JP2018156566A - Welding path specification method and program, and instruction program and welding robot system - Google Patents

Welding path specification method and program, and instruction program and welding robot system Download PDF

Info

Publication number
JP2018156566A
JP2018156566A JP2017054688A JP2017054688A JP2018156566A JP 2018156566 A JP2018156566 A JP 2018156566A JP 2017054688 A JP2017054688 A JP 2017054688A JP 2017054688 A JP2017054688 A JP 2017054688A JP 2018156566 A JP2018156566 A JP 2018156566A
Authority
JP
Japan
Prior art keywords
welded
welding
welding path
contact
extracting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017054688A
Other languages
Japanese (ja)
Other versions
JP6817122B2 (en
Inventor
俊介 宮田
Shunsuke Miyata
俊介 宮田
定廣 健次
Kenji Sadahiro
健次 定廣
有卓 焦
Yutaku Sho
有卓 焦
修平 本田
Shuhei Honda
修平 本田
尊信 諏訪
Takanobu SUWA
尊信 諏訪
中尾 哲也
Tetsuya Nakao
哲也 中尾
元章 村上
Motoaki Murakami
元章 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017054688A priority Critical patent/JP6817122B2/en
Priority to PCT/JP2018/007373 priority patent/WO2018173657A1/en
Priority to CN201880019955.8A priority patent/CN110476131A/en
Priority to KR1020197027388A priority patent/KR102228719B1/en
Publication of JP2018156566A publication Critical patent/JP2018156566A/en
Application granted granted Critical
Publication of JP6817122B2 publication Critical patent/JP6817122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine

Abstract

PROBLEM TO BE SOLVED: To provide a welding path specification method and program, and instruction program and welding robot system capable of performing smooth welding work by specifying a welding path.SOLUTION: A welding robot system comprises a welding robot 1, and a computer 2 for controlling the welding robot 1. A welding path is specified by the following steps. A first member to be welded and a second member to be welded which are brought into contact with each other are specified from the shape of a member to be welded in three-dimensional CAD data. Next, a first face 20 of the second member to be welded in contact with one face of the first member to be welded and having a normal vector B parallel to a normal vector A of the one face is extracted. Then, a second face 21 of the second member to be welded is extracted and a common edge 22 common to the first face 20 and the second face 21 is extracted. A welding path 30 corresponding to the common edge 22 is specified, and the first member to be welded and the second member to be welded are then welded.SELECTED DRAWING: Figure 8

Description

本発明は、船体の構造物の枠組みを組み立てるための、溶接パス特定方法、プログラム、教示プログラム及び溶接ロボットシステムに関する。   The present invention relates to a welding path specifying method, a program, a teaching program, and a welding robot system for assembling a framework of a hull structure.

大型船の枠組み構造物の一つである船殻平板ブロックは、平板状のパネルの表面に複数列のロンジを配置し、ロンジと直交する方向にトランスを一定間隔で配置し、パネルとロンジとトランスとで形成された三方又は四方で囲まれた構造物であり、パネルとロンジとトランスとが交差する部分を自動溶接ロボットで溶接する技術が知られている(特許文献1及び2)。   The hull flat block, which is one of the framework structures of large ships, has multiple rows of longes on the surface of a flat panel, and transformers at regular intervals in the direction perpendicular to the longes. There is known a technique of welding a portion where a panel, a longe and a transformer intersect with an automatic welding robot, which is a structure surrounded by three or four sides formed by a transformer (Patent Documents 1 and 2).

特許文献1に記載された枠組構造物への位置決め装置は、枠組構造物の底板上を位置決め方向に走行できる走行輪を備えた位置決め台と、この位置決め台の位置決め方向両側に取付けられ両側に等圧等ストロークで伸縮されて枠組構造物の両側壁に押し当てることで当該位置決め台を位置決め方向中央に走行させる位置決めアームとからなり、大型の枠組構造物であっても簡単な装置で高精度に位置決めすることができることが開示されている。   A positioning apparatus for a frame structure described in Patent Document 1 includes a positioning table provided with traveling wheels capable of traveling in the positioning direction on the bottom plate of the frame structure, and mounted on both sides of the positioning table in the positioning direction. It consists of a positioning arm that is extended and contracted by pressure stroke and pressed against both side walls of the frame structure to move the positioning table to the center in the positioning direction. Even with a large frame structure, it is highly accurate with a simple device. It is disclosed that it can be positioned.

特許文献2に記載された大型枠組構造物の溶接装置は、1対のロンジと1又は1対のトランスで囲まれた升目形状の枠内を溶接対象領域とし、該溶接対象領域を跨いで大型枠組構造物に固定され、前記溶接対象領域の上部に位置する水平支持架台を有するロボット架台と、該水平支持架台の下面に取付けられ、前記升目形状枠内の全域にわたり溶接ヘッドを3次元的に数値制御して溶接可能な溶接ロボットとを備えており、パネル上にロンジとトランスが交差している大型の枠組構造物の交差部を本溶接することができ、本溶接が可能な溶接部位の制約が少なく、人手に頼る手溶接がほとんど不要であり、大型ガントリ構造による従来のマルチロボット溶接装置と比較して装置全体を小型化でき、複雑な制御システムが不要であることが開示されている。   The welding apparatus for a large-sized frame structure described in Patent Document 2 has a grid-shaped frame surrounded by a pair of longes and one or a pair of transformers as a welding target region, and is large in size across the welding target region. A robot frame having a horizontal support frame that is fixed to the frame structure and located above the welding target area, and is attached to the lower surface of the horizontal support frame, and the welding head is three-dimensionally extended over the entire area of the grid-shaped frame. Welding robot that can be welded by numerical control, and can perform main welding at the intersection of large frame structures where longes and transformers intersect on the panel. It is disclosed that there are few restrictions, almost no manual welding that relies on humans is necessary, the entire device can be downsized compared to conventional multi-robot welding devices with a large gantry structure, and no complicated control system is required. It has been.

特開平5−228883号公報Japanese Patent Laid-Open No. 5-228883 特開2010−253518号公報JP 2010-253518 A

特許文献1及び特許文献2には、溶接ロボットで船体を構成する部材同士を溶接することが開示されているが、船舶の大型化に伴い枠組み構造物が複雑化し、複数の溶接ロボットを同時にコントロールする要望に対応できない可能性がある。即ち、被溶接部材の種類と位置関係を正確に特定していないため、溶接パスに対して適切に溶接ロボットを位置決めすることが難しく、円滑な溶接作業が困難になるという課題がある。   Patent Document 1 and Patent Document 2 disclose welding members constituting a hull with a welding robot, but as the size of a ship increases, the framework structure becomes complicated, and a plurality of welding robots can be controlled simultaneously. It may not be possible to respond to the request. That is, since the type and positional relationship of the member to be welded are not accurately specified, it is difficult to position the welding robot appropriately with respect to the welding path, and there is a problem that smooth welding work becomes difficult.

