JP2018156870A - Contact member and contact pair - Google Patents

Contact member and contact pair Download PDF

Info

Publication number
JP2018156870A
JP2018156870A JP2017053724A JP2017053724A JP2018156870A JP 2018156870 A JP2018156870 A JP 2018156870A JP 2017053724 A JP2017053724 A JP 2017053724A JP 2017053724 A JP2017053724 A JP 2017053724A JP 2018156870 A JP2018156870 A JP 2018156870A
Authority
JP
Japan
Prior art keywords
contact
conductive portion
state
contact member
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017053724A
Other languages
Japanese (ja)
Inventor
中井 由弘
Yoshihiro Nakai
由弘 中井
真嶋 正利
Masatoshi Mashima
正利 真嶋
鉄也 桑原
Tetsuya Kuwabara
鉄也 桑原
亮 丹治
Akira Tanji
亮 丹治
美里 草刈
Misato Kusakari
美里 草刈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2017053724A priority Critical patent/JP2018156870A/en
Publication of JP2018156870A publication Critical patent/JP2018156870A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Contacts (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a contact member and a contact pair capable of surely shifting from a contact state with a mating member to a non-contact state in addition to reducing connection resistance with the mating member.SOLUTION: A contact pair includes a contact member provided with a conductive portion which becomes a molten state when at least one of predetermined heating and predetermined pressurization is performed and becomes a solid phase when at least one of the heating and the pressurization is released, a mating member electrically connected to the contact member, and a protrusion that presses the conductive portion to an electrical connection portion with the contact member in the mating member.SELECTED DRAWING: Figure 1

Description

本発明は、接点部材、及び接点対に関する。   The present invention relates to a contact member and a contact pair.

接触状態に配置されて導通可能となり、非接触状態に配置されることで電気的に接続されない状態で使用される部材として、互いに嵌合される雌端子と雄端子との対、接触スイッチなどが汎用されている。   As a member that is arranged in a contact state and can conduct, and is arranged in a non-contact state and is not electrically connected, a pair of a female terminal and a male terminal fitted to each other, a contact switch, etc. It is widely used.

特許文献1は、雌端子と雄端子間に、以下の液体金属を含浸したウレタンスポンジを設けて、端子間の抵抗低下と液体金属の漏洩防止とを図ることを開示する。上記液体金属は、ガリンスタンなどと呼ばれる、68.5質量%Ga−21.5質量%In−10質量%Snからなる共晶合金である。   Patent Document 1 discloses that a urethane sponge impregnated with the following liquid metal is provided between a female terminal and a male terminal to reduce resistance between the terminals and prevent leakage of the liquid metal. The liquid metal is a eutectic alloy made of 68.5% by mass Ga-21.5% by mass In-10% by mass, called Galinstan or the like.

特開2009−059479号公報JP 2009-059479 A

上述のような相手部材と電気的に接続されて使用される部材には、相手部材と接触状態に配置されて導通をとる際に接続抵抗が低いことが望まれる。また、相手部材との接触状態から非接触状態に配置されて非導通とする際に、相手部材との接触状態から非接触状態に確実に移行できることが望まれる。   A member that is used by being electrically connected to the mating member as described above is desired to have a low connection resistance when placed in contact with the mating member and conducting. Moreover, when arrange | positioning from a contact state with an other party member to a non-contact state, and making it non-conducting, it is desired that it can transfer to a non-contact state reliably from a contact state with an other party member.

特許文献1に記載されるように端子間に液体金属を介在させると、両端子と液体金属との接触面積を大きくし易く、端子間の接続抵抗を低下し易い。また、雌端子と雄端子との嵌合状態を解除して物理的に非接触状態にする場合には、端子間の液体金属が流れ落ちれば非接触状態にできる。しかし、上述のガリンスタンのような常温で液体である金属では、端子の使用環境が常温であると、端子に液体金属が濡れて付着した状態が維持され易い。例えば、両端子の嵌合状態を外す際、端子間の液体金属が切れずに延びるように流動して端子間を渡り、この液体金属によって、両端子が導通可能な状態を維持される可能性がある。従って、液体金属といった溶融状態の導電材料を介在させて低抵抗な接続構造を構築できる上に、相手部材との接触状態から非接触状態により確実に移行できることが望まれる。   If a liquid metal is interposed between terminals as described in Patent Document 1, the contact area between both terminals and the liquid metal is easily increased, and the connection resistance between the terminals is likely to be reduced. Further, when the fitting state between the female terminal and the male terminal is released to make it physically non-contact, the liquid metal between the terminals can be brought into non-contact state. However, in the case of a metal that is liquid at room temperature, such as the above-described Galinstan, when the terminal is used at room temperature, the liquid metal is easily wetted and adhered to the terminal. For example, when removing the fitting state of both terminals, the liquid metal between the terminals may flow without breaking and cross between the terminals, and the liquid metal may maintain a state in which both terminals can conduct. There is. Therefore, it is desired that a low resistance connection structure can be constructed by interposing a molten conductive material such as a liquid metal, and that it can be reliably transferred from a contact state with a counterpart member in a non-contact state.

そこで、相手部材との接続抵抗を低減できる上に、相手部材との接触状態から非接触状態により確実に移行できる接点部材、及び接点対を提供することを目的の一つとする。   Accordingly, it is an object of the present invention to provide a contact member and a contact pair that can reduce connection resistance with a counterpart member and can reliably shift from a contact state with a counterpart member in a non-contact state.

本開示に係る接点部材は、
所定の加熱及び所定の加圧の少なくとも一方がなされると溶融状態となり、前記加熱及び前記加圧の少なくとも一方が解除されると固相となる導電部を備える。
The contact member according to the present disclosure is
A conductive portion is provided that enters a molten state when at least one of predetermined heating and predetermined pressurization is performed, and becomes a solid phase when at least one of the heating and pressurization is released.

上記の接点部材は、相手部材との接続抵抗を低減できる上に、相手部材との接触状態から非接触状態により確実に移行できる。   The contact member can reduce the connection resistance with the mating member and can reliably shift from the contact state with the mating member in a non-contact state.

実施形態の接点対の一例について、使用状態を模式的に示す工程説明図である。It is process explanatory drawing which shows a use condition typically about an example of the contact pair of embodiment. 実施形態の接点対の別例について、使用状態を模式的に示す工程説明図である。It is process explanatory drawing which shows a use condition typically about another example of the contact pair of embodiment.

最初に本発明の実施形態の内容を列記して説明する。
(1)本発明の一態様に係る接点部材は、
所定の加熱及び所定の加圧の少なくとも一方がなされると溶融状態となり、前記加熱及び前記加圧の少なくとも一方が解除されると固相となる導電部を備える。
First, the contents of the embodiment of the present invention will be listed and described.
(1) The contact member according to one aspect of the present invention is
A conductive portion is provided that enters a molten state when at least one of predetermined heating and predetermined pressurization is performed, and becomes a solid phase when at least one of the heating and pressurization is released.

