JP2018155681A - Ground short discrimination device - Google Patents

Ground short discrimination device Download PDF

Info

Publication number
JP2018155681A
JP2018155681A JP2017054147A JP2017054147A JP2018155681A JP 2018155681 A JP2018155681 A JP 2018155681A JP 2017054147 A JP2017054147 A JP 2017054147A JP 2017054147 A JP2017054147 A JP 2017054147A JP 2018155681 A JP2018155681 A JP 2018155681A
Authority
JP
Japan
Prior art keywords
short
circuit
ground
point
khz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017054147A
Other languages
Japanese (ja)
Inventor
雄樹 田中
Yuki Tanaka
雄樹 田中
今山 貴文
Takafumi Imayama
貴文 今山
賢宏 林
Takahiro Hayashi
賢宏 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiden Co Inc
Original Assignee
Daiden Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiden Co Inc filed Critical Daiden Co Inc
Priority to JP2017054147A priority Critical patent/JP2018155681A/en
Publication of JP2018155681A publication Critical patent/JP2018155681A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ground short discrimination device capable of discriminating simply and accurately the presence or absence of a short circuit grounding tool connected between an electric grid and a power failure zone.SOLUTION: A ground short discrimination device is a short circuit grounding tool having a short line for shortening a power distribution line and discriminates a removing situation of the short circuit grounding tools which are arranged at one point and the other point, respectively. The ground short discrimination device includes: transmission means for applying an AC voltage at least to one power distribution line at the one point to transmit a current; receiving means for receiving a current flowing through the other one or more power distribution line(s) at the one point; and discrimination means for discriminating a removing situation of the short circuit grounding tool at the other point based on the current received by the receiving means.SELECTED DRAWING: Figure 1

Description

本発明は、配電線停電区間に接続された短絡接地器具の取り外し状況を判別する接地短絡判別装置に関し、特に、外部環境の影響を抑えて、確実に短絡接地器具の取り外し状況を判別可能な接地短絡判別装置に関する。   The present invention relates to a grounding short-circuit determination device that determines the removal status of a short-circuit grounding device connected to a power line power outage section, and in particular, grounding that can reliably determine the removal status of a short-circuiting grounding device while suppressing the influence of the external environment. The present invention relates to a short circuit determination device.

高圧配電線において、バイパス工事等の工事を行う際に、作業している工事区間が誤って充電した場合の作業者の安全確保を目的に、工事区間内に接地を付けるための短絡接地器具が、高圧配電線に接続されて利用されている。この短絡接地器具は、一時的に接続される器具であり、工事後には、作業者によって取り外される。   In high-voltage distribution lines, there is a short-circuit grounding device for grounding the work section to ensure the safety of workers when the work section being worked on is accidentally charged when performing work such as bypass construction. Connected to high-voltage distribution lines. This short-circuit grounding device is a temporarily connected device, and is removed by the operator after the construction.

しかし、工事後に、短絡接地器具を取り外すことを作業者が忘れて、配電線路に接続されたままに置かれる場合があり、このような場合には、短絡接地器具が配電線路に接続されたままの状態で、送電が再開されることによって、地絡・短絡事故や、波及事故(変電所の同一フィーダー全ての需要家の停電)の原因となり重大な問題となっている。このような短絡接地器具の外し忘れが起こる原因としては、作業者の目視点検という人為的確認作業に依存していることが大きな要因となっている。   However, after construction, the operator may forget to remove the short-circuit grounding device and leave it connected to the distribution line. In such a case, the short-circuit grounding device remains connected to the distribution line. When power transmission is resumed in this condition, ground faults / short-circuit accidents and spillover accidents (power outages of all customers at the same substation feeder) have become serious problems. As a cause of forgetting to remove such a short-circuit grounding device, a major factor is that it depends on an artificial confirmation work such as an operator's visual inspection.

このような工事後の短絡接地器具の外し忘れを未然に防ぐために、様々な対策が検討されている。   In order to prevent such forgetting to remove the short-circuit grounding equipment after construction, various measures have been studied.

例えば、対地間に交流電圧を印加し、対地間で電流を検出するという方法がある。これは、短絡接地器具を一括接地している接地線に、交流電圧を生成する送信器と導体に非接触で交流電圧を印加するCTにより、短絡接地器具の接地線を介して対地間に交流電圧を印加し、非接触電流センサと表示機能をもつ受信器により、対地間に流れる電流を検出する方法である。   For example, there is a method of applying an AC voltage between the ground and detecting a current between the ground. This is because an AC voltage is applied to a grounding wire that grounds a short-circuit grounding device in a contactless manner with a transmitter that generates an AC voltage and a conductor, and an AC voltage is connected to the ground via the grounding wire of the short-circuiting grounding device In this method, a voltage is applied and a current flowing between the ground is detected by a non-contact current sensor and a receiver having a display function.

しかし、この方法では、停電区間内の柱上変圧器の静電容量及び配電線の対地静電容量の影響を受け、対地間で検出された電流を正確に判定できない。さらに、大地の抵抗は、地質、季節、天候による変動があるため、閾値を設定できないことから、大地抵抗を用いての判定は困難となっている。   However, this method cannot accurately determine the current detected between the ground due to the influence of the capacitance of the pole transformer and the ground capacitance of the distribution line in the power outage section. Furthermore, since the resistance of the ground varies depending on the geology, season, and weather, a threshold cannot be set, and therefore determination using the ground resistance is difficult.

この他にも、短絡接地器具の接地線を大地から浮かせることによって、電線‐大地間でメガーリングを実施することも考えられなくもないが、短絡接地器具を大地から浮かせることは、停電作業終了時に実施する動作であって、労働安全規則にも反するものであり、安全面を考慮すれば現実的ではない。   In addition to this, it is unthinkable to perform a meggering between the wire and the ground by floating the grounding wire of the short-circuiting grounding device from the ground. It is an action that is sometimes carried out, which is against the occupational safety regulations, and is not realistic considering safety aspects.

また、接地抵抗を測定することも考えられるが(例えば、特許文献1及び2参照)、停電区間内の柱上変圧器の静電容量及び配電線の対地静電容量の影響を受けてしまい、正確に接地抵抗を測定できない。また、大地抵抗は地質により大きく異なることから、閾値を設定できずに、所望とする判定が困難となる。   In addition, although it is conceivable to measure the ground resistance (see, for example, Patent Documents 1 and 2), it is affected by the capacitance of the pole transformer in the power outage section and the ground capacitance of the distribution line, The ground resistance cannot be measured accurately. In addition, since the earth resistance greatly varies depending on the geology, the threshold value cannot be set, and it becomes difficult to make a desired determination.