本発明は、溶接パスを特定して円滑な溶接作業を行うことができる溶接パス特定方法、プログラム、教示プログラム及び溶接ロボットシステムを提供することを目的とする。   An object of the present invention is to provide a welding path specifying method, a program, a teaching program, and a welding robot system capable of specifying a welding path and performing a smooth welding operation.

本発明の溶接パス特定方法は、船体を構成する部材である少なくとも二つの被溶接部材を溶接する溶接パスを特定する溶接パス特定方法であって、3次元CADデータにおける被溶接部材の形状から、互いに接触し得る第1の被溶接部材および第2の被溶接部材を特定するステップと、前記第1の被溶接部材の一つの面に接触するとともに、当該一つの面の法線ベクトルに平行な法線ベクトルを有する前記第2の被溶接部材の第1の面を抽出するステップと、前記第2の被溶接部材の第2の面を抽出するステップと、前記第1の面および前記第2の面が共有する共有エッジを抽出するステップと、前記共有エッジに対応して、前記第1の被溶接部材および前記第2の被溶接部材を溶接する溶接パスを特定するステップと、を含む。   The welding path specifying method of the present invention is a welding path specifying method for specifying a welding path for welding at least two members to be welded, which are members constituting a hull. From the shape of the member to be welded in three-dimensional CAD data, Identifying a first welded member and a second welded member that can contact each other, contacting one surface of the first welded member, and parallel to a normal vector of the one surface Extracting a first surface of the second welded member having a normal vector, extracting a second surface of the second welded member, the first surface, and the second surface. Extracting a shared edge shared by the surfaces of the first and second surfaces, and identifying a welding path for welding the first welded member and the second welded member corresponding to the shared edge.

本発明の溶接パス特定方法は、船体を構成する部材である二つの被溶接部材を溶接する溶接パスを特定する溶接パス特定方法であって、3次元CADデータにおける被溶接部材の形状から、互いに接触し得る第1の被溶接部材および第2の被溶接部材を特定するステップと、前記第1の被溶接部材に接触する前記第2の被溶接部材の第1の面を抽出するステップと、前記第1の被溶接部材から、前記第1の面が接触する接触面を抽出するステップと、前記第1の面から、前記接触面に重なるエッジを抽出するステップと、前記エッジに対応して、前記第1の被溶接部材および前記第2の被溶接部材を溶接する溶接パスを特定するするステップと、を含む。   The welding path specifying method of the present invention is a welding path specifying method for specifying a welding path for welding two members to be welded, which are members constituting a hull. From the shape of the members to be welded in three-dimensional CAD data, Identifying a first welded member and a second welded member that can contact, extracting a first surface of the second welded member that contacts the first welded member, and A step of extracting a contact surface with which the first surface comes into contact from the first member to be welded, a step of extracting an edge overlapping the contact surface from the first surface, and corresponding to the edge Identifying a welding path for welding the first welded member and the second welded member.

本発明のプログラムは、前記溶接パス特定方法をコンピュータに実行させる。   The program of the present invention causes a computer to execute the welding path specifying method.

本発明の教示プログラムは、前記溶接パス特定方法により特定した溶接パスを溶接ロボットに教示する。   The teaching program of the present invention teaches the welding robot the welding path specified by the welding path specifying method.

本発明の溶接ロボットシステムは、船体を構成する部材である少なくとも二つの被溶接部材を溶接する溶接ロボットと、前記溶接ロボットの動作を、所定の動作プログラムに則って制御するコンピュータと、を含む溶接ロボットシステムであって、前記コンピュータは、3次元CADデータにおける被溶接部材の形状から、互いに接触し得る第1の被溶接部材および第2の被溶接部材を特定し、前記第1の被溶接部材の一つの面に接触するとともに、当該一つの面の法線ベクトルに平行な法線ベクトルを有する前記第2の被溶接部材の第1の面を抽出し、前記第2の被溶接部材の第2の面を抽出し、前記第1の面および前記第2の面が共有する共有エッジを抽出し、前記共有エッジに対応して、前記第1の被溶接部材および前記第2の被溶接部材を溶接する溶接パスを特定する。   A welding robot system of the present invention includes a welding robot that welds at least two members to be welded that are members constituting a hull, and a computer that controls the operation of the welding robot in accordance with a predetermined operation program. In the robot system, the computer specifies a first welded member and a second welded member that can contact each other from the shape of the welded member in the three-dimensional CAD data, and the first welded member A first surface of the second member to be welded having a normal vector parallel to the normal vector of the one surface and extracting the first surface of the second member to be welded. 2 surfaces are extracted, a shared edge shared by the first surface and the second surface is extracted, and the first welded member and the second welded material are corresponding to the shared edge. Identifying a weld path for welding timber.

本発明の溶接ロボットシステムは、船体を構成する部材である少なくとも二つの被溶接部材を溶接する溶接ロボットと、前記溶接ロボットの動作を、所定の動作プログラムに則って制御するコンピュータと、を含む溶接ロボットシステムであって、前記コンピュータは、3次元CADデータにおける被溶接部材の形状から、互いに接触し得る第1の被溶接部材および第2の被溶接部材を特定し、前記第1の被溶接部材に接触する前記第2の被溶接部材の第1の面を抽出し、前記第1の被溶接部材から、前記第1の面が接触する接触面を抽出し、前記第1の面から、前記接触面に重なるエッジを抽出し、前記エッジに対応して、前記第1の被溶接部材および前記第2の被溶接部材を溶接する溶接パスを特定する。   A welding robot system of the present invention includes a welding robot that welds at least two members to be welded that are members constituting a hull, and a computer that controls the operation of the welding robot in accordance with a predetermined operation program. In the robot system, the computer specifies a first welded member and a second welded member that can contact each other from the shape of the welded member in the three-dimensional CAD data, and the first welded member The first surface of the second member to be welded that is in contact with the first welded member is extracted, and the contact surface with which the first surface is in contact is extracted from the first member to be welded. An edge overlapping the contact surface is extracted, and a welding path for welding the first welded member and the second welded member corresponding to the edge is specified.