上記の接点部材は、電気的に接続される相手部材と接触状態に配置されると、相手部材との間に導電部を介在できる。この導電部は所定の加熱や加圧がなされると溶融状態となる。上記の接点部材は、溶融状態の導電部を介して相手部材と導通をとることができる。溶融状態の導電部は流動性を有するため、相手部材との接触面積を大きくし易い。従って、上記の接点部材によれば、溶融状態の導電部の介在によって、相手部材との接続抵抗を低減でき、低抵抗な接続構造を構築できる。   If said contact member is arrange | positioned in contact with the other member electrically connected, a conductive part can be interposed between the other members. The conductive portion is in a molten state when subjected to predetermined heating or pressurization. The contact member can be electrically connected to the mating member through the molten conductive portion. Since the molten conductive part has fluidity, it is easy to increase the contact area with the mating member. Therefore, according to the contact member described above, the connection resistance with the mating member can be reduced and the low resistance connection structure can be constructed by the intervention of the molten conductive portion.

また、上記の接点部材は、相手部材との接触状態から非接触状態に移行する際、上述の導電部が溶融状態であれば、流動性を有するため、相手部材から容易に離れられる。更に、上記導電部は所定の加熱や加圧が解除されると固相となり(液相から固相に戻り)、流動しなくなり、接点部材の基材と相手部材間を渡るように濡れた状態を維持できなくなる。即ち、溶融状態の導電部の介在による上記の接点部材と相手部材間の接触状態を解消して、非接触状態にできる。このような上記の接点部材は、相手部材との間に溶融状態の導電部が介在して接触状態が維持されて導通可能な状態となることを低減できる。従って、上記の接点部材によれば、相手部材との接触状態から非接触状態への移行をより確実に行える。   Further, when the contact member shifts from the contact state with the counterpart member to the non-contact state, if the above-described conductive portion is in a molten state, the contact member has fluidity and is easily separated from the counterpart member. Furthermore, the conductive portion becomes a solid phase when the predetermined heating or pressurization is released (from the liquid phase to the solid phase), stops flowing, and is wet so as to cross between the base material of the contact member and the counterpart member. Cannot be maintained. That is, the contact state between the contact member and the mating member due to the interposition of the conductive portion in the molten state can be eliminated, and a non-contact state can be achieved. Such a contact member described above can reduce the state in which the conductive state in the molten state is interposed between the contact member and the contact member is maintained so that the contact state is maintained and the conductive state can be established. Therefore, according to the above contact member, the transition from the contact state with the counterpart member to the non-contact state can be performed more reliably.

(2)上記の接点部材の一例として、
前記導電部は、前記所定の加圧により溶融状態となる金属又は半金属からなる形態が挙げられる。上記の金属又は半金属として、固相での体積よりも液相での体積が小さいものが挙げられる。
(2) As an example of the above contact member,
Examples of the conductive part include a form made of a metal or a semimetal that becomes a molten state by the predetermined pressure. Examples of the metal or metalloid include those having a volume in the liquid phase smaller than that in the solid phase.

上記の金属又は半金属は、所定の圧力を受けると、より安定な相状態となるように液相に変化し、溶融状態となる。そのため、例えば、上記形態の接点部材と相手部材とを圧接状態にすれば導電部を固相から溶融状態にすることができ、圧接状態を解除すれば導電部を液相から固相にできる。従って、上記形態は、相手部材と導通をとる場合、圧接状態とすることで溶融状態の導電部の介在によって相手部材との接続抵抗を低減できる。また、上記形態は、相手部材との圧接状態から非接触状態に移行する際、溶融状態の導電部から相手部材を離し易い上に、圧接状態の解除によって導電部が固相になることで非接触状態を確保できる。   When the above metal or metalloid is subjected to a predetermined pressure, it changes to a liquid phase so as to be in a more stable phase state and becomes a molten state. Therefore, for example, the conductive part can be changed from the solid phase to the molten state by bringing the contact member and the mating member in the above form into a pressure contact state, and the conductive part can be changed from the liquid phase to the solid phase by releasing the pressure contact state. Therefore, the said form can reduce a connection resistance with an other party member by interposition of a molten-state electroconductive part by setting it as a press-contact state, when taking conduction with the other party member. In addition, the above-described configuration facilitates separation of the mating member from the molten conductive portion when the transition from the press-contact state with the mating member to the non-contact state, and the non-contact state of the conductive portion becomes solid by releasing the press-contact state. A contact state can be secured.

(3)上記の接点部材の一例として、
前記導電部は、前記所定の加熱により溶融状態となり、融点が250℃以下の金属からなる形態が挙げられる。上記の金属は、単一金属元素からなる純金属でも、母相となる金属元素に1種以上の添加元素を含む合金でもよい。純金属であれば融点、合金であれば液相線温度が250℃以下とする。
(3) As an example of the above contact member,
Examples of the conductive portion include a metal that is melted by the predetermined heating and is made of a metal having a melting point of 250 ° C. or lower. The metal may be a pure metal composed of a single metal element or an alloy containing one or more additive elements in the metal element serving as a parent phase. The melting point is pure metal, and the liquidus temperature is 250 ° C. or lower for alloys.

上記形態は、所定の加熱によって導電部を溶融状態にすることができる。特に、融点が250℃以下の金属であれば、溶融に必要な熱エネルギーを少なくできる。例えば、上記形態の接点部材と相手部材とを接触状態に配置して通電すれば、両者間の接続抵抗を含めた電気抵抗に基づくジュール熱によって導電部を加熱して溶融状態にできる場合がある。かつ、融点が250℃以下と低ければ、溶融に必要な時間も短くて済み、低抵抗な接触状態をより早く構築できる。一方、所定の加熱が無くなり、導電部の温度が導電部の融点以下となれば、導電部を液相から固相にできる。特に、上述のように融点が低ければ、より早く固相になり、相手部材との非接触状態をより早く構築できる。このような上記形態は、相手部材と導通をとる場合、加熱によって溶融状態にある導電部が介在することで相手部材との接続抵抗を低減できる。融点が低いほど、より早期に低抵抗な接触状態とすることができる。また、上記形態は、相手部材との接触状態から非接触状態に移行する際、加熱によって溶融状態にある導電部から相手部材を離し易い上に、加熱が無くなり導電部の温度が融点以下となれば導電部が固相になり、熱収縮などすることで非接触状態をより確保し易い。融点が低いほど、より早期に相手部材との非接触状態を確保できる。   The said form can make an electroconductive part a molten state by predetermined | prescribed heating. In particular, if the metal has a melting point of 250 ° C. or lower, the heat energy required for melting can be reduced. For example, if the contact member and the mating member are placed in contact with each other and energized, the conductive portion may be heated to a molten state by Joule heat based on electrical resistance including the connection resistance between them. . And if melting | fusing point is as low as 250 degrees C or less, the time required for a fusion | melting can also be shortened, and a low-resistance contact state can be constructed | assembled earlier. On the other hand, if the predetermined heating is eliminated and the temperature of the conductive portion is equal to or lower than the melting point of the conductive portion, the conductive portion can be changed from a liquid phase to a solid phase. In particular, if the melting point is low as described above, it becomes a solid phase sooner, and a non-contact state with the counterpart member can be established earlier. In such a form, when conducting with the mating member, the connection resistance with the mating member can be reduced by interposing the conductive portion in a molten state by heating. The lower the melting point, the earlier it can be brought into a low resistance contact state. In addition, in the above configuration, when the state of contact with the counterpart member is changed from the contact state to the non-contact state, it is easy to separate the counterpart member from the conductive portion that is in a molten state by heating, and the temperature of the conductive portion can be kept below the melting point because heating is eliminated. For example, the conductive portion becomes a solid phase, and it is easier to ensure a non-contact state by heat shrinking. The lower the melting point, the earlier the non-contact state with the counterpart member can be secured.