このようなことから、配電線停電区間に接続される短絡接地器具の工事後の外し忘れを防ぎ、短絡接地器具が配電線路に接続されたまま送電を再開することによる地絡・短絡事故、及び波及事故の発生を防止できる接地短絡判別装置の実現が望まれている。 For this reason, it is possible to prevent forgetting to remove the short-circuit grounding equipment connected to the distribution line power outage section after construction, ground fault / short-circuit accident due to restarting power transmission while the short-circuit grounding equipment is connected to the distribution line, and Realization of a ground short-circuit discrimination device capable of preventing the occurrence of a spillover accident is desired.

このような従来の接地短絡判別装置としては、作業終了後に短絡接地器具を外し忘れた場合に警報を発する短絡接地器具があり、例えば、受電設備を構成する電力線と接地線との間に接続される短絡接地器具であって、前記電力線と着脱する接続具を有した複数本の電力線用短絡部と、前記接地線と着脱する接地金具を有し前記各電力線用短絡部と導通した接地部と、を備え、 発光部、又は鳴動部から成る警報手段と、該警報手段に電力を供給する電源と、を備えたことを特徴とする短絡接地器具がある(特許文献3参照)。   As such a conventional ground / short-circuit determination device, there is a short-circuit / grounding device that issues an alarm when the user forgets to remove the short-circuit / grounding device after the work is completed. A plurality of power line short-circuit parts having a connection tool that can be attached to and detached from the power line, and a ground part that has a grounding fitting to be attached to and detached from the ground line and that is electrically connected to the power line short-circuit part. There is a short-circuit grounding device characterized by comprising an alarm means comprising a light emitting part or a ringing part, and a power source for supplying electric power to the alarm means (see Patent Document 3).

特開2001−242206号公報JP 2001-242206 A 特開2008−39426号公報JP 2008-39426 A 特開2008−130297号公報JP 2008-130297 A

しかし、従来の接地短絡判別装置は、例えば、上記特許文献3のように、短絡接地器具が外し忘れられた場合に警報を発する短絡接地器具もあるが、停電区間は一般には長距離にわたることから、多くの個数の警報手段が必要となり、その結果、警報によって特定される場所が不明確となり、警報が発せられたとしても該当する場所の特定が困難となる。さらに、1箇所でも当該短絡接地器具以外の短絡接地器具で作業接地されている場合には、警報手段の無い箇所が存在することから、十分に効果を発揮できない。さらに、確認点から遠隔地にある他点における短絡接地器具の存在の有無については、検出する方法が無い。   However, the conventional ground / short-circuit determination device includes a short-circuit / grounding device that issues an alarm when the short-circuit / grounding device is forgotten to be removed, as in, for example, Patent Document 3 described above, but the power outage section generally extends over a long distance. Therefore, a large number of alarm means are required, and as a result, the location specified by the alarm becomes unclear, and even if an alarm is issued, it is difficult to specify the corresponding location. Furthermore, when the work is grounded with a short-circuit grounding device other than the short-circuit grounding device, the effect cannot be sufficiently exhibited because there is a portion without an alarm means. Further, there is no method for detecting the presence or absence of a short-circuit grounding device at another point remote from the confirmation point.

このように、従来の接地短絡判別装置では、停電区間内の複数の短絡接地器具の有無を判別する際に、接地抵抗の影響や、柱上変圧器の一次巻線‐二次巻線間及び外装間の静電容量、配電線の対地静電容量等の外部環境の影響を受けるものにとどまっており、正確に接地短絡判別ができるものはこれまでのところ見当たらない。   As described above, in the conventional ground / short-circuit determination device, when determining the presence / absence of a plurality of short-circuit / grounding devices in the power outage section, the influence of the ground resistance, between the primary winding and the secondary winding of the pole transformer, and It is limited to those affected by the external environment such as the capacitance between the exterior and the capacitance of the distribution line to the ground.

本発明は、前記課題を解消するためになされたものであり、配電線停電区間に接続される短絡接地器具の有無を簡易に且つ高精度に判別することを可能とする接地短絡判別装置を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and provides a ground / short-circuit determination device that can easily and accurately determine the presence / absence of a short-circuit / grounding device connected to a distribution line power outage section. The purpose is to do.

本発明者は、鋭意研究の結果、他点(確認点以外)の短絡接地器具の有無を、接地抵抗及び柱上変圧器に影響されることなく判別できる手法を見出し、短絡接地器具の有無を確実に判別できる新しいタイプの優れた接地短絡判別装置を導き出した。   As a result of diligent research, the present inventor has found a method capable of determining the presence or absence of other short-circuit grounding equipment (other than the confirmation point) without being affected by the grounding resistance and the pole transformer, A new type of excellent ground short-circuit discrimination device that can be reliably identified has been derived.

すなわち、本願に開示する接地短絡判別装置は、配電線路を短絡させる短絡線を有する短絡接地器具であって、一の地点及び他の地点に各々配置された短絡接地器具の取り外し状況を判別するための接地短絡判別装置において、前記一の地点で、少なくとも1つの配電線路に対して、交流電圧を印加して電流を送信する送信手段と、前記一の地点で、他の一又は複数の配電線路に流れる電流を受信する受信手段と、前記受信手段により受信された電流に基づいて、前記他の地点における前記短絡接地器具の取り外し状況を判別する判別手段と、を備えるものである。   That is, the ground / short-circuit determination device disclosed in the present application is a short-circuit grounding device having a short-circuit line that short-circuits the distribution line, and for determining the removal status of the short-circuiting ground devices respectively disposed at one point and another point. In the ground short-circuit determination device, at one point, at least one distribution line, transmitting means for applying an AC voltage to transmit current, and at the one point, one or more other distribution lines Receiving means for receiving the current flowing through the receiving means, and discriminating means for discriminating the removal status of the short-circuit grounding device at the other point based on the current received by the receiving means.

