JP2018158325A - Method for treating liquid to be treated and method for recovering silver - Google Patents

Method for treating liquid to be treated and method for recovering silver Download PDF

Info

Publication number
JP2018158325A
JP2018158325A JP2017058489A JP2017058489A JP2018158325A JP 2018158325 A JP2018158325 A JP 2018158325A JP 2017058489 A JP2017058489 A JP 2017058489A JP 2017058489 A JP2017058489 A JP 2017058489A JP 2018158325 A JP2018158325 A JP 2018158325A
Authority
JP
Japan
Prior art keywords
liquid
silver
treated
sulfide
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017058489A
Other languages
Japanese (ja)
Other versions
JP6815242B2 (en
Inventor
裕之 田下
Hiroyuki Tashimo
裕之 田下
清次 中塚
seiji Nakatsuka
清次 中塚
理 入江
Osamu Irie
理 入江
尭 出野
Takashi Ideno
尭 出野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Tech Kk
Dowa Technology KK
Original Assignee
Dowa Tech Kk
Dowa Technology KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Tech Kk, Dowa Technology KK filed Critical Dowa Tech Kk
Priority to JP2017058489A priority Critical patent/JP6815242B2/en
Publication of JP2018158325A publication Critical patent/JP2018158325A/en
Application granted granted Critical
Publication of JP6815242B2 publication Critical patent/JP6815242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for reducing the treatment cost of the liquid to be treated, and a method for improving the recovery rate of silver .SOLUTION: The present invention provides a method for treating an alkaline liquid to be treated, containing silver, hydrogen peroxide, and a chelating agent which is at least one of EDTA and DTPA, the method comprising: a sulfide adding step of adding a sulfide to the liquid to be treated, a heating step of heating the liquid to be treated to which the sulfide has been added, to remove hydrogen peroxide, a chelating agent adding step of adding a piperazine type chelating agent to the liquid to be treated from which hydrogen peroxide has been removed, a solid-liquid separation step of recovering a silver-containing substance as a solid by subjecting the liquid to be treated to solid-liquid separation after the chelating agent adding step, a neutralizing step of adding an acid to the liquid generated in the solid-liquid separation step to neutralize it, an evaporation concentration step of evaporating and concentrating the neutralized liquid, and a condensed water treatment step of removing formaldehyde contained in the condensed water generated by the evaporation condensation.SELECTED DRAWING: Figure 1

Description

本発明は、被処理液の処理方法および銀の回収方法に関する。   The present invention relates to a treatment method for a liquid to be treated and a silver recovery method.

電子・電気回路基板を作製する際にはエッチングに伴い過酸化水素や諸々の金属元素を含有する廃液が発生する。このような廃液を処理する際に、過酸化水素が突沸するという問題が知られている。この問題に対処すべく、例えば特許文献1や特許文献2では、活性炭や白金族元素を触媒として用いた過酸化水素分解法が提案されている。この他、特許文献3では、pH調整と温度制御を組み合わせた過酸化水素の分解方法が提案されている。   When an electronic / electrical circuit board is manufactured, waste liquid containing hydrogen peroxide and various metal elements is generated along with the etching. There is a known problem that hydrogen peroxide bumps when processing such waste liquid. In order to cope with this problem, for example, Patent Document 1 and Patent Document 2 propose a hydrogen peroxide decomposition method using activated carbon or a platinum group element as a catalyst. In addition, Patent Document 3 proposes a method for decomposing hydrogen peroxide by combining pH adjustment and temperature control.

特開2003−266081号公報JP 2003-266081 A 特開2012−061455号公報JP 2012-061455 A 特開2012−55825号公報JP 2012-55825 A

電子・電気回路基板のうち例えばパワーモジュール等に用いられる金属−セラミック接合基板の製造工程では、剥離液や洗浄液を使用する結果、数十g/Lの過酸化水素、アンモニア、溶液の安定化のために使用されるキレート剤、そして銅や銀など金属元素を含むアルカリ性の廃液が発生する場合がある。
上記のアルカリ性の廃液に関して言うと、過酸化水素は、アルカリ条件下では不安定であり、自己分解が促進される。そのため、廃液を加温することにより過酸化水素を自己分解させて廃液から除去することが可能である。
In the manufacturing process of metal-ceramic bonding substrates used for power modules, etc. among electronic / electrical circuit boards, as a result of using a stripping solution and a cleaning solution, several tens of g / L of hydrogen peroxide, ammonia, and stabilization of the solution For this reason, an alkaline waste liquid containing a metal element such as a chelating agent and copper or silver may be generated.
Regarding the above alkaline waste liquid, hydrogen peroxide is unstable under alkaline conditions and promotes self-decomposition. Therefore, it is possible to remove hydrogen peroxide from the waste liquid by heating the waste liquid and causing the hydrogen peroxide to self-decompose.

有価物として例えば銀を回収する手法としては、例えば、上記の廃液に塩酸を加え、廃液中の銀を塩化銀の沈殿として固定するという手法が挙げられる。なお、本明細書で言う“固定化”とは“銀含有物として沈殿させること”を指す。また、“銀”のように金属元素を表記する際には、金属銀や銀イオンを含めたものとするが、わかりやすくすべく銀イオンと称することもある。銀の固定化後、廃液を加温して過酸化水素を自己分解させて除去すればよいように見える。
しかしながら該手法では、未分解の過酸化水素を含むアルカリ性の廃液に塩酸を添加することになり、中和熱による液温度上昇そして急激な過酸化水素の分解に伴い、激しい突沸が起こるおそれがある。また、塩酸を使用するとなると、廃液処理に係る装置や設備の材質としては、塩酸に対して耐食性を有するものを使用しなければならずコストが嵩む。
As a technique for recovering silver as a valuable resource, for example, a technique of adding hydrochloric acid to the above-mentioned waste liquid and fixing silver in the waste liquid as silver chloride precipitates can be mentioned. As used herein, “immobilization” refers to “precipitation as a silver-containing material”. In addition, when describing a metal element such as “silver”, it includes metal silver and silver ions, but may be referred to as silver ions for the sake of clarity. After fixing the silver, it seems to be sufficient to heat and remove the hydrogen peroxide by self-decomposition.
However, in this method, hydrochloric acid is added to an alkaline waste liquid containing undecomposed hydrogen peroxide, and there is a possibility that severe bumping may occur as the liquid temperature rises due to heat of neutralization and rapid decomposition of hydrogen peroxide. . In addition, when hydrochloric acid is used, a material having corrosion resistance against hydrochloric acid must be used as a material for equipment and facilities related to waste liquid treatment, which increases costs.

なお、上記の廃液に塩酸を加える代わりにピペラジン系キレート剤により不溶銀錯体を形成するという手法も挙げられるが、この場合、廃液からの銀の回収率という観点から見ても改善すべき課題がある。   In addition, there is a method of forming an insoluble silver complex with a piperazine chelating agent instead of adding hydrochloric acid to the above waste liquid, but in this case, there is a problem to be improved from the viewpoint of recovery rate of silver from the waste liquid. is there.

本発明の課題は、被処理液の処理コストを抑える手法を提供することにある。また別の課題は、それに加え、銀の回収率を向上させる手法を提供することにある。   An object of the present invention is to provide a technique for suppressing the processing cost of a liquid to be processed. Another problem is to provide a method for improving the silver recovery rate.

上記の課題を解決すべく、本発明者は鋭意研究を行った。過酸化水素が分解して発熱する前に、まずは、過酸化水素の影響が及ばないようにすべく硫化物により銀をほとんど固定化し、その後、廃液(広義には被処理液)を加温することにより過酸化水素を自己分解させて廃液から除去する、という手法を想到した。
更に、過酸化水素の自己分解前だと銀の固定化という効果を十分に発揮できなかったピペラジン系キレート剤を、上記手法により過酸化水素を除去した後に使用して残りの銀を回収する、という手法を想到した。
この知見に基づきなされた本発明の態様は、以下の通りである。
In order to solve the above-mentioned problems, the present inventor has conducted intensive research. Before hydrogen peroxide decomposes and generates heat, first, silver is almost fixed with sulfide to prevent the influence of hydrogen peroxide, and then the waste liquid (liquid to be treated in a broad sense) is heated. As a result, the inventors have come up with a technique of self-decomposing hydrogen peroxide and removing it from the waste liquid.
Furthermore, the piperazine-based chelating agent that did not sufficiently exhibit the effect of silver fixation before the self-decomposition of hydrogen peroxide was used after removing hydrogen peroxide by the above method to recover the remaining silver. I came up with the method.
The aspects of the present invention made based on this finding are as follows.

