information on exhaust gas components of internal combustion engines such as engines, as a means to reduce harmful exhaust gas of automobiles and improve fuel efficiency and drivability (For example, refer to Patent Document 1).

上記空燃比制御装置において、使用されるセンサ、例えば空燃比センサ(LAFセンサ)の故障や劣化により、排気ガス成分の異常や制御システム上で異常が発生することがあり、空燃比制御を適正にできない場合が生じる。特に空燃比センサは、エンジンの排気を直接受ける位置に設置されるため、高温、高圧や振動の影響、粗悪燃料等の影響を受け、劣化し易い傾向がある。また、多気筒エンジンの場合、他の気筒の燃焼サイクルの影響を受けるため、極めて正確な検出精度を有している必要がある。   In the above air-fuel ratio control apparatus, abnormalities in the exhaust gas component or the control system may occur due to failure or deterioration of a sensor used, for example, an air-fuel ratio sensor (LAF sensor). There are cases where it is impossible. In particular, since the air-fuel ratio sensor is installed at a position that directly receives engine exhaust, the air-fuel ratio sensor tends to deteriorate due to the influence of high temperature, high pressure, vibration, bad fuel, and the like. Further, in the case of a multi-cylinder engine, since it is affected by the combustion cycle of other cylinders, it is necessary to have extremely accurate detection accuracy.

更に、北米向けの自動車は、車載自己診断装置の装着を義務付けた法律、いわゆるOBDII規制に対応する必要があり、空燃比センサに排気規制値の1.5倍を超えるような異常が発生した場合には、運転者に速やかに警告し、修理を促すことが要求されている。
したがって、何らかの原因で空燃比センサの検出精度が低下した場合には、空燃比センサの交換等の適切な処置を施す必要がある。このため、酸素センサの出力信号を用いて、空燃比センサの異常状態の判定を行っている。
In addition, North American automobiles must comply with the so-called OBDII regulations that require the installation of on-board self-diagnosis devices, and the air-fuel ratio sensor has an abnormality that exceeds 1.5 times the emission regulation value. It is required to promptly warn the driver and prompt repair.
Therefore, when the detection accuracy of the air-fuel ratio sensor decreases for some reason, it is necessary to take appropriate measures such as replacement of the air-fuel ratio sensor. For this reason, the abnormal state of the air-fuel ratio sensor is determined using the output signal of the oxygen sensor.

特許第5851569号公報Japanese Patent No. 5851569

しかしながら、空燃比センサの状態を正確に推定することができないため、空燃比センサの状態によるフィードバック分の補正量は、一律小さく設定せざるを得ない。フィードバック分の補正量が小さいと、空燃比センサが正常時の制御性はよいが、故障時には誤差分を吸収するまでに時間がかかり、故障による誤差を吸収するまでの期間は運転性が悪化する。一方、フィードバック分の補正量を大きくすれば、空燃比センサ故障時の誤差分を吸収するまでの時間を短縮できるが、故障による誤差を吸収した後の制御性が悪化する、という課題がある。   However, since the state of the air-fuel ratio sensor cannot be accurately estimated, the correction amount for feedback according to the state of the air-fuel ratio sensor must be set to be uniformly small. If the correction amount for feedback is small, the controllability when the air-fuel ratio sensor is normal is good, but it takes time to absorb the error when a failure occurs, and the drivability deteriorates during the period until the error due to the failure is absorbed . On the other hand, if the correction amount for feedback is increased, the time required to absorb the error when the air-fuel ratio sensor fails can be shortened, but there is a problem that the controllability after absorbing the error due to the failure is deteriorated.

本発明は上記のような事情に鑑みてなされたもので、その目的とするところは、空燃比センサの状態を正確に推定でき、空燃比センサの状態に応じたフィードバック補正量で調整することで、制御性よく内燃機関の空燃比を制御できる空燃比制御装置及びその制御方法を提供することにある。   The present invention has been made in view of the circumstances as described above. The object of the present invention is to accurately estimate the state of the air-fuel ratio sensor, and to adjust the feedback correction amount according to the state of the air-fuel ratio sensor. Another object of the present invention is to provide an air-fuel ratio control apparatus and a control method thereof that can control the air-fuel ratio of an internal combustion engine with good controllability.

本発明の内燃機関の空燃比制御装置は、内燃機関の排気系に設けられた触媒の上流側の空燃比を計測する第1の計測手段と、前記触媒の下流側の酸素濃度を計測する第2の計測手段と、前記内燃機関の吸入空気量を計測する第3の計測手段と、前記第1乃至第3の計測手段の計測結果に基づいて、目標空燃比補正量を算出する酸素濃度制御手段とを備え、前記酸素濃度制御手段の出力信号に基づいて空燃比をフィードバック制御する内燃機関の空燃比制御装置であって、前記第2の計測手段による検出値の反転回数、反転周期及び反転時間の少なくともいずれか1つから、前記第2の計測手段の状態を推定するセンサ状態推定手段と、前記センサ状態推定手段による推定結果に基づいて、シフト補正のフィードバック量を決めるゲインの演算を行うフィードバックゲイン演算手段とを設け、前記フィードバックゲイン演算手段から出力されるシフト補正のフィードバック量に基づいて、前記目標空燃比補正量を調整することを特徴とする。
また、本発明の内燃機関の空燃比制御方法は、内燃機関の排気系に設けられた触媒の上流側に配置された空燃比センサの検出信号と、前記触媒の下流側に配置された酸素センサの検出信号とに基づいて空燃比をフィードバック制御する内燃機関の空燃比制御方法において、内燃機関の吸入空気量と前記空燃比センサの検出信号とに基づいて、触媒の酸素蓄積量を算出するステップと、算出した酸素蓄積量に基づいて、触媒内中心空燃比を算出するステップと、前記空燃比センサの検出値に基づく空燃比フィードバック制御を実施しているときの前記酸素センサの作動パラメータを算出するステップと、前記作動パラメータと所定値との乖離度合いであるフィードバックゲイン指数を算出するステップと、前記触媒内中心空燃比を前記フィードバックゲイン指数で調整するステップと、前記調整した触媒内中心空燃比を、前記空燃比フィードバックのベース目標空燃比に設定するステップとを具備することを特徴とする。
An air-fuel ratio control apparatus for an internal combustion engine according to the present invention includes a first measuring means for measuring an air-fuel ratio on the upstream side of a catalyst provided in an exhaust system of the internal combustion engine, and a first measuring means for measuring an oxygen concentration on the downstream side of the catalyst. 2 measuring means, a third measuring means for measuring the intake air amount of the internal combustion engine, and an oxygen concentration control for calculating a target air-fuel ratio correction amount based on the measurement results of the first to third measuring means. An air-fuel ratio control apparatus for an internal combustion engine that feedback-controls the air-fuel ratio based on an output signal of the oxygen concentration control means, wherein the number of inversions, the inversion period, and the inversion of the detected value by the second measurement means A sensor state estimation unit that estimates the state of the second measurement unit from at least one of the times, and a gain calculation that determines a shift correction feedback amount based on an estimation result by the sensor state estimation unit It provided a feedback gain calculation means for performing, based on the amount of feedback shift correction output from the feedback gain calculation unit, and adjusting the target air-fuel ratio correction amount.
The air-fuel ratio control method for an internal combustion engine according to the present invention includes a detection signal of an air-fuel ratio sensor disposed upstream of a catalyst provided in an exhaust system of the internal combustion engine, and an oxygen sensor disposed downstream of the catalyst. In the air-fuel ratio control method for an internal combustion engine that feedback-controls the air-fuel ratio based on the detection signal, the step of calculating the oxygen accumulation amount of the catalyst based on the intake air amount of the internal combustion engine and the detection signal of the air-fuel ratio sensor Calculating a central air-fuel ratio in the catalyst based on the calculated oxygen accumulation amount, and calculating an operating parameter of the oxygen sensor when air-fuel ratio feedback control is performed based on a detection value of the air-fuel ratio sensor A step of calculating a feedback gain index that is a degree of deviation between the operating parameter and a predetermined value; and And adjusting at Kkugein index, the catalyst within the central air-fuel ratio and the adjustment, characterized by comprising the step of setting a base target air-fuel ratio of the air-fuel ratio feedback.

本発明によれば、内燃機関の排気系に設けられた触媒の上流側の空燃比と、触媒の下流側の酸素濃度とを計測して空燃比をフィードバック制御するシステムにおいて、上記空燃比、上記酸素濃度及び吸入空気量に基づき、触媒内中心空燃比と目標空燃比の補正量を演算し、算出した補正量で触媒内中心空燃比と空燃比センサの状態とに応じてフィードバックゲインを調整する。この際、シフト補正のフィードバック量を決めるゲインを用いて補正することで、触媒前空燃比センサのオフセットずれを迅速且つ精度よく補正し、故障検出することができる。   According to the present invention, in the system that measures the air-fuel ratio upstream of the catalyst provided in the exhaust system of the internal combustion engine and the oxygen concentration downstream of the catalyst and feedback-controls the air-fuel ratio, the air-fuel ratio, Based on the oxygen concentration and the intake air amount, the correction amount of the center air-fuel ratio in the catalyst and the target air-fuel ratio is calculated, and the feedback gain is adjusted with the calculated correction amount according to the center air-fuel ratio in the catalyst and the state of the air-fuel ratio sensor. . At this time, by using a gain that determines the feedback amount of shift correction, the offset deviation of the pre-catalyst air-fuel ratio sensor can be corrected quickly and accurately, and a failure can be detected.

本発明の空燃比制御装置が適用された内燃機関のシステム構成の一例を示す概略図である。1 is a schematic diagram showing an example of a system configuration of an internal combustion engine to which an air-fuel ratio control apparatus of the present invention is applied. 図1に示した内燃機関システムにおける制御装置で実行される空燃比フィードバック制御を装置として模式的に示すブロック図である。FIG. 2 is a block diagram schematically showing air-fuel ratio feedback control executed by a control device in the internal combustion engine system shown in FIG. 1 as a device. 酸素濃度制御による空燃比センサのオフセットずれの吸収動作について説明するための図である。It is a figure for demonstrating the absorption operation | movement of the offset shift | offset | difference of the air fuel ratio sensor by oxygen concentration control. 本発明の実施形態に係る空燃比制御装置の機能ブロック図である。It is a functional block diagram of the air-fuel ratio control device according to the embodiment of the present invention. 図4に示した空燃比制御装置の制御方法を示すフローチャートである。6 is a flowchart showing a control method of the air-fuel ratio control apparatus shown in FIG. 図5に続く制御方法を示すフローチャートである。It is a flowchart which shows the control method following FIG. 酸素センサの出力電圧の反転回数が少ない場合のフィードバックゲインについて説明するための波形図である。It is a wave form diagram for demonstrating the feedback gain when the frequency | count of inversion of the output voltage of an oxygen sensor is small. 酸素センサの出力電圧の反転回数が多い場合のフィードバックゲインについて説明するための波形図である。It is a wave form diagram for demonstrating a feedback gain when the frequency | count of inversion of the output voltage of an oxygen sensor is large. 酸素センサの出力電圧の反転が早い場合のフィードバックゲインについて説明するための波形図である。It is a wave form diagram for demonstrating the feedback gain when the inversion of the output voltage of an oxygen sensor is quick. 酸素センサの出力電圧の反転が遅い場合のフィードバックゲインについて説明するための波形図である。It is a wave form diagram for demonstrating the feedback gain when the inversion of the output voltage of an oxygen sensor is slow. 空燃比センサの検出信号がオフセットずれした場合について説明するための図である。It is a figure for demonstrating the case where the detection signal of an air fuel ratio sensor has shifted offset.