このように、前記一の地点で、送信手段が交流電圧を印加して電流を送信し、前記受信手段により受信された電流に基づいて、判別手段が、前記他の地点における前記短絡接地器具の取り外し状況を判別することから、接地抵抗の影響を受けずに、柱上変圧器の巻線のインダクタンス、一次巻線‐二次巻線間及び外装間の静電容量、配電線の対地静電容量の影響を抑えて、高い精度で、前記他の地点における前記短絡接地器具の取り外し状況を判別することができる。   In this way, at the one point, the transmitting unit applies an AC voltage to transmit current, and based on the current received by the receiving unit, the determining unit is configured to detect the short-circuit grounding device at the other point. Since the removal status is determined, the inductance of the pole transformer winding, the capacitance between the primary and secondary windings and the exterior, and the electrostatic capacitance of the distribution line are not affected by the ground resistance. It is possible to determine the removal status of the short-circuit grounding device at the other point with high accuracy while suppressing the influence of the capacity.

また、本願に開示する接地短絡判別装置は、必要に応じて、前記判別手段が、前記受信手段により受信された電流からインピーダンスを算出し、当該インピーダンスに基づいて、前記他の地点における前記短絡接地器具の取り外し状況を判別するものである。このように、前記判別手段が、前記一の地点以外に短絡接地器具が存在しているか否かを、前記受信手段により受信された電流から算出したインピーダンスに基づいて判別することから、接地抵抗の影響を受けることなく前記短絡接地器具の取り外し状況を正確に判別できることとなり、より高い精度で、前記他の地点における前記短絡接地器具の取り外し状況を判別することができる。   Further, in the ground / short-circuit determination device disclosed in the present application, the determination unit calculates an impedance from the current received by the reception unit, if necessary, and the short-circuit ground at the other point based on the impedance. This is to determine the removal status of the instrument. As described above, since the determination unit determines whether or not a short-circuit grounding device exists other than the one point based on the impedance calculated from the current received by the reception unit, The removal status of the short-circuit grounding device can be accurately determined without being affected, and the removal status of the short-circuiting grounding device at the other point can be determined with higher accuracy.

また、本願に開示する接地短絡判別装置は、必要に応じて、前記送信手段が、1kHz〜30kHzの交流電圧を印加して電流を送信するものである。このように、前記送信手段による交流電圧の周波数が1kHz〜30kHzであることから、前記受信手段が、最適に、外部のインダクタンスの影響及び静電容量の影響が抑制された電流を受信できることとなり、前記判別手段によって、さらに高い精度で、前記他の地点における前記短絡接地器具の取り外し状況を判別することができる。   Further, in the ground short-circuit determination device disclosed in the present application, the transmission unit applies an AC voltage of 1 kHz to 30 kHz and transmits current as necessary. Thus, since the frequency of the alternating voltage by the transmitting means is 1 kHz to 30 kHz, the receiving means can receive the current with the influence of the external inductance and the influence of the electrostatic capacity suppressed optimally, The determination means can determine the removal status of the short-circuit grounding device at the other point with higher accuracy.

また、本願に開示する接地短絡判別装置は、必要に応じて、前記送信手段が、1kHz〜10kHzの交流電圧を印加して電流を送信し、前記判別手段が、前記他の地点における前記短絡接地器具の取り外し状況が判別できない場合には、前記送信手段により、さらに10kHz〜30kHzの交流電圧を印加する制御を行う判別制御部を備えるものである。このように、先ずは前記判別手段がより変化量を検知し易い(判別し易い)周波数1kHz〜10kHzの交流電圧の印加によって、確度の高い判別が行われ、当該判別ができない場合であっても、周波数10kHz〜30kHzの交流電圧によって追加で判別ができることとなり、より確実に、前記他の地点における前記短絡接地器具の取り外し状況を判別することができる。   Further, in the ground short circuit determination device disclosed in the present application, the transmission unit applies an AC voltage of 1 kHz to 10 kHz as necessary to transmit a current, and the determination unit transmits the short circuit ground at the other point as necessary. When the detachment status of the appliance cannot be determined, the transmission means further includes a determination control unit that performs control to apply an AC voltage of 10 kHz to 30 kHz. As described above, first, even when the discrimination means makes a discrimination with high accuracy by applying an AC voltage having a frequency of 1 kHz to 10 kHz, which makes it easier to detect the change amount (easier to discriminate). Further, it is possible to additionally discriminate by an AC voltage having a frequency of 10 kHz to 30 kHz, and it is possible to more reliably determine the removal status of the short-circuit grounding device at the other point.

また、本願に開示する接地短絡判別装置は、必要に応じて、前記送信手段が、複数の前記配電線路に対して、前記交流電圧を同時に印加して電流を送信するものである。このように、複数の前記配電線路に同時に電流を送信することから、前記配電線路の各々1つごとに電流を送信する場合よりも、作業負担が抑えられ、時間的にもより効率的で且つ正確に判別を行うことができる。   Moreover, in the ground short-circuit determination device disclosed in the present application, the transmission unit applies the AC voltage simultaneously to the plurality of distribution lines and transmits a current as necessary. In this way, since the current is simultaneously transmitted to the plurality of distribution lines, the work load is suppressed and the time is more efficient than when the current is transmitted for each of the distribution lines. The discrimination can be performed accurately.

本発明の第1の実施形態に係る接地短絡判別装置の構成図を示す。1 is a configuration diagram of a ground short circuit determination device according to a first embodiment of the present invention. FIG. 本発明の第1の実施形態に係る接地短絡判別装置の構成図を示す。1 is a configuration diagram of a ground short circuit determination device according to a first embodiment of the present invention. FIG. 本発明の第1の実施形態に係る接地短絡判別装置において、短絡接地器具の短絡線から配電線路の線間に交流電圧を印加した際に流れる電流の電流経路(矢印a)を説明する説明図を示す。Explanatory drawing explaining the current path (arrow a) of the electric current which flows when applying an alternating voltage between the lines of a distribution line from the short circuit line of a short circuit grounding instrument in the earthing short circuit discrimination device concerning a 1st embodiment of the present invention. Indicates. 本発明の第1の実施形態に係る接地短絡判別装置において、配電線路の線間に交流電圧を印加する場合の等価回路を示す。The ground short-circuit discrimination apparatus according to the first embodiment of the present invention shows an equivalent circuit when an AC voltage is applied between the lines of the distribution line. 本発明の第1の実施形態に係る接地短絡判別装置において、複数の柱上変圧器の一次巻線のインダクタンスの周波数特性の結果を示す。In the ground short circuit discrimination device according to the first embodiment of the present invention, the result of the frequency characteristics of the inductance of the primary windings of a plurality of pole transformers is shown. 本発明の第1の実施形態に係る接地短絡判別装置において、柱上変圧器の一次巻線のインダクタンスのインピーダンス換算値と柱上変圧器の一次巻線のインピーダンス実測値の比較結果を示す。In the ground short circuit discriminating device according to the first embodiment of the present invention, a comparison result of the impedance conversion value of the inductance of the primary winding of the pole transformer and the measured impedance value of the primary winding of the pole transformer is shown. 本発明の第1の実施形態に係る接地短絡判別装置が送信器及び受信器から構成された構成図を示す。1 shows a configuration diagram in which a ground short-circuit determination device according to a first embodiment of the present invention includes a transmitter and a receiver. FIG. 本発明の第1の実施形態に係る接地短絡判別装置が送信器、受信器、及び無線器から構成された構成図を示す。The grounding short circuit discrimination device concerning the 1st embodiment of the present invention shows the lineblock diagram comprised from the transmitter, the receiver, and the radio. 本発明の第2の実施形態に係る接地短絡判別装置の構成図を示す。The block diagram of the earth | ground short-circuit determination apparatus which concerns on the 2nd Embodiment of this invention is shown.