(4)本発明の一態様に係る接点対は、
上記(2)の接点部材と、
前記接点部材に電気的に接続される相手部材とを備え、
前記相手部材における前記接点部材との電気接続箇所に、前記導電部を加圧する突起部を備える。
(4) The contact pair according to one aspect of the present invention is:
The contact member of (2) above;
A mating member electrically connected to the contact member;
A projecting portion that pressurizes the conductive portion is provided at an electrical connection portion of the counterpart member with the contact member.

上記の接点対は、上述の導電部を備える接点部材と相手部材とが接触状態に配置されると、相手部材の突起部は導電部を局所的に加圧して溶融状態にすることができ、上記接点部材と相手部材とを離せば、上述の加圧状態を解除して、導電部を液相から固相にできる。従って、上記の接点対は、導通をとる場合、上述の接点部材と相手部材とを接触状態に配置することで溶融状態の導電部の介在によって接続抵抗を低減できる。また、上記の接点対は、接触状態から非接触状態に移行する際、溶融状態の導電部から相手部材を離し易い上に、上記加圧状態の解除によって導電部が固相になることで非接触状態を確保できる。   When the contact member provided with the above-mentioned conductive part and the mating member are placed in contact with each other, the protruding part of the mating member can pressurize the conductive part locally into a molten state. If the contact member and the mating member are separated, the above-described pressurization state is released, and the conductive portion can be changed from a liquid phase to a solid phase. Therefore, when the above contact pair is conductive, the contact resistance can be reduced by interposing the molten conductive portion by arranging the contact member and the mating member in contact with each other. In addition, when the contact point pair shifts from the contact state to the non-contact state, the mating member can be easily separated from the molten conductive portion, and the conductive portion becomes non-solid by releasing the pressurized state. A contact state can be secured.

[本発明の実施形態の詳細]
以下、適宜、図面を参照して、本発明の実施形態を具体的に説明する。図1,図2では導電部12が分かり易いようにクロスハッチングを付して示す。
[Details of the embodiment of the present invention]
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings as appropriate. 1 and 2, the conductive portion 12 is shown with cross-hatching so that it can be easily understood.

[実施形態1]
(概要)
実施形態に係る接点部材1は、図1に示すように相手部材2と電気的に接続されて使用される部材である。実施形態に係る接点対3は、実施形態の接点部材1と相手部材2とを備える。代表的には、接点部材1は、相手部材2に接触状態に配置されると導通可能となり、相手部材2と物理的に非接触状態に配置されると導通不可能となる。接点対3の具体的な適用例として、電線の端部に取り付けられる雌端子や雄端子(一方の端子が接点部材1、他方の端子が相手部材2に相当)、回路部品などに利用される接触スイッチなどのスイッチ類(一組のスイッチ片のうち、一方が接点部材1、他方が相手部材2に相当)、トロリ線とトロリ線に摺接する擦り板との組などといった走行する車両に給電する給電部材と給電部材に摺接する摺接部材との組(一方が接点部材1、他方が相手部材2に相当)などが挙げられる。
[Embodiment 1]
(Overview)
The contact member 1 according to the embodiment is a member that is used by being electrically connected to the mating member 2 as shown in FIG. The contact pair 3 according to the embodiment includes the contact member 1 and the mating member 2 of the embodiment. Typically, the contact member 1 becomes conductive when placed in contact with the mating member 2, and becomes non-conductive when placed in a physically non-contact state with the mating member 2. As a specific application example of the contact pair 3, it is used for a female terminal or a male terminal (one terminal corresponds to the contact member 1 and the other terminal corresponds to the counterpart member 2) attached to the end of the electric wire, a circuit component, or the like. Switches such as contact switches (one of the set of switch pieces, one of which corresponds to the contact member 1 and the other corresponds to the mating member 2), a trolley wire and a pair of rubbing plates slidably contacting the trolley wire, etc. And a pair of sliding contact members that are in sliding contact with the feeding member (one corresponds to the contact member 1 and the other corresponds to the counterpart member 2).

実施形態の接点部材1は、所定の加熱及び所定の加圧の少なくとも一方がなされると溶融状態となり、加熱及び加圧の少なくとも一方が解除されると固相となる導電部12を備える。以下、詳細に説明する。   The contact member 1 of the embodiment includes a conductive portion 12 that is in a molten state when at least one of predetermined heating and predetermined pressurization is performed and becomes a solid phase when at least one of heating and pressurization is released. Details will be described below.

(接点部材)
接点部材1は、金属を含む基材10と、基材10における少なくとも相手部材2との電気的接続箇所に対応した箇所に設けられた導電部12とを備える。
(Contact member)
The contact member 1 includes a base material 10 containing a metal and a conductive portion 12 provided at a location corresponding to an electrical connection location of at least the counterpart member 2 in the base material 10.

((基材))
基材10の構成材料は、代表的には金属が挙げられる。基材10を構成する金属として、例えば、銅、銅合金、アルミニウム、アルミニウム合金、銀、銀合金、鉄、鉄合金などの各種の純金属、各種の合金が挙げられる。銅やアルミニウム、銀、これらの合金は電気抵抗率が低く、より低抵抗な接続構造を構築できる接点部材1や接点対3とすることができる。銅や銅合金は、アルミニウムや鉄、これらの合金よりも導電率が高く電気抵抗率が低い、加工し易い、比較的安価である。アルミニウムやアルミニウム合金は、導電率が高く電気抵抗率が低い、軽量である、加工し易い、比較的安価である。銀や銀合金は、銅や銅合金よりも導電率が高く電気抵抗率が低い。鉄や鉄合金は、アルミニウムなどに比較して導電率が低く電気抵抗率が高いものの、強度や耐摩耗性などの機械的特性に優れる。
((Base material))
The constituent material of the base material 10 is typically a metal. Examples of the metal constituting the base material 10 include various pure metals such as copper, copper alloy, aluminum, aluminum alloy, silver, silver alloy, iron, and iron alloy, and various alloys. Copper, aluminum, silver, and alloys thereof have a low electrical resistivity, and can be the contact member 1 or the contact pair 3 that can construct a connection structure with lower resistance. Copper and copper alloys have a higher electrical conductivity and lower electrical resistivity than aluminum, iron, and their alloys, are easy to process, and are relatively inexpensive. Aluminum and aluminum alloys are high in electrical conductivity, low in electrical resistivity, lightweight, easy to process, and relatively inexpensive. Silver and silver alloys have higher electrical conductivity and lower electrical resistivity than copper and copper alloys. Iron and iron alloys have lower electrical conductivity and higher electrical resistivity than aluminum and the like, but are excellent in mechanical properties such as strength and wear resistance.