以下、本発明の実施形態について図面を参照して説明する。
図1は、本発明の空燃比制御装置が適用された内燃機関のシステム構成の一例を示している。内燃機関1は吸気系2と排気系3とを備え、エンジン本体1aに点火装置4、燃料噴射装置5及び回転数検出装置6等が取り付けられている。エアークリーナ7を介して流入される空気は、スロットル8のスロットルバルブ8aで流量を調節された後、流量検出装置9で流量(吸入空気量QAR)が計測され、燃料噴射装置5から吸気通路2aに所定の角度で噴射される燃料と混合されて各気筒10に供給される。スロットルバルブ8aには、スロットルバルブ開度(スロットル位置信号TPS)を検出するスロットル開度センサ8bが設けられている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an example of a system configuration of an internal combustion engine to which an air-fuel ratio control apparatus of the present invention is applied. The internal combustion engine 1 includes an intake system 2 and an exhaust system 3, and an ignition device 4, a fuel injection device 5, a rotation speed detection device 6 and the like are attached to an engine body 1a. The flow rate of the air flowing in through the air cleaner 7 is adjusted by the throttle valve 8a of the throttle 8, and the flow rate (intake air amount QAR) is measured by the flow rate detection device 9, and the intake passage 2a from the fuel injection device 5 is measured. Then, it is mixed with fuel injected at a predetermined angle and supplied to each cylinder 10. The throttle valve 8a is provided with a throttle opening sensor 8b for detecting the throttle valve opening (throttle position signal TPS).

また、排気通路3aには三元触媒12が設けられており、排気ガスはこの三元触媒12で浄化された後で大気中に排出される。三元触媒12の上流側には空燃比センサ(触媒前空燃比センサ)11が、下流側には酸素センサ(触媒後酸素センサ)15がそれぞれ取り付けられている。
一方、燃料タンク16内の燃料は、燃料ポンプ17によって吸引・加圧された後、燃料管19−1を通って吸気通路2aに取り付けられたプレッシャーレギュレータ18に供給され、燃料噴射装置5の燃料入口に導かれる。余分な燃料は燃料管19−2を通って燃料タンク16に戻される。
A three-way catalyst 12 is provided in the exhaust passage 3a, and the exhaust gas is purified by the three-way catalyst 12 and then discharged into the atmosphere. An air-fuel ratio sensor (pre-catalyst air-fuel ratio sensor) 11 is attached to the upstream side of the three-way catalyst 12, and an oxygen sensor (post-catalyst oxygen sensor) 15 is attached to the downstream side.
On the other hand, the fuel in the fuel tank 16 is sucked and pressurized by the fuel pump 17 and then supplied to the pressure regulator 18 attached to the intake passage 2 a through the fuel pipe 19-1. Guided to the entrance. Excess fuel is returned to the fuel tank 16 through the fuel pipe 19-2.

制御装置13は、流量検出装置9で測定した吸入空気量QARと、回転数検出装置6によって測定したリングギア(またはプレート)14の回転数Neを取り込み、燃料噴射装置5の燃料噴射量Tiを計算して制御する。また、この制御装置13は、空燃比センサ11の検出信号RABFと酸素センサ15の検出信号VO2Rとを取り込み、内燃機関1の空燃比が理論空燃比になるように燃料噴射量Tiを補正することで、空燃比フィードバック制御を行う。更に、制御装置13は、点火装置4、スロットル8、燃料ポンプ17等にも制御信号を送信し、点火装置4の点火時期やスロットルバルブ8aの開度、燃料ポンプ17の吐出量等を制御して、内燃機関1の効率的な運転が行われるようにしている。   The control device 13 takes in the intake air amount QAR measured by the flow rate detection device 9 and the rotation speed Ne of the ring gear (or plate) 14 measured by the rotation number detection device 6, and calculates the fuel injection amount Ti of the fuel injection device 5. Calculate and control. Further, the control device 13 takes in the detection signal RABF of the air-fuel ratio sensor 11 and the detection signal VO2R of the oxygen sensor 15 and corrects the fuel injection amount Ti so that the air-fuel ratio of the internal combustion engine 1 becomes the stoichiometric air-fuel ratio. Then, air-fuel ratio feedback control is performed. Further, the control device 13 also transmits control signals to the ignition device 4, the throttle 8, the fuel pump 17, etc., and controls the ignition timing of the ignition device 4, the opening of the throttle valve 8a, the discharge amount of the fuel pump 17, and the like. Thus, an efficient operation of the internal combustion engine 1 is performed.

制御装置13は、データ(各種センサからの計測結果や各種装置への制御情報)の入出力を行うために、アナログ入力回路20、A/D変換回路21、デジタル入力回路22、出力回路23及びI/O回路24等を備えている。また、データの処理を行うために、MPU26、ROM27、RAM28等を備えている。
アナログ入力回路20には、流量検出装置9で測定した吸入空気量QAR、スロットル開度センサ8bで検出したスロットルバルブ開度を示すスロットル位置信号TPS、空燃比センサ11の検出信号RABF、及び酸素センサ15の検出信号VO2R等が入力される。
The control device 13 inputs / outputs data (measurement results from various sensors and control information to various devices), an analog input circuit 20, an A / D conversion circuit 21, a digital input circuit 22, an output circuit 23, and An I / O circuit 24 and the like are provided. In addition, an MPU 26, a ROM 27, a RAM 28, and the like are provided for processing data.
The analog input circuit 20 includes an intake air amount QAR measured by the flow rate detection device 9, a throttle position signal TPS indicating the throttle valve opening detected by the throttle opening sensor 8b, a detection signal RABF of the air-fuel ratio sensor 11, and an oxygen sensor. 15 detection signals VO2R and the like are input.

アナログ入力回路20に入力された吸入空気量QAR、スロットル位置信号TPS、検出信号RABF、及び検出信号VO2Rはそれぞれ、A/D変換回路21に供給されてデジタル信号に変換され、バス25上に出力される。また、デジタル入力回路22に入力されたプレート(またはリングギア)14の回転数Neは、I/O回路24を介してバス25上に出力される。   The intake air amount QAR, the throttle position signal TPS, the detection signal RABF, and the detection signal VO2R input to the analog input circuit 20 are supplied to the A / D conversion circuit 21 and converted into digital signals, which are output on the bus 25. Is done. The rotational speed Ne of the plate (or ring gear) 14 input to the digital input circuit 22 is output on the bus 25 via the I / O circuit 24.

バス25には、MPU26、ROM27、RAM28、タイマ/カウンタ(TMR/CNT)29等が接続されており、当該バス25を介してデータの授受を行うようになっている。MPU26には、クロックジェネレータ(OSC)30からクロック信号が供給され、このクロック信号に同期して様々な演算や処理が実行される。ROM27は、例えばデータの消去と書き換えが可能なEEPROMで構成され、制御装置13を動作させるためのプログラム、設定データ及び初期値等が記憶されており、イグニッションキーのオン等によりこれらの情報がバス25を介してRAM28及びMPU26に読み込まれる。また、このROM27には、必要に応じて内燃機関1の状態や運転者による操作が学習値として記憶され、この学習値がMPU26による演算結果や処理結果を補正あるいは調整するために用いられる。学習値は、MPU26から更新が指示される毎に取り込まれて更新される。   An MPU 26, ROM 27, RAM 28, timer / counter (TMR / CNT) 29 and the like are connected to the bus 25, and data is exchanged via the bus 25. A clock signal is supplied from the clock generator (OSC) 30 to the MPU 26, and various operations and processes are executed in synchronization with the clock signal. The ROM 27 is composed of, for example, an EEPROM capable of erasing and rewriting data, and stores a program for operating the control device 13, setting data, initial values, and the like. The data is read into the RAM 28 and the MPU 26 through 25. Further, the ROM 27 stores the state of the internal combustion engine 1 and the operation by the driver as learning values as necessary, and the learning values are used to correct or adjust the calculation results and processing results by the MPU 26. The learning value is fetched and updated every time an update is instructed from the MPU 26.

RAM28は、作業領域として用いられ、MPU26による演算結果や処理結果を一時的に記憶するようになっている。なお、タイマ/カウンタ29は、時間の測定や様々な回数の測定、例えば酸素センサ15の検出信号の反転回数、反転周期及び反転時間の測定に用いられる。
MPU26による演算結果や処理結果はバス25上に出力され、I/O回路24を介して出力回路23から燃料ポンプ17、点火装置4、燃料噴射装置5及びスロットルバルブ8aに供給される。そして、これらを制御して空燃比を最適化することで、自動車の有害排気ガスを減少させるとともに燃費や運転性を向上させている。
The RAM 28 is used as a work area and temporarily stores calculation results and processing results by the MPU 26. The timer / counter 29 is used for measuring time and various times, for example, measuring the number of inversions of the detection signal of the oxygen sensor 15, the inversion period, and the inversion time.
Calculation results and processing results by the MPU 26 are output to the bus 25 and supplied from the output circuit 23 to the fuel pump 17, the ignition device 4, the fuel injection device 5, and the throttle valve 8a via the I / O circuit 24. And by controlling these and optimizing the air-fuel ratio, the harmful exhaust gas of the automobile is reduced and the fuel efficiency and drivability are improved.

図2は、図1に示した内燃機関システムにおける制御装置13で実行される空燃比フィードバック制御を装置として模式的に示している。通常、三元触媒12による排気浄化システムでは、エンジン本体1aの排気系3に取り付けられた三元触媒12の上流側の空燃比センサ11の検出信号RABFを用いて、PI制御等により三元触媒12の上流側の空燃比を目標空燃比(理論空燃比等)に制御している。その際、三元触媒12の下流側の酸素センサ15の検出信号VO2Rにより、目標空燃比を補正することによって、空燃比センサ11の検出ずれを吸収し、また三元触媒12が要求する空燃比(触媒内中心空燃比)に目標空燃比を合わせることにより、より的確な空燃比フィードバック制御を実現する。   FIG. 2 schematically shows the air-fuel ratio feedback control executed by the control device 13 in the internal combustion engine system shown in FIG. 1 as a device. Normally, in the exhaust purification system using the three-way catalyst 12, the three-way catalyst is detected by PI control or the like using the detection signal RABF of the air-fuel ratio sensor 11 upstream of the three-way catalyst 12 attached to the exhaust system 3 of the engine body 1a. 12 is controlled to the target air-fuel ratio (theoretical air-fuel ratio or the like). At that time, the detection deviation of the air-fuel ratio sensor 11 is absorbed by correcting the target air-fuel ratio by the detection signal VO2R of the oxygen sensor 15 downstream of the three-way catalyst 12, and the air-fuel ratio required by the three-way catalyst 12 By matching the target air-fuel ratio to (in-catalyst center air-fuel ratio), more accurate air-fuel ratio feedback control is realized.

すなわち、酸素濃度制御装置40には、流量検出装置9で測定した吸入空気量QAR、空燃比センサ11の検出信号RABF、酸素センサ15の検出信号VO2R、及びシフト補正のフィードバック量を決めるフィードバックゲイン演算部41の出力信号(ゲイン)FBGAIN等が入力される。この酸素濃度制御装置40は、空燃比センサ11のオフセットずれを吸収するためのもので、触媒内中心空燃比補正量CNTABFと目標空燃比補正量TABFRO2を生成し、空燃比センサオフセット故障診断装置42に供給する。空燃比センサオフセット故障診断装置42では、触媒内中心空燃比補正量CNTABFと目標空燃比補正量TABFRO2とに基づいてオフセット故障(オフセットずれ)の診断が行われ、これらの補正量CNTABF、TABFRO2の少なくとも一方が所定値を超えた場合に故障と診断する。   That is, the oxygen concentration control device 40 has a feedback gain calculation that determines the intake air amount QAR measured by the flow rate detection device 9, the detection signal RABF of the air-fuel ratio sensor 11, the detection signal VO2R of the oxygen sensor 15, and the shift correction feedback amount. An output signal (gain) FBGAIN or the like of the unit 41 is input. This oxygen concentration control device 40 is for absorbing the offset deviation of the air-fuel ratio sensor 11, and generates the in-catalyst center air-fuel ratio correction amount CNTABF and the target air-fuel ratio correction amount TABFRO2, and the air-fuel ratio sensor offset failure diagnosis device 42 To supply. The air-fuel ratio sensor offset failure diagnosis device 42 diagnoses an offset failure (offset deviation) based on the in-catalyst center air-fuel ratio correction amount CNTABF and the target air-fuel ratio correction amount TABFRO2, and at least of these correction amounts CNTABF and TABFRO2 When one exceeds a predetermined value, a failure is diagnosed.