(第1の実施形態)
本願の第1の実施形態に係る接地短絡判別装置を、図1の構成図に従い説明する。
(First embodiment)
A ground short-circuit determination device according to a first embodiment of the present application will be described with reference to the block diagram of FIG.

第1の実施形態に係る接地短絡判別装置は、図1に示すように、配電線路100を短絡させる短絡線201を有する短絡接地器具200であって、一の地点及び他の地点に各々配置された短絡接地器具200の取り外し状況を判別するための接地短絡判別装置であって、この一の地点で、少なくとも1つの配電線路100に対して、交流電圧を印加して電流を送信する送信手段1と、この一の地点で、他の一又は複数の配電線路100に流れる電流を受信する受信手段2と、この受信手段2により受信された電流に基づいて、この他の地点におけるこの短絡接地器具200の取り外し状況を判別する判別手段3と、を備える構成である。   As shown in FIG. 1, the ground / short-circuit determination device according to the first embodiment is a short-circuit grounding device 200 having a short-circuit line 201 that short-circuits the distribution line 100, and is disposed at one point and another point, respectively. A grounding short-circuit determination device for determining the removal status of the short-circuit grounding device 200, and transmitting means 1 for transmitting an electric current by applying an alternating voltage to at least one distribution line 100 at this one point. And receiving means 2 for receiving the current flowing through one or more other distribution lines 100 at the one point, and the short-circuit grounding device at the other point based on the current received by the receiving means 2 And a discriminating means 3 for discriminating the removal status of 200.

この送信手段1は、この一の地点で、少なくとも1つの配電線路100に対して、交流電圧を印加して電流を送信する。この送信手段1は、図1に示すように、短絡線201に対して変流器(CT)11を用いて接続することによって、非接触で接続することができる。この送信手段1は、この短絡線201に対して接続することの他にも、配電線路100に対してCTを用いて接続することによっても、非接触で接続することができる。   The transmission means 1 transmits an electric current by applying an alternating voltage to at least one distribution line 100 at this one point. As shown in FIG. 1, the transmission means 1 can be connected in a non-contact manner by connecting to the short-circuit line 201 using a current transformer (CT) 11. In addition to being connected to the short-circuit line 201, the transmission means 1 can be connected in a non-contact manner by connecting to the distribution line 100 using CT.

この一の地点とは、配電線停電作業後に、配電線停電区間内に接続された最後の短絡接地器具200を取り外す地点であり、確認点とも言う。また、この他の地点とは、この確認点以外の地点であって、1箇所である場合も含まれ、また複数箇所である場合も含まれるが、配電線停電作業中には、短絡接地器具200が取り付けられていた地点であり、本来であれば、配電線停電作業後には、短絡接地器具200が取り外されている地点である。   This one point is a point where the last short-circuit grounding device 200 connected in the distribution line power outage section is removed after the distribution line power outage work, and is also referred to as a confirmation point. In addition, this other point is a point other than this confirmation point, and includes a case where it is one place, and also includes a case where there are a plurality of places. 200 is a point where the short-circuit grounding device 200 has been removed after the power distribution line power outage work.

この送信手段1が印加する交流電圧の周波数は、特に限定されないが、好ましくは、周波数1kHz〜30kHzである。この理由としては、1kHzよりも低周波の場合には、インダクタンスの影響を受け易くなるうえ、交流電圧の重畳が困難な傾向となる一方で、30kHzよりも高周波の場合には、静電容量の影響を受け易い傾向となるためである。   The frequency of the AC voltage applied by the transmission means 1 is not particularly limited, but is preferably a frequency of 1 kHz to 30 kHz. The reason for this is that when the frequency is lower than 1 kHz, it is easily affected by the inductance and it is difficult to superimpose the AC voltage. On the other hand, when the frequency is higher than 30 kHz, the capacitance is low. This is because it tends to be easily affected.

さらに好ましくは、周波数1kHz〜10kHzである。この場合には、判別手段3が、受信手段2により受信された電流から検出されるインピーダンス等の特性が、この他の地点の有無(確認点以外で短絡接地器具200が取り外されているか否か)によって違いが顕著に現れることとなり、他の地点における短絡接地器具200の取り外し状況を、より正確に判別することが可能となる。   More preferably, the frequency is 1 kHz to 10 kHz. In this case, the determination means 3 has a characteristic such as impedance detected from the current received by the reception means 2 as to the presence / absence of this other point (whether or not the short-circuit grounding device 200 is removed except for the confirmation point). ), The difference appears prominently, and the removal status of the short-circuit grounding device 200 at other points can be more accurately determined.

この受信手段2は、他の一又は複数の配電線路100に流れる電流を受信する。この受信手段2は、図1に示すように、送信手段1が交流電圧を印加した短絡線201とは異なる他の短絡線201に対して、変流器(CT)21を用いて接続することによって、非接触でこの短絡線201に接続することができる。この受信手段2は、この短絡線201に対して接続することの他にも、送信手段1が交流電圧を印加した配電線路100とは異なる他の配電線路100に対して、CTを用いて接続することによって、非接触でこの配電線路100に接続することができる。   The receiving means 2 receives a current flowing through one or more other distribution lines 100. As shown in FIG. 1, the receiving means 2 is connected to another short-circuit wire 201 different from the short-circuit wire 201 to which the transmission means 1 applied an AC voltage by using a current transformer (CT) 21. Thus, it is possible to connect to the short-circuit line 201 in a non-contact manner. In addition to being connected to the short-circuit line 201, the receiving means 2 is connected using CT to another distribution line 100 different from the distribution line 100 to which the transmission means 1 applied an AC voltage. By doing so, it is possible to connect to the distribution line 100 without contact.