本発明の第1の態様は、
銀と、過酸化水素と、エチレンジアミン四酢酸(EDTA)およびジエチレントリアミン五酢酸(DTPA)の少なくともいずれかであるキレート剤と、を含有するアルカリ性の被処理液の処理方法であって、
被処理液に対して硫化物を添加する硫化物添加工程と、
硫化物が添加された被処理液を加温して過酸化水素を除去する加温工程と、
過酸化水素が除去された被処理液に対してピペラジン系キレート剤を添加するキレート剤添加工程と、
を有する、被処理液の処理方法である。
The first aspect of the present invention is:
A method for treating an alkaline liquid to be treated containing silver, hydrogen peroxide, and a chelating agent that is at least one of ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA),
A sulfide addition step of adding sulfide to the liquid to be treated;
A heating step of heating the liquid to which the sulfide is added to remove hydrogen peroxide;
A chelating agent addition step of adding a piperazine chelating agent to the liquid to be treated from which hydrogen peroxide has been removed;
A method for treating a liquid to be treated.

本発明の第2の態様は、第1の態様に記載の発明において、
前記キレート剤添加工程後、被処理液を固液分離することにより、固体である銀含有物を回収する固液分離工程を更に有する。
According to a second aspect of the present invention, in the invention according to the first aspect,
After the chelating agent addition step, it further has a solid-liquid separation step of recovering a silver-containing material that is a solid by subjecting the liquid to be treated to solid-liquid separation.

本発明の第3の態様は、第2の態様に記載の発明において、
前記固液分離工程で生じた液体に酸を加えて中和する中和工程を更に有する。
According to a third aspect of the present invention, in the invention according to the second aspect,
It further has a neutralization step of neutralizing the liquid generated in the solid-liquid separation step by adding an acid.

本発明の第4の態様は、第3の態様に記載の発明において、
前記中和工程で中和された液体を蒸発濃縮させる蒸発濃縮工程を更に有する。
According to a fourth aspect of the present invention, in the invention according to the third aspect,
It further has an evaporation concentration step of evaporating and concentrating the liquid neutralized in the neutralization step.

本発明の第5の態様は、第4の態様に記載の発明において、
前記蒸発濃縮工程で蒸発濃縮により生じた凝縮水に含有されるホルムアルデヒドを除去する凝縮水処理工程を更に有する。
According to a fifth aspect of the present invention, in the invention described in the fourth aspect,
It further has a condensed water treatment step of removing formaldehyde contained in the condensed water generated by the evaporation concentration in the evaporation concentration step.

本発明の第6の態様は、第1〜第5のいずれかの態様に記載の発明において、
前記加温工程の前に、被処理液における過酸化水素の濃度が20g/L以下となるまで被処理液を希釈する希釈工程を更に有する。
According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects,
Before the heating step, the method further includes a dilution step of diluting the liquid to be processed until the concentration of hydrogen peroxide in the liquid to be processed becomes 20 g / L or less.

本発明の第7の態様は、第6の態様に記載の発明において、
前記キレート剤添加工程後、被処理液を固液分離することにより、固体である銀含有物を回収する固液分離工程と、を有し、
前記希釈工程における希釈液として、前記固液分離工程で生じた液体の一部を用いる。
According to a seventh aspect of the present invention, in the invention according to the sixth aspect,
A solid-liquid separation step of recovering a silver-containing material that is a solid by solid-liquid separation of the liquid to be treated after the chelating agent addition step;
A part of the liquid generated in the solid-liquid separation process is used as the dilution liquid in the dilution process.

本発明の第8の態様は、第1〜第7のいずれかの態様に記載の発明において、
前記被処理液は金属−セラミック接合基板の製造の際の廃液である。
According to an eighth aspect of the present invention, in the invention according to any one of the first to seventh aspects,
The liquid to be treated is a waste liquid in the production of a metal / ceramic bonding substrate.

本発明の第9の態様は、第1〜第8のいずれかの態様に記載の発明において、
前記硫化物は硫化カリウム、硫化亜鉛および硫化銅の少なくともいずれかである。
According to a ninth aspect of the present invention, in the invention according to any one of the first to eighth aspects,
The sulfide is at least one of potassium sulfide, zinc sulfide, and copper sulfide.

本発明の第10の態様は、
銀と、過酸化水素と、エチレンジアミン四酢酸(EDTA)およびジエチレントリアミン五酢酸(DTPA)の少なくともいずれかであるキレート剤と、を含有するアルカリ性の被処理液からの銀の回収方法であって、
被処理液に対して硫化物を添加する硫化物添加工程と、
硫化物が添加された被処理液を加温して過酸化水素を除去する加温工程と、
過酸化水素が除去された被処理液に対してピペラジン系キレート剤を添加するキレート剤添加工程と、
キレート剤添加工程後、被処理液を固液分離することにより、固体である銀含有物を回収する固液分離工程と、
銀含有物から銀を回収する銀回収工程と、
を有する、銀の回収方法である。
The tenth aspect of the present invention provides
A method for recovering silver from an alkaline liquid containing silver, hydrogen peroxide, and a chelating agent that is at least one of ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA),
A sulfide addition step of adding sulfide to the liquid to be treated;
A heating step of heating the liquid to which the sulfide is added to remove hydrogen peroxide;
A chelating agent addition step of adding a piperazine chelating agent to the liquid to be treated from which hydrogen peroxide has been removed;
After the chelating agent addition step, the solid-liquid separation step of recovering the silver-containing material that is a solid by solid-liquid separation of the liquid to be treated;
A silver recovery process for recovering silver from the silver-containing material;
A method for recovering silver.

本発明によれば、被処理液の処理コストを抑えることを可能とする。また、それに加え、銀の回収率を向上させることを可能とする。   According to the present invention, it is possible to reduce the processing cost of the liquid to be processed. In addition, the silver recovery rate can be improved.

本実施形態の被処理液の処理方法および銀の回収方法を示すフローチャートである。It is a flowchart which shows the processing method of the to-be-processed liquid of this embodiment, and the collection | recovery method of silver. 本実施例において、各条件および各試薬にて銀を固定化した際の銀固定化率との関係を棒グラフとして示す図である。In a present Example, it is a figure which shows the relationship with the silver fixation rate at the time of fixing silver with each conditions and each reagent as a bar graph. 本実施例において、過酸化水素の分解時間とB液の温度との関係を棒グラフとして示す図である。In a present Example, it is a figure which shows the relationship between the decomposition time of hydrogen peroxide, and the temperature of B liquid as a bar graph. 本実施例において、装置の液温設定を40℃としたときの過酸化水素濃度と温度変化の関係を示す図である。■は過酸化水素水の濃度(mg/L:右辺)を示し、〇はB液の温度(℃:左辺)を示す。In a present Example, it is a figure which shows the relationship between a hydrogen peroxide concentration and a temperature change when the liquid temperature setting of an apparatus is 40 degreeC. (1) indicates the concentration of hydrogen peroxide solution (mg / L: right side), and (0) indicates the temperature of the B liquid (° C .: left side). 本実施例において、凝縮水に対し、本実施例に記載した手法での生物処理(好気性処理)を行った結果を示す図である。In a present Example, it is a figure which shows the result of having performed the biological treatment (aerobic treatment) by the method described in the present Example with respect to the condensed water.