また、目標空燃比補正量TABFRO2は、目標空燃比演算部43に供給され、この目標空燃比演算部43の出力信号と空燃比センサ11の検出信号RABFとが空燃比制御部44に供給される。空燃比制御部44では、目標空燃比を三元触媒12の下流の酸素センサ15の検出信号VO2Rで補正することによって、空燃比センサ11の検出ずれを吸収し、また三元触媒12が要求する空燃比に目標空燃比を合わせる。空燃比制御部44の出力信号と流量検出装置9で測定された吸入空気量QARは、燃料噴射制御部45に供給され、燃料噴射装置5から噴射される燃料の量を制御することで三元触媒12の上流の空燃比を目標空燃比になるように調整している。   The target air-fuel ratio correction amount TABFRO2 is supplied to the target air-fuel ratio calculation unit 43, and the output signal of the target air-fuel ratio calculation unit 43 and the detection signal RABF of the air-fuel ratio sensor 11 are supplied to the air-fuel ratio control unit 44. . The air-fuel ratio control unit 44 corrects the target air-fuel ratio with the detection signal VO2R of the oxygen sensor 15 downstream of the three-way catalyst 12, thereby absorbing the detection deviation of the air-fuel ratio sensor 11 and requesting the three-way catalyst 12. Match the target air-fuel ratio to the air-fuel ratio. The output signal of the air-fuel ratio control unit 44 and the intake air amount QAR measured by the flow rate detection device 9 are supplied to the fuel injection control unit 45 and controlled by controlling the amount of fuel injected from the fuel injection device 5 The air-fuel ratio upstream of the catalyst 12 is adjusted to the target air-fuel ratio.

更に、酸素センサ15の検出信号VO2Rは、空燃比センサ11の状態を推定する空燃比センサ状態推定装置46に供給され、この空燃比センサ状態推定装置46の出力信号がフィードバックゲイン演算部41に供給されるようになっている。フィードバックゲイン演算部41は、シフト補正のフィードバック量を決めるゲインの演算を行う。
空燃比フィードバック制御を実現する手段として酸素濃度制御があり、まず、前提となる酸素濃度制御について説明する。酸素濃度制御の目的の一つとしては、空燃比センサ11のオフセットずれの吸収がある。
Further, the detection signal VO2R of the oxygen sensor 15 is supplied to an air-fuel ratio sensor state estimation device 46 that estimates the state of the air-fuel ratio sensor 11, and an output signal of the air-fuel ratio sensor state estimation device 46 is supplied to the feedback gain calculation unit 41. It has come to be. The feedback gain calculation unit 41 calculates a gain that determines the feedback amount of shift correction.
As a means for realizing air-fuel ratio feedback control, there is oxygen concentration control. First, oxygen concentration control as a premise will be described. One purpose of oxygen concentration control is absorption of offset deviation of the air-fuel ratio sensor 11.

図3は、酸素濃度制御による空燃比センサ11のオフセットずれの吸収動作について説明するためのもので、縦軸は検出空燃比(検出信号RABF)を示し、横軸は実空燃比を示している。図3において、実線で示す正規の特性にオフセットずれが発生すると、仮に実空燃比が14.7の場合、動作点がo点から上下方向の矢印で示すようにa点またはa’点に移動し、空燃比センサ制御によりb点またはb’点になるように制御される(破線図示)。しかし、実空燃比はc点またはc’点(実線上)の値であるため、このc点またはc’点の空燃比が酸素センサ15の検出信号VO2Rに現れてくる。   FIG. 3 is a diagram for explaining the offset deviation absorption operation of the air-fuel ratio sensor 11 by oxygen concentration control. The vertical axis indicates the detected air-fuel ratio (detection signal RABF), and the horizontal axis indicates the actual air-fuel ratio. . In FIG. 3, when an offset deviation occurs in the normal characteristic indicated by the solid line, if the actual air-fuel ratio is 14.7, the operating point moves from point o to point a or a ′ as indicated by the up and down arrows. Then, it is controlled by the air-fuel ratio sensor control so that it becomes point b or b ′ (shown by a broken line). However, since the actual air-fuel ratio is a value at point c or c ′ (on the solid line), the air-fuel ratio at point c or c ′ appears in the detection signal VO2R of the oxygen sensor 15.

そこで、この酸素センサ15の検出信号VO2Rを活用し、目標空燃比を補正することで、オフセットずれを吸収し、あたかもオフセットずれが無い空燃比センサ11を使用しているような制御を行うことができる。すなわち、b点、b’点の動作点を左右方向へ移動して動作点をo点へ収束させることで、酸素濃度制御で目標空燃比を補正し、空燃比が14.7となるように空燃比センサのオフセットずれを制御する。   Therefore, by using the detection signal VO2R of the oxygen sensor 15 and correcting the target air-fuel ratio, it is possible to perform control as if the air-fuel ratio sensor 11 having no offset deviation is used by absorbing the offset deviation. it can. That is, by moving the operating points at the points b and b ′ to the left and right to converge the operating point to the point o, the target air-fuel ratio is corrected by oxygen concentration control so that the air-fuel ratio becomes 14.7. Controls the offset deviation of the air-fuel ratio sensor.

酸素濃度制御のもう一つの目的は、三元触媒12の状況に応じて、目標空燃比を補正することにある。その方法として、触媒内の酸素蓄積量を推定し、その結果から触媒内の中心空燃比を演算する。通常の三元触媒12の場合、空燃比を理論空燃比である14.7に制御することが望ましいが、運転領域や触媒の劣化、活性状態により、必ずしも空燃比を14.7に制御することが良いとは限らない。そこで、酸素濃度センサ制御で三元触媒12内の酸素蓄積量を推定し、三元触媒12の状況に応じて、最も排気浄化率が高い空燃比(触媒内中心空燃比)を演算し、目標空燃比を補正することで最良の空燃比フィードバック制御を実現する。   Another purpose of the oxygen concentration control is to correct the target air-fuel ratio according to the situation of the three-way catalyst 12. As the method, the amount of oxygen accumulated in the catalyst is estimated, and the central air-fuel ratio in the catalyst is calculated from the result. In the case of the ordinary three-way catalyst 12, it is desirable to control the air-fuel ratio to 14.7 which is the theoretical air-fuel ratio. However, the air-fuel ratio is necessarily controlled to 14.7 depending on the operation region, catalyst deterioration, and active state. Is not always good. Therefore, the oxygen accumulation amount in the three-way catalyst 12 is estimated by oxygen concentration sensor control, and the air-fuel ratio (in-catalyst center air-fuel ratio) with the highest exhaust gas purification rate is calculated according to the state of the three-way catalyst 12, and the target The best air-fuel ratio feedback control is realized by correcting the air-fuel ratio.

図4は、本発明の実施形態に係る空燃比制御装置の機能ブロックを示している。触媒前空燃比センサ信号計測部51は、図1及び図2における三元触媒12の上流側の空燃比を測定する空燃比センサ11に対応し、吸入空気量計測部52は、内燃機関1に吸入される空気量を測定する流量検出装置9に対応する。また、触媒後酸素センサ信号計測部53は、三元触媒12の下流側の酸素濃度を測定するもので、酸素センサ15に対応する。更に、触媒内酸素蓄積量演算部54、比例分補正値演算部55、積分分補正値演算部56、触媒内中心空燃比補正量演算部57、及び目標空燃比補正量演算部58等で酸素濃度制御装置40が構成されている。   FIG. 4 shows functional blocks of the air-fuel ratio control apparatus according to the embodiment of the present invention. The pre-catalyst air-fuel ratio sensor signal measuring unit 51 corresponds to the air-fuel ratio sensor 11 that measures the air-fuel ratio upstream of the three-way catalyst 12 in FIGS. 1 and 2, and the intake air amount measuring unit 52 is connected to the internal combustion engine 1. This corresponds to the flow rate detection device 9 that measures the amount of air sucked. The post-catalyst oxygen sensor signal measurement unit 53 measures the oxygen concentration on the downstream side of the three-way catalyst 12 and corresponds to the oxygen sensor 15. Furthermore, the oxygen accumulation amount calculation unit 54 in the catalyst, the proportional correction value calculation unit 55, the integral correction value calculation unit 56, the central air-fuel ratio correction amount calculation unit 57 in the catalyst, the target air-fuel ratio correction amount calculation unit 58, etc. A density control device 40 is configured.

また、診断領域判定部59と触媒前空燃比センサオフセット故障判定部60とで、空燃比センサオフセット故障診断装置42が構成される。そして、学習更新判定部61、触媒後酸素センサ反転回数演算部62、触媒後酸素センサ反転周期演算部63、触媒後酸素センサ反転時間演算部64、反転回数学習更新部65、反転周期学習更新部66、反転時間学習更新部67、空燃比センサ状態第1演算部68、空燃比センサ状態第2演算部69、及び空燃比センサ状態第3演算部70等で空燃比センサ状態推定装置46が構成されている。空燃比センサ状態第1演算部68、空燃比センサ状態第2演算部69、及び空燃比センサ状態第3演算部70の出力信号はそれぞれ、フィードバックゲイン演算部41に供給され、シフト補正のフィードバック量が算出されて、触媒内中心空燃比補正量演算部57に供給される。   The diagnosis area determination unit 59 and the pre-catalyst air / fuel ratio sensor offset failure determination unit 60 constitute an air / fuel ratio sensor offset failure diagnosis device 42. The learning update determination unit 61, the post-catalyst oxygen sensor inversion number calculation unit 62, the post-catalyst oxygen sensor inversion period calculation unit 63, the post-catalyst oxygen sensor inversion time calculation unit 64, the inversion number learning update unit 65, and the inversion cycle learning update unit 66, an inversion time learning update unit 67, an air-fuel ratio sensor state first calculation unit 68, an air-fuel ratio sensor state second calculation unit 69, an air-fuel ratio sensor state third calculation unit 70, and the like constitute the air-fuel ratio sensor state estimation device 46. Has been. The output signals of the air-fuel ratio sensor state first calculation unit 68, the air-fuel ratio sensor state second calculation unit 69, and the air-fuel ratio sensor state third calculation unit 70 are respectively supplied to the feedback gain calculation unit 41, and the feedback amount of shift correction Is calculated and supplied to the central air-fuel ratio correction amount calculation unit 57 in the catalyst.

触媒内酸素蓄積量演算部54では、触媒前空燃比センサ信号(触媒前空燃比)RABF、吸入空気量QAR及び触媒内中心空燃比補正量CNTABFから、触媒内酸素蓄積量を算出する。比例分補正値演算部55では、触媒内酸素蓄積量と触媒後酸素センサ信号VO2R(触媒後酸素濃度)から比例分補正値PBを算出する。積分分補正値演算部56では、触媒内酸素蓄積量と触媒後酸素濃度から積分分補正値IBを算出する。触媒内中心空燃比補正量演算部57では、触媒内酸素蓄積量、触媒後酸素濃度、及びフィードバックゲイン演算部41の出力信号(ゲイン)FBGAINで示されたシフト補正のフィードバック量から、触媒内中心空燃比補正量CNTABFを算出する。更に、目標空燃比補正量演算部58では、比例分補正値PB、積分分補正値IB、及び触媒内中心空燃比補正量CNTABFから目標空燃比補正量TABFRO2を算出する。   The in-catalyst oxygen accumulation amount calculation unit 54 calculates the in-catalyst oxygen accumulation amount from the pre-catalyst air-fuel ratio sensor signal (pre-catalyst air-fuel ratio) RABF, the intake air amount QAR, and the in-catalyst center air-fuel ratio correction amount CNTABF. The proportional correction value calculator 55 calculates the proportional correction value PB from the oxygen accumulation amount in the catalyst and the post-catalyst oxygen sensor signal VO2R (post-catalyst oxygen concentration). The integral correction value calculator 56 calculates the integral correction value IB from the oxygen accumulation amount in the catalyst and the post-catalyst oxygen concentration. The in-catalyst center air-fuel ratio correction amount calculation unit 57 calculates the center in the catalyst from the amount of oxygen storage in the catalyst, the post-catalyst oxygen concentration, and the shift correction feedback amount indicated by the output signal (gain) FBGAIN of the feedback gain calculation unit 41. An air-fuel ratio correction amount CNTABF is calculated. Further, the target air-fuel ratio correction amount calculation unit 58 calculates the target air-fuel ratio correction amount TABFRO2 from the proportional correction value PB, the integral correction value IB, and the in-catalyst center air-fuel ratio correction amount CNTABF.