基材10は、上述の構成材料からなる素材を、接点部材1の用途に応じた所定の形状などとなるように製造することで得られる。公知の製造方法、製造条件が利用できる。例えば、接点部材1を上述の雌端子や雄端子、接触スイッチのスイッチ片などとする場合、上述の構成材料からなる圧延板や押出材などの展伸材をプレス成形などによって所定の形状に成形して基材10を製造することが挙げられる。又は、例えば、接点部材1を上述の摺接部材とする場合、所定の形状に成形した粉末成形体を焼結して、焼結体からなる基材10を製造することが挙げられる。又は、例えば、接点部材1を上述のトロリ線などの給電部材とする場合、上述の構成材料からなる素材(連続鋳造圧延材など)を所定の形状に伸線などして基材10を製造することが挙げられる。基材10は、上述のような展伸材の成形体や焼結体、上述の線材や押出棒材、圧延板材などといった展伸材、その他鋳造材など種々の形態をとり得る。   The base material 10 is obtained by manufacturing a material made of the above-described constituent material so as to have a predetermined shape or the like according to the use of the contact member 1. Known production methods and production conditions can be used. For example, when the contact member 1 is the above-mentioned female terminal, male terminal, switch piece of a contact switch, or the like, a stretched material such as a rolled plate or extruded material made of the above-described constituent material is formed into a predetermined shape by press molding or the like. Manufacturing the substrate 10. Alternatively, for example, when the contact member 1 is the above-described sliding contact member, the powder molded body formed into a predetermined shape is sintered to manufacture the base material 10 made of the sintered body. Alternatively, for example, when the contact member 1 is a power supply member such as the above-described trolley wire, the base material 10 is manufactured by drawing a material (such as a continuous cast rolled material) made of the above-described constituent material into a predetermined shape. Can be mentioned. The base material 10 can take various forms such as the above-described shaped or sintered body of a stretched material, the above-described stretched material such as a wire rod, an extruded bar, and a rolled plate material, and other cast materials.

基材10には、導電部12を保持する保持部(図示せず)を備える。ここで、導電部12が溶融状態になって流動性を有すると周囲に流れ出て、接点部材1における相手部材2との電気的接続箇所から無くなる可能性がある。そのため、例えば、溶融前の固相状態の導電部12(好ましくは初期の固相状態の導電部12)に保形できるように導電部12の周囲を囲む壁部などを保持部として基材10に備えることが好ましい。こうすることで、所定量の導電部12を所定の箇所に存在させることができる。   The base material 10 includes a holding portion (not shown) that holds the conductive portion 12. Here, when the conductive portion 12 is in a molten state and has fluidity, the conductive portion 12 may flow out to the surroundings and may be lost from an electrical connection location with the mating member 2 in the contact member 1. Therefore, for example, the base material 10 has a wall portion or the like surrounding the conductive portion 12 as a holding portion so that the shape can be maintained in the solid phase conductive portion 12 (preferably the initial solid phase conductive portion 12) before melting. It is preferable to prepare for. By doing so, a predetermined amount of the conductive portion 12 can be present at a predetermined location.

((導電部))
実施形態の接点部材1に備える導電部12は、接点部材1と相手部材2とを相対的に移動させて両者が接触状態に配置されて導通をとる際に、所定の加熱や所定の加圧によって溶融状態となって接点部材1の基材10と相手部材2間に介在し(図1の下図参照)、両者間の接続抵抗を低減することに寄与する。また、この導電部12は、接点部材1と相手部材2とが接触状態から非接触状態に移行する際に、流動性を有する溶融状態であることで接点部材1と相手部材2とを物理的に離し易くすることに寄与する。更に、この導電部12は、所定の加熱や加圧が解除されて固相となり流動性が無くなることで、基材10と相手部材2間で流れるように延びて接触状態が維持されることを防止し、非接触状態(図1の上図参照)により確実に移行することに寄与する。このような導電部12は、所定の加熱や加圧の付与によって固相から液相(溶融状態)となり、所定の加熱や加圧の解除によって液相から固相になる材料で構成される。
((Conductive part))
The conductive portion 12 included in the contact member 1 according to the embodiment moves the contact member 1 and the mating member 2 relative to each other so that they are placed in contact with each other and become conductive. Therefore, it is in a molten state and is interposed between the base member 10 of the contact member 1 and the counterpart member 2 (see the lower diagram of FIG. 1), and contributes to reducing the connection resistance between them. In addition, when the contact member 1 and the counterpart member 2 shift from the contact state to the non-contact state, the conductive portion 12 physically connects the contact member 1 and the counterpart member 2 by being in a molten state having fluidity. This contributes to easy separation. Furthermore, the conductive portion 12 is released from predetermined heating and pressurization to become a solid phase and loses its fluidity, so that the conductive portion 12 extends so as to flow between the base material 10 and the counterpart member 2 and maintains a contact state. This contributes to a reliable transition in a non-contact state (see the upper diagram of FIG. 1). Such a conductive portion 12 is made of a material that changes from a solid phase to a liquid phase (molten state) by applying predetermined heating or pressurization, and from the liquid phase to solid phase by releasing predetermined heating or pressurization.

例えば、導電部12は、所定の加圧により溶融状態となる金属又は半金属からなる形態が挙げられる。このような金属又は半金属として、固相状態の体積よりも液相状態の体積が小さいものが挙げられる。この金属又は半金属が固相であるときに所定の圧力を加えると、体積が小さい液相である方が安定した相状態であるため、液相に変化する、即ち溶融状態となり、上述の保持部などによって保持された状態で加圧し続けると溶融状態を維持できる。このような金属として、ガリウム、ガリウム合金、ビスマス、ビスマス合金、ゲルマニウム、ゲルマニウム合金などの各種の純金属、各種の合金が挙げられ、半金属として、珪素などが挙げられる。これらの金属及び半金属はいずれも、液相での電気抵抗が固相での電気抵抗よりも小さい。そのため、溶融状態の導電部12の介在に加えて、導電部12自体が低抵抗であることからも、接点部材1と相手部材2間の接続抵抗を低減できる。液相での電気抵抗は、ガリウム:25.8μΩ・cm、ビスマス:130.2μΩ・cm、ゲルマニウム:63μΩ・cm、珪素:81μΩ・cmである。   For example, the conductive part 12 may be in the form of a metal or semi-metal that becomes a molten state by a predetermined pressure. Examples of such a metal or metalloid include those having a liquid phase volume smaller than the solid phase volume. When a predetermined pressure is applied when this metal or metalloid is in a solid phase, the liquid phase having a smaller volume is in a stable phase state, so that it changes to a liquid phase, that is, a molten state, and the above-mentioned holding The molten state can be maintained by continuing to pressurize while being held by the part. Examples of such metals include various pure metals and various alloys such as gallium, gallium alloy, bismuth, bismuth alloy, germanium, and germanium alloy, and examples of the semimetal include silicon. Both of these metals and metalloids have a smaller electrical resistance in the liquid phase than in the solid phase. Therefore, since the conductive portion 12 itself has a low resistance in addition to the interposed conductive portion 12 in the molten state, the connection resistance between the contact member 1 and the counterpart member 2 can be reduced. The electrical resistance in the liquid phase is gallium: 25.8 μΩ · cm, bismuth: 130.2 μΩ · cm, germanium: 63 μΩ · cm, silicon: 81 μΩ · cm.