本発明の溶接パス特定方法、プログラム、教示プログラム及び溶接ロボットシステムは、各被溶接部材を特定して、その位置関係から溶接パスを算出して正確に特定するため、複数台の溶接ロボットそれぞれが所定の位置で溶接を確実に行い、作業効率を向上させることができるため、特に被溶接部材数の多い大型船体の組立に適している。   The welding path specifying method, program, teaching program, and welding robot system of the present invention specify each member to be welded, calculate the welding path from its positional relationship, and accurately specify each welding robot. Since welding can be reliably performed at a predetermined position and work efficiency can be improved, it is particularly suitable for assembling a large hull with a large number of members to be welded.

本発明に係る溶接ロボットシステムの一例を示し、(a)全体の概念図、(b)コンピュータのブロック図の一例。An example of the welding robot system which concerns on this invention is shown, (a) Conceptual figure of the whole, (b) An example of the block diagram of a computer. 本発明に係る溶接ロボットシステムにより溶接する船体の部材である各被溶接部材の配置の一例を示す正面斜視図。The front perspective view which shows an example of arrangement | positioning of each to-be-welded member which is a member of the hull welded with the welding robot system which concerns on this invention. 本発明に係る各被溶接部材の定義を説明する概念図、(a)外板(b)外板から除外されるケース、(c)トランス、ガーダー、ロッジ、(d)カラープレート。The conceptual diagram explaining the definition of each to-be-welded member which concerns on this invention, (a) Outer plate (b) Case excluded from outer plate, (c) Transformer, girder, lodge, (d) Color plate. 本発明に係る各被溶接部材の組合せの一例を示す表。The table | surface which shows an example of the combination of each to-be-welded member which concerns on this invention. 本発明に係る溶接ロボットで溶接する被溶接部材の配置の実施例1で、(a)外板とトランスの接合を示す斜視図、(b)定義される面の説明図。In Example 1 of arrangement | positioning of the to-be-welded member welded with the welding robot which concerns on this invention, (a) Perspective view which shows joining of an outer plate | board and a transformer, (b) Explanatory drawing of the surface defined. 図5に続く実施例2で、(a)外板とカラープレートの接合を示す正面斜視図、(b)(a)の背面斜視図。In Example 2 following FIG. 5, (a) Front perspective view showing joining of outer plate and color plate, (b) Rear perspective view of (a). 図6に続く一例で、(a)実施例3の正面斜視図、(b)実施例4の正面斜視図。FIG. 7 is an example following FIG. 6, (a) a front perspective view of the third embodiment, and (b) a front perspective view of the fourth embodiment. 本発明に係る溶接パス特定方法の第1実施形態を示すフローチャート図。The flowchart figure which shows 1st Embodiment of the welding path | pass identification method which concerns on this invention. 本発明に係る溶接ロボットで溶接する被溶接部材の配置の実施例5で、(a)正面斜視図、(b)背面斜視図。In Example 5 of arrangement | positioning of the to-be-welded member welded with the welding robot which concerns on this invention, (a) Front perspective view, (b) Back perspective view. 本発明に係る溶接パス特定方法の第2実施形態を示すフローチャート図。The flowchart figure which shows 2nd Embodiment of the welding path | pass identification method based on this invention.

以下、本発明に係る溶接パス特定方法、プログラム、教示プログラム及び溶接ロボットシステムの好適な実施形態を、図1〜図10に基づいて詳述する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a welding path specifying method, a program, a teaching program, and a welding robot system according to the present invention will be described in detail with reference to FIGS.

図1は、本実施形態の溶接ロボットシステムの一例を示す概念図である。図2は、船体の部材である各被溶接部材の配置の一例を示す正面斜視図である。図1及び図2を用いて、本実施形態の溶接ロボットシステムを説明する。   FIG. 1 is a conceptual diagram illustrating an example of a welding robot system according to the present embodiment. FIG. 2 is a front perspective view showing an example of the arrangement of each member to be welded which is a member of the hull. The welding robot system of this embodiment is demonstrated using FIG.1 and FIG.2.

本実施形態の溶接ロボットシステムは、船体を作る工場100内に設置され、溶接ロボット1と、溶接ロボット1を制御するコンピュータ2とを備える。本実施形態では、複数の溶接ロボット1が、工場100内の天井クレーン101から左右上下方向に対して駆動自在に垂下され、溶接ロボット1を制御するコンピュータ2は、例えば、制御室102内に設置されている。また、工場100内の床近傍には、船体を構成する部材である被溶接部材10が複数配置されている。   The welding robot system of the present embodiment is installed in a factory 100 that makes a hull, and includes a welding robot 1 and a computer 2 that controls the welding robot 1. In the present embodiment, a plurality of welding robots 1 are suspended from an overhead crane 101 in a factory 100 so as to be able to be driven in the horizontal and vertical directions. Has been. A plurality of members to be welded 10 that are members constituting the hull are arranged near the floor in the factory 100.

コンピュータ2は、溶接ロボットシステムを統括、制御する制御部3と、プログラムや各種データを記憶する記憶部4と、キーボードやタッチパネル等の入力部5と、プリンター等の出力部6を備える。また、入力部5と出力部6は、各溶接ロボット1を駆動させるために、各溶接ロボット1に備えられた端末機と制御信号、データ等を送受信する。各被溶接部材10同士を接合固定する溶接ロボット1の動作は、コンピュータ2の記憶部4に記憶された所定の動作プログラムに則って制御され、各被溶接部材10の所定の箇所を溶接する。尚、図1で示された構成は、一例であり、限定されない。   The computer 2 includes a control unit 3 that controls and controls the welding robot system, a storage unit 4 that stores programs and various data, an input unit 5 such as a keyboard and a touch panel, and an output unit 6 such as a printer. In addition, the input unit 5 and the output unit 6 transmit and receive control signals, data, and the like to and from the terminal provided in each welding robot 1 in order to drive each welding robot 1. The operation of the welding robot 1 that joins and fixes the members to be welded 10 to each other is controlled according to a predetermined operation program stored in the storage unit 4 of the computer 2 to weld a predetermined portion of each member to be welded 10. The configuration shown in FIG. 1 is an example and is not limited.