診断領域判定部59では、診断実行の許可を判定する。そして、診断実行が許可されると、触媒前空燃比センサオフセット故障判定部60で、触媒内中心空燃比補正量CNTABFと目標空燃比補正量TABFRO2とに基づいて、触媒前空燃比センサ11のオフセット故障が発生しているか否か判定する。   The diagnosis area determination unit 59 determines permission of diagnosis execution. When the diagnosis execution is permitted, the pre-catalyst air / fuel ratio sensor offset failure determination unit 60 determines the offset of the pre-catalyst air / fuel ratio sensor 11 based on the in-catalyst center air / fuel ratio correction amount CNTABF and the target air / fuel ratio correction amount TABFRO2. It is determined whether or not a failure has occurred.

更に、学習更新判定部61は、触媒後酸素センサ信号計測部53から出力される検出信号VO2Rのリッチ/リーン応答状態より学習の更新判定を許可する。触媒後酸素センサ反転回数演算部62は、触媒後酸素センサ信号計測部53から出力される検出信号VO2Rのリッチ/リーン反転回数O2Kを算出する。触媒後酸素センサ反転周期演算部63は、触媒後酸素センサ信号計測部53から出力される検出信号VO2Rのリッチ/リーン反転周期O2Sを算出する。また、触媒後酸素センサ反転時間演算部64は、触媒後酸素センサ信号計測部53から出力される検出信号VO2Rのリッチ/リーン反転時間O2Jを算出する。   Furthermore, the learning update determination unit 61 permits learning update determination from the rich / lean response state of the detection signal VO2R output from the post-catalyst oxygen sensor signal measurement unit 53. The post-catalyst oxygen sensor inversion number calculation unit 62 calculates the rich / lean inversion number O2K of the detection signal VO2R output from the post-catalyst oxygen sensor signal measurement unit 53. The post-catalyst oxygen sensor inversion cycle calculation unit 63 calculates the rich / lean inversion cycle O2S of the detection signal VO2R output from the post-catalyst oxygen sensor signal measurement unit 53. Further, the post-catalyst oxygen sensor inversion time calculation unit 64 calculates the rich / lean inversion time O2J of the detection signal VO2R output from the post-catalyst oxygen sensor signal measurement unit 53.

反転回数学習更新部65は、学習更新判定部61の学習更新判定結果に基づいて、触媒後酸素センサ反転回数演算部62から出力される反転回数O2Kを学習する。反転周期学習更新部66は、学習更新判定部61の学習更新判定結果に基づいて、触媒後酸素センサ反転周期演算部63から出力される反転周期O2Sを学習する。また、反転時間学習更新部67は、学習更新判定部61の学習更新判定結果に基づいて、触媒後酸素センサ反転時間演算部64から出力される反転時間O2Jを学習する。   The inversion number learning update unit 65 learns the inversion number O2K output from the post-catalyst oxygen sensor inversion number calculation unit 62 based on the learning update determination result of the learning update determination unit 61. The inversion cycle learning update unit 66 learns the inversion cycle O2S output from the post-catalyst oxygen sensor inversion cycle calculation unit 63 based on the learning update determination result of the learning update determination unit 61. Further, the inversion time learning update unit 67 learns the inversion time O2J output from the post-catalyst oxygen sensor inversion time calculation unit 64 based on the learning update determination result of the learning update determination unit 61.

空燃比センサ状態第1演算部68は、触媒後酸素センサ反転回数演算部62の出力値(反転回数O2K)と反転回数学習更新部65の学習値LRN_Kとを比較し、フィードバックゲイン指数LAF_STATE1を算出する。空燃比センサ状態第2演算部69は、触媒後酸素センサ反転周期演算部63の出力値(反転周期O2S)と反転周期学習更新部66の学習値LRN_Sとを比較し、フィードバックゲイン指数LAF_STATE2を算出する。更に、空燃比センサ状態第3演算部70は、触媒後酸素センサ反転時間演算部64の出力値(反転時間O2J)と反転時間学習更新部67の学習値LRN_Jとを比較し、フィードバックゲイン指数LAF_STATE3を算出する。   The air-fuel ratio sensor state first calculation unit 68 compares the output value (inversion number O2K) of the post-catalyst oxygen sensor inversion number calculation unit 62 with the learning value LRN_K of the inversion number learning update unit 65, and calculates a feedback gain index LAF_STATE1. To do. The air-fuel ratio sensor state second computing unit 69 compares the output value (reversal cycle O2S) of the post-catalyst oxygen sensor reversal cycle computing unit 63 with the learned value LRN_S of the reversal cycle learning update unit 66, and calculates the feedback gain index LAF_STATE2. To do. Further, the air-fuel ratio sensor state third calculating unit 70 compares the output value (reversing time O2J) of the post-catalyst oxygen sensor reversing time calculating unit 64 with the learning value LRN_J of the reversing time learning update unit 67, and feedback gain index LAF_STATE3. Is calculated.

フィードバックゲイン演算部41は、空燃比センサ状態第1演算部68、空燃比センサ状態第2演算部69、及び空燃比センサ状態第3演算部70の各出力を加算したフィードバックゲイン指数の演算結果から、シフト補正のフィードバック量を決めるゲインFBGAINを算出し、触媒内中心空燃比補正量演算部57に供給する。   The feedback gain calculation unit 41 is based on the calculation result of the feedback gain index obtained by adding the outputs of the air-fuel ratio sensor state first calculation unit 68, the air-fuel ratio sensor state second calculation unit 69, and the air-fuel ratio sensor state third calculation unit 70. Then, a gain FBGAIN that determines the feedback amount of the shift correction is calculated and supplied to the central air-fuel ratio correction amount calculation unit 57 in the catalyst.

次に、図5及び図6のフローチャートにより、図4に示した空燃比制御装置の制御方法を詳しく説明する。
まず、ステップS1では、触媒前空燃比センサ信号計測部51により検出信号(触媒前空燃比センサ信号)RABFから空燃比を計測する。次のステップS2では、吸入空気量計測部52により吸入空気量QARを計測する。ステップS3では、触媒後酸素センサ信号計測部53により検出信号(触媒後酸素センサ信号)VO2Rから酸素濃度を計測する。続くステップS4で、測定した触媒前空燃比センサ信号RABFと吸入空気量QAR、触媒内酸素蓄積量OSESTの前回値OSEST_old、及び触媒内中心空燃比補正量CNTABFの前回値CNTABF_oldから、触媒内酸素蓄積量演算部54により、下式にしたがって触媒内酸素蓄積量OSESTを演算する。
OSEST=OSEST_old+(RABF−CNTABE_old)×QAR
Next, the control method of the air-fuel ratio control apparatus shown in FIG. 4 will be described in detail with reference to the flowcharts of FIGS.
First, in step S1, the pre-catalyst air / fuel ratio sensor signal measuring unit 51 measures the air / fuel ratio from the detection signal (pre-catalyst air / fuel ratio sensor signal) RABF. In the next step S2, the intake air amount measurement unit 52 measures the intake air amount QAR. In step S3, the post-catalyst oxygen sensor signal measuring unit 53 measures the oxygen concentration from the detection signal (post-catalyst oxygen sensor signal) VO2R. In the following step S4, the oxygen accumulation in the catalyst is calculated from the measured pre-catalyst air / fuel ratio sensor signal RABF, the intake air amount QAR, the previous value OSEST_old of the in-catalyst oxygen accumulation amount OSEST, and the previous value CNTABF_old of the in-catalyst center air / fuel ratio correction amount CNTABF. The amount calculation unit 54 calculates the oxygen accumulation amount OSEST in the catalyst according to the following formula.
OSEST = OSEST_old + (RABF-CNTABE_old) × QAR

次のステップS5では、触媒後酸素センサ反転回数演算部62により、触媒後酸素センサ信号VO2Rの反転回数O2Kを算出する。ステップS6では、触媒後酸素センサ反転周期演算部63により、触媒後酸素センサ信号VO2Rの反転周期O2Sを算出する。更にステップS7では、触媒後酸素センサ反転時間演算部64により、触媒後酸素センサ信号VO2Rの反転時間O2Jを算出する。   In the next step S5, the post-catalyst oxygen sensor inversion number calculation unit 62 calculates the inversion number O2K of the post-catalyst oxygen sensor signal VO2R. In step S6, the post-catalyst oxygen sensor inversion period calculation unit 63 calculates the inversion period O2S of the post-catalyst oxygen sensor signal VO2R. Further, in step S7, the post-catalyst oxygen sensor inversion time calculation unit 64 calculates the inversion time O2J of the post-catalyst oxygen sensor signal VO2R.

そして、学習更新判定部61で学習更新判定を行い(ステップS8)、学習更新判定許可時には、各演算結果に基づき反転回数O2K、反転周期O2S及び反転時間O2Jの学習更新をそれぞれ行う(ステップS9,S10,S11)。これによって、反転回数学習更新部65には学習値LRN_K、反転周期学習更新部66には学習値LRN_S、反転時間学習更新部67には学習値LRN_Jが記憶される。学習の更新は、例えば自動車の走行距離から判定し、初回走行の定常走行時、燃料カットを行ってから燃料リカバー時に各学習更新部65〜67の学習値LRN_K,LRN_S,LRN_Jが更新される。   Then, the learning update determination unit 61 performs learning update determination (step S8). When learning update determination is permitted, learning update of the inversion number O2K, the inversion period O2S, and the inversion time O2J is performed based on each calculation result (step S9, S10, S11). Thereby, the learning value LRN_K is stored in the inversion number learning update unit 65, the learning value LRN_S is stored in the inversion period learning update unit 66, and the learning value LRN_J is stored in the inversion time learning update unit 67. The learning update is determined, for example, based on the travel distance of the automobile, and the learning values LRN_K, LRN_S, and LRN_J of the learning update units 65 to 67 are updated when the fuel is cut and the fuel is recovered after the initial traveling.

ステップS12では、触媒後酸素センサ15の反転回数O2Kと反転回数の学習値LRN_Kとの比率から、空燃比センサ状態第1演算部68により、次式にしたがって空燃比センサ状態のフィードバックゲイン指数LAF_STATE1を演算する。
LAF_STATE1=O2K/LRN_K×α(重み係数)
定常走行時において、図7に示すように、触媒後酸素センサ15の出力電圧が実線80で示すようにリッチあるいはリーン状態のままで反転しない、または実線81で示すように反転回数が少ない状況の場合は、空燃比センサ11がストイキから外れていると推定し、フィードバックゲインは大きい方向に補正する。
一方、図8に実線82で示すように、触媒後酸素センサ15の出力電圧がリッチ状態とリーン状態を反転する回数が多い場合には、空燃比センサ11がストイキ付近と推定して、フィードバックゲインは小さい方向に補正する。
In step S12, the feedback gain index LAF_STATE1 of the air-fuel ratio sensor state is calculated by the air-fuel ratio sensor state first calculation unit 68 from the ratio between the number of inversions O2K of the post-catalyst oxygen sensor 15 and the learning value LRN_K of the number of inversions. Calculate.
LAF_STATE1 = O2K / LRN_K × α (weighting factor)
During steady running, as shown in FIG. 7, the output voltage of the post-catalyst oxygen sensor 15 does not invert in the rich or lean state as indicated by the solid line 80, or the number of inversions is small as indicated by the solid line 81. In this case, it is estimated that the air-fuel ratio sensor 11 is out of stoichiometry, and the feedback gain is corrected in a larger direction.
On the other hand, as indicated by the solid line 82 in FIG. 8, when the output voltage of the post-catalyst oxygen sensor 15 is frequently reversed between the rich state and the lean state, the air-fuel ratio sensor 11 estimates that the vicinity of the stoichiometric condition and the feedback gain Correct in a smaller direction.