本実施形態においては以下の順番で説明を行い、フローチャートである図1を用いて説明する。
1.硫化物添加工程
2.希釈工程
3.加温工程
4.キレート剤添加工程
5.固液分離工程(銀の回収方法)
6.中和工程
7.蒸発濃縮工程
8.凝縮水処理工程
なお、本明細書における「〜」は所定の数値以上かつ所定の数値以下を指す。
また、本実施形態で用いる被処理液としては金属−セラミック接合基板の製造の際の廃液を具体例として挙げるが、その組成としては、銀と、過酸化水素と、エチレンジアミン四酢酸(EDTA)およびジエチレントリアミン五酢酸(DTPA)の少なくともいずれかであるキレート剤と、を含有するアルカリ性の溶液であれば特に限定は無いし、これらのものを含有するのならば廃液でなくとも構わない。
In the present embodiment, description will be given in the following order, and description will be made with reference to FIG. 1 which is a flowchart.
1. 1. Sulfide addition process 2. Dilution process Warming process 4. 4. Chelating agent addition process Solid-liquid separation process (silver recovery method)
6). Neutralization process 7. Evaporation and concentration step 8. Condensed water treatment process In addition, "-" in this specification points out more than a predetermined numerical value and below a predetermined numerical value.
In addition, as a liquid to be treated used in this embodiment, a waste liquid at the time of producing a metal-ceramic bonding substrate is given as a specific example, and as its composition, silver, hydrogen peroxide, ethylenediaminetetraacetic acid (EDTA) and There is no particular limitation as long as it is an alkaline solution containing a chelating agent that is at least one of diethylenetriaminepentaacetic acid (DTPA), and if it contains these, it does not have to be a waste liquid.

(1.硫化物添加工程)
硫化物添加工程においては廃液に対して硫化物を添加する。硫化物の添加により、廃液中の銀を硫化銀とすることによって固定化する。なお、硫化物による銀の沈殿の溶解度積は難溶性の沈殿(KSP(Ag2S)=6.3x10−50)であり、本実施形態における後述の加温工程を経ても再溶解はほとんど生じない。
(1. Sulfide addition process)
In the sulfide addition step, sulfide is added to the waste liquid. By adding sulfide, the silver in the waste liquid is fixed to silver sulfide. In addition, the solubility product of the silver precipitation by sulfide is a hardly soluble precipitate (KSP (Ag2S) = 6.3 × 10 −50 ), and re-dissolution hardly occurs even after the heating step described later in the present embodiment. .

上記硫化物としては任意の公知のものを使用すればよいが、銀よりも溶解度積の大きな化合物を用いるのが好ましく、例えば硫化亜鉛や硫化銅などが挙げられる。他には硫化カリウムも挙げられる。また、具体的な化合物名としては、例えばFeS、Fe、KS、NaS、MnS、PbSなど金属硫化物およびそれらを含む化合物が挙げられる。また、添加量については特に限定は無いが廃液中の銀の等量以上が好ましい。 Any known sulfide may be used as the sulfide, but it is preferable to use a compound having a solubility product larger than that of silver, and examples thereof include zinc sulfide and copper sulfide. Other examples include potassium sulfide. Specific compound names include metal sulfides such as FeS, Fe 2 S 3 , K 2 S, Na 2 S, MnS, and PbS and compounds containing them. The amount added is not particularly limited, but is preferably equal to or greater than the amount of silver in the waste liquid.

硫化物の中でも硫化亜鉛や硫化銅が好ましい。その理由は以下の通りである。
本実施形態の被処理液である廃液には、銀と、過酸化水素と、エチレンジアミン四酢酸(EDTA)およびジエチレントリアミン五酢酸(DTPA)の少なくともいずれかと、が含有されている。先に述べたように、EDTAやDTPAを廃液に含有させているのは溶液を安定化させるため(銀を活性の高い状態にしないようにEDTAやDTPAを銀イオンへと配位させるため)である。この状態で硫化亜鉛や硫化銅をアルカリ性の廃液に添加すると、以下の反応式に示すように、硫化亜鉛や硫化銅は亜鉛イオンや銅イオンおよび硫化物イオンへとイオン化する。
ZnS→Zn2++S2−
CuS→Cu2++S2−
この硫化物イオン(S2−)が廃液中の銀イオンと結合して硫化銀を生成することにより銀を固定化することになる。その一方で、亜鉛イオンや銅イオンは、EDTAやDTPAに対し、速やかに安定なキレート錯体となる。例えば、EDTAと銀との錯体の錯生成定数7.32であるのに対し、EDTAと亜鉛との錯体の錯生成定数16.50であり、EDTAと亜鉛との錯体の方が安定である(出典:「ポイント分析化学演習」264頁、著:河嶌拓治他、出版:廣川書店)。なお、EDTAと類似する炭素骨格を有するDTPAも亜鉛に対しては同程度の錯生成定数を有するものと考えられるし、銅イオンもEDTAやDTPAと錯体を形成し易くかつ該錯体は安定である。
つまり、上記の反応式における右辺の亜鉛イオンや銅イオンが、EDTAやDTPAとの錯化によって減少していく。そうなると上記の反応式における反応は更に右辺へと偏ることになり、硫化亜鉛や硫化銅を十分にイオン化でき、ひいては十分に銀を硫化銀へと変化させて銀を十分に固定化することが可能となる。なお、この知見に基づくとすれば、硫化亜鉛や硫化銅以外の硫化物であってEDTAやDTPAと安定した錯体を速やかに形成可能なものであれば硫化物添加工程にて採用するのに差し支えは無い。
Of the sulfides, zinc sulfide and copper sulfide are preferable. The reason is as follows.
The waste liquid that is the liquid to be treated according to the present embodiment contains silver, hydrogen peroxide, and at least one of ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA). As mentioned earlier, EDTA and DTPA are contained in the waste solution to stabilize the solution (to coordinate EDTA and DTPA to silver ions so that silver is not highly active). is there. When zinc sulfide or copper sulfide is added to the alkaline waste liquid in this state, zinc sulfide or copper sulfide is ionized into zinc ions, copper ions, or sulfide ions as shown in the following reaction formula.
ZnS → Zn 2+ + S 2−
CuS → Cu 2+ + S 2−
The sulfide ions (S 2− ) are combined with silver ions in the waste liquid to produce silver sulfide, thereby fixing silver. On the other hand, zinc ions and copper ions quickly become stable chelate complexes with respect to EDTA and DTPA. For example, the complex formation constant of the complex of EDTA and silver is 7.32 while the complex formation constant of the complex of EDTA and zinc is 16.50, and the complex of EDTA and zinc is more stable ( Source: “Point Analytical Chemistry Exercise”, page 264, Author: Takuji Kawabe et al., Publication: Yodogawa Shoten). DTPA having a carbon skeleton similar to EDTA is also considered to have a complex formation constant comparable to that of zinc, and copper ions can easily form complexes with EDTA and DTPA, and the complexes are stable. .
That is, the zinc ions and copper ions on the right side in the above reaction formula decrease due to complexation with EDTA and DTPA. Then, the reaction in the above reaction formula is further biased to the right side, and zinc sulfide and copper sulfide can be sufficiently ionized. As a result, silver can be sufficiently changed to silver sulfide to sufficiently fix silver. It becomes. Based on this finding, any sulfide other than zinc sulfide or copper sulfide that can quickly form a stable complex with EDTA or DTPA can be used in the sulfide addition process. There is no.

(2.希釈工程)
希釈工程は被処理液を過酸化水素含有量が少ない液で希釈するものである。希釈工程を行うことにより、以下に示す加温工程において過酸化水素を自己分解させる際に発泡を少なくできる。
(2. Dilution process)
In the dilution step, the liquid to be treated is diluted with a liquid having a low hydrogen peroxide content. By performing the dilution step, foaming can be reduced when hydrogen peroxide is self-decomposed in the heating step described below.

なお、希釈工程は以下に示す加温工程の前に行えばよく、先の硫化物添加工程の前に行っても構わない。
また、希釈工程において過酸化水素の濃度が30g/L以下、さらには20g/L以下となるまで希釈するのが好ましく、希釈工程にて用いる希釈液は、以下の加温工程〜固液分離工程を経た後の液体(例えばろ液)を使用するのが工業プロセス的に廃液処理量を減少させ、低コストでの処理が可能となり有利であり好ましい。
The dilution step may be performed before the heating step described below, or may be performed before the previous sulfide addition step.
Moreover, it is preferable to dilute until the concentration of hydrogen peroxide is 30 g / L or less, further 20 g / L or less in the dilution step. The dilution liquid used in the dilution step is the following heating step to solid-liquid separation step. It is preferable to use a liquid (for example, a filtrate) after passing through the process because it reduces the amount of waste liquid treated in an industrial process and enables processing at low cost.