「被溶接部材」とは構造物を構成する各構成部材であり、外板11、トランス12、ガーダー13、ロンジ14、カラープレート15、スチフナ16等である。これら各被溶接部材10の配列の一例を図2の正面斜視図に示している。外板11が工場100内床にシート状に配置され、外板11の上面11aに複数のトランス12が設置され、トランス12と直交する方向に複数のガーダー13が配置され、各ガーダー13間にガーダー13と平行に複数のロンジ14がそれぞれ配置され、トランス12とロンジ14との接合近傍であって、ロンジ14の下方に複数のカラープレート15、ロンジ14の上方にスチフナ16がそれぞれ配置されている。尚、当該配置関係は一例であり、限定されない。   The “members to be welded” are constituent members constituting the structure, such as the outer plate 11, the transformer 12, the girder 13, the longe 14, the color plate 15, the stiffener 16, and the like. An example of the arrangement of the members to be welded 10 is shown in the front perspective view of FIG. The outer plate 11 is arranged in a sheet shape on the inner floor of the factory 100, a plurality of transformers 12 are installed on the upper surface 11 a of the outer plate 11, and a plurality of girders 13 are arranged in a direction orthogonal to the transformer 12. A plurality of longes 14 are arranged in parallel with the girder 13, respectively, near the junction between the transformer 12 and the longes 14, a plurality of color plates 15 below the longes 14, and a stiffener 16 above the longes 14. Yes. The arrangement relationship is an example and is not limited.

コンピュータ2で溶接ロボット1に溶接する箇所である溶接パスを指定するため、各被溶接部材10を定義する必要がある。図3、図4を参照して、各被溶接部材10の定義を説明する。   In order to designate a welding path which is a location where the computer 2 welds the welding robot 1, it is necessary to define each member to be welded 10. With reference to FIG. 3, FIG. 4, the definition of each to-be-welded member 10 is demonstrated.

外板11は、スキンプレートとも呼ばれベースとなる鋼板パネルで、フェースグループで面積が最大となる被溶接部材10である(図3a)参照)。被溶接部材10が単一で最大面積である場合、グループで見ると大きな板が存在するため外板11とは定義しない(図3(b)参照)。   The outer plate 11 is a steel plate panel that is also called a skin plate and serves as a base, and is a member to be welded 10 that has the largest area in the face group (see FIG. 3A). When the member 10 to be welded has a single maximum area, there is a large plate when viewed as a group, so the outer plate 11 is not defined (see FIG. 3B).

トランス12、ガーダー13、ロンジ14、は、外板11の上面部材の内、それ以外(例えばカラープレート15など)と比較して、表面積が大きい被溶接部材10である。トランス12は、通常、船体の横方向(Transverse)に配置され、ロンジ14は、通常、船体の縦方向(Longitudinal)に配置される。ガーダー13は、トランス12と垂直方向に配置され、ロンジ14と平行な被溶接部材10である。   The transformer 12, the girder 13, and the longe 14 are members to be welded 10 having a large surface area as compared with other members (for example, the color plate 15) among the upper surface members of the outer plate 11. The transformer 12 is usually arranged in the transverse direction of the hull, and the longe 14 is usually arranged in the longitudinal direction of the hull. The girder 13 is a member to be welded 10 that is arranged in a direction perpendicular to the transformer 12 and parallel to the longe 14.

そして、ロンジ14は、トランス12及びガーダー13に比較して、高さの違いで判断する。図3(c)に示す通り、所定の高さの規定値Lを基準として低い被溶接部材10をロンジ14、高い被溶接部材10をトランス12又はガーダー13とするが、ロンジ14と平行の被溶接部材10をガーダー13とする。   The longe 14 makes a determination based on a difference in height as compared with the transformer 12 and the girder 13. As shown in FIG. 3 (c), the lower welded member 10 is the longe 14 and the higher welded member 10 is the transformer 12 or the girder 13 with reference to the predetermined value L of the predetermined height. The welding member 10 is a girder 13.

トランス12と表面同士で接触する被溶接部材10をカラープレート15とする。また、スチフナ16は、トランス12とロンジ14と接合する被溶接部材10である。   A member to be welded 10 that comes into contact with the transformer 12 on its surface is a color plate 15. The stiffener 16 is a member to be welded 10 that joins the transformer 12 and the longe 14.

図4は、記憶部4に登録された各被溶接部材10の組合せ表である。表から、例えば、外板11は、トランス12とカラープレート15と接合し、トランス12はカラープレート15とスチフナ16と接合することが理解できる。   FIG. 4 is a combination table of the welded members 10 registered in the storage unit 4. From the table, for example, it can be understood that the outer plate 11 is joined to the transformer 12 and the color plate 15, and the transformer 12 is joined to the color plate 15 and the stiffener 16.

溶接される各被溶接部材10の組合せの具体的一例を説明する。図5は、実施例1で、外板11とトランス12とを溶接する場合を示し、(a)は外板とトランスの接合を示す斜視図であり、(b)は定義される面の説明図である。   A specific example of the combination of the welded members 10 to be welded will be described. FIG. 5 shows a case where the outer plate 11 and the transformer 12 are welded in Example 1, (a) is a perspective view showing joining of the outer plate and the transformer, and (b) is an explanation of a defined surface. FIG.

外板11は、工場100内の床に載置され、外板11の上面11aにトランス12の下面が接合する。また、トランス12において、板厚方向の面を第1の面20、第1の面20と直交する面を第2の面21、第1の面20と第2の面が共有するエッジを共有エッジ22と定義する。   The outer plate 11 is placed on the floor in the factory 100, and the lower surface of the transformer 12 is joined to the upper surface 11 a of the outer plate 11. Further, in the transformer 12, the surface in the plate thickness direction is the first surface 20, the surface orthogonal to the first surface 20 is the second surface 21, and the edge shared by the first surface 20 and the second surface is shared. The edge 22 is defined.

第2の面21は、トランス12において面積が広い面であり主面でもある。また、外板11においても上面11aが主面である。   The second surface 21 is a surface having a large area and also a main surface in the transformer 12. Further, also in the outer plate 11, the upper surface 11a is a main surface.

外板11とトランス12の接合において、外板11の上面11aでは、上方向に法線ベクトルA(矢印A参照)が存在し、トランス12の第1の面20から下方向に法線ベクトルAと平行な法線ベクトルB(矢印B参照)が存在する。   In the joining of the outer plate 11 and the transformer 12, a normal vector A (see arrow A) exists on the upper surface 11 a of the outer plate 11, and the normal vector A extends downward from the first surface 20 of the transformer 12. Normal vector B (see arrow B) is present.