ステップS13では、触媒後酸素センサ15の反転周期O2Sと反転周期の学習値LRN_Sとの比率から、空燃比センサ状態第2演算部69により、次式にしたがって空燃比センサ状態のフィードバックゲイン指数LAF_STATE2を演算する。
LAF_STATE2=O2S/LRN_S×β(重み係数)
反転周期も反転回数と同様であり、定常走行時において、触媒後酸素センサ15の出力電圧がリッチあるいはリーン状態のままで反転しない、または反転周期が長い状況の場合は、空燃比センサ11がストイキから外れていると推定し、フィードバックゲインは大きい方向に補正する。
また、触媒後酸素センサ15の出力電圧がリッチ状態とリーン状態を反転する周期が短い場合には、空燃比センサ11がストイキ付近と推定して、フィードバックゲインは小さい方向に補正する。
In step S13, the feedback gain index LAF_STATE2 of the air-fuel ratio sensor state is calculated from the ratio between the reverse period O2S of the post-catalyst oxygen sensor 15 and the learned value LRN_S of the reverse period by the air-fuel ratio sensor state second calculation unit 69 according to the following equation. Calculate.
LAF_STATE2 = O2S / LRN_S × β (weighting factor)
The reversal cycle is the same as the number of reversals. During steady running, if the output voltage of the post-catalyst oxygen sensor 15 remains rich or lean and does not reverse, or if the reversal cycle is long, the air-fuel ratio sensor 11 is stoichiometric. The feedback gain is corrected in a larger direction.
In addition, when the output voltage of the post-catalyst oxygen sensor 15 is short in the period in which the rich state and the lean state are reversed, the air-fuel ratio sensor 11 estimates that the vicinity of the stoichiometric range and corrects the feedback gain in a smaller direction.

ステップS14では、触媒後酸素センサ15の反転時間O2Jと反転時間の学習値LRN_Jとの比率から、空燃比センサ状態第3演算部70により、次式にしたがって空燃比センサ状態のフィードバックゲイン指数LAF_STATE3を演算する。
LAF_STATE3=O2J/LRN_J×γ(重み係数)
燃料カットからのリカバー時において、図9に示すように、燃料カットフラグにより燃料カットが終了したタイミングt0から、空燃比センサ11の出力電圧の反転が早い場合には、空燃比センサ11がストイキから外れている(リッチ状態時)と推定し、フィードバックゲインは大きい方向に補正する。
一方、図10に示すように、燃料カットフラグにより燃料カットが終了したタイミングt0から、空燃比センサ11の出力電圧の反転が遅い場合には、空燃比センサ11がストイキから外れている(リーン状態時)と推定して、フィードバックゲインは小さい方向に補正する。
In step S14, the feedback gain index LAF_STATE3 of the air-fuel ratio sensor state is calculated from the ratio of the reverse time O2J of the post-catalyst oxygen sensor 15 and the learned value LRN_J of the reverse time by the air-fuel ratio sensor state third calculation unit 70 according to the following equation. Calculate.
LAF_STATE3 = O2J / LRN_J × γ (weighting factor)
When recovering from the fuel cut, as shown in FIG. 9, when the reversal of the output voltage of the air-fuel ratio sensor 11 is early from the timing t <b> 0 when the fuel cut is terminated by the fuel cut flag, the air-fuel ratio sensor 11 is The feedback gain is corrected in a larger direction, assuming that it is out of place (during a rich state).
On the other hand, as shown in FIG. 10, when the reversal of the output voltage of the air-fuel ratio sensor 11 is slow from the timing t0 when the fuel cut is ended by the fuel cut flag, the air-fuel ratio sensor 11 is out of stoichiometry (lean state). The feedback gain is corrected in a smaller direction.

そして、ステップS15で各ステップS12,S13,S14の空燃比センサ状態のフィードバックゲイン指数LAF_STATE1、LAF_STATE2、LAF_STATE3を加算し、LAF_STATEを算出する。すなわち、
LAF_STATE=LAF_STATE1+LAF_STATE2+LAF_STATE3
である。
In step S15, the feedback gain exponents LAF_STATE1, LAF_STATE2, and LAF_STATE3 of the air-fuel ratio sensor states in steps S12, S13, and S14 are added to calculate LAF_STATE. That is,
LAF_STATE = LAF_STATE1 + LAF_STATE2 + LAF_STATE3
It is.

ステップS16では、空燃比センサ状態LAF_STATEの結果から、フィードバックゲインFBGAINを演算する。
FBGAIN=TFBGAIN(LAF_STATE)
上記ステップS15,S16は、フィードバックゲイン演算部41によって実行される。
ステップS17では、酸素貯積量補正値OSESTNと酸素センサ信号補正値VO2RNから、比例分補正値演算部55により、マップ1に基づいて比例分補正値PBを演算する。
PB=マップ1(OSESTN,VO2RN)
In step S16, a feedback gain FBGAIN is calculated from the result of the air-fuel ratio sensor state LAF_STATE.
FBGAIN = TFBGAIN (LAF_STATE)
The steps S15 and S16 are executed by the feedback gain calculation unit 41.
In step S17, the proportional correction value PB is calculated based on the map 1 by the proportional correction value calculator 55 from the oxygen storage amount correction value OSESTN and the oxygen sensor signal correction value VO2RN.
PB = Map 1 (OSESTN, VO2RN)

ステップS18では、酸素貯積量補正値OSESTNと酸素センサ信号補正値VO2RNから、積分分補正値演算部56により、マップ2に基づいて積分分補正値IBを演算する。
IB=IB_old+マップ2(OSESTN,VO2RN)
ここで、IB_oldは、積分分補正値IBの前回値である。
ステップS19では、酸素貯積量補正値OSESTNと酸素センサ信号補正値VO2RNから、触媒内中心空燃比補正量演算部57により、マップ3に基づいて触媒内中心空燃比補正量CNTABFを演算する。
CNTABF=マップ3(OSESTN,VO2RN)
ステップS20では、目標空燃比補正量演算部58により、算出した比例分補正値PB、積分分補正値IB及び触媒内中心空燃比補正量CNTABFを加算し、目標空燃比補正量TABFRO2を算出する。すなわち、
TABFRO2=PB+IB+CNTABF
である。
In step S18, the integral correction value IB is calculated based on the map 2 by the integral correction value calculator 56 from the oxygen storage amount correction value OSESTN and the oxygen sensor signal correction value VO2RN.
IB = IB_old + Map 2 (OSESTN, VO2RN)
Here, IB_old is the previous value of the integral correction value IB.
In step S19, the in-catalyst center air-fuel ratio correction amount CNTABF is calculated based on the map 3 by the in-catalyst center air-fuel ratio correction amount calculation unit 57 from the oxygen storage amount correction value OSESTN and the oxygen sensor signal correction value VO2RN.
CNTABF = Map 3 (OSESTN, VO2RN)
In step S20, the target air-fuel ratio correction amount calculator 58 adds the calculated proportional correction value PB, integral correction value IB, and in-catalyst center air-fuel ratio correction amount CNTABF to calculate the target air-fuel ratio correction amount TABFRO2. That is,
TABFRO2 = PB + IB + CNTABF
It is.

ステップS21では、積分分補正値IB、触媒内中心空燃比補正量CNTABF及び酸素貯積量補正値OSESTNの前回値を、それぞれIB_old、CNTABF_old、OSESTN_oldとする。なお、この積分分補正値IB_old、触媒内中心空燃比CNTABF_old、酸素蓄積量OSEST_oldの前回値は、ステップS4やステップS18での演算に使用される。次のステップS22では、触媒内中心空燃比補正量CNTABFまたは触媒内中心空燃比補正量CNTABFに重み係数を乗算したものをCNTABFとする。
CNTABF=CNTABF
または、
CNTABF=CNTABF×ζ(重み係数)
In step S21, the previous values of the integral correction value IB, the catalyst center air-fuel ratio correction amount CNTABF, and the oxygen storage amount correction value OSESTN are set to IB_old, CNTABF_old, and OSESTN_old, respectively. The previous values of the integral correction value IB_old, the in-catalyst center air-fuel ratio CNTABF_old, and the oxygen accumulation amount OSEST_old are used for the calculations in step S4 and step S18. In the next step S22, a value obtained by multiplying the in-catalyst center air-fuel ratio correction amount CNTABF or the in-catalyst center air-fuel ratio correction amount CNTABF by a weighting coefficient is defined as CNTABF.
CNTABF = CNTABF
Or
CNTABF = CNTABF × ζ (weighting factor)

続くステップS23では、診断領域判定部59により診断実行の許可を判定する。診断実行が許可されると、ステップS24に進む。診断実行が許可されなければ診断は実行しない。次に、触媒前空燃比センサオフセット故障判定部60で実行されるステップS24の条件を判断する。ステップS24の条件が成立する時(触媒内中心空燃比補正量CNTABF>上限判定値、または触媒内中心空燃比補正量CNTABF<下限判定値)には、ステップS25でオフセット故障と判定する。一方、ステップS24の条件が不成立の時はステップS26でオフセット故障無し(OK)と判定する。   In subsequent step S <b> 23, the diagnosis region determination unit 59 determines permission to execute diagnosis. If the diagnosis execution is permitted, the process proceeds to step S24. If the diagnosis execution is not permitted, the diagnosis is not executed. Next, the condition of step S24 executed by the pre-catalyst air-fuel ratio sensor offset failure determination unit 60 is determined. When the condition of step S24 is satisfied (intra-catalyst center air-fuel ratio correction amount CNTABF> upper limit determination value or in-catalyst center air-fuel ratio correction amount CNTABF <lower limit determination value), it is determined in step S25 that an offset failure has occurred. On the other hand, when the condition in step S24 is not satisfied, it is determined in step S26 that there is no offset failure (OK).

上述したように、本発明では、内燃機関1の排気系3に設けられた三元触媒12の上流側の空燃比と、三元触媒12の下流側の酸素濃度とを計測して空燃比をフィードバック制御するシステムにおいて、触媒前空燃比センサ信号RABF、触媒後酸素センサ信号VO2R及び吸入空気量QARに基づき、触媒内中心空燃比補正量CNTABFと目標空燃比補正量TABFRO2を演算し、触媒内中心空燃比と空燃比センサ状態とに応じてフィードバックゲインを調整する。この際、シフト補正のフィードバック量を決めるゲインFBGAINを用いて補正することで、空燃比センサ11の状態を正確に推定でき、制御性よく内燃機関1の空燃比を制御できる。また、空燃比センサ11のオフセットずれを迅速且つ精度よく補正し、故障検出することができる。   As described above, in the present invention, the air-fuel ratio is measured by measuring the air-fuel ratio upstream of the three-way catalyst 12 provided in the exhaust system 3 of the internal combustion engine 1 and the oxygen concentration downstream of the three-way catalyst 12. In the feedback control system, based on the pre-catalyst air / fuel ratio sensor signal RABF, the post-catalyst oxygen sensor signal VO2R and the intake air amount QAR, the in-catalyst center air / fuel ratio correction amount CNTABF and the target air / fuel ratio correction amount TABFRO2 are calculated, and the in-catalyst center The feedback gain is adjusted according to the air-fuel ratio and the air-fuel ratio sensor state. At this time, the state of the air-fuel ratio sensor 11 can be accurately estimated by correcting using the gain FBGAIN that determines the feedback amount of the shift correction, and the air-fuel ratio of the internal combustion engine 1 can be controlled with good controllability. Further, the offset deviation of the air-fuel ratio sensor 11 can be corrected quickly and accurately to detect a failure.

なお、図3に示したように、空燃比センサ11のオフセット故障は、オフセットずれの過度の状態であり、前述したように、酸素センサ制御の動作自体に、オフセットずれを吸収する機能が備わっているため、酸素濃度制御内のパラメータをモニタすることで、オフセット故障を検出することができる。そこで、次に、触媒劣化により該触媒後酸素センサが影響を受けた場合においても、オフセット故障を正確に検知可能であることについて説明する。   As shown in FIG. 3, the offset failure of the air-fuel ratio sensor 11 is an excessive state of the offset deviation, and the oxygen sensor control operation itself has a function of absorbing the offset deviation as described above. Therefore, the offset failure can be detected by monitoring the parameter in the oxygen concentration control. Then, next, it will be described that an offset failure can be accurately detected even when the post-catalyst oxygen sensor is affected by catalyst deterioration.

図11は、空燃比センサ11の出力がオフセット故障状態を示す図である。空燃比センサ11のオフセット故障時は、三元触媒12を介して酸素センサ15の検出信号VO2Rにその影響が出やすくなり、比例分補正値PB、積分分補正値IBが変化し、結果として空燃比センサ制御の出力値となる目標空燃比補正量TABFRO2が変化する。一方で、触媒内中心空燃比補正量CNTABFは目標空燃比補正量TABFRO2との乖離が発生することで補正量が更新される。   FIG. 11 is a diagram showing the output failure state of the output of the air-fuel ratio sensor 11. When the air-fuel ratio sensor 11 has an offset failure, the detection signal VO2R of the oxygen sensor 15 is easily affected via the three-way catalyst 12, and the proportional correction value PB and the integral correction value IB change, resulting in empty The target air-fuel ratio correction amount TABFRO2 that becomes the output value of the fuel ratio sensor control changes. On the other hand, the correction amount of the in-catalyst center air-fuel ratio correction amount CNTABF is updated when a deviation from the target air-fuel ratio correction amount TABFRO2 occurs.