(3.加温工程)
加温工程においては硫化物が添加された被処理液を加温して過酸化水素を除去する。加温を行うための具体的な手法や装置構成としては特に限定は無いが、分解までに要する時間と安全性を考慮すると、30〜40℃の範囲での加温を行うのが望ましい。
(3. Heating process)
In the heating step, the liquid to be treated to which sulfide is added is heated to remove hydrogen peroxide. There are no particular limitations on the specific method and apparatus configuration for heating, but it is desirable to perform heating in the range of 30 to 40 ° C. in consideration of the time required for decomposition and safety.

(4.キレート剤添加工程)
キレート剤添加工程においては過酸化水素が除去された被処理液に対してピペラジン系キレート剤を添加する。ピペラジン系キレート剤の添加により、廃液中に残存する銀(イオン)を固定化することが可能となる。
また、廃液中にて銀が固定化されたもの(すなわち硫化銀)の粒子が粗大化されるという効果もある。粒子が粗大化されれば、後の固液分離(例えばろ過)工程において固体(ろ物)として硫化銀(銀含有物)を(ろ紙上)に残存させやすくなり、ひいては銀含有物を効率よく回収でき、最終的には銀の回収率を向上させることが可能となる。
なお、ピペラジン系キレート剤としては公知のもの(ピペラジンやその誘導体を含有するもの、例えば東ソー製 TS−300、TX−30、主成分 ジカリウム=ピペラジン−1,4ビス(カルボジチオアート)等)を使用すればよい。また、添加量については特に限定は無いが廃液中の銀の等量以上が好ましい。
(4. Chelating agent addition process)
In the chelating agent addition step, a piperazine-based chelating agent is added to the liquid to be treated from which hydrogen peroxide has been removed. By adding a piperazine chelating agent, it is possible to fix silver (ions) remaining in the waste liquid.
In addition, there is also an effect that the particles of silver fixed in the waste liquid (that is, silver sulfide) are coarsened. If the particles are coarsened, it becomes easier to leave silver sulfide (silver-containing material) on the filter paper as a solid (filtered material) in the subsequent solid-liquid separation (for example, filtration) step, thereby efficiently removing the silver-containing material. It can be recovered, and finally the silver recovery rate can be improved.
As piperazine-based chelating agents, those known (piperazine and derivatives thereof, such as TS-300, TX-30, main component dipotassium = piperazine-1,4bis (carbodithioate) manufactured by Tosoh, etc.), etc. Use it. The amount added is not particularly limited, but is preferably equal to or greater than the amount of silver in the waste liquid.

本実施形態においては、廃液に対して硫化物を添加して銀を固定化し、その上、加温工程を挟んで更に銀を固定化可能なピペラジン系キレート剤を添加することにも大きな特徴がある。
仮に、加温工程の前に、硫化物の代わりにピペラジン系キレート剤を廃液に添加すると、廃液中の銀の70%程度しか固定化できないという結果が後述の実施例の項目にて示されている(図2のi)の棒グラフ)。これは過酸化水素の影響によりピペラジン系キレート剤が酸化分解されてしまっているものと推察される。
だからこそ、キレート剤添加工程は、加温工程によって過酸化水素を廃液から除去した後に行う。そして過酸化水素を廃液から安全に除去しかつ処理のコストを抑えるべく、同じく銀を固定化可能な硫化物を添加する。つまり、硫化物(銀の固定化剤)の添加によりほとんどの銀を固定化→加温→ピペラジン系キレート剤(銀の固定化剤)の添加により残りの銀を固定化、という一連の流れは、安全性の確保、被処理液の処理コスト抑制、さらに言うと銀の回収率の向上を図るという知見があったからこそ創出されたものである。そのため本実施形態における被処理液の処理方法としては上記の硫化物添加工程、加温工程、キレート剤添加工程の組み合わせに大きな特徴がある。その一方で、上記の希釈工程、そして以下の各工程は好適例として行う。
In this embodiment, a major feature is that a sulfide is added to the waste liquid to fix silver, and furthermore, a piperazine-based chelating agent capable of further fixing silver is added through a heating step. is there.
If the piperazine-based chelating agent is added to the waste liquid instead of sulfide before the heating step, only about 70% of the silver in the waste liquid can be fixed in the items of the examples described later. (Bar graph of i in FIG. 2). This is presumably because the piperazine-based chelating agent has been oxidatively decomposed due to the influence of hydrogen peroxide.
Therefore, the chelating agent addition step is performed after removing hydrogen peroxide from the waste liquid by the heating step. Then, in order to remove hydrogen peroxide safely from the waste liquid and reduce the processing cost, a sulfide that can also immobilize silver is added. In other words, a series of flow of immobilizing most silver by adding sulfide (silver fixing agent) → heating → immobilizing remaining silver by adding piperazine chelating agent (silver fixing agent) It was created because of the knowledge of ensuring the safety, reducing the processing cost of the liquid to be treated, and, in other words, improving the silver recovery rate. Therefore, the treatment method of the liquid to be treated in this embodiment has a great feature in the combination of the sulfide addition step, the heating step, and the chelating agent addition step. On the other hand, the above-described dilution step and the following steps are performed as preferred examples.

(5.固液分離工程(銀の回収方法))
固液分離工程においては、キレート剤添加工程後、被処理液を固液分離することにより、固体である銀含有物を回収する。固液分離は例えばろ過等により行われる。ろ過を行うための具体的な手法や装置構成としては特に限定は無い。銀の回収方法を実施する場合は、回収した銀含有物(硫化銀)から更に金属銀を回収する。その具体的な手法については公知のものを用いればよい。この金属銀の回収を含めて銀の回収方法(製造方法)であり、これまで述べてきた本発明の技術的思想が反映された発明である。
(5. Solid-liquid separation step (silver recovery method))
In the solid-liquid separation step, the silver-containing material which is a solid is recovered by solid-liquid separation of the liquid to be treated after the chelating agent addition step. Solid-liquid separation is performed by, for example, filtration. There is no limitation in particular as a specific method and apparatus structure for performing filtration. When carrying out the silver recovery method, metallic silver is further recovered from the recovered silver-containing material (silver sulfide). The specific method may be a known one. This is a silver recovery method (manufacturing method) including the recovery of metal silver, and reflects the technical idea of the present invention described so far.

(6.中和工程)
中和工程においては固液分離工程(例えばろ過工程)で生じた液体(例えばろ液)に酸を加えて中和する。ここで加えられる酸としては任意の公知のもので構わず例えば硫酸を採用しても構わない。また中和の際のpHについてはアルカリ性を中性ないし酸性とする程度のpHとすればよく、例えば後述の実施例の項目にて示すようにpHを7未満(好ましくは4.8以下)とすれば、(アルカリとしてアンモニアが使用されている場合は)アンモニアを硫安(硫酸アンモニウム)へと変化させることにより、以下の凝縮水処理工程にて処理対象となる凝縮水において、排水規制物質であるアンモニアの含有量を著しく低減させることが可能となる。
(6. Neutralization process)
In the neutralization step, an acid is added to neutralize the liquid (eg, filtrate) generated in the solid-liquid separation step (eg, filtration step). The acid added here may be any known acid, for example, sulfuric acid. In addition, the pH at the time of neutralization may be a pH that makes the alkalinity neutral or acidic. For example, the pH is less than 7 (preferably 4.8 or less) as shown in the item of Examples below. In this case, by changing ammonia to ammonium sulfate (ammonium sulfate) (when ammonia is used as an alkali), in the condensed water to be treated in the following condensed water treatment process, ammonia that is a wastewater control substance The content of can be significantly reduced.