図6は、実施例2で、外板11とカラープレート15とを溶接する場合を示し、図6(a)は、正面斜視図、図6(b)は背面斜視図である。実施例1と同様に、外板11の上面11aにカラープレート15の下面が接合する。また、カラープレート15において、板厚方向の面を第1の面20、第1の面20と直交する面を第2の面21、第1の面20と第2の面が共有するエッジを共有エッジ22と実施例1と同様に定義する。また、同様に、カラープレート15の第1の面20から下方向に法線ベクトルAと平行な法線ベクトルBが存在する。   6A and 6B show a case where the outer plate 11 and the color plate 15 are welded in the second embodiment. FIG. 6A is a front perspective view and FIG. 6B is a rear perspective view. Similar to the first embodiment, the lower surface of the color plate 15 is joined to the upper surface 11 a of the outer plate 11. Further, in the color plate 15, the surface in the thickness direction is the first surface 20, the surface orthogonal to the first surface 20 is the second surface 21, and the edge shared by the first surface 20 and the second surface is shared. The definition is the same as the shared edge 22 and the first embodiment. Similarly, a normal vector B parallel to the normal vector A exists downward from the first surface 20 of the color plate 15.

図7(a)は、実施例3でトランス12とガーダー13とを溶接する場合を示す正面斜視図、(b)は、実施例4で、トランス12とスチフナ16とを溶接する場合を示す正面斜視図である。   7A is a front perspective view showing a case where the transformer 12 and the girder 13 are welded in the third embodiment, and FIG. 7B is a front view showing a case where the transformer 12 and the stiffener 16 are welded in the fourth embodiment. It is a perspective view.

実施例3では、ガーダー13の主面13aにトランス12の第1の面20が接合し、第1の面20と直交する面を第2の面21、第1の面20と第2の面21が共有するエッジを共有エッジ22と実施例1と同様に定義する。また、同様に、トランス12の第1の面20から横方向に法線ベクトルAと平行な法線ベクトルBが存在する。   In the third embodiment, the first surface 20 of the transformer 12 is joined to the main surface 13a of the girder 13, and the surface orthogonal to the first surface 20 is the second surface 21, the first surface 20 and the second surface. The edge shared by 21 is defined in the same way as the shared edge 22 and the first embodiment. Similarly, there is a normal vector B parallel to the normal vector A in the lateral direction from the first surface 20 of the transformer 12.

実施例4では、トランス12の主面12aにスチフナ16の第1の面20が接合し、第1の面20と直交する面を第2の面21、第1の面20と第2の面が共有するエッジを共有エッジ22と実施例1と同様に定義する。また、同様に、スチフナ16の第1の面20から横方向に法線ベクトルAと平行な法線ベクトルBが存在する。   In the fourth embodiment, the first surface 20 of the stiffener 16 is joined to the main surface 12a of the transformer 12, and the surface orthogonal to the first surface 20 is defined as the second surface 21, and the first surface 20 and the second surface. Are defined in the same way as the shared edge 22 and the first embodiment. Similarly, there is a normal vector B parallel to the normal vector A in the lateral direction from the first surface 20 of the stiffener 16.

本実施形態の溶接パスの特定方法は、船体を構成する少なくとも二つの被溶接部材を溶接する溶接パスを特定する方法であり、第1実施形態の特定方法は、以下のステップで行われる。実施例1から実施例4は、当該ステップで行われ、実施例1の外板11とトランス12の組合せを例として説明する。フローチャート図は、図8を参照。   The identification method of the welding path of this embodiment is a method of identifying a welding path for welding at least two members to be welded constituting the hull, and the identification method of the first embodiment is performed by the following steps. The first to fourth embodiments are performed in this step, and the combination of the outer plate 11 and the transformer 12 according to the first embodiment will be described as an example. Refer to FIG. 8 for a flowchart diagram.

コンピュータ2の記憶部4に記憶された3次元CADデータにおける被溶接部材10の形状から、制御部3は、図4に示された組合せ表を参酌して、互いに接触し得る二つの被溶接部材10である外板(第1の被溶接部材)11とトランス(第2の被溶接部材)12を特定する(ステップS1)。そして、コンピュータ2に制御される溶接ロボット1は、当該二つの被溶接部材10を溶接する自動溶接機である。   From the shape of the member to be welded 10 in the 3D CAD data stored in the storage unit 4 of the computer 2, the control unit 3 refers to the combination table shown in FIG. An outer plate (first member to be welded) 11 and a transformer (second member to be welded) 12 which are 10 are specified (step S1). The welding robot 1 controlled by the computer 2 is an automatic welding machine that welds the two welded members 10.

次に、制御部3は、外板11の一つの面(上面11a)に接触するとともに、一つの面の法線ベクトルAに平行な法線ベクトルBを有するトランス12の第1の面20を抽出する(ステップS2)。即ち、トランス12の面の内、外板11と面接触する面(第1の面20)を取得する。取得方法は、法線ベクトルに着目し互いに平行な法線ベクトル(A及びB)のある面(第1の面20)を特定する。   Next, the control unit 3 contacts the first surface 20 of the transformer 12 having a normal vector B parallel to the normal vector A of one surface while contacting one surface (upper surface 11a) of the outer plate 11. Extract (step S2). That is, the surface (first surface 20) that is in surface contact with the outer plate 11 among the surfaces of the transformer 12 is acquired. The acquisition method focuses on the normal vector and identifies a surface (first surface 20) having normal vectors (A and B) parallel to each other.

そして、制御部3は、トランス12の第2の面21を抽出する(ステップS3)。   Then, the control unit 3 extracts the second surface 21 of the transformer 12 (Step S3).

さらに、制御部3は、第1の面20および第2の面21が共有する共有エッジ22を抽出する(ステップS4)。   Further, the control unit 3 extracts the shared edge 22 shared by the first surface 20 and the second surface 21 (step S4).

そして、制御部3は、共有エッジに22対応して、外板11およびトランス12を溶接する溶接パス30を特定する(ステップS5)。   And the control part 3 specifies the welding path | pass 30 which welds the outer plate | board 11 and the trans | transformer 12 corresponding to the shared edge 22 (step S5).