したがって、目標空燃比演算において目標空燃比が補正され、空燃比センサ制御により、空燃比センサ信号RABFが実空燃比に制御される。つまり、空燃比センサ信号RABFのオフセット故障分が、触媒内中心空燃比補正量CNTABFに反映される。よって、触媒内中心空燃比補正量CNTABFをモニタすることで空燃比センサのオフセット故障の診断を行うことができる。
また、空燃比センサ11の状態を触媒後酸素センサ信号VO2Rから推定し、フィードバックゲインを切り替えることで、空燃比センサ11のオフセット状態を迅速、且つ精度よく補正及び故障検出することができる。
Therefore, the target air-fuel ratio is corrected in the target air-fuel ratio calculation, and the air-fuel ratio sensor signal RABF is controlled to the actual air-fuel ratio by the air-fuel ratio sensor control. That is, the offset failure of the air-fuel ratio sensor signal RABF is reflected in the in-catalyst center air-fuel ratio correction amount CNTABF. Therefore, it is possible to diagnose the offset failure of the air-fuel ratio sensor by monitoring the in-catalyst center air-fuel ratio correction amount CNTABF.
Further, by estimating the state of the air-fuel ratio sensor 11 from the post-catalyst oxygen sensor signal VO2R and switching the feedback gain, the offset state of the air-fuel ratio sensor 11 can be corrected and detected with a high degree of accuracy quickly.

ここで、上述した実施形態から把握し得る技術的思想について、以下にその効果と共に記載する。
内燃機関の空燃比制御装置は、その一つの態様において、内燃機関の排気系に設けられた触媒と、この触媒の上流側と下流側にそれぞれ設けられ、排気ガス中の特定の成分濃度を検出するための触媒前空燃比センサと触媒後酸素センサの信号に基づいて空燃比補正係数を算出し、基準燃料供給量を補正する空燃比フィードバック制御手段を有する内燃機関の制御装置において、
触媒前の空燃比を検出する触媒前空燃比センサ信号計測手段と、
触媒後の酸素濃度を検出する触媒後酸素センサ信号計測手段と、
前記内燃機関の吸入空気量を計測する吸入空気量計測手段と、
前記触媒前空燃比センサ信号計測手段と前記吸入空気量計測手段の計測結果、及び触媒内中心空燃比演算手段の演算結果に基づいて、触媒内酸素蓄積量を推定する触媒内酸素蓄積量演算手段と、
酸素センサ信号応答時間演算手段の演算結果に基づいて、リッチ/リーンに反転するまでの応答時間により、学習の更新を許可する学習更新判定手段と、
前記触媒後酸素センサ信号計測手段の計測結果に基づいて、前記酸素センサのリッチ/リーンの反転回数を演算する触媒後酸素センサ反転回数演算手段と、
前記学習更新判定手段による判定結果と前記触媒後酸素センサ反転回数演算手段の演算結果に基づいて、所定期間酸素センサ信号のリッチ/リーン反転回数を演算する反転回数学習更新手段と、
前記触媒後酸素センサ反転回数演算手段による酸素センサ反転回数と、前記反転回数学習更新手段の酸素センサ反転回数学習値に基づいて、酸素センサ反転回数と酸素センサ反転回数学習値の比率をフィードバックゲイン指数とする空燃比センサ状態第1演算手段と、
前記触媒後酸素センサ信号計測手段の計測結果に基づいて、酸素センサのリッチ/リーンの反転周期を演算する触媒後酸素センサ反転周期演算手段と、
前記学習更新判定手段の判定結果と前記触媒後酸素センサ反転周期演算手段の演算結果に基づいて、所定期間酸素センサ信号のリッチ/リーン反転周期を演算する反転周期学習更新手段と、
前記触媒後酸素センサ反転周期演算手段の酸素センサ反転周期と、前記反転周期学習更新手段の酸素センサ反転周期学習値に基づいて、酸素センサ反転周期と酸素センサ反転周期学習値の比率をフィードバックゲイン指数とする空燃比センサ状態第2演算手段と、
前記触媒後酸素センサ信号計測手段の計測結果に基づいて、前記酸素センサのリッチ/リーンの反転時間を演算する触媒後酸素センサ反転時間演算手段と、
前記学習更新判定手段の判定結果と、前記触媒後酸素センサ反転時間演算手段の演算結果に基づいて、所定期間酸素センサ信号のリッチ/リーン反転時間を演算する反転時間学習更新手段と、
前記触媒後酸素センサ反転時間演算手段の酸素センサ反転時間と、前記反転時間学習更新手段の酸素センサ反転時間学習値に基づいて、酸素センサ反転時間と酸素センサ反転時間学習値の比率をフィードバックゲイン指数とする空燃比センサ状態第3演算手段と、
前記空燃比センサ状態第1演算手段、前記空燃比センサ状態第2演算手段、及び前記空燃比センサ状態第3演算手段の各演算結果に基づいて、空燃比センサ状態を推定し、シフト補正のフィードバック量を決めるゲインの演算を行うフィードバックゲイン演算手段と、
前記触媒後酸素センサ信号計測手段の計測結果と、前記触媒内酸素蓄積量演算手段の演算結果に基づいて、比例分補正値を演算する比例分補正値演算手段と、
前記触媒後酸素センサ信号計測手段の計測結果と、前記触媒内酸素蓄積量演算手段の演算結果に基づいて、積分分補正値を演算する積分分補正値演算手段と、
前記触媒後酸素センサ信号計測手段の計測結果と、前記触媒内酸素蓄積量演算手段の演算結果に基づいて、触媒内中心空燃比を推定する触媒内中心空燃比補正量演算手段と、
前記比例分補正値演算手段、前記積分分補正値演算手段、及び前記触媒内中心空燃比演算手段の各演算結果に基づき、目標空燃比を補正する補正量を演算する目標空燃比演算手段と
を具備することを特徴とする。
上記構成によれば、触媒前空燃比センサ信号計測手段で検出した空燃比、触媒後酸素センサ信号計測手段で検出した酸素濃度、及び吸入空気量計測手段で検出した吸入空気量に基づき、触媒内中心空燃比と目標空燃比の補正量を演算し、触媒内中心空燃比と空燃比センサ計測手段の状態とに応じてシフト補正のフィードバック量を決めるゲインを用いて補正することで、触媒前空燃比センサ計測手段のオフセット状態を迅速且つ精度よく補正することができる。
Here, the technical idea that can be grasped from the above-described embodiment will be described together with the effects thereof.
An air-fuel ratio control apparatus for an internal combustion engine, in one aspect thereof, is provided with a catalyst provided in an exhaust system of the internal combustion engine and upstream and downstream sides of the catalyst, respectively, and detects a specific component concentration in the exhaust gas. In the control device for an internal combustion engine having an air-fuel ratio feedback control means for calculating an air-fuel ratio correction coefficient based on the signals of the pre-catalyst air-fuel ratio sensor and the post-catalyst oxygen sensor for correcting the reference fuel supply amount,
A pre-catalyst air-fuel ratio sensor signal measuring means for detecting an air-fuel ratio before the catalyst;
A post-catalyst oxygen sensor signal measuring means for detecting the post-catalyst oxygen concentration;
Intake air amount measuring means for measuring the intake air amount of the internal combustion engine;
Intra-catalyst oxygen accumulation amount calculation means for estimating the in-catalyst oxygen accumulation amount based on the measurement results of the pre-catalyst air-fuel ratio sensor signal measurement means and the intake air amount measurement means and the calculation result of the in-catalyst center air-fuel ratio calculation means. When,
Based on the calculation result of the oxygen sensor signal response time calculation means, a learning update determination means for permitting update of learning according to the response time until inversion to rich / lean;
Based on the measurement result of the post-catalyst oxygen sensor signal measurement means, the post-catalyst oxygen sensor inversion count calculating means for calculating the rich / lean inversion count of the oxygen sensor;
An inversion number learning update unit for calculating the rich / lean inversion number of the oxygen sensor signal for a predetermined period based on the determination result by the learning update determination unit and the calculation result of the post-catalyst oxygen sensor inversion number calculation unit;
Based on the oxygen sensor inversion number by the post-catalyst oxygen sensor inversion number calculating means and the oxygen sensor inversion number learning value of the inversion number learning update means, the ratio between the oxygen sensor inversion number and the oxygen sensor inversion number learning value is a feedback gain index. An air-fuel ratio sensor state first calculating means,
Based on the measurement result of the post-catalyst oxygen sensor signal measuring means, the post-catalyst oxygen sensor inversion period calculating means for calculating the rich / lean inversion period of the oxygen sensor;
An inversion cycle learning update unit for calculating a rich / lean inversion period of the oxygen sensor signal for a predetermined period based on a determination result of the learning update determination unit and a calculation result of the post-catalyst oxygen sensor inversion period calculation unit;
Based on the oxygen sensor inversion period of the post-catalyst oxygen sensor inversion period calculating means and the oxygen sensor inversion period learning value of the inversion period learning update means, the ratio of the oxygen sensor inversion period and the oxygen sensor inversion period learning value is a feedback gain index. An air-fuel ratio sensor state second calculating means,
Based on the measurement result of the post-catalyst oxygen sensor signal measuring means, the post-catalyst oxygen sensor inversion time calculating means for calculating the rich / lean inversion time of the oxygen sensor;
An inversion time learning update means for calculating the rich / lean inversion time of the oxygen sensor signal for a predetermined period based on the determination result of the learning update determination means and the calculation result of the post-catalyst oxygen sensor inversion time calculation means;
Based on the oxygen sensor inversion time of the post-catalyst oxygen sensor inversion time calculating means and the oxygen sensor inversion time learning value of the inversion time learning update means, the ratio of the oxygen sensor inversion time and the oxygen sensor inversion time learning value is expressed as a feedback gain index. An air-fuel ratio sensor state third calculating means,
Based on the calculation results of the air-fuel ratio sensor state first calculating means, the air-fuel ratio sensor state second calculating means, and the air-fuel ratio sensor state third calculating means, the air-fuel ratio sensor state is estimated, and shift correction feedback is performed. Feedback gain calculating means for calculating a gain for determining the amount;
A proportional correction value calculating means for calculating a proportional correction value based on the measurement result of the post-catalyst oxygen sensor signal measuring means and the calculation result of the in-catalyst oxygen accumulation amount calculating means;
An integral correction value calculating means for calculating an integral correction value based on the measurement result of the post-catalyst oxygen sensor signal measuring means and the calculation result of the in-catalyst oxygen accumulation amount calculating means;
Based on the measurement result of the post-catalyst oxygen sensor signal measurement means and the calculation result of the in-catalyst oxygen accumulation amount calculation means, the in-catalyst center air-fuel ratio correction amount calculation means for estimating the in-catalyst center air-fuel ratio;
Target air-fuel ratio calculating means for calculating a correction amount for correcting the target air-fuel ratio based on the calculation results of the proportional correction value calculating means, the integral correction value calculating means, and the central air-fuel ratio calculating means in the catalyst. It is characterized by comprising.
According to the above configuration, based on the air-fuel ratio detected by the pre-catalyst air-fuel ratio sensor signal measuring means, the oxygen concentration detected by the post-catalyst oxygen sensor signal measuring means, and the intake air amount detected by the intake air amount measuring means, The amount of correction for the center air-fuel ratio and the target air-fuel ratio is calculated and corrected using a gain that determines the feedback amount for shift correction according to the central air-fuel ratio in the catalyst and the state of the air-fuel ratio sensor measuring means. The offset state of the fuel ratio sensor measurement means can be corrected quickly and accurately.