ガリウムやその合金、ビスマスやその合金は、融点が比較的低い(ガリウムの融点:30℃、ビスマスの融点:271℃)。そのため、ガリウムなどからなる導電部12は、接点部材1と相手部材2との導通時、所定の加圧によって溶融状態になる上に、基材10や相手部材2などから発生するジュール熱によって融点以上に加熱されると、溶融状態を維持できる。   Gallium and its alloys, bismuth and its alloys have relatively low melting points (melting point of gallium: 30 ° C., melting point of bismuth: 271 ° C.). Therefore, the conductive portion 12 made of gallium or the like has a melting point due to Joule heat generated from the base material 10 or the counterpart member 2 in addition to being melted by a predetermined pressure when the contact member 1 and the counterpart member 2 are electrically connected. When heated above, the molten state can be maintained.

例えば、導電部12は、所定の加熱により溶融状態となり、融点(又は液相線温度)が250℃以下の金属からなる形態が挙げられる。この金属は、上述の保持部などによって保持された状態で加熱し続けると溶融状態を維持できる。特に、融点が250℃以下と比較的低い金属であれば、導電部12の溶融に必要な熱エネルギーが少なくて済む。融点によっては、接点部材1と相手部材2との導通時に生じるジュール熱程度の加熱でもよい。ジュール熱を導電部12の溶融に利用する場合、熱エネルギーを付与する加熱部4Hを不要にできる。また、融点が低いほど、導電部12をより短時間で固相から溶融状態にすることができ、相手部材2との接続抵抗が低い状態をより早く構築できる。かつ、融点が低いほど、導電部12をより短時間で液相から固相にすることができ、相手部材2との非接触状態をより早く構築できる。   For example, the electroconductive part 12 will be in a molten state by predetermined | prescribed heating, and the form which consists of a metal whose melting | fusing point (or liquidus temperature) is 250 degrees C or less is mentioned. This metal can maintain a molten state when it is continuously heated while being held by the above-mentioned holding part or the like. In particular, if the metal has a relatively low melting point of 250 ° C. or lower, less heat energy is required for melting the conductive portion 12. Depending on the melting point, the heating may be about Joule heat generated when the contact member 1 and the mating member 2 are conducted. When Joule heat is used for melting the conductive portion 12, the heating portion 4 </ b> H that applies thermal energy can be eliminated. Further, as the melting point is lower, the conductive portion 12 can be changed from the solid phase to the molten state in a shorter time, and a state in which the connection resistance with the counterpart member 2 is lower can be established earlier. In addition, as the melting point is lower, the conductive portion 12 can be changed from a liquid phase to a solid phase in a shorter time, and a non-contact state with the counterpart member 2 can be established earlier.

導電部12の構成金属の融点は、低いほど、上記熱エネルギーの低減、状態変化の所要時間の短縮などを図ることができることから、250℃未満、更に230℃以下が好ましい。但し、接点部材1や接点対3の使用環境が常温(JISでは、20℃±15℃)である場合、上記融点が常温以下であると、所定の加熱をしなくても導電部12が溶融状態であり、接点部材1の基材10と相手部材2間で流れるように延びて両者間の接触状態が維持され易く、非接触状態になり難い。そのため、上記融点は、接点部材1や接点対3の使用環境温度を超えることが好ましく、代表的には常温程度以上、具体的には25℃以上、更に30℃以上、35℃超が挙げられる。上記融点が50℃以上、更に80℃以上、100℃以上であれば、上記使用環境が常温であっても、加熱が解除されて導電部12の温度が融点以下になれば、導電部12は固相になる。   The lower the melting point of the constituent metal of the conductive portion 12, the lower the heat energy and the shorter the time required for the state change. Therefore, it is preferably less than 250 ° C. and more preferably 230 ° C. or less. However, when the use environment of the contact member 1 and the contact pair 3 is normal temperature (20 ° C. ± 15 ° C. in JIS), if the melting point is not higher than normal temperature, the conductive portion 12 is melted without performing predetermined heating. It is a state, it extends so that it may flow between the base material 10 of the contact member 1, and the other member 2, and the contact state between both is easy to be maintained, and it is hard to be in a non-contact state. Therefore, it is preferable that the melting point exceeds the use environment temperature of the contact member 1 or the contact pair 3, typically about room temperature or higher, specifically 25 ° C. or higher, further 30 ° C. or higher, and higher than 35 ° C. . If the melting point is 50 ° C. or higher, further 80 ° C. or higher, and 100 ° C. or higher, even if the usage environment is normal temperature, if the heating is released and the temperature of the conductive portion 12 becomes lower than the melting point, the conductive portion 12 becomes Become a solid phase.

融点が常温程度以上250℃以下である純金属として、ガリウム(30℃)、インジウム(157℃)、錫(232℃)などが挙げられる(括弧内の数値は融点)。   Examples of the pure metal having a melting point of about room temperature to 250 ° C. include gallium (30 ° C.), indium (157 ° C.), tin (232 ° C.), and the like (numbers in parentheses are melting points).

融点が常温程度以上250℃以下である合金として、例えば、ガリウム合金、インジウム合金、錫合金などが挙げられる。錫合金は、低融点ハンダとして利用されているもの、例えば、Sn−Ag合金(222℃程度)、Sn−Ag−Cu合金(217℃〜219℃程度)、Sn−Ag−Bi−Cu合金(218℃程度)、Sn−In−Ag−Bi合金(206℃〜212℃程度)、Sn−Zn合金(198℃程度)、Sn−Zn−Bi合金(196℃程度)、Sn−Bi合金(139℃程度)、Sn−In合金(119℃程度)などが挙げられる(括弧内の数値は融点)。   Examples of alloys having a melting point of about room temperature to 250 ° C. include gallium alloys, indium alloys, and tin alloys. Tin alloys are used as low melting point solders, such as Sn-Ag alloys (about 222 ° C), Sn-Ag-Cu alloys (about 217 ° C to 219 ° C), Sn-Ag-Bi-Cu alloys ( 218 ° C.), Sn—In—Ag—Bi alloy (about 206 ° C. to 212 ° C.), Sn—Zn alloy (about 198 ° C.), Sn—Zn—Bi alloy (about 196 ° C.), Sn—Bi alloy (139 C.), Sn—In alloy (about 119 ° C.) and the like (the numerical values in parentheses are melting points).

導電部12は、接点部材1の基材10における相手部材2との電気的接続箇所に対応した箇所に備えていればよく、その形状、形態などは適宜選択できる。導電部12は、例えば、(1)基材10に設けられた塗膜、(2)板状や棒状など所定の形状に成形した成形体(鋳造材、圧延材、伸線材など)とし、レーザー溶接やスタッド溶接などの溶接やロウ付け、半田付けなどによって基材10に接合されたもの、(3)上記成形体をボルト及びナットなどの締結部材を用いて基材10に固定されたもの、(4)上述の成形体を鋳込んで一体化されたもの(この場合、基材10は鋳造材)、(5)同時に焼結して一体化されたもの(この場合、基材10及び導電部12はいずれも焼結体)などとすることが挙げられる。導電部12は、上述のような塗膜、鋳造材、展伸材など種々の形態をとり得る。導電部12を塗膜とすれば、任意の基材10に対して容易に導電部12を設けられる。   The electroconductive part 12 should just be equipped in the location corresponding to the electrical connection location with the other party member 2 in the base material 10 of the contact member 1, The shape, a form, etc. can be selected suitably. The conductive portion 12 is, for example, (1) a coating film provided on the base material 10 and (2) a molded body (cast material, rolled material, wire drawing material, etc.) formed into a predetermined shape such as a plate shape or a rod shape, and a laser. One that is joined to the base material 10 by welding, brazing, soldering, or the like such as welding or stud welding, (3) one in which the molded body is fixed to the base material 10 using fastening members such as bolts and nuts, (4) One integrated by casting the above-described molded body (in this case, the base material 10 is a cast material), (5) One integrated by sintering simultaneously (in this case, the base material 10 and the conductive material) The part 12 may be a sintered body). The conductive portion 12 can take various forms such as the above-described coating film, cast material, and spread material. If the conductive portion 12 is a coating film, the conductive portion 12 can be easily provided for any base material 10.