図9は、実施例5で、トランス12とカラープレート15を溶接する場合を示し、(a)は正面斜視図、(b)は背面斜視図である。図9(a)ではトランス12の側面である主面12aにカラープレート15の第1の面20が接触する。第1の面20に接触するトランス12の主面12aを接触面23、接触面23に重なる部分をエッジ24と定義する。また、図9(b)では、カラープレート15の側面である主面15aにトランス12の第1の面20が接触する。第1の面20に接触するカラープレート15の主面15aを接触面23、接触面23に重なる部分をエッジ24と定義する。   9A and 9B show a case where the transformer 12 and the color plate 15 are welded in the fifth embodiment, where FIG. 9A is a front perspective view and FIG. 9B is a rear perspective view. In FIG. 9A, the first surface 20 of the color plate 15 is in contact with the main surface 12 a that is the side surface of the transformer 12. The main surface 12 a of the transformer 12 that contacts the first surface 20 is defined as a contact surface 23, and a portion that overlaps the contact surface 23 is defined as an edge 24. Further, in FIG. 9B, the first surface 20 of the transformer 12 contacts the main surface 15 a that is the side surface of the color plate 15. The main surface 15 a of the color plate 15 that contacts the first surface 20 is defined as a contact surface 23, and a portion that overlaps the contact surface 23 is defined as an edge 24.

本実施形態の溶接パスの特定方法は、船体を構成する少なくとも二つの被溶接部材を溶接する溶接パスを特定する方法であり、第2実施形態の特定方法は、以下のステップで行われる。実施例5は、当該ステップで行われ、実施例5のトランス12とカラープレート15の組合せに関し図9(a)を例として説明する。フローチャート図は、図10を参照。   The identification method of the welding path of this embodiment is a method of identifying a welding path for welding at least two members to be welded constituting the hull, and the identification method of the second embodiment is performed by the following steps. The fifth embodiment is performed in this step, and the combination of the transformer 12 and the color plate 15 of the fifth embodiment will be described with reference to FIG. See FIG. 10 for a flowchart diagram.

コンピュータ2の記憶部4に記憶された3次元CADデータにおける被溶接部材の形状から、制御部3は、図4に示された組合せ表を参酌して、互いに接触し得るトランス(第1の被溶接部材)12およびカラープレート(第2の被溶接部材)15を特定する(ステップS10)。   From the shape of the member to be welded in the three-dimensional CAD data stored in the storage unit 4 of the computer 2, the control unit 3 refers to the combination table shown in FIG. The welding member 12 and the color plate (second member to be welded) 15 are specified (step S10).

次に、制御部3は、トランス12に接触するカラープレート15の第1の面20である主面を抽出する(ステップS11)。即ち。カラープレート15の面の内、トランス12と面接触する面(第1の面20)を取得する。取得方法は、法線ベクトルに着目し互いに平行な法線ベクトルのある面(第1の面20)を特定する。   Next, the control unit 3 extracts a main surface that is the first surface 20 of the color plate 15 that contacts the transformer 12 (step S11). That is. Of the surfaces of the color plate 15, a surface (first surface 20) that makes surface contact with the transformer 12 is acquired. The acquisition method focuses on the normal vector and identifies a surface (first surface 20) having normal vectors parallel to each other.

そして、制御部3は、トランス12から、第1の面20が接触する接触面23を抽出する(ステップS12)。接触面23は、トランス12の主面12aでもある。   And the control part 3 extracts the contact surface 23 with which the 1st surface 20 contacts from the transformer 12 (step S12). The contact surface 23 is also the main surface 12 a of the transformer 12.

さらに、制御部3は、第1の面20から、接触面23に重なるエッジ24を抽出する(ステップS13)。   Further, the control unit 3 extracts an edge 24 overlapping the contact surface 23 from the first surface 20 (step S13).

そして、制御部3は、エッジ24に対応して、トランス12およびカラープレート15を溶接する溶接パス30を特定する(ステップS14)。即ち、カラープレート15の第1の面20において、トランス12接触面23に乗っているエッジ24を溶接パス候補エッジとする。   And the control part 3 specifies the welding path | pass 30 which welds the trans | transformer 12 and the color plate 15 corresponding to the edge 24 (step S14). That is, on the first surface 20 of the color plate 15, the edge 24 riding on the transformer 12 contact surface 23 is set as a welding path candidate edge.

第1実施形態及び第2実施形態として説明した上述のステップは、溶接パスの特定方法をコンピュータ2に実行させるプログラムであり、溶接ロボット1に教示するための教示プログラムでもある。当該ステップは容易であり、複数の溶接ロボット1を同時並行的に駆動させる場合、有利である。   The above-described steps described as the first embodiment and the second embodiment are programs for causing the computer 2 to execute the welding path specifying method, and are also teaching programs for teaching the welding robot 1. This step is easy and is advantageous when driving a plurality of welding robots 1 in parallel.

尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

本発明に係る溶接パス特定方法、プログラム、教示プログラム及び溶接ロボットシステムは、少なくとも二つの被溶接部材を正確に特定し、溶接する溶接パスを特定し、複数の溶接ロボットを円滑に駆動させる分野に適用可能である。   The welding path specifying method, program, teaching program, and welding robot system according to the present invention are in the field of accurately specifying at least two members to be welded, specifying a welding path to be welded, and smoothly driving a plurality of welding robots. Applicable.

1 溶接ロボット
2 コンピュータ
3 制御部
4 記憶部
10 被溶接部材
11 外板
12 トランス
13 ガーダー
14 ロンジ
15 カラープレート
16 スチフナ
20 第1の面
21 第2の面
22 共有エッジ
23 接触面
30 溶接パス
DESCRIPTION OF SYMBOLS 1 Welding robot 2 Computer 3 Control part 4 Memory | storage part 10 To-be-welded member 11 Outer plate 12 Transformer 13 Girder 14 Longi 15 Color plate 16 Stiffener 20 1st surface 21 2nd surface 22 Shared edge 23 Contact surface 30 Welding path

Claims (9)