前記内燃機関の空燃比制御装置の好ましい態様では、診断領域を判定する診断領域判定手段と、前記診断領域判定手段の判定結果と、前記目標空燃比演算手段の演算結果とに基づき、触媒前空燃比センサ信号計測手段のオフセット故障を検出する触媒前空燃比センサオフセット故障判定手段と、を更に具備することを特徴とする。
このようにすれば、触媒前空燃比センサ信号計測手段がオフセット故障であることを判定できる。
In a preferred aspect of the air-fuel ratio control apparatus for the internal combustion engine, the pre-catalyst air-fuel ratio is determined based on the diagnosis region determination means for determining the diagnosis region, the determination result of the diagnosis region determination means, and the calculation result of the target air-fuel ratio calculation means. And a pre-catalyst air / fuel ratio sensor offset failure determining means for detecting an offset failure of the fuel ratio sensor signal measuring means.
In this way, it can be determined that the pre-catalyst air-fuel ratio sensor signal measuring means is an offset failure.

別の好ましい態様では、前記触媒後酸素センサ反転回数演算手段は、前記触媒後酸素センサ信号計測手段の出力値に基づいて、リッチ/リーンに反転する回数を演算する。
さらに別の好ましい態様では、前記反転回数学習更新手段は、前記学習更新判定手段の判定結果に基づいて、前記触媒後酸素センサ反転回数演算手段の出力値を学習する。
In another preferred aspect, the post-catalyst oxygen sensor inversion number calculating means calculates the number of times of inversion to rich / lean based on the output value of the post-catalyst oxygen sensor signal measuring means.
In still another preferred aspect, the inversion number learning update unit learns an output value of the post-catalyst oxygen sensor inversion number calculation unit based on a determination result of the learning update determination unit.

別の好ましい態様では、前記空燃比センサ状態第1演算手段は、前記触媒後酸素センサ反転回数演算手段の演算結果に基づいて、リッチ/リーンに反転する回数を学習値と現在値で比較し、フィードバックゲイン指数とする。
別の好ましい態様では、前記触媒後酸素センサ反転周期演算手段は、前記触媒後酸素センサ信号計測手段の出力値に基づいて、リッチ/リーンに反転する周期を演算する。
別の好ましい態様では、前記反転周期学習更新手段は、前記学習更新判定手段の判定結果に基づいて、前記触媒後酸素センサ反転周期演算手段の出力値を学習する。
In another preferred aspect, the air-fuel ratio sensor state first calculating means compares the number of times of inversion to rich / lean based on the calculation result of the post-catalyst oxygen sensor inversion number calculating means with the learning value and the current value, The feedback gain index.
In another preferred aspect, the post-catalyst oxygen sensor inversion period calculating means calculates a period for inversion to rich / lean based on an output value of the post-catalyst oxygen sensor signal measuring means.
In another preferred aspect, the inversion cycle learning update unit learns an output value of the post-catalyst oxygen sensor inversion cycle calculation unit based on a determination result of the learning update determination unit.

別の好ましい態様では、前記空燃比センサ状態第2演算手段は、前記触媒後酸素センサ反転周期演算手段の演算結果に基づいて、リッチ/リーンに反転する周期を学習値と現在値で比較し、フィードバックゲイン指数とする。
別の好ましい態様では、前記触媒後酸素センサ反転時間演算手段は、前記触媒後酸素センサ信号計測手段の出力値に基づいて、リッチ/リーンに反転する時間を演算する。
別の好ましい態様では、前記反転時間学習更新手段は、前記学習更新判定手段の判定結果に基づいて、前記触媒後酸素センサ反転時間演算手段の出力値を学習する。
In another preferred aspect, the second air-fuel ratio sensor state calculation means compares the rich / lean inversion period with the learning value and the current value based on the calculation result of the post-catalyst oxygen sensor inversion period calculation means, The feedback gain index.
In another preferred aspect, the post-catalyst oxygen sensor inversion time calculating means calculates a time for inversion to rich / lean based on an output value of the post-catalyst oxygen sensor signal measuring means.
In another preferred aspect, the inversion time learning update unit learns the output value of the post-catalyst oxygen sensor inversion time calculation unit based on the determination result of the learning update determination unit.

別の好ましい態様では、前記空燃比センサ状態第3演算手段は、前記触媒後酸素センサ反転時間演算手段に基づいて、リッチ/リーンに反転する時間を学習値と現在値で比較し、フィードバックゲイン指数とする。
別の好ましい態様では、前記フィードバックゲイン演算手段は、前記空燃比センサ状態第1演算手段、前記空燃比センサ状態第2演算手段、及び前記空燃比センサ状態第3演算手段のフィードバックゲイン指数の各演算結果に基づいて、フィードバックゲインを選択する。
In another preferred aspect, the air / fuel ratio sensor state third calculating means compares the rich / lean inversion time with the learned value and the current value based on the post-catalyst oxygen sensor inversion time calculating means, and a feedback gain index And
In another preferred aspect, the feedback gain calculating means calculates each of feedback gain indexes of the air-fuel ratio sensor state first calculating means, the air-fuel ratio sensor state second calculating means, and the air-fuel ratio sensor state third calculating means. Based on the result, a feedback gain is selected.

別の好ましい態様では、前記触媒内中心空燃比補正量演算手段は、前記触媒後酸素センサ信号計測手段の計測結果と、前記触媒内酸素蓄積量演算手段及びフィードバックゲイン演算手段の演算結果とに基づいて、触媒内中心空燃比を推定する。
別の好ましい態様では、前記学習更新判定手段は、前記触媒後酸素センサ信号計測手段の出力値に基づいて、リッチ/リーンに反転する時間から学習更新判定する。
In another preferred aspect, the in-catalyst center air-fuel ratio correction amount calculating means is based on the measurement results of the post-catalyst oxygen sensor signal measuring means and the calculation results of the in-catalyst oxygen accumulation amount calculating means and the feedback gain calculating means. Thus, the center air-fuel ratio in the catalyst is estimated.
In another preferred aspect, the learning update determination means makes a learning update determination from a time of reversal to rich / lean based on an output value of the post-catalyst oxygen sensor signal measurement means.

1…内燃機関、2…吸気系、3…排気系、4…点火装置、5…燃料噴射装置、6…回転数検出装置、7…エアークリーナ、8…スロットル、8a…スロットルバルブ、8b…スロットル開度センサ、9…流量検出装置、10…気筒、11…空燃比センサ(触媒前空燃比センサ)、12…三元触媒、13…制御装置、14…プレート(またはリングギア)、15…酸素センサ(触媒後酸素センサ)、16…燃料タンク、17…燃料ポンプ、18…プレッシャーレギュレータ、19−1,19−2…燃料管、40…酸素濃度制御装置、41…フィードバックゲイン演算部、42…空燃比センサオフセット故障診断装置、43…目標空燃比演算部、44…空燃比制御部、45…燃料噴射制御部、46…空燃比センサ状態推定装置、51…触媒前空燃比センサ信号計測部、52…吸入空気量計測部、53…触媒後酸素センサ信号計測部、54…触媒内酸素蓄積量演算部、55…比例分補正値演算部、56…積分分補正値演算部、57…触媒内中心空燃比補正量演算部、58…目標空燃比補正量演算部、59…診断領域判定部、60…触媒前空燃比センサオフセット故障判定部、61…学習更新判定部、62…触媒後酸素センサ反転回数演算部、63…触媒後酸素センサ反転周期演算部、64…触媒後酸素センサ反転時間演算部、65…反転回数学習更新部、66…反転周期学習更新部、67…反転時間学習更新部、68…空燃比センサ状態第1演算部、69…空燃比センサ状態第2演算部、70…空燃比センサ状態第3演算部   DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Intake system, 3 ... Exhaust system, 4 ... Ignition device, 5 ... Fuel injection device, 6 ... Rotation speed detection device, 7 ... Air cleaner, 8 ... Throttle, 8a ... Throttle valve, 8b ... Throttle Opening sensor, 9 ... Flow rate detection device, 10 ... Cylinder, 11 ... Air-fuel ratio sensor (pre-catalyst air-fuel ratio sensor), 12 ... Three-way catalyst, 13 ... Control device, 14 ... Plate (or ring gear), 15 ... Oxygen Sensor (post-catalyst oxygen sensor), 16 ... fuel tank, 17 ... fuel pump, 18 ... pressure regulator, 19-1, 19-2 ... fuel pipe, 40 ... oxygen concentration control device, 41 ... feedback gain calculation unit, 42 ... Air-fuel ratio sensor offset failure diagnosis device 43 ... Target air-fuel ratio calculation unit 44 ... Air-fuel ratio control unit 45 ... Fuel injection control unit 46 ... Air-fuel ratio sensor state estimation device 51 ... Air-fuel ratio before catalyst Sensor signal measuring unit 52 ... Intake air amount measuring unit 53 ... Post-catalyst oxygen sensor signal measuring unit 54 ... In-catalyst oxygen accumulation amount calculating unit 55 ... Proportional correction value calculating unit 56 ... Integral correction value calculating unit , 57 ... In-catalyst center air-fuel ratio correction amount calculation unit, 58 ... Target air-fuel ratio correction amount calculation unit, 59 ... Diagnosis region determination unit, 60 ... Pre-catalyst air-fuel ratio sensor offset failure determination unit, 61 ... Learning update determination unit, 62 ... post-catalyst oxygen sensor inversion number calculation unit, 63 ... post-catalyst oxygen sensor inversion period calculation unit, 64 ... post-catalyst oxygen sensor inversion time calculation unit, 65 ... inversion number learning update unit, 66 ... inversion period learning update unit, 67 ... Inversion time learning update unit, 68... Air-fuel ratio sensor state first calculation unit, 69... Air-fuel ratio sensor state second calculation unit, 70.

Claims (11)