図1,図2では基材10における相手部材2との電気的接続箇所を平坦な面とし、この面に沿って導電部12も平坦な形状である場合を示すが、例えば、基材10における相手部材2との電気的接続箇所に微細な凹凸を有する形態とすることができる。この形態は、上述の微細な凹凸によって基材10と溶融状態の導電部12との接触面積を大きくし易い。この点からも接続抵抗を低減し易いと期待される。この形態では、導電部12を例えば上述の塗膜とすれば容易に設けられる。   1 and 2 show a case where the electrical connection portion with the mating member 2 in the base material 10 is a flat surface, and the conductive portion 12 is also in a flat shape along this surface. It can be set as the form which has fine unevenness | corrugation in the electrical connection location with the other party member 2. FIG. In this embodiment, the contact area between the base material 10 and the molten conductive portion 12 can be easily increased by the fine unevenness described above. From this point, it is expected that the connection resistance can be easily reduced. In this embodiment, the conductive portion 12 can be easily provided by using, for example, the above-described coating film.

導電部12の固相時における厚さは適宜選択できる。上記厚さがある程度厚いと、溶融状態の導電部12を多く確保し易く、溶融状態の導電部12の介在によって接続抵抗を低減し易いと期待される。上記厚さが厚過ぎると、導電部12を完全に溶融状態とするための圧力や熱エネルギーが多く必要になったり、固相に戻る時間が長くなり、非接触状態への移行時間が長くなったりする可能性がある。一方、上記厚さが薄過ぎると、溶融状態の導電部12の絶対量を十分に確保できない可能性がある。導電部12の固相時における平均厚さは、1μm以上5000μm(5mm)以下程度、更に2μm以上3000μm(3mm)以下程度とすることが挙げられる。理想的には導電部12は固相と液相との繰り返しという状態変化のみを行い、導電部12自体の質量は変化しない。そのため、上述の厚さ程度でも長期に亘り使用できると期待される。   The thickness of the conductive part 12 in the solid phase can be selected as appropriate. If the thickness is thick to some extent, it is expected that a large number of molten conductive portions 12 can be easily secured, and the connection resistance can be easily reduced by the presence of the molten conductive portions 12. If the thickness is too thick, a large amount of pressure and heat energy are required to completely melt the conductive portion 12, or the time for returning to the solid phase becomes long, and the time for shifting to the non-contact state becomes long. There is a possibility. On the other hand, if the thickness is too thin, there is a possibility that the absolute amount of the conductive portion 12 in the molten state cannot be sufficiently secured. The average thickness of the conductive portion 12 in the solid phase is about 1 μm or more and 5000 μm (5 mm) or less, and more preferably about 2 μm or more and 3000 μm (3 mm) or less. Ideally, the conductive portion 12 performs only a state change such as repetition of a solid phase and a liquid phase, and the mass of the conductive portion 12 itself does not change. Therefore, it is expected that the above-mentioned thickness can be used for a long time.

(加圧形態)
上述の所定の加圧によって導電部12を溶融する加圧形態では、例えば、接点部材1及び相手部材2の少なくとも一方に適宜な加圧部4Pを備えて、接点部材1と相手部材2とを圧接可能な構成とすることが挙げられる。図1では、接点部材1に加圧部4Pを備える場合を例示する。この形態では、接点部材1と相手部材2とが導通をとる場合、両者が加圧部4Pによって圧接状態に配置されることで、導電部12が溶融状態となって両者間に介在できる(図1の下図)。通電時、導電部12は、接点部材1や相手部材2のジュール熱によっても加熱されて、溶融状態を維持し易い。接点部材1と相手部材2との圧接状態から非接触状態(非導通状態)に移行する場合、導電部12が溶融状態にあれば、接点部材1と相手部材2とを離し易い。接点部材1と相手部材2とが相対的に離れて圧接状態が解除されると導電部12は固相になる。上述のように相対的に離れることで十分な通電状態とならずに上述のジュール熱も発生しなくなることからも、導電部12は固相になる。その結果、接点部材1は、相手部材2との接触状態を維持できず、非接触状態とすることができる。
(Pressurized form)
In the pressurization mode in which the conductive portion 12 is melted by the predetermined pressurization described above, for example, at least one of the contact member 1 and the counterpart member 2 is provided with an appropriate pressurization portion 4P, and the contact member 1 and the counterpart member 2 are connected. It can be mentioned that the structure can be pressed. FIG. 1 illustrates a case where the contact member 1 includes a pressurizing unit 4P. In this embodiment, when the contact member 1 and the mating member 2 are conductive, the conductive portion 12 can be in a molten state by being placed in a pressure contact state by the pressing portion 4P (see FIG. Figure 1 below). At the time of energization, the conductive portion 12 is also heated by the Joule heat of the contact member 1 and the counterpart member 2 and is easily maintained in a molten state. When shifting from the pressure contact state between the contact member 1 and the mating member 2 to a non-contact state (non-conducting state), the contact member 1 and the mating member 2 can be easily separated if the conductive portion 12 is in a molten state. When the contact member 1 and the counterpart member 2 are relatively separated from each other and the pressure contact state is released, the conductive portion 12 becomes a solid phase. As described above, the conductive portion 12 becomes a solid phase because it is not sufficiently energized by being relatively separated from each other and the Joule heat is not generated. As a result, the contact member 1 cannot maintain the contact state with the counterpart member 2 and can be in a non-contact state.

上述のように加圧部4Pを備えていれば、例えば、図1に示す相手部材2Aのように、相手部材2Aにおける接点部材1との電気接続箇所を平坦な面とすることができる。又は、図2に示す相手部材2Bのように、相手部材2Bにおける接点部材1との電気接続箇所に、導電部12を加圧する突起部20を備え、突起部20によって導電部12を局所的に加圧可能な構成とすることができる。この場合、加圧部4Pを備えると、導電部12に高い圧力を負荷できて、溶融状態により確実にすることができる。又は、この場合、接点部材1と相手部材2Bとが接触状態に配置されると突起部20による局所的な加圧が可能であるため、加圧部4Pを省略して簡素な構成とすることもできる。   If the pressurizing unit 4P is provided as described above, for example, as in the mating member 2A shown in FIG. 1, the electrical connection location with the contact member 1 in the mating member 2A can be a flat surface. Alternatively, as in the mating member 2B shown in FIG. 2, the projecting portion 20 that pressurizes the conductive portion 12 is provided at an electrical connection location with the contact member 1 in the mating member 2B, and the conductive portion 12 is locally disposed by the projecting portion 20. It can be set as the structure which can be pressurized. In this case, when the pressurizing part 4P is provided, a high pressure can be applied to the conductive part 12, and the molten state can be ensured. Alternatively, in this case, when the contact member 1 and the mating member 2B are arranged in contact with each other, since the local pressurization by the protrusion 20 is possible, the pressurization unit 4P is omitted and the configuration is simplified. You can also.

突起部20は、接点部材1と相手部材2とが接触状態に配置された場合に導電部12を溶融状態にできる程度の圧力を発生できるように、その形状、個数などを調整するとよい。図2に示す突起部20の形状、個数は例示である。突起部20は、導電部12とする素材に切削加工を施したり、突起部20となる切片などをレーザー溶接やスタッド溶接などの溶接・ロウ付け・半田付けなどで接合したり、導電部12を鋳造材とし、突起部20を鋳型によって一体に鋳造成形したり、導電部12を焼結体とし、突起部20を有する粉末成形体を焼結したりなどすることで設けられる。   The protrusions 20 may be adjusted in shape, number, etc. so that when the contact member 1 and the mating member 2 are placed in contact with each other, pressure can be generated to the extent that the conductive portion 12 can be melted. The shape and number of the protrusions 20 shown in FIG. 2 are examples. The protrusion 20 cuts the material to be the conductive portion 12, joins a section to become the protrusion 20 by welding / brazing / soldering such as laser welding or stud welding, or the conductive portion 12. It is provided by casting the projecting portion 20 integrally with a mold, or using the conductive portion 12 as a sintered body and sintering a powder compact having the projecting portion 20.

相手部材2Bは突起部20を有することで、突起部20が無い場合に比較して表面積が大きく、溶融状態の導電部12との接触面積を大きくし易い(図2の拡大図参照)。この点からも接続抵抗を低減し易いと期待される。   Since the mating member 2B has the projecting portion 20, the surface area is larger than when the projecting portion 20 is not provided, and the contact area with the conductive portion 12 in a molten state can be easily increased (see the enlarged view in FIG. 2). From this point, it is expected that the connection resistance can be easily reduced.

加圧部4Pは、加圧可能な種々の機構を備えることができる。例えば、各種のゴム、バネなどの弾性部材や、シリンダ及びピストンなどの往復動を行う部材などを所定の箇所に配置することが挙げられる。   The pressurizing unit 4P can include various mechanisms that can be pressurized. For example, various elastic members such as rubber and spring, and members that reciprocate such as cylinders and pistons may be arranged at predetermined positions.

加圧形態の具体例として、導電部12の構成材料と、室温(ここでは20℃)で溶融状態となるために必要な圧力とを表1に示す。表1は、導電部12をガリウム(Ga)又はビスマス(Bi)からなるものとする場合に必要な圧力(MPa)を示す。使用環境温度(ここでは室温(20℃))に応じて、表1に示す圧力の値以上となるように加圧部4Pを構成するとよい。   As a specific example of the pressurization form, Table 1 shows the constituent material of the conductive portion 12 and the pressure required to become a molten state at room temperature (20 ° C. here). Table 1 shows the pressure (MPa) required when the conductive part 12 is made of gallium (Ga) or bismuth (Bi). The pressurizing unit 4P may be configured to be equal to or higher than the pressure values shown in Table 1 according to the use environment temperature (here, room temperature (20 ° C.)).

Figure 2018156870
Figure 2018156870

(加熱形態)
上述の所定の加熱によって導電部12を溶融する加熱形態では、例えば、接点部材1及び相手部材2の少なくとも一方に適宜な加熱部4Hを備えて、導電部12を加熱可能な構成とすることが挙げられる。図1に例示するように接点部材1に加熱部4Hを備えると、接点部材1と相手部材2とが非接触状態であるときに導電部12を加熱して溶融状態とし、相手部材2に溶融状態の導電部12を確実に接触させられる。図2に例示するように相手部材2に加熱部4Hを備える場合には、接点部材1と相手部材2とを接触状態に配置することで導電部12を加熱できる。加熱形態では、接点部材1と相手部材2とが導通をとる場合、加熱部4Hによって所定の加熱がなされた導電部12が溶融状態となって接点部材1と相手部材2間に介在できる。通電時、導電部12は、接点部材1や相手部材2のジュール熱によっても加熱されて、溶融状態を維持し易い。接点部材1と相手部材2との接触状態から非接触状態(非導通状態)に移行する場合、加熱部4Hによって加熱したままとすると導電部12が溶融状態にあり、相手部材2を離し易い。接点部材1と相手部材2とが相対的に離れる際に、所定の加熱が解除されていれば導電部12は固相になり、相手部材2との接触状態を維持できず、非接触状態とすることができる。
(Heating mode)
In the heating mode in which the conductive portion 12 is melted by the predetermined heating described above, for example, an appropriate heating portion 4H is provided in at least one of the contact member 1 and the counterpart member 2, and the conductive portion 12 can be heated. Can be mentioned. As illustrated in FIG. 1, when the contact member 1 includes the heating unit 4 </ b> H, when the contact member 1 and the counterpart member 2 are in a non-contact state, the conductive portion 12 is heated to be in a molten state and melted into the counterpart member 2. The conductive part 12 in a state can be reliably brought into contact. As illustrated in FIG. 2, when the mating member 2 includes the heating unit 4H, the conductive unit 12 can be heated by arranging the contact member 1 and the mating member 2 in a contact state. In the heating mode, when the contact member 1 and the mating member 2 are electrically connected, the conductive portion 12 heated by the heating unit 4H is in a molten state and can be interposed between the contact member 1 and the mating member 2. At the time of energization, the conductive portion 12 is also heated by the Joule heat of the contact member 1 and the counterpart member 2 and is easily maintained in a molten state. When shifting from the contact state between the contact member 1 and the mating member 2 to the non-contact state (non-conducting state), if the heating unit 4H is left heated, the conductive unit 12 is in a molten state and the mating member 2 is easily separated. When the contact member 1 and the mating member 2 are relatively separated from each other, if the predetermined heating is released, the conductive portion 12 becomes a solid phase, and the contact state with the mating member 2 cannot be maintained. can do.

上述のようにジュール熱を利用する導電部12を溶融する場合、加熱部4Hを省略することもできる。この形態では、接点部材1と相手部材2とが導通をとる場合、接点部材1と相手部材2とが接触状態に配置されて通電されることで、接点部材1などに発生するジュール熱によって導電部12が加熱されて溶融状態となり、接点部材1と相手部材2間に介在できる。接点部材1と相手部材2との接触状態から非接触状態(非導通状態)に移行する場合、導電部12が溶融状態にあれば相手部材2を離し易い。接点部材1と相手部材2とが相対的に離れて十分な通電状態とならず、十分なジュール熱が発生しなくなると、所定の加熱が解除されて導電部12は固相になり、相手部材2との接触状態を維持できず、非接触状態とすることができる。   As described above, when the conductive portion 12 using Joule heat is melted, the heating portion 4H can be omitted. In this embodiment, when the contact member 1 and the mating member 2 are conductive, the contact member 1 and the mating member 2 are placed in contact with each other and are energized so that they are conductive by Joule heat generated in the contact member 1 and the like. The portion 12 is heated to be in a molten state and can be interposed between the contact member 1 and the counterpart member 2. When shifting from the contact state between the contact member 1 and the mating member 2 to the non-contact state (non-conducting state), the mating member 2 can be easily separated if the conductive portion 12 is in a molten state. When the contact member 1 and the mating member 2 are relatively separated from each other and are not sufficiently energized, and no sufficient Joule heat is generated, the predetermined heating is released and the conductive portion 12 becomes a solid phase. 2 cannot be maintained, and a non-contact state can be achieved.