船体を構成する部材である少なくとも二つの被溶接部材を溶接する溶接パスを特定する溶接パス特定方法であって、
3次元CADデータにおける被溶接部材の形状から、互いに接触し得る第1の被溶接部材および第2の被溶接部材を特定するステップと、
前記第1の被溶接部材の一つの面に接触するとともに、当該一つの面の法線ベクトルに平行な法線ベクトルを有する前記第2の被溶接部材の第1の面を抽出するステップと、
前記第2の被溶接部材の第2の面を抽出するステップと、
前記第1の面および前記第2の面が共有する共有エッジを抽出するステップと、
前記共有エッジに対応して、前記第1の被溶接部材および前記第2の被溶接部材を溶接する溶接パスを特定するステップと、
を含む溶接パス特定方法。
A welding path specifying method for specifying a welding path for welding at least two members to be welded which are members constituting a hull,
Identifying a first welded member and a second welded member that can contact each other from the shape of the welded member in the three-dimensional CAD data;
Extracting a first surface of the second member to be welded that is in contact with one surface of the first member to be welded and has a normal vector parallel to a normal vector of the one surface;
Extracting the second surface of the second member to be welded;
Extracting a shared edge shared by the first surface and the second surface;
Identifying a welding path for welding the first welded member and the second welded member corresponding to the shared edge;
Including welding path identification method.
請求項1に記載の溶接パス特定方法であって、
前記第1の面が前記第2の被溶接部材の板厚面であり、前記第2の面が前記第2の被溶接部材の主面である、溶接パス特定方法。
The welding path specifying method according to claim 1,
The welding path specifying method, wherein the first surface is a plate thickness surface of the second welded member, and the second surface is a main surface of the second welded member.
船体を構成する部材である二つの被溶接部材を溶接する溶接パスを特定する溶接パス特定方法であって、
3次元CADデータにおける被溶接部材の形状から、互いに接触し得る第1の被溶接部材および第2の被溶接部材を特定するステップと、
前記第1の被溶接部材に接触する前記第2の被溶接部材の第1の面を抽出するステップと、
前記第1の被溶接部材から、前記第1の面が接触する接触面を抽出するステップと、
前記第1の面から、前記接触面に重なるエッジを抽出するステップと、
前記エッジに対応して、前記第1の被溶接部材および前記第2の被溶接部材を溶接する溶接パスを特定するするステップと、
を含む溶接パス特定方法。
A welding path specifying method for specifying a welding path for welding two welded members that are members constituting a hull,
Identifying a first welded member and a second welded member that can contact each other from the shape of the welded member in the three-dimensional CAD data;
Extracting a first surface of the second welded member that contacts the first welded member;
Extracting from the first member to be welded a contact surface with which the first surface contacts;
Extracting an edge overlapping the contact surface from the first surface;
Identifying a welding path for welding the first welded member and the second welded member corresponding to the edge;
Including welding path identification method.
請求項3に記載の溶接パス特定方法であって、
前記第1の面が前記第2の被溶接部材の主面であり、前記接触面が前記第1の被溶接部材の主面である、溶接パス特定方法。
The welding path specifying method according to claim 3,
The welding path specifying method, wherein the first surface is a main surface of the second member to be welded, and the contact surface is a main surface of the first member to be welded.
請求項1から4のいずれか1項に記載の溶接パス特定方法であって、
前記第1の被溶接部材および前記第2の被溶接部材が、船体用の外板、トランス、ガーダー、ロンジ、カラープレート、スチフナ、のうち少なくともいずれか一つである、溶接パス特定方法。
A welding path specifying method according to any one of claims 1 to 4,
The welding path specifying method, wherein the first welded member and the second welded member are at least one of a hull outer plate, a transformer, a girder, a longe, a color plate, and a stiffener.
請求項1から5のいずれか1項に記載の溶接パス特定方法をコンピュータに実行させるためのプログラム。   A program for causing a computer to execute the welding path specifying method according to any one of claims 1 to 5. 請求項1から5のいずれか1項に記載の溶接パス特定方法により特定した溶接パスを溶接ロボットに教示するための教示プログラム。   A teaching program for teaching a welding robot the welding path specified by the welding path specifying method according to any one of claims 1 to 5. 船体を構成する部材である少なくとも二つの被溶接部材を溶接する溶接ロボットと、
前記溶接ロボットの動作を、所定の動作プログラムに則って制御するコンピュータと、
を含む溶接ロボットシステムであって、
前記コンピュータは、
3次元CADデータにおける被溶接部材の形状から、互いに接触し得る第1の被溶接部材および第2の被溶接部材を特定し、
前記第1の被溶接部材の一つの面に接触するとともに、当該一つの面の法線ベクトルに平行な法線ベクトルを有する前記第2の被溶接部材の第1の面を抽出し、
前記第2の被溶接部材の第2の面を抽出し、
前記第1の面および前記第2の面が共有する共有エッジを抽出し、
前記共有エッジに対応して、前記第1の被溶接部材および前記第2の被溶接部材を溶接する溶接パスを特定する、
溶接ロボットシステム。
A welding robot for welding at least two members to be welded that are members constituting the hull;
A computer for controlling the operation of the welding robot in accordance with a predetermined operation program;
A welding robot system including:
The computer
From the shape of the member to be welded in the three-dimensional CAD data, the first member to be welded and the second member to be welded that can contact each other are specified,
Extracting the first surface of the second welded member that is in contact with one surface of the first welded member and has a normal vector parallel to the normal vector of the one surface;
Extracting the second surface of the second member to be welded;
Extracting a shared edge shared by the first surface and the second surface;
Corresponding to the shared edge, a welding path for welding the first welded member and the second welded member is specified.
Welding robot system.
船体を構成する部材である少なくとも二つの被溶接部材を溶接する溶接ロボットと、
前記溶接ロボットの動作を、所定の動作プログラムに則って制御するコンピュータと、
を含む溶接ロボットシステムであって、
前記コンピュータは、
3次元CADデータにおける被溶接部材の形状から、互いに接触し得る第1の被溶接部材および第2の被溶接部材を特定し、
前記第1の被溶接部材に接触する前記第2の被溶接部材の第1の面を抽出し、
前記第1の被溶接部材から、前記第1の面が接触する接触面を抽出し、
前記第1の面から、前記接触面に重なるエッジを抽出し、
前記エッジに対応して、前記第1の被溶接部材および前記第2の被溶接部材を溶接する溶接パスを特定する、
溶接ロボットシステム。
A welding robot for welding at least two members to be welded that are members constituting the hull;
A computer for controlling the operation of the welding robot in accordance with a predetermined operation program;
A welding robot system including:
The computer
From the shape of the member to be welded in the three-dimensional CAD data, the first member to be welded and the second member to be welded that can contact each other are specified,
Extracting the first surface of the second welded member that contacts the first welded member;
From the first member to be welded, a contact surface with which the first surface contacts is extracted,
Extracting an edge overlapping the contact surface from the first surface;
Corresponding to the edge, a welding path for welding the first welded member and the second welded member is specified.
Welding robot system.
JP2017054688A 2017-03-21 2017-03-21 Welding path identification method, program, teaching program and welding robot system Active JP6817122B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017054688A JP6817122B2 (en) 2017-03-21 2017-03-21 Welding path identification method, program, teaching program and welding robot system
PCT/JP2018/007373 WO2018173657A1 (en) 2017-03-21 2018-02-27 Welding path specification method, program, teaching program and welding robot system
CN201880019955.8A CN110476131A (en) 2017-03-21 2018-02-27 Welding bead determines method, program, tutorial program and welding robot system
KR1020197027388A KR102228719B1 (en) 2017-03-21 2018-02-27 Welding pass specific method, program, teaching program and welding robot system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017054688A JP6817122B2 (en) 2017-03-21 2017-03-21 Welding path identification method, program, teaching program and welding robot system