(7.蒸発濃縮工程)
蒸発濃縮工程においては、中和された液体(例えばろ液)を蒸発濃縮させ、蒸発により生じた凝縮水に含有されるホルムアルデヒドを除去する。ちなみにこのホルムアルデヒドは、過酸化水素が自己分解する際にEDTAやDTPAの側鎖が酸化分解されて生じるものと推察される。ホルムアルデヒドは排水規制物質であり放流前に除去すべき対象である。なお、近年、ヒートポンプを用いた蒸発濃縮装置が開発されており、比較的低コストで本実施形態を行える。
なお、蒸発濃縮により残存した濃縮物は任意の公知の手法にて処理すればよく、例えば産業廃棄物として処理してもよい。
(7. Evaporation and concentration step)
In the evaporation concentration step, the neutralized liquid (for example, filtrate) is evaporated and concentrated to remove formaldehyde contained in the condensed water generated by evaporation. By the way, this formaldehyde is presumed to be produced by oxidative decomposition of the side chain of EDTA or DTPA when hydrogen peroxide is autolyzed. Formaldehyde is a wastewater control substance and should be removed before discharge. In recent years, an evaporation concentrator using a heat pump has been developed, and this embodiment can be performed at a relatively low cost.
In addition, what is necessary is just to process the concentrate remaining by evaporation concentration by arbitrary well-known methods, for example, you may process as industrial waste.

(8.凝縮水処理工程)
ホルムアルデヒドの除去方法としては任意の公知の手法を採用すればよい。例えば好気性処理や嫌気性処理、RO膜処理等が挙げられる。好気性処理ならば、良好な処理水が得られ、環境変化にも強い。また、嫌気性処理ならば、好気性処理と比べ消費電力が低く、 余剰汚泥の発生も少ない。
(8. Condensate treatment process)
Any known method may be adopted as a method for removing formaldehyde. For example, an aerobic process, an anaerobic process, RO membrane process etc. are mentioned. If it is aerobic treatment, good treated water can be obtained and it is resistant to environmental changes. In addition, anaerobic treatment consumes less power and produces less excess sludge than aerobic treatment.

以上の各工程を経ることにより、廃液の処理中において、被処理液の処理コストを抑えることが可能となる。また、それに加え、銀の回収率を向上させることが可能となる。   Through the above steps, it is possible to reduce the processing cost of the liquid to be processed during the processing of the waste liquid. In addition, the silver recovery rate can be improved.

なお、本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。例えば上記の各変形例の組み合わせや上記の実施形態にて例示した内容との組み合わせについても本発明の技術的思想の適用範囲である。   The technical scope of the present invention is not limited to the above-described embodiments, and various modifications and improvements may be added within the scope of deriving specific effects obtained by the constituent requirements of the invention and combinations thereof. Including. For example, combinations of the above-described modifications and combinations with the contents exemplified in the above-described embodiments are also within the scope of the technical idea of the present invention.

次に実施例を示し、本発明について具体的に説明する。本発明は、以下の実施例に限定されるものではない。   Next, an Example is shown and this invention is demonstrated concretely. The present invention is not limited to the following examples.

[試験条件]
(廃液組成)
金属−セラミック接合基板の製造の際の廃液を再現すべく、使用後の剥離液と同様の組成となるように、模擬液を調整した。調整した模擬液は、EDTA系とDTPA系の2種類を各々用いた。模擬液の組成を表1に示す。
[Test conditions]
(Waste liquid composition)
In order to reproduce the waste liquid in the production of the metal-ceramic bonding substrate, the simulation liquid was adjusted so as to have the same composition as the stripping liquid after use. Two types of EDTA type and DTPA type were used for the adjusted simulation liquids, respectively. The composition of the simulated liquid is shown in Table 1.

EDTA系の模擬液の調整は、以下のように行った。
硝酸銀(WAKO純薬工業)0.79g、EDTA・2Na・2HO(DOJINDO)25.5g、塩化銅(II)二水和物(WAKO純薬工業)2.7gを蒸留水500 mLに溶解した。次に、28%アンモニア水(WAKO純薬工業)93mL、30%過酸化水素水(WAKO純薬工業)182mLを順次添加した後、蒸留水を添加して溶液を1Lに定量した。
Adjustment of the EDTA-based simulation solution was performed as follows.
Dissolve 0.79 g of silver nitrate (WAKO Junyaku Kogyo), 25.5 g of EDTA · 2Na · 2H 2 O (DOJINDO), 2.7 g of copper (II) chloride dihydrate (WAKO Junyaku Kogyo) in 500 mL of distilled water. did. Next, 93 mL of 28% ammonia water (WAKO Pure Chemical Industries) and 182 mL of 30% hydrogen peroxide water (WAKO Pure Chemical Industries) were sequentially added, and distilled water was added to quantitate the solution to 1 L.

DTPA系の模擬液の調整は、以下の通り行った。
硝酸銀0.11g、DTPA(東京化成)20gを蒸留水500mLに溶解した。次に、30%過酸化水素水182mlを添加した後、蒸留水を添加して1Lに定量した。
Adjustment of the DTPA-based simulation solution was performed as follows.
0.11 g of silver nitrate and 20 g of DTPA (Tokyo Kasei) were dissolved in 500 mL of distilled water. Next, after adding 182 ml of 30% hydrogen peroxide solution, distilled water was added and quantified to 1L.

(分析装置)
本実施例においては図2に示すように銀固定化率(%)を算出している。銀固定化率は、模擬液に含有される銀(イオン)の量に対する、上記の固液分離(ろ過)工程で生じたろ液に含有される銀(イオン)の量の割合を1から減じたものに100を乗じた値である。
ろ液の銀(イオン)の濃度の分析には、HITACHI SII−5100誘導結合プラズマ−原子発光分析装置(ICP−AES)を用いた。
また、過酸化水素およびホルムアルデヒドの定量には共立デジタルパックテストを用いた。ホルムアルデヒドの精密分析は、蒸発濃縮により凝縮水を得た後、アセチルアセトン吸光光度法により行った。
(Analysis equipment)
In this embodiment, the silver fixation rate (%) is calculated as shown in FIG. The silver immobilization ratio was obtained by subtracting from 1 the ratio of the amount of silver (ion) contained in the filtrate produced in the above solid-liquid separation (filtration) step to the amount of silver (ion) contained in the simulated solution. It is a value obtained by multiplying 100 by one.
A HITACHI SII-5100 inductively coupled plasma-atomic emission spectrometer (ICP-AES) was used for analysis of the silver (ion) concentration in the filtrate.
A Kyoritsu Digital Pack test was used for the determination of hydrogen peroxide and formaldehyde. The precise analysis of formaldehyde was performed by acetylacetone absorptiometry after obtaining condensed water by evaporation and concentration.

(微生物の馴養)
凝縮水に含有されるホルムアルデヒドの除去においては、好気性処理を採用しつつ、以下の手法を採用した。凝縮水のpHは、事前に6〜7の範囲になるように調整した。
生物担体としての5mm角のスポンジを水に対して20体積%程度加えたものに対し、DOWAハイテック株式会社から採取した種汚泥を加えた。更に、微量金属、アンモニア、エタノールを添加し、室温で2週間程度馴養した。
(Acclimation of microorganisms)
In the removal of formaldehyde contained in the condensed water, the following method was adopted while adopting an aerobic treatment. The pH of the condensed water was adjusted in advance to be in the range of 6-7.
Seed sludge collected from DOWA High-Tech Co., Ltd. was added to a 5 mm square sponge as a biological carrier added to about 20% by volume with respect to water. Furthermore, trace metals, ammonia and ethanol were added and conditioned for about 2 weeks at room temperature.

(被処理液の処理方法)
上記のように用意した2種のEDTA系とDTPA系の模擬液を体積比2:1で混合したもの500mLに対し、200mg/mLの硫化亜鉛(WAKO純薬工業)スラリーを2mL添加した(硫化物添加工程)。このスラリーを添加した液をA液と呼ぶ。
(Treatment method of liquid to be treated)
2 mL of 200 mg / mL zinc sulfide (WAKO Pure Chemical Industries) slurry was added to 500 mL of the mixture of the two types of EDTA-based and DTPA-based simulated solutions prepared as described above at a volume ratio of 2: 1 (sulfurized). Product addition step). The liquid to which this slurry is added is called A liquid.

次に、A液を500mL分取し、水を1L加えて3倍に希釈した。この液をB液と呼ぶ。   Next, 500 mL of liquid A was collected, and 1 L of water was added to dilute it 3 times. This liquid is called B liquid.