この判別手段3において、他の地点における短絡接地器具200の取り外し状況を判別するとは、配電線停電作業後に、配電線停電区間内の上述の確認点以外の他点に接続される短絡接地器具200の有無を判定することを意味し、接地短絡判別とも言う。   In this determination means 3, to determine the removal status of the short-circuit grounding device 200 at another point means that after the distribution line power failure work, the short-circuit grounding device 200 connected to other points other than the above-mentioned confirmation points in the distribution line power failure section. This means that the presence or absence of the ground is determined, and is also referred to as ground short circuit determination.

この判別手段3は、その接地短絡判別に際しては、受信手段2により受信された電流を利用するものであれば特に限定されないが、接地短絡判別の正確性の観点から、受信手段2により受信された電流からインピーダンス(導体抵抗)を検出し、このインピーダンスに基づいて、前記他の地点における短絡接地器具200の取り外し状況を判別することが好ましい。   The determining means 3 is not particularly limited as long as it uses the current received by the receiving means 2 when determining the ground short-circuit, but it has been received by the receiving means 2 from the viewpoint of the accuracy of the ground short-circuit determining. It is preferable to detect the impedance (conductor resistance) from the current and determine the removal status of the short-circuit grounding device 200 at the other point based on this impedance.

すなわち、この判別手段3は、図2に示すように、受信手段2により受信された電流からインピーダンスを検出するインピーダンス検出部31と、このインピーダンスに基づいて、前記他の地点における短絡接地器具200の取り外し状況を判別する判別部32と、を備える構成とすることができる。   That is, as shown in FIG. 2, the determination unit 3 includes an impedance detection unit 31 that detects an impedance from the current received by the reception unit 2, and the short-circuit grounding device 200 at the other point based on the impedance. And a determination unit 32 that determines the removal status.

このように、短絡接地器具200の短絡線201から配電線路の線間に交流電圧を印加し、流れる電流を検出するという簡素な構成によって、正確に接地短絡判別を行うことができる。この流れる電流の電流経路については、図3に示すように、確認点A以外に短絡接地箇所が無い場合(すなわち、短絡接地箇所1箇所の場合)には、図3(a)の矢印aに示す電流経路となり、また、確認点A以外にも短絡接地箇所Bが残っている場合(すなわち、短絡接地箇所2箇所の場合)には、図3(b)の矢印aに示す電流経路となり、流れる電流の特性(例えば、インピーダンス)には隔絶たる違いが有ることから、判別手段3が、短絡接地箇所が1箇所か、又は複数かの接地短絡判別を行うことが容易に可能となる。このような構成によって、受信手段2が受信する電流には、接地抵抗が無視できると共に、柱上変圧器の静電容量の影響も抑制できることから、判別手段3は、高い精度で、確実に接地短絡判別を行うことができる。   In this way, it is possible to accurately determine the ground short-circuit by a simple configuration in which an AC voltage is applied between the short-circuit line 201 of the short-circuit grounding device 200 and the distribution line and the flowing current is detected. As for the current path of the flowing current, as shown in FIG. 3, when there is no short-circuit grounding location other than the confirmation point A (that is, in the case of one short-circuit grounding location), the arrow a in FIG. In addition, when the short-circuit ground location B remains in addition to the confirmation point A (that is, in the case of two short-circuit ground locations), the current path is indicated by the arrow a in FIG. Since there is an isolated difference in the characteristics (for example, impedance) of the flowing current, the determination unit 3 can easily determine whether there is one short-circuit ground location or a plurality of ground short-circuit locations. With such a configuration, since the ground resistance is negligible for the current received by the receiving means 2 and the influence of the capacitance of the pole transformer can be suppressed, the discriminating means 3 is reliably grounded with high accuracy. Short circuit discrimination can be performed.

このように、この判別手段3が、前記一の地点(確認点)以外に短絡接地器具200が存在しているか否かを、この受信手段2が受信した電流から算出したインピーダンスに基づいて判別することから、接地抵抗の影響を受けることなく短絡接地器具200の取り外し状況を正確に判別できることとなり、より高い精度で、前記他の地点における短絡接地器具200の取り外し状況を判別することができる。   As described above, the determination unit 3 determines whether or not the short-circuit grounding device 200 exists other than the one point (confirmation point) based on the impedance calculated from the current received by the reception unit 2. Therefore, the removal status of the short-circuit grounding device 200 can be accurately determined without being affected by the grounding resistance, and the removal status of the short-circuiting grounding device 200 at the other point can be determined with higher accuracy.

次に、上記のように配電線路100の線間に交流電圧を印加する場合の等価回路を図4に示す。先ず、線間に交流電圧を印加した場合に柱上変圧器を介して構成される経路は、図4(a)で示される。ここで、Z1及びZ2は、巻線のインピーダンスを示し、Cmは、一次巻線‐二次巻線間の静電容量を示す。また、図中では、対地間の経路は構成されないため、巻線‐外装間の静電容量は省略している。また、図中の閉回路のCm及びZ2を通る経路については、Cm=100〜200[pF]と小さく、共振周波数は一般に1MHzを超えることから、Cm・Z2・Cm直列回路のインピーダンスについては、Z1に対して十分に大きいため無視することができることから、Z1のみを通る経路とみなすことができる。 Next, an equivalent circuit when an AC voltage is applied between the lines of the distribution line 100 as described above is shown in FIG. First, the path | route comprised via a pole transformer when an alternating voltage is applied between lines is shown by Fig.4 (a). Here, Z1 and Z2 indicate the impedance of the winding, and Cm indicates the capacitance between the primary winding and the secondary winding. Further, in the figure, since the path between the ground is not configured, the capacitance between the winding and the exterior is omitted. In addition, the path through the closed circuit Cm and Z2 in the figure is as small as Cm = 100 to 200 [pF], and the resonance frequency generally exceeds 1 MHz, so the impedance of the Cm / Z2 / Cm series circuit is Since it is sufficiently large with respect to Z1 and can be ignored, it can be regarded as a route passing only through Z1.

この図4(a)を元にして、複数の柱上変圧器が配電線路に接続される状況で線間に交流電圧を印加した場合に構成される回路を、図4(b)及び(c)に示す。 Based on FIG. 4A, a circuit configured when an AC voltage is applied between lines in a situation where a plurality of pole transformers are connected to a distribution line is shown in FIGS. 4B and 4C. ).