内燃機関の排気系に設けられた触媒の上流側の空燃比を計測する第1の計測手段と、前記触媒の下流側の酸素濃度を計測する第2の計測手段と、前記内燃機関の吸入空気量を計測する第3の計測手段と、前記第1乃至第3の計測手段の計測結果に基づいて、目標空燃比補正量を算出する酸素濃度制御手段とを備え、前記酸素濃度制御手段の出力信号に基づいて空燃比をフィードバック制御する内燃機関の空燃比制御装置であって、
前記第2の計測手段による検出値の反転回数、反転周期及び反転時間の少なくともいずれか1つから、前記第2の計測手段の状態を推定するセンサ状態推定手段と、
前記センサ状態推定手段による推定結果に基づいて、シフト補正のフィードバック量を決めるゲインの演算を行うフィードバックゲイン演算手段とを設け、
前記フィードバックゲイン演算手段から出力されるシフト補正のフィードバック量に基づいて、前記目標空燃比補正量を調整することを特徴とする内燃機関の空燃比制御装置。
First measurement means for measuring the air-fuel ratio upstream of the catalyst provided in the exhaust system of the internal combustion engine, second measurement means for measuring the oxygen concentration downstream of the catalyst, and intake air of the internal combustion engine A third measuring means for measuring the amount; and an oxygen concentration control means for calculating a target air-fuel ratio correction amount based on the measurement results of the first to third measuring means, and the output of the oxygen concentration control means An air-fuel ratio control apparatus for an internal combustion engine that feedback-controls an air-fuel ratio based on a signal,
Sensor state estimating means for estimating the state of the second measuring means from at least one of the number of inversions, the inversion period and the inversion time of the detected value by the second measuring means;
A feedback gain calculating means for calculating a gain for determining a feedback amount of shift correction based on an estimation result by the sensor state estimating means;
An air-fuel ratio control apparatus for an internal combustion engine, wherein the target air-fuel ratio correction amount is adjusted based on a shift correction feedback amount output from the feedback gain calculation means.
前記センサ状態推定手段が、前記第2の計測手段の検出値から反転回数、反転周期及び反転時間をそれぞれ算出する演算手段を備える、請求項1に記載の内燃機関の空燃比制御装置。   2. The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein the sensor state estimation means includes calculation means for calculating the number of inversions, the inversion period, and the inversion time from the detection value of the second measurement means. 前記演算手段が、前記第2の計測手段の検出値に基づいて、リッチ/リーンに反転する回数を算出する、請求項2に記載の内燃機関の空燃比制御装置。   The air-fuel ratio control apparatus for an internal combustion engine according to claim 2, wherein the calculation means calculates the number of times of inversion to rich / lean based on the detection value of the second measurement means. 前記演算手段が、前記第2の計測手段の検出値に基づいて、リッチ/リーンに反転する周期を算出する、請求項2に記載の内燃機関の空燃比制御装置。   The air-fuel ratio control apparatus for an internal combustion engine according to claim 2, wherein the calculation means calculates a cycle for reversing to rich / lean based on a detection value of the second measurement means. 前記演算手段が、前記第2の計測手段の検出値に基づいて、リッチ/リーンに反転する時間を算出する、請求項2に記載の内燃機関の空燃比制御装置。   The air-fuel ratio control apparatus for an internal combustion engine according to claim 2, wherein the calculation means calculates a time for reversal to rich / lean based on a detection value of the second measurement means. 前記センサ状態推定手段が、前記第2の計測手段による検出値の反転回数、反転周期及び反転時間を学習する学習手段を更に備え、前記第2の計測手段から出力される検出信号のリッチ/リーン応答状態より学習値を更新する、請求項2乃至5いずれか1つの項に記載の内燃機関の空燃比制御装置。   The sensor state estimating means further comprises learning means for learning the number of inversions, the inversion period and the inversion time of the detection value detected by the second measuring means, and the rich / lean detection signal output from the second measuring means The air-fuel ratio control apparatus for an internal combustion engine according to any one of claims 2 to 5, wherein the learning value is updated based on the response state. 前記センサ状態推定手段が、前記演算手段の演算結果、前記学習手段の学習値、及び所定の重み係数に基づいてセンサ状態のフィードバックゲイン指数を算出するセンサ状態演算手段を更に備え、このセンサ状態演算手段で算出したセンサ状態のフィードバックゲイン指数を前記フィードバックゲイン演算手段に供給する、請求項6に記載の内燃機関の空燃比制御装置。   The sensor state estimation means further comprises sensor state calculation means for calculating a feedback gain index of the sensor state based on the calculation result of the calculation means, the learning value of the learning means, and a predetermined weighting factor, and this sensor state calculation The air-fuel ratio control apparatus for an internal combustion engine according to claim 6, wherein the feedback gain index of the sensor state calculated by the means is supplied to the feedback gain calculation means. 前記酸素濃度制御手段が、前記第1の計測手段と前記第3の計測手段の計測値を受け、触媒内酸素蓄積量を推定する触媒内酸素蓄積量演算部と、この触媒内酸素蓄積量演算部で算出した触媒内酸素蓄積量と前記第2の計測手段で計測した検出値から比例分補正値を算出する比例分補正値演算部と、前記触媒内酸素蓄積量演算部で算出した触媒内酸素蓄積量と前記第2の計測手段で計測した検出値から積分分補正値を算出する積分分補正値演算部と、前記触媒内酸素蓄積量演算部で算出した触媒内酸素蓄積量、前記第2の計測手段で計測した検出値、及び前記フィードバックゲイン演算手段の出力信号で示されたシフト補正のフィードバック量から、触媒内中心空燃比補正量を演算する触媒内中心空燃比補正量演算部と、比例分補正値、積分分補正値及び触媒内中心空燃比補正量から目標空燃比を演算する目標空燃比補正量演算部とを備え、
前記触媒内中心空燃比補正量演算部から出力される触媒内中心空燃比補正量が前記触媒内酸素蓄積量演算部に入力される、請求項1乃至7いずれか1つの項に記載の内燃機関の空燃比制御装置。
The oxygen concentration control means receives the measurement values of the first measuring means and the third measuring means and estimates the oxygen accumulation amount in the catalyst, and calculates the oxygen accumulation amount in the catalyst. A proportional correction value calculation unit that calculates a proportional correction value from the amount of oxygen storage in the catalyst calculated by the unit and the detection value measured by the second measuring means, and the amount of oxygen stored in the catalyst calculated by the oxygen storage amount calculation unit in the catalyst An integral correction value calculation unit for calculating an integral correction value from the oxygen accumulation amount and the detection value measured by the second measuring means; an in-catalyst oxygen accumulation amount calculated by the in-catalyst oxygen accumulation amount calculation unit; A center-of-catalyst air-fuel ratio correction amount calculation unit for calculating the center-of-catalyst air-fuel ratio correction amount from the detected value measured by the measuring means of 2 and the feedback amount of shift correction indicated by the output signal of the feedback gain calculating means; , Proportional correction value, integral And a target air-fuel ratio correction amount computing unit for computing a target air-fuel ratio from the positive and catalyst within the center air-fuel ratio correction amount,
The internal combustion engine according to any one of claims 1 to 7, wherein an in-catalyst center air-fuel ratio correction amount output from the in-catalyst center air-fuel ratio correction amount calculation unit is input to the in-catalyst oxygen accumulation amount calculation unit. Air-fuel ratio control device.
前記触媒内中心空燃比補正量が所定範囲から外れたときに、前記第1の計測手段の異常と判断する診断手段を更に備える、請求項8に記載の内燃機関の空燃比制御装置。   9. The air-fuel ratio control apparatus for an internal combustion engine according to claim 8, further comprising a diagnosis unit that determines that the first measurement unit is abnormal when the in-catalyst center air-fuel ratio correction amount is out of a predetermined range. 内燃機関の排気系に設けられた触媒の上流側に配置された空燃比センサの検出信号と、前記触媒の下流側に配置された酸素センサの検出信号とに基づいて空燃比をフィードバック制御する内燃機関の空燃比制御方法において、
内燃機関の吸入空気量と前記空燃比センサの検出信号とに基づいて、触媒の酸素蓄積量を算出するステップと、
算出した酸素蓄積量に基づいて、触媒内中心空燃比を算出するステップと、
前記空燃比センサの検出値に基づく空燃比フィードバック制御を実施しているときの前記酸素センサの作動パラメータを算出するステップと、
前記作動パラメータと所定値との乖離度合いであるフィードバックゲイン指数を算出するステップと、
前記触媒内中心空燃比を前記フィードバックゲイン指数で調整するステップと、
前記調整した触媒内中心空燃比を、前記空燃比フィードバックのベース目標空燃比に設定するステップと
を具備することを特徴とする内燃機関の空燃比制御方法。
An internal combustion engine that feedback-controls the air-fuel ratio based on a detection signal of an air-fuel ratio sensor arranged upstream of a catalyst provided in an exhaust system of the internal combustion engine and a detection signal of an oxygen sensor arranged downstream of the catalyst In the engine air-fuel ratio control method,
Calculating an oxygen accumulation amount of the catalyst based on an intake air amount of the internal combustion engine and a detection signal of the air-fuel ratio sensor;
Calculating a central air-fuel ratio in the catalyst based on the calculated oxygen accumulation amount;
Calculating an operating parameter of the oxygen sensor when air-fuel ratio feedback control based on a detection value of the air-fuel ratio sensor is performed;
Calculating a feedback gain index that is a degree of deviation between the operating parameter and a predetermined value;
Adjusting the central air-fuel ratio in the catalyst with the feedback gain index;
And a step of setting the adjusted central air-fuel ratio in the catalyst to a base target air-fuel ratio of the air-fuel ratio feedback.
前記酸素センサの作動パラメータは、前記酸素センサの検出信号の反転回数、反転周期及び反転時間の少なくともいずれか1つを含む、請求項10に記載の内燃機関の空燃比制御方法。   11. The air-fuel ratio control method for an internal combustion engine according to claim 10, wherein the operating parameter of the oxygen sensor includes at least one of the number of inversions, the inversion period, and the inversion time of the detection signal of the oxygen sensor.
JP2017055568A 2017-03-22 2017-03-22 Air-fuel ratio control device for internal combustion engine and control method for the same Pending JP2018159286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017055568A JP2018159286A (en) 2017-03-22 2017-03-22 Air-fuel ratio control device for internal combustion engine and control method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017055568A JP2018159286A (en) 2017-03-22 2017-03-22 Air-fuel ratio control device for internal combustion engine and control method for the same

Publications (1)

Publication Number Publication Date
JP2018159286A true JP2018159286A (en) 2018-10-11

Family

ID=63796443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017055568A Pending JP2018159286A (en) 2017-03-22 2017-03-22 Air-fuel ratio control device for internal combustion engine and control method for the same

Country Status (1)

Country Link
JP (1) JP2018159286A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233490A (en) * 2021-12-22 2022-03-25 潍柴动力股份有限公司 Method and device for determining fuel gas injection amount and related equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143353A (en) * 1986-12-05 1988-06-15 Toyota Motor Corp Trouble diagnostic device for internal combustion engine
JPH05125978A (en) * 1991-11-05 1993-05-21 Japan Electron Control Syst Co Ltd Diagnostic device for air-fuel ratio control device
JP2001227384A (en) * 2000-02-16 2001-08-24 Nissan Motor Co Ltd Exhaust emission control device for engine
JP2004044444A (en) * 2002-07-10 2004-02-12 Nissan Motor Co Ltd Air-fuel ratio control system of internal combustion engine
JP2007162626A (en) * 2005-12-15 2007-06-28 Toyota Motor Corp Control device of internal combustion engine
JP2012229659A (en) * 2011-04-26 2012-11-22 Hitachi Automotive Systems Ltd Diagnosis device for air-fuel ratio sensor
JP2016223415A (en) * 2015-06-03 2016-12-28 日立オートモティブシステムズ株式会社 Control device for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143353A (en) * 1986-12-05 1988-06-15 Toyota Motor Corp Trouble diagnostic device for internal combustion engine
JPH05125978A (en) * 1991-11-05 1993-05-21 Japan Electron Control Syst Co Ltd Diagnostic device for air-fuel ratio control device
JP2001227384A (en) * 2000-02-16 2001-08-24 Nissan Motor Co Ltd Exhaust emission control device for engine
JP2004044444A (en) * 2002-07-10 2004-02-12 Nissan Motor Co Ltd Air-fuel ratio control system of internal combustion engine
JP2007162626A (en) * 2005-12-15 2007-06-28 Toyota Motor Corp Control device of internal combustion engine
JP2012229659A (en) * 2011-04-26 2012-11-22 Hitachi Automotive Systems Ltd Diagnosis device for air-fuel ratio sensor
JP2016223415A (en) * 2015-06-03 2016-12-28 日立オートモティブシステムズ株式会社 Control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233490A (en) * 2021-12-22 2022-03-25 潍柴动力股份有限公司 Method and device for determining fuel gas injection amount and related equipment
CN114233490B (en) * 2021-12-22 2023-09-15 潍柴动力股份有限公司 Method and device for determining gas injection quantity and related equipment

Similar Documents

Publication Publication Date Title
JP4221025B2 (en) Air-fuel ratio control device for internal combustion engine
JP4221026B2 (en) Air-fuel ratio control device for internal combustion engine
JP2858288B2 (en) Self-diagnosis device in air-fuel ratio control device of internal combustion engine
JP2893308B2 (en) Air-fuel ratio control device for internal combustion engine
JP4835692B2 (en) Air-fuel ratio control device for multi-cylinder internal combustion engine
JP2007046517A (en) Control device for internal combustion engine
JP4193869B2 (en) Exhaust gas purification catalyst deterioration diagnosis device
JP3227153B2 (en) Deterioration detection device for HC sensor of internal combustion engine
JP2010007561A (en) Air-fuel ratio control device and air-fuel ratio control method
JP5112382B2 (en) Oxygen sensor diagnostic device for internal combustion engine
JP6431813B2 (en) Control device for internal combustion engine
JP2010174872A (en) Malfunction diagnosis device for internal combustion engine secondary air supply system
JP2018159286A (en) Air-fuel ratio control device for internal combustion engine and control method for the same
JP2007211609A (en) Device for controlling air-fuel ratio per cylinder of internal combustion engine
JP2006177371A (en) Internal combustion engine control device
JP5603825B2 (en) Air-fuel ratio sensor diagnostic device
JP3304663B2 (en) Degradation diagnosis device for exhaust purification catalyst
JP2008014178A (en) Cylinder-by-cylinder air-fuel ratio control device for internal combustion engine
JP4692294B2 (en) Degradation diagnosis device for linear air-fuel ratio sensor
WO2020217642A1 (en) Diagnostic apparatus
JP2018155179A (en) Engine control device and engine control method
JP2864699B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2016056753A (en) Air-fuel ratio sensor diagnostic device for internal combustion engine
JP3264234B2 (en) Catalyst deterioration detection device for internal combustion engine
JP6971094B2 (en) Electronic control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210405

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210405

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210413

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210420

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210604

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210608

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210824

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211019

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220222

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220412

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220531

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220705

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220705