その後、5LビーカーにB液を注ぎ、湯浴中で加温しながら撹拌した(加温工程)。攪拌羽は、二段タービン羽を用いて、回転数を200rpmとした。   Thereafter, the solution B was poured into a 5 L beaker and stirred while warming in a hot water bath (heating step). The stirring blade was a two-stage turbine blade and the rotation speed was 200 rpm.

B液の残存過酸化水素濃度が100mg/L以下になったことを確認した後、A液に対して2mL/L(A液を3倍に希釈したB液に対しては2/3である0.67mL/L)となるようにピペラジン系キレート剤(東ソー、TS−300)を添加した(キレート剤添加工程)。   After confirming that the residual hydrogen peroxide concentration in solution B was 100 mg / L or less, 2 mL / L for solution A (2/3 for solution B obtained by diluting solution A three times) Piperazine chelating agent (Tosoh, TS-300) was added so as to be 0.67 mL / L) (chelating agent addition step).

ピペラジン系キレート剤の添加後、15分以内で攪拌を継続し、不溶性錯体を形成した。次に、2000mg/Lのアニオン高分子凝集剤を1mL添加し、フロックを形成した。その後、液相と固相の分離を行うべく、加圧ろ過を行った(ろ過工程)。具体的には、B液を0.2〜0.35MPaの範囲にて加圧し、孔径3μmのフィルターでろ過した。ろ液のうち500mLを次の中和工程に供した。なお、ろ液の残りは、後述の各種検証試験での別サイクルにおける希釈工程にてA液を希釈する際に使用する希釈液とした。   Stirring was continued within 15 minutes after the addition of the piperazine chelating agent to form an insoluble complex. Next, 1 mL of 2000 mg / L anionic polymer flocculant was added to form a floc. Thereafter, pressure filtration was performed to separate the liquid phase and the solid phase (filtration step). Specifically, the liquid B was pressurized in the range of 0.2 to 0.35 MPa and filtered with a filter having a pore diameter of 3 μm. 500 mL of the filtrate was subjected to the next neutralization step. The remainder of the filtrate was used as a diluting solution used when diluting solution A in a diluting step in another cycle in various verification tests described later.

次に、ろ液500mLをpH4.8になるよう98%硫酸で中和した(中和工程)。中和に要した硫酸量は10gであった。   Next, 500 mL of the filtrate was neutralized with 98% sulfuric acid so as to have a pH of 4.8 (neutralization step). The amount of sulfuric acid required for neutralization was 10 g.

次に、中和液を蒸発濃縮装置(東京理化器械 NVC−2000)にて69℃、210hPaの減圧条件に設定し、蒸発により生成される凝縮液と、残存する濃縮物とに分離した(蒸発濃縮工程)。濃縮倍率は析出物がないか確認しながら10倍を目途とした。そして、凝縮水に含有されるホルムアルデヒドを分解するため、凝縮水に栄養剤とリン酸を添加後、希苛性(希薄な苛性ソーダ溶液)でpH7程度に調整し、生物担体を全体液量の20体積%で添加し、DO(溶存酸素量)が9mg/Lとなるように曝気しながら処理を行った(凝縮水処理工程)。なお、処理は室温で行い液温は21℃とした。   Next, the neutralized liquid was set to a reduced pressure condition of 69 ° C. and 210 hPa with an evaporation concentrator (Tokyo Rika Kikai NVC-2000), and separated into a condensate produced by evaporation and a remaining concentrate (evaporation). Concentration step). The concentration rate was set at 10 times while confirming that there was no precipitate. Then, in order to decompose formaldehyde contained in the condensed water, after adding nutrients and phosphoric acid to the condensed water, the pH is adjusted to about 7 with dilute caustic (diluted caustic soda solution), and the biological carrier is 20 volumes of the total liquid volume. %, And the treatment was performed while aeration was performed so that DO (dissolved oxygen amount) was 9 mg / L (condensed water treatment step). The treatment was performed at room temperature and the liquid temperature was 21 ° C.

[本実施例に係る結果]
本実施例によれば、塩酸のような設備コストが嵩む要因となる物質を採用せずとも、過酸化水素による突沸や液こぼれも無く、作業中の安全性を確保することができた。また、後掲の図2に示すように99%以上の高収率で銀を回収できた。
[Results of this example]
According to this example, there was no bumping or liquid spillage due to hydrogen peroxide without using a substance such as hydrochloric acid that would increase the equipment cost, and safety during work could be ensured. Further, as shown in FIG. 2 described later, silver could be recovered with a high yield of 99% or more.

[各種検証結果]
本実施例の効果は示されたが、上記の効果をサポートする各種試験も行った。以下、各種検証結果について説明する。以降において特記の無い事項は本実施例で述べた内容と同様である。
[Various verification results]
Although the effect of this example was shown, various tests supporting the above effect were also conducted. Hereinafter, various verification results will be described. In the following, items not specifically mentioned are the same as those described in this embodiment.

(硫化物添加工程およびキレート剤添加工程の技術的意義)
A液を3倍に希釈したB液に対し、各条件および各試薬にて銀を固定化した際の銀固定化率との関係を棒グラフとして図2に示す。棒グラフの左から以下の条件および試薬を示す。
i)加温工程前のB液に対してピペラジン系キレート剤(TS−300)を添加
ii)加温工程前のB液に対して硫化亜鉛を添加
iii)ii)に対して加温工程を行ったもの
iv)上記実施例(硫化物添加工程→加温工程→キレート剤添加工程)
本実施形態において説明したように、i)においては、過酸化水素を除去する加温工程前ではピペラジン系キレート剤は過酸化水素による酸化分解の影響を受け、銀の固定化という効果を十分に奏しない。
その一方、ii)においては、硫化物である硫化亜鉛ならば、加温工程前のB液においても97%以上の銀が固定されていた。
また、iii)においては、過酸化水素を除去する加温工程後も、硫化銀は溶解することなく、98%以上の銀が回収された。
iv)においては、硫化亜鉛を添加した後に加温工程を行った後で、更にピペラジン系キレート剤を添加することで、99%以上の高収率で銀を回収できた。
その結果、硫化物(銀の固定化剤)の添加によりほとんどの銀を固定化→加温→ピペラジン系キレート剤(銀の固定化剤)の添加により残りの銀を固定化、という一連の流れに有意性があることが証明された。
(Technical significance of the sulfide addition process and chelating agent addition process)
FIG. 2 is a bar graph showing the relationship between the silver immobilization ratio when silver was immobilized with each condition and each reagent with respect to B liquid obtained by diluting A liquid three times. The following conditions and reagents are shown from the left of the bar graph.
i) Add piperazine chelating agent (TS-300) to B solution before heating process
ii) Add zinc sulfide to B liquid before heating process
iii) Heating process performed for ii)
iv) Example above (sulfide addition step → heating step → chelating agent addition step)
As described in the present embodiment, in i), the piperazine-based chelating agent is affected by the oxidative decomposition by hydrogen peroxide before the heating step for removing hydrogen peroxide, and the effect of silver fixation is sufficiently obtained. I don't play.
On the other hand, in ii), in the case of zinc sulfide which is a sulfide, 97% or more of silver was fixed in the B liquid before the heating step.
In iii), 98% or more of silver was recovered without dissolving silver sulfide even after the heating step for removing hydrogen peroxide.
In iv), silver was recovered with a high yield of 99% or more by adding a piperazine chelating agent after the heating step after adding zinc sulfide.
As a result, a series of flows in which most of silver is fixed by adding sulfide (silver fixing agent) → heating → remaining silver is fixed by adding piperazine chelating agent (silver fixing agent). Proved to be significant.

(加温工程および希釈工程の技術的意義)
A液を3倍に希釈したB液における過酸化水素の分解時間(すなわち加温時間)とB液の温度との関係を棒グラフとして図3に示す。B液の温度が高いほど、短時間で過酸化水素が分解した。20℃では、分解までに一昼夜を要した。30℃、40℃ではそれぞれ4.5時間、2時間であった。
つまり、加温工程を行うことにより処理時間を大幅に短縮できることが証明された。
(Technical significance of heating process and dilution process)
FIG. 3 is a bar graph showing the relationship between the hydrogen peroxide decomposition time (that is, the heating time) and the temperature of the B solution in the B solution obtained by diluting the A solution three times. As the temperature of the liquid B was higher, hydrogen peroxide was decomposed in a shorter time. At 20 ° C., it took a whole day and night to decompose. It was 4.5 hours and 2 hours at 30 ° C. and 40 ° C., respectively.
That is, it has been proved that the treatment time can be significantly shortened by performing the heating step.