Publications (2)

Publication Number Publication Date
JP2018156566A true JP2018156566A (en) 2018-10-04
JP6817122B2 JP6817122B2 (en) 2021-01-20

Family

ID=63586368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017054688A Active JP6817122B2 (en) 2017-03-21 2017-03-21 Welding path identification method, program, teaching program and welding robot system

Country Status (4)

Country Link
JP (1) JP6817122B2 (en)
KR (1) KR102228719B1 (en)
CN (1) CN110476131A (en)
WO (1) WO2018173657A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230020349A (en) 2021-08-03 2023-02-10 가부시키가이샤 고베 세이코쇼 Weld line generation device, corresponding method and corresponding program
KR20230127157A (en) 2022-02-24 2023-08-31 가부시키가이샤 고베 세이코쇼 Work measuring method, work measuring system, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10187223A (en) * 1996-12-26 1998-07-14 Nkk Corp Automatic preparation system for welding robot operation program
JP2001282335A (en) * 2000-03-31 2001-10-12 Hitachi Zosen Corp Cad data preparation method for weld component
JP2002035939A (en) * 2000-07-24 2002-02-05 Kawasaki Heavy Ind Ltd Method and system for designating division of weld line
JP2002321057A (en) * 2001-04-27 2002-11-05 Ishikawajima Harima Heavy Ind Co Ltd Control data generation system for automatic welding device and method therefor
JP2010184278A (en) * 2009-02-13 2010-08-26 Kobe Steel Ltd Method of selecting weld line

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3065166B2 (en) 1992-02-20 2000-07-12 石川島播磨重工業株式会社 Positioning device for frame structures
KR100230147B1 (en) * 1997-08-28 1999-11-15 이해규 A welding method for curved element
DE102007008598A1 (en) * 2007-02-19 2008-08-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Automatic programming of robots to weld stapled profiles onto micropanels using digital image capture
JP5327709B2 (en) 2009-04-27 2013-10-30 株式会社Ihi Welding robot system for large frame structures
JP5190023B2 (en) * 2009-05-20 2013-04-24 株式会社神戸製鋼所 Welding setting device, welding robot system, and welding setting program
JP5823278B2 (en) * 2011-12-13 2015-11-25 株式会社東芝 Weld bead shaping device and shaping method thereof
EP3325226B1 (en) * 2015-07-23 2022-10-26 ABB Schweiz AG Method and apparatus of scheduling welding operations
CN105665970B (en) * 2016-03-01 2018-06-22 中国科学院自动化研究所 For the path point automatic creation system and method for welding robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10187223A (en) * 1996-12-26 1998-07-14 Nkk Corp Automatic preparation system for welding robot operation program
JP2001282335A (en) * 2000-03-31 2001-10-12 Hitachi Zosen Corp Cad data preparation method for weld component
JP2002035939A (en) * 2000-07-24 2002-02-05 Kawasaki Heavy Ind Ltd Method and system for designating division of weld line
JP2002321057A (en) * 2001-04-27 2002-11-05 Ishikawajima Harima Heavy Ind Co Ltd Control data generation system for automatic welding device and method therefor
JP2010184278A (en) * 2009-02-13 2010-08-26 Kobe Steel Ltd Method of selecting weld line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230020349A (en) 2021-08-03 2023-02-10 가부시키가이샤 고베 세이코쇼 Weld line generation device, corresponding method and corresponding program
KR20230127157A (en) 2022-02-24 2023-08-31 가부시키가이샤 고베 세이코쇼 Work measuring method, work measuring system, and program

Also Published As

Publication number Publication date
WO2018173657A1 (en) 2018-09-27
KR102228719B1 (en) 2021-03-16
JP6817122B2 (en) 2021-01-20
KR20190121329A (en) 2019-10-25
CN110476131A (en) 2019-11-19

Similar Documents

Publication Publication Date Title
US9990535B2 (en) Pallet detection using units of physical length
EP3863791B1 (en) System and method for weld path generation
CN110475649B (en) Operation program correction method, structure assembly method, medium, and welding robot system
US20070032905A1 (en) Robot programming device
EP2783815A2 (en) Robot system and method for producing to-be-processed material
WO2018173657A1 (en) Welding path specification method, program, teaching program and welding robot system
JP5737310B2 (en) Production system, robot cell apparatus, and product production method
US20180056357A1 (en) Production system with a manipulation device
EP3630404B1 (en) An apparatus and a method for automated seam welding of a work piece comprising a base plate with a pattern of upstanding profiles
KR102221884B1 (en) Welding path information acquisition method and welding robot system
CN110977226A (en) Method and system for welding carriage box plate
JP5940820B2 (en) Thermal cutting apparatus, thermal cutting method, and composite processing method
KR20180076966A (en) Method for detecting workpiece welding line by welding robot
KR101640038B1 (en) Parametric modeling System and Method for robot OLP by block unit
JP5992709B2 (en) Spot welding method, spot welding apparatus and spot welding program
CN104029149B (en) Aircraft product back segment parts mobile positioning apparatus
WO2016139888A1 (en) Operation command verification method, processing device control method, recording medium on which operation command verification program is recorded, and operation command verification system
CN115256019B (en) Automatic assembling and aligning device for support plates
KR102651442B1 (en) Manufacturing system for a cowl cross using laser vision sensor
JPH0890233A (en) Operation control method of welding robot
JP5892168B2 (en) Robot system
KR20140024986A (en) Apparatus and method for welding characters using multi-link robot
KR20240068455A (en) Automation system for welding steel pipe based on collaborative robot
KR20240045594A (en) Curved Block Welding Method Using 3D Depth Measurement Sensor
JP2018039050A (en) Cutting method of thick steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201224

R150 Certificate of patent or registration of utility model

Ref document number: 6817122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150