加熱形態の接点部材1や相手部材2は、上述の平坦な形状でも(図1)、微小凹凸や突起部20を有する凹凸形状でも(図2)、いずれも利用できる。   The contact member 1 and the mating member 2 in the heating form can be used in the above-described flat shape (FIG. 1), or in a concavo-convex shape having minute irregularities or protrusions 20 (FIG. 2).

加圧部4Pと加熱部4Hとの双方を備えて、上述の加圧形態と加熱形態とを組み合わせた形態とすることもできる。この場合、突起部20を備えることもできるし省略してもよい。   Both the pressurizing unit 4P and the heating unit 4H may be provided, and the above-described pressurization mode and heating mode may be combined. In this case, the protrusion 20 can be provided or omitted.

(主要な効果)
実施形態の接点部材1は、所定の加熱や加圧がなされることで溶融状態となった導電部12を相手部材2との間に介在できるため、相手部材2との接続抵抗を低減でき、低抵抗な接続構造を構築できる。かつ、実施形態の接点部材1は、所定の加熱や加圧が解除されると、導電部12は固相となって接点部材1の基材10と相手部材2間を渡るように濡れた状態を維持できなくなり、相手部材2との接触状態が解消される。従って、実施形態の接点部材1は、相手部材2との接続抵抗を低減できる上に、相手部材2との接触状態から非接触状態への移行をより確実に行える。実施形態の接点対3は、このような実施形態の接点部材1を備えるため、溶融状態の導電部12の介在によって接点部材1と相手部材2との接続抵抗を低減できる上に、導電部12が固相となることで接点部材1と相手部材2との接触状態から非接触状態への移行をより確実に行える。
(Main effect)
Since the contact member 1 of the embodiment can be interposed between the mating member 2 and the conductive portion 12 that is in a molten state by performing predetermined heating or pressurization, the connection resistance with the mating member 2 can be reduced, A low resistance connection structure can be constructed. And when the predetermined heating and pressurization are cancelled | released, the contact part 1 of embodiment is the state which became wet so that the electroconductive part 12 might become a solid phase and may cross between the base material 10 of the contact member 1, and the other member 2 Cannot be maintained, and the contact state with the counterpart member 2 is eliminated. Therefore, the contact member 1 of the embodiment can reduce the connection resistance with the mating member 2 and can more reliably shift from the contact state with the mating member 2 to the non-contact state. Since the contact pair 3 of the embodiment includes the contact member 1 of such an embodiment, the connection resistance between the contact member 1 and the counterpart member 2 can be reduced by the presence of the molten conductive portion 12, and the conductive portion 12. Since it becomes a solid phase, the transition from the contact state of the contact member 1 and the counterpart member 2 to the non-contact state can be performed more reliably.

本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   The present invention is not limited to these exemplifications, but is defined by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

1 接点部材
10 基材
12 導電部
2,2A,2B 相手部材
20 突起部
3 接点対
4H 加熱部
4P 加圧部
DESCRIPTION OF SYMBOLS 1 Contact member 10 Base material 12 Conductive part 2,2A, 2B Opposing member 20 Protrusion part 3 Contact pair 4H Heating part 4P Pressurizing part

Claims (4)

所定の加熱及び所定の加圧の少なくとも一方がなされると溶融状態となり、前記加熱及び前記加圧の少なくとも一方が解除されると固相となる導電部を備える接点部材。   A contact member comprising a conductive portion that is in a molten state when at least one of predetermined heating and predetermined pressurization is performed and becomes a solid phase when at least one of the heating and pressurization is released. 前記導電部は、前記所定の加圧により溶融状態となる金属又は半金属からなる請求項1に記載の接点部材。   The contact member according to claim 1, wherein the conductive portion is made of a metal or a semimetal that becomes a molten state by the predetermined pressure. 前記導電部は、前記所定の加熱により溶融状態となり、融点が250℃以下の金属からなる請求項1に記載の接点部材。   The contact member according to claim 1, wherein the conductive portion is melted by the predetermined heating and is made of a metal having a melting point of 250 ° C. or less. 請求項2に記載の接点部材と、
前記接点部材に電気的に接続される相手部材とを備え、
前記相手部材における前記接点部材との電気接続箇所に、前記導電部を加圧する突起部を備える接点対。
The contact member according to claim 2,
A mating member electrically connected to the contact member;
A contact pair provided with a protruding portion that pressurizes the conductive portion at an electrical connection point of the mating member with the contact member.
JP2017053724A 2017-03-17 2017-03-17 Contact member and contact pair Pending JP2018156870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017053724A JP2018156870A (en) 2017-03-17 2017-03-17 Contact member and contact pair

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017053724A JP2018156870A (en) 2017-03-17 2017-03-17 Contact member and contact pair

Publications (1)

Publication Number Publication Date
JP2018156870A true JP2018156870A (en) 2018-10-04

Family

ID=63718118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017053724A Pending JP2018156870A (en) 2017-03-17 2017-03-17 Contact member and contact pair

Country Status (1)

Country Link
JP (1) JP2018156870A (en)

Similar Documents

Publication Publication Date Title
CN101952985B (en) Method for the production of a thermoelectric component and thermoelectric component
TWI505522B (en) Method for manufacturing thermoelectric conversion module
JP4539980B2 (en) Semiconductor device and manufacturing method thereof
JP6217226B2 (en) Thermal mass flow meter, mass flow controller, and thermal mass flow meter manufacturing method
TW201228056A (en) Thermoelectric module and method of manufacturing the same
US5330097A (en) Hot diffusion welding method
CN108258441A (en) Electrical connecting element
CN107851529B (en) Electric switch contact
CN105702485A (en) contact unit for electromechanical switching device
JP2018156870A (en) Contact member and contact pair
CN104064253A (en) Copper-based contact material applied to lower-voltage apparatus and preparation method of copper-based contact material
US20190363328A1 (en) Robust Reaction Metallurgical Joining
US3948429A (en) Apparatus for thermocompression bonding
JP2020123725A (en) Electric terminal
JP2013131434A (en) Flexible conductor and flexible conductor manufacturing method
JP2008073728A (en) Joining method of metallic member
TWI281372B (en) Circuit board
JP4810652B2 (en) Thermoelectric conversion module
JP2015521355A (en) Contact member and manufacturing method thereof
JP2018156869A (en) Contact member
JP4340750B2 (en) Good thermal conductor with controlled heat flow rate and method for producing the same
US10632571B2 (en) Metal joining using ultrasonic and reaction metallurgical welding processes
JP2000246549A (en) Joining structure and method for dissimilar metal material
JPS62188707A (en) Hard facing method for integrally forming sintered hard layer on surface of ferrous metallic sheet
JP2002283493A (en) Bonding structure of different metal materials