更に、装置の液温設定を40℃としたときの過酸化水素濃度と温度変化の関係を図4に示す。■は過酸化水素水の濃度(mg/L:右辺)を示し、〇はB液の温度(℃:左辺)を示す。110分時点で、過酸化水素濃度の急激な減少(すなわち急速な過酸化水素の分解)および液温の上昇が見られた。具体的には、過酸化水素濃度は、13g/Lから100mg/L未満に低下した。ただ、過酸化水素の分解に伴う液温上昇は4℃以下であり、最高液温は45℃以下に抑えられていた。なお、突沸や液こぼれが起きないか目視観測も行ったが、液面上昇は初期液量の5%以下に留めることができた。
この良好な結果は、硫化物添加工程によって銀を十分に固定化し、しかも好適には被処理液における過酸化水素の濃度が20g/L以下となるまで希釈されたB液を用意したことに起因すると考えられる。
Furthermore, the relationship between the hydrogen peroxide concentration and the temperature change when the liquid temperature setting of the apparatus is 40 ° C. is shown in FIG. (1) indicates the concentration of hydrogen peroxide solution (mg / L: right side), and (0) indicates the temperature of the B liquid (° C .: left side). At 110 minutes, a sharp decrease in hydrogen peroxide concentration (ie, rapid hydrogen peroxide decomposition) and an increase in liquid temperature were observed. Specifically, the hydrogen peroxide concentration decreased from 13 g / L to less than 100 mg / L. However, the increase in the liquid temperature accompanying the decomposition of hydrogen peroxide was 4 ° C. or lower, and the maximum liquid temperature was suppressed to 45 ° C. or lower. In addition, although visual observation was also conducted to check whether bumping or liquid spillage occurred, the rise in liquid level could be kept to 5% or less of the initial liquid amount.
This good result is due to the preparation of a liquid B which is sufficiently fixed by the sulfide addition step and which is preferably diluted until the concentration of hydrogen peroxide in the liquid to be treated is 20 g / L or less. I think that.

(中和工程および蒸発濃縮工程の技術的意義)
中和工程後であって蒸発濃縮工程前のB液のpH、その後の凝縮水処理工程における凝縮水の水質との関係を表2に示す。
表2に示すように、蒸発濃縮前のB液のpHが7の場合(すなわちpH7未満に至るような中和が行われていない場合)、蒸発濃縮の際にアンモニアが揮発し、凝縮液側に移行してしまっている。
一方、十分な中和が行われた結果であるpH4.8のB液に対して蒸発濃縮を行った場合、アンモニアは濃縮液側に固定され、凝縮水のアンモニアの濃度は2ppm未満であった。なお、凝縮水におけるCOD濃度は150ppmであり、該CODの成分を調査した結果、ホルムアルデヒドであることを確認した。
つまり、B液をアルカリ性から中性ないし酸性(pH7.0未満)へと十分に中和する中和工程を経ることにより、凝縮水に対し、排水規制物質であるアンモニアを含有させることを抑制することができた。
(Technical significance of neutralization process and evaporative concentration process)
Table 2 shows the relationship between the pH of the B solution after the neutralization step and before the evaporation and concentration step, and the quality of the condensed water in the subsequent condensed water treatment step.
As shown in Table 2, when the pH of the B liquid before evaporation and concentration is 7 (that is, when neutralization is not performed to reach less than pH 7), the ammonia is volatilized during the evaporation and concentration, and the condensate side It has moved to.
On the other hand, when evaporating and concentrating the pH 4.8 solution B, which was the result of sufficient neutralization, the ammonia was fixed on the concentrate side, and the concentration of ammonia in the condensed water was less than 2 ppm. . In addition, COD density | concentration in condensed water is 150 ppm, As a result of investigating the component of this COD, it confirmed that it was formaldehyde.
That is, by passing through a neutralization step for sufficiently neutralizing the liquid B from alkaline to neutral to acidic (pH less than 7.0), it is possible to prevent the condensed water from containing ammonia, which is a drainage regulating substance. I was able to.

(凝縮水処理工程の技術的意義)
凝縮水に対し、本実施例に記載した手法での生物処理(好気性処理)を行った結果を図5に示す。好気性処理の結果、ホルムアルデヒドの濃度は3.5時間で30mg/Lから0mg/Lになることを確認した。
つまり、凝縮水処理工程により、凝縮水に含有されるホルムアルデヒドを除去することに成功したことが明らかとなった。
(Technical significance of condensate treatment process)
FIG. 5 shows the result of biological treatment (aerobic treatment) performed on the condensed water by the method described in this example. As a result of the aerobic treatment, it was confirmed that the concentration of formaldehyde was changed from 30 mg / L to 0 mg / L in 3.5 hours.
That is, it was revealed that formaldehyde contained in the condensed water was successfully removed by the condensed water treatment process.

Claims (10)

銀と、過酸化水素と、エチレンジアミン四酢酸(EDTA)およびジエチレントリアミン五酢酸(DTPA)の少なくともいずれかであるキレート剤と、を含有するアルカリ性の被処理液の処理方法であって、
被処理液に対して硫化物を添加する硫化物添加工程と、
硫化物が添加された被処理液を加温して過酸化水素を除去する加温工程と、
過酸化水素が除去された被処理液に対してピペラジン系キレート剤を添加するキレート剤添加工程と、
を有する、被処理液の処理方法。
A method for treating an alkaline liquid to be treated containing silver, hydrogen peroxide, and a chelating agent that is at least one of ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA),
A sulfide addition step of adding sulfide to the liquid to be treated;
A heating step of heating the liquid to which the sulfide is added to remove hydrogen peroxide;
A chelating agent addition step of adding a piperazine chelating agent to the liquid to be treated from which hydrogen peroxide has been removed;
A method for treating a liquid to be treated.
前記キレート剤添加工程後、被処理液を固液分離することにより、固体である銀含有物を回収する固液分離工程と、
を有する、請求項1に記載の被処理液の処理方法。
After the chelating agent addition step, the solid-liquid separation step of recovering the silver-containing material that is a solid by solid-liquid separation of the liquid to be treated;
The processing method of the to-be-processed liquid of Claim 1 which has these.
前記固液分離工程で生じた液体に酸を加えて中和する中和工程と、
を有する、請求項2に記載の被処理液の処理方法。
A neutralization step of neutralizing the liquid generated in the solid-liquid separation step by adding an acid;
The processing method of the to-be-processed liquid of Claim 2 which has these.
前記中和工程で中和された液体を蒸発濃縮させる蒸発濃縮工程と、
を有する、請求項3に記載の被処理液の処理方法。
An evaporation concentration step of evaporating and concentrating the liquid neutralized in the neutralization step;
The processing method of the to-be-processed liquid of Claim 3 which has these.
前記蒸発濃縮工程で蒸発濃縮により生じた凝縮水に含有されるホルムアルデヒドを除去する凝縮水処理工程と、
を有する、請求項4に記載の被処理液の処理方法。
A condensed water treatment step for removing formaldehyde contained in the condensed water generated by the evaporation concentration in the evaporation concentration step;
The processing method of the to-be-processed liquid of Claim 4 which has these.
前記加温工程の前に、被処理液における過酸化水素の濃度が20g/L以下となるまで被処理液を希釈する希釈工程を更に有する、請求項1〜5のいずれかに記載の被処理液の処理方法。   The to-be-processed object in any one of Claims 1-5 which further has a dilution process which dilutes a to-be-processed liquid until the density | concentration of the hydrogen peroxide in a to-be-processed liquid becomes 20 g / L or less before the said heating process. Liquid processing method. 前記キレート剤添加工程後、被処理液を固液分離することにより、固体である銀含有物を回収する固液分離工程と、を有し、
前記希釈工程における希釈液として、前記固液分離工程で生じた液体の一部を用いる、請求項6に記載の被処理液の処理方法。
A solid-liquid separation step of recovering a silver-containing material that is a solid by solid-liquid separation of the liquid to be treated after the chelating agent addition step;
The processing method of the to-be-processed liquid of Claim 6 using a part of liquid which arose in the said solid-liquid separation process as a dilution liquid in the said dilution process.
前記被処理液は金属−セラミック接合基板の製造の際の廃液である、請求項1〜7のいずれかに記載の被処理液の処理方法。   The method for processing a liquid to be processed according to claim 1, wherein the liquid to be processed is a waste liquid in manufacturing a metal-ceramic bonding substrate. 前記硫化物は硫化カリウム、硫化亜鉛および硫化銅の少なくともいずれかである、請求項1〜8のいずれかに記載の被処理液の処理方法。   The method for treating a liquid to be treated according to claim 1, wherein the sulfide is at least one of potassium sulfide, zinc sulfide, and copper sulfide. 銀と、過酸化水素と、エチレンジアミン四酢酸(EDTA)およびジエチレントリアミン五酢酸(DTPA)の少なくともいずれかであるキレート剤と、を含有するアルカリ性の被処理液からの銀の回収方法であって、
被処理液に対して硫化物を添加する硫化物添加工程と、
硫化物が添加された被処理液を加温して過酸化水素を除去する加温工程と、
過酸化水素が除去された被処理液に対してピペラジン系キレート剤を添加するキレート剤添加工程と、
キレート剤添加工程後、被処理液を固液分離することにより、固体である銀含有物を回収する固液分離工程と、
銀含有物から銀を回収する銀回収工程と、
を有する、銀の回収方法。
A method for recovering silver from an alkaline liquid containing silver, hydrogen peroxide, and a chelating agent that is at least one of ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA),
A sulfide addition step of adding sulfide to the liquid to be treated;
A heating step of heating the liquid to which the sulfide is added to remove hydrogen peroxide;
A chelating agent addition step of adding a piperazine chelating agent to the liquid to be treated from which hydrogen peroxide has been removed;
After the chelating agent addition step, the solid-liquid separation step of recovering the silver-containing material that is a solid by solid-liquid separation of the liquid to be treated;
A silver recovery process for recovering silver from the silver-containing material;
A method for recovering silver.
JP2017058489A 2017-03-24 2017-03-24 Treatment method of liquid to be treated and silver recovery method Active JP6815242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017058489A JP6815242B2 (en) 2017-03-24 2017-03-24 Treatment method of liquid to be treated and silver recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017058489A JP6815242B2 (en) 2017-03-24 2017-03-24 Treatment method of liquid to be treated and silver recovery method