先ず、短絡接地箇所1箇所の場合に、配電線路100の線間に交流電圧を印加することにより構成される回路を図4(b)に示す。ここで、Cは、相間容量を示しており、L1〜Lnは、変圧器の一次巻線のインダクタンスを示している。なお、本発明の適用条件における一次巻線のインピーダンスは、後述の図6の測定結果でも分かるように、インダクタンスの影響が支配的であることから、L1〜Lnとして表記している。 First, FIG. 4B shows a circuit configured by applying an AC voltage between the lines of the distribution line 100 in the case of one short-circuit ground point. Here, C represents the interphase capacitance, and L1 to Ln represent the inductance of the primary winding of the transformer. Note that the impedance of the primary winding under the application condition of the present invention is expressed as L1 to Ln because the influence of the inductance is dominant as can be seen from the measurement result of FIG.

次に、短絡接地箇所2箇所の場合に、線間に交流電圧を印加することにより構成される回路を図4(c)に示す。図中、rは、導体抵抗を示している。すなわち、確認点以外に短絡接地器具200が接続される場合、回路のインピーダンスは導体抵抗のみとなる。 Next, FIG. 4C shows a circuit configured by applying an AC voltage between the wires in the case of two short-circuit grounding locations. In the figure, r indicates the conductor resistance. That is, when the short-circuit grounding device 200 is connected in addition to the confirmation point, the impedance of the circuit is only the conductor resistance.

配電線路100の線間容量Cmについては、以下の関係式が成立する。   The following relational expression is established for the line capacity Cm of the distribution line 100.

式1Formula 1

Figure 2018155681
(r:導体半径[m]、D:配電線の線間距離[m])
Figure 2018155681
(R: conductor radius [m], D: distance between distribution lines [m])

ここで、高圧架空配電線は、OE、OCの直径4mm以上(銅線38mm2以上、アルミ線32mm2以上が標準)と規定されている(電技解釈第65条、66条)ことから、上記の式に適用して、Cm=14.19[nF/km]と導き出せる。また、最大導体抵抗については、OE、OC:0.502Ω/km(38mm2)、ACSR-OC、ACSR-OE:0.928Ω/km(38mm2)となる。 Here, high-voltage overhead distribution lines are defined as OE and OC diameters of 4 mm or more (copper wire 38 mm 2 or more, aluminum wire 32 mm 2 or more are standard) (Electronic Interpretation Articles 65 and 66), Applying the above equation, Cm = 14.19 [nF / km] can be derived. The maximum conductor resistance is OE, OC: 0.502 Ω / km (38 mm 2 ), ACSR-OC, ACSR-OE: 0.928 Ω / km (38 mm 2 ).

このように、回路の合成インピーダンスが、図4(b)と図4(c)の回路では大きな違いが生じることから、判別手段3は、図4(b)に示す回路の合成インピーダンスが図4(c)に示す回路の合成インピーダンスより大きい範囲で、接地抵抗の影響を無視して、接地短絡判別を行うことが簡易に可能となる。 As described above, since the synthetic impedance of the circuit is greatly different between the circuits of FIG. 4B and FIG. 4C, the discriminating means 3 has the synthetic impedance of the circuit shown in FIG. In the range larger than the combined impedance of the circuit shown in (c), it is possible to easily determine the ground short circuit while ignoring the influence of the ground resistance.

また、柱上変圧器の一次巻線のインダクタンスによるインピーダンスは、柱上変圧器の台数に応じて小さくなるが、インダクタンスによるインピーダンスは周波数に比例して大きくなるため、送信手段1が印加する交流電圧の周波数を高く設定することでインピーダンスを大きくすることが可能となる。巻線のインダクタンスには周波数特性があるため、周波数特性を解析して最適な周波数に設定することが、接地短絡判別を行うに際して重要となるが、上述したように、送信手段1が印加する交流電圧は、周波数1kHz〜30kHzであることが好ましく、さらに好ましくは、周波数1kHz〜10kHzである。   Further, the impedance due to the inductance of the primary winding of the pole transformer becomes smaller in accordance with the number of pole transformers, but the impedance due to the inductance increases in proportion to the frequency, so that the AC voltage applied by the transmission means 1 is increased. It is possible to increase the impedance by setting a high frequency. Since the inductance of the winding has a frequency characteristic, it is important to analyze the frequency characteristic and set it to the optimum frequency when performing the ground short-circuit determination. However, as described above, the alternating current applied by the transmission unit 1 The voltage is preferably a frequency of 1 kHz to 30 kHz, and more preferably a frequency of 1 kHz to 10 kHz.

巻線のインダクタンスは周波数により特性が変化するため、柱上変圧器の一次巻線のインダクタンスの周波数特性を解析した。複数の柱上変圧器(容量:5kVA、10kVA、20kVA、30kVA)の各々について得られた柱上変圧器の一次巻線のインダクタンスの周波数特性をグラフ化したものを図5に示す。いずれの柱上変圧器についても、定性的に同じ傾向の結果が得られた。   Since the inductance of the winding varies with frequency, the frequency characteristics of the inductance of the primary winding of the pole transformer were analyzed. FIG. 5 is a graph showing the frequency characteristics of the inductance of the primary winding of the pole transformer obtained for each of the plurality of pole transformers (capacities: 5 kVA, 10 kVA, 20 kVA, 30 kVA). Qualitatively the same results were obtained for all pole transformers.

さらに、柱上変圧器の一次巻線のインダクタンスのインピーダンス換算値と柱上変圧器の一次巻線のインピーダンス実測値の比較結果を図6に示す。得られた結果から、インダクタンスの影響が支配的であることが確認された。 Furthermore, the comparison result of the impedance conversion value of the inductance of the primary winding of the pole transformer and the impedance measurement value of the primary winding of the pole transformer is shown in FIG. From the obtained results, it was confirmed that the influence of inductance was dominant.

さらに、インダクタンスの周波数特性を元にして、上述の図4(a)及び(b)に示した回路の周波数ごとの合成インピーダンスを算出した。得られた結果を、周波数ごとのインピーダンスの変化として、表1及び表2に示す。   Furthermore, based on the frequency characteristics of the inductance, the combined impedance for each frequency of the circuit shown in FIGS. 4A and 4B was calculated. The obtained results are shown in Tables 1 and 2 as changes in impedance for each frequency.

なお、表1及び表2には、次の略称を用いる。
Ln:柱上変圧器の一次巻線のインダクタンス
Z:一次巻線のインピーダンス
C:配電線の線間容量
Zc:配電線の線間容量によるインピーダンス
Zcl:線間の合成インピーダンス
In Tables 1 and 2, the following abbreviations are used.
Ln: Inductance of primary winding of pole transformer
Z: Impedance of primary winding
C: Capacity between distribution lines
Zc: Impedance due to the capacitance between the distribution lines
Zcl: Composite impedance between lines

(1)周波数ごとのインピーダンスの変化(30m間隔で柱上変圧器が設置された場合)

Figure 2018155681
(1) Change in impedance for each frequency (when pole transformers are installed at intervals of 30m)
Figure 2018155681

(2)周波数ごとのインピーダンスの変化(100m間隔で柱上変圧器が設置された場合)

Figure 2018155681
(2) Change in impedance at each frequency (when pole transformers are installed at 100m intervals)
Figure 2018155681

上記の線間の合成インピーダンス(Zcl)値が、上述の図4(b)の回路(短絡接地2箇所の回路)で示された導体抵抗(r)よりも大きい範囲内であれば、確認点以外での前記他の地点で短絡接地器具200が接続されている状態か否かが判別できることから、確認点以外での前記他の地点における短絡接地器具200の取り外し状況の有無について、接地短絡判定が可能となる。   If the combined impedance (Zcl) value between the above lines is within a range larger than the conductor resistance (r) shown in the circuit of FIG. Since it is possible to determine whether or not the short-circuit grounding device 200 is connected at the other point other than the point, whether or not the short-circuiting grounding device 200 is removed at the other point other than the confirmation point is determined as a ground short-circuit determination. Is possible.

上記の得られた結果から、導体抵抗がOE、OC:0.502Ω/km、ACSR-OC、ACSR-OE:0.928Ω/kmであること、及び、接地抵抗が無視できることを考慮すると、送信手段1が印加する交流電圧の周波数として、1kHz〜30kHzのものを使用することによって、停電区間3km且つ、柱上変圧器設置数100台という大規模な設備に対しても、簡易に接地短絡判別を行うことができることから、好ましいことが確認された。   In consideration of the fact that the conductor resistance is OE, OC: 0.502Ω / km, ACSR-OC, ACSR-OE: 0.928Ω / km and the ground resistance is negligible from the obtained results, the transmission means 1 By using a frequency of 1 to 30 kHz as the frequency of the AC voltage applied by the power supply, it is possible to easily determine the ground short circuit even for large-scale facilities with a power outage section of 3 km and a number of pole transformers of 100. It was confirmed that this was preferable.

さらに、送信手段1が、この範囲内のうち特に周波数1kHz〜10kHzの周波数を使用することによって、図5の縦軸のインダクタンス値が1前後若しくは1より高値となっており、大規模な設備に対しても、より明確に接地短絡判別を行うことができることから、より好ましいことも確認された。   Further, when the transmission means 1 uses a frequency of 1 kHz to 10 kHz in particular within this range, the inductance value of the vertical axis in FIG. On the other hand, it was confirmed that it is more preferable because the ground short circuit can be more clearly identified.

なお、本実施形態に係る接地短絡判別装置は、図7(a)に示すように、送信手段1から成る送信器10と、受信手段2及び判別手段3から成る受信器20とから構成することも可能であり、この送信器10と受信器20によって、持ち運びも自在となることから、各配電線路100に対して簡易な判定が非接触で可能となる。また、この受信器20が、判別手段3での判別の結果をLED表示する機能や、ブザーによるアラーム機能を備えることによって、利用者に対して判別結果が分かりやすく示されることとなり、より使い勝手のよい接地短絡判別装置が得られる。   As shown in FIG. 7A, the ground short-circuit discrimination device according to the present embodiment is composed of a transmitter 10 composed of transmission means 1 and a receiver 20 composed of reception means 2 and discrimination means 3. Since the transmitter 10 and the receiver 20 can be easily carried, it is possible to make a simple determination for each distribution line 100 in a non-contact manner. In addition, since the receiver 20 has a function of displaying the result of determination by the determination means 3 with an LED and an alarm function using a buzzer, the determination result is displayed to the user in an easy-to-understand manner. A good ground short-circuit discrimination device can be obtained.

また、送信手段1は、1つの配電線路100に対してのみならず、複数の配電線路100に対して、前記交流電圧を同時に印加して電流を送信することができ、また、受信手段2も、1つの配電線路100に対してのみならず、複数の配電線路100から電流を受信することができる。例えば、複数のこの送信器10及び/又はこの受信器20を備えることによって、図7(b)に示すように、複数の前記変流器11と、複数の前記変流器21とから構成することもでき、複数の配電線路100に対して効率的に、接地短絡判別を行うことができる。   Further, the transmission means 1 can transmit the current by simultaneously applying the AC voltage not only to one distribution line 100 but also to a plurality of distribution lines 100, and the reception means 2 also Current can be received not only from one distribution line 100 but also from a plurality of distribution lines 100. For example, by providing a plurality of the transmitters 10 and / or the receivers 20, the plurality of current transformers 11 and the plurality of current transformers 21 are configured as shown in FIG. In addition, it is possible to efficiently determine the ground short circuit for the plurality of distribution lines 100.

このような構成により、複数の配電線路100に対して各々1つごとに電流を送信する場合及び/または受信する場合よりも、作業負担が抑えられ、時間的にもより効率的で、限られた停電作業時間における作業性がよく、且つ正確な接地短絡判別を行うことができる。   With such a configuration, the work load is reduced and the time is more efficient and limited than when transmitting and / or receiving current for each of the plurality of distribution lines 100 one by one. Therefore, the workability during the power outage work time is good and the grounding short circuit can be accurately identified.

さらに、本実施形態に係る接地短絡判別装置は、この送信器10及び/又はこの受信器20に対して無線で通信する無線器30を追加で構成することも可能である。例えば、図8(a)に示すように、この無線器30が、この受信器20と無線通信し、この判別手段3による判別の結果をLED表示する機能を有する無線受信器として機能することができ、利用者の手元で接地短絡判別の結果を視覚的及び/又は聴覚的に確認することができ、より利便性が向上される。   Furthermore, in the ground short-circuit determination device according to the present embodiment, a wireless device 30 that communicates wirelessly with the transmitter 10 and / or the receiver 20 can be additionally configured. For example, as shown in FIG. 8A, the wireless device 30 can function as a wireless receiver having a function of performing wireless communication with the receiver 20 and displaying the result of determination by the determination means 3 in an LED. In addition, it is possible to visually and / or audibly confirm the result of the ground short circuit determination at the user's hand, and the convenience is further improved.

さらに、例えば、図8(b)に示すように、この無線器30が、この送信器10及びこの受信器20と無線通信し、この判別手段3での判別の結果をLED表示する機能を有する無線受信器及び無線送信器として機能することができ、利用者の手元で、送信手段1での電圧印加を制御(電流送信を指示)することと共に、この判別手段3による接地短絡判別の結果を確認することができ、より利便性が向上されたものとなる。   Further, for example, as shown in FIG. 8B, the radio device 30 has a function of wirelessly communicating with the transmitter 10 and the receiver 20 and displaying the result of discrimination in the discrimination means 3 with an LED. It can function as a wireless receiver and a wireless transmitter, and controls the voltage application at the transmission means 1 (instructing the current transmission) at the user's hand, and the result of the ground short circuit determination by the determination means 3 It can be confirmed and the convenience is further improved.

(第2の実施形態)
本願の第2の実施形態に係る接地短絡判別装置を、図9の構成図に従い説明する。
(Second Embodiment)
A ground short-circuit determination device according to a second embodiment of the present application will be described with reference to the block diagram of FIG.

第2の実施形態に係る接地短絡判別装置は、前記第1の実施形態に係る接地短絡判別装置と同じく、前記送信手段1と、前記受信手段2と、前記判別手段3と、を備え、さらに、図8に示すように、前記送信手段1が、1kHz〜10kHzの交流電圧を印加して電流を送信し、前記判別手段3が、前記他の地点における短絡接地器具200の取り外し状況が判別できない場合には、前記送信手段1により、さらに10kHz〜30kHzの交流電圧を印加する制御を行う判別制御部33を備える構成である。   The ground short-circuit determination device according to the second embodiment includes the transmission unit 1, the reception unit 2, and the determination unit 3, similar to the ground short-circuit determination device according to the first embodiment. As shown in FIG. 8, the transmission means 1 applies an alternating voltage of 1 kHz to 10 kHz to transmit current, and the determination means 3 cannot determine the removal status of the short-circuit grounding device 200 at the other point. In this case, the transmission means 1 further includes a discrimination control unit 33 that performs control to apply an AC voltage of 10 kHz to 30 kHz.

この構成により、先ずは、上述の図5、表1、及び表2で示されたように、判別手段3がよりインピーダンスの変化量を検知し易い(判別し易い)周波数1kHz〜10kHzの交流電圧の印加を行うことによって、確度の高い判別が行われる。この判別ができない場合であっても、次に、送信手段1が、周波数10kHz〜30kHzの交流電圧を印加して電流を送信し、追加で判別ができることとなり、より確実に、前記他の地点における前記短絡接地器具200の取り外し状況を判別することができる。   With this configuration, first, as shown in FIG. 5, Table 1 and Table 2 described above, an AC voltage having a frequency of 1 kHz to 10 kHz, in which the discriminating means 3 is more likely to detect (easy to discriminate) the amount of change in impedance. By applying the above, discrimination with high accuracy is performed. Even if this determination is not possible, the transmission means 1 applies an AC voltage having a frequency of 10 kHz to 30 kHz and transmits an electric current, so that additional determination can be made, and more reliably at the other points. The removal status of the short-circuit grounding device 200 can be determined.

1 送信手段
10 送信器
11 変流器(CT)
2 受信手段
20 受信器
21 変流器(CT)
3 判別手段
30 無線器
31 インピーダンス検出部
32 判別部
33 判別制御部
100 配電線路
200 短絡接地器具
201 短絡線
1 Transmitting means 10 Transmitter 11 Current transformer (CT)
2 Receiving means 20 Receiver 21 Current transformer (CT)
3 Discriminating means 30 Radio device 31 Impedance detection unit 32 Discrimination unit 33 Discrimination control unit 100 Distribution line 200 Short-circuit grounding fixture 201 Short-circuit line

Claims (5)

配電線路を短絡させる短絡線を有する短絡接地器具であって、一の地点及び他の地点に各々配置された短絡接地器具の取り外し状況を判別するための接地短絡判別装置において、
前記一の地点で、少なくとも1つの配電線路に対して、交流電圧を印加して電流を送信する送信手段と、
前記一の地点で、他の一又は複数の配電線路に流れる電流を受信する受信手段と、
前記受信手段により受信された電流に基づいて、前記他の地点における前記短絡接地器具の取り外し状況を判別する判別手段と、
を備えることを特徴とする
接地短絡判別装置。
In a short-circuit grounding device having a short-circuit line for short-circuiting the distribution line, in order to determine the removal status of the short-circuit grounding device respectively disposed at one point and the other point,
Transmitting means for applying an alternating voltage to transmit current to at least one distribution line at the one point;
Receiving means for receiving current flowing in one or more other distribution lines at the one point;
Discriminating means for discriminating the removal status of the short-circuit grounding device at the other point based on the current received by the receiving means;
A grounding short-circuit discrimination device.
請求項1に記載の接地短絡判別装置において、
前記判別手段が、前記受信手段により受信された電流からインピーダンスを検出し、当該インピーダンスに基づいて、前記他の地点における前記短絡接地器具の取り外し状況を判別することを特徴とする
接地短絡判別装置。
In the ground short circuit determination device according to claim 1,
The ground / short-circuit determination device, wherein the determination unit detects an impedance from the current received by the reception unit, and determines a removal state of the short-circuit grounding device at the other point based on the impedance.
請求項1又は請求項2に記載の接地短絡判別装置において、
前記送信手段が、1kHz〜30kHzの交流電圧を印加して電流を送信することを特徴とする
接地短絡判別装置。
In the ground short-circuit determination device according to claim 1 or 2,
The transmission means applies an AC voltage of 1 kHz to 30 kHz and transmits an electric current.
請求項1〜3のいずれかに記載の接地短絡判別装置において、
前記送信手段が、1kHz〜10kHzの交流電圧を印加して電流を送信し、
前記判別手段が、前記他の地点における前記短絡接地器具の取り外し状況が判別できない場合には、前記送信手段により、さらに10kHz〜30kHzの交流電圧を印加する制御を行う判別制御部を備えることを特徴とする
接地短絡判別装置。
In the ground short circuit discrimination device according to any one of claims 1 to 3,
The transmitting means transmits an electric current by applying an alternating voltage of 1 kHz to 10 kHz,