Publications (2)

Publication Number Publication Date
JP2018158325A true JP2018158325A (en) 2018-10-11
JP6815242B2 JP6815242B2 (en) 2021-01-20

Family

ID=63796195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017058489A Active JP6815242B2 (en) 2017-03-24 2017-03-24 Treatment method of liquid to be treated and silver recovery method

Country Status (1)

Country Link
JP (1) JP6815242B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110104891A (en) * 2019-05-24 2019-08-09 衡水英利新能源有限公司 A method of drop removes photovoltaic cell heavy metal ions in wastewater
JP2020193939A (en) * 2019-05-30 2020-12-03 Dowaテクノロジー株式会社 Method for preparing sample for quantification and method for manufacturing silver chloride
WO2024053621A1 (en) * 2022-09-05 2024-03-14 田中貴金属工業株式会社 Noble metal separation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916617A (en) * 1972-06-07 1974-02-14
JPS637894A (en) * 1986-06-30 1988-01-13 Nisshinbo Ind Inc Treatment of waste liquid
US4731187A (en) * 1985-08-05 1988-03-15 Miyoshi Yushi Kabushiki Kaisha Removal of heavy metals from waste water
JPH0221995A (en) * 1988-07-12 1990-01-24 Nisshinbo Ind Inc Treatment of waste solution
JPH03231921A (en) * 1989-12-20 1991-10-15 Miyoshi Oil & Fat Co Ltd Metal scavenger and metal collection
JP2004337651A (en) * 2003-05-13 2004-12-02 Dowa Mining Co Ltd Method for storing or transporting wastewater containing hydrogen peroxide and method for treating the wastewater
JP2011211217A (en) * 2011-05-25 2011-10-20 Dowa Holdings Co Ltd Manufacturing method for metal-ceramic junction circuit board
JP2014053619A (en) * 2013-09-30 2014-03-20 Dowa Holdings Co Ltd Method for manufacturing metal-ceramic bonded circuit board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916617A (en) * 1972-06-07 1974-02-14
US4731187A (en) * 1985-08-05 1988-03-15 Miyoshi Yushi Kabushiki Kaisha Removal of heavy metals from waste water
JPS637894A (en) * 1986-06-30 1988-01-13 Nisshinbo Ind Inc Treatment of waste liquid
JPH0221995A (en) * 1988-07-12 1990-01-24 Nisshinbo Ind Inc Treatment of waste solution
JPH03231921A (en) * 1989-12-20 1991-10-15 Miyoshi Oil & Fat Co Ltd Metal scavenger and metal collection
JP2004337651A (en) * 2003-05-13 2004-12-02 Dowa Mining Co Ltd Method for storing or transporting wastewater containing hydrogen peroxide and method for treating the wastewater
JP2011211217A (en) * 2011-05-25 2011-10-20 Dowa Holdings Co Ltd Manufacturing method for metal-ceramic junction circuit board
JP2014053619A (en) * 2013-09-30 2014-03-20 Dowa Holdings Co Ltd Method for manufacturing metal-ceramic bonded circuit board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110104891A (en) * 2019-05-24 2019-08-09 衡水英利新能源有限公司 A method of drop removes photovoltaic cell heavy metal ions in wastewater
JP2020193939A (en) * 2019-05-30 2020-12-03 Dowaテクノロジー株式会社 Method for preparing sample for quantification and method for manufacturing silver chloride
JP7235593B2 (en) 2019-05-30 2023-03-08 Dowaテクノロジー株式会社 Method for preparing sample for quantitative determination and method for producing silver chloride
WO2024053621A1 (en) * 2022-09-05 2024-03-14 田中貴金属工業株式会社 Noble metal separation method

Also Published As

Publication number Publication date
JP6815242B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
US9499420B2 (en) Formulations and methods for removing heavy metals from waste solutions containing chelating agents
JP6815242B2 (en) Treatment method of liquid to be treated and silver recovery method
KR102119234B1 (en) How to treat cyanide-containing wastewater
JP2010046653A (en) Method for treating waste liquid
JP5118572B2 (en) Sewage treatment method
CN110563218A (en) method for recovering phosphorus resource from chemical nickel waste liquid
CN106517622A (en) Separation and reuse method of sodium sulfate from high salinity wastewater
JP2007038113A (en) Organic arsenic compound-containing water treatment method
Kato et al. Extraction efficiency of phosphate from pre-coagulated sludge with NaHS
JP5817864B2 (en) Method and apparatus for treating ammonia-containing water
CN100590212C (en) Treatment method and system for etching liquid
JP4251619B2 (en) A method for separating and recovering calcium phosphate or magnesium phosphate from a phosphorous acid-containing plating waste solution.
JP4639309B2 (en) Treatment method of wastewater containing cyanide
CN113371934A (en) Sewage treatment method
CN115140862A (en) Method for pretreating electroplating wastewater by adopting ozone and Fenton process in cooperation
CN111453710A (en) Method for preparing disodium hydrogen phosphate from metal-containing phosphoric acid waste liquid of switch production process
JP7008456B2 (en) Treatment method and treatment equipment for the liquid to be treated
CN112374678A (en) Treatment method of chemical nickel plating waste liquid
CN111039481A (en) Method for treating glyphosate wastewater
KR20160137561A (en) Copper-containing wastewater treatment method and treatment device
KR101386701B1 (en) Recovery of high purity copper from spent electroless plating solutions
CN112960829B (en) Process for treating copper-containing wastewater generated in production of printed circuit boards
JPH0137981B2 (en)
JP2009039637A (en) Method for purifying cyanide-containing wastewater
CN112851023A (en) Resource treatment method of copper micro-etching waste liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201222

R150 Certificate of patent or registration of utility model

Ref document number: 6815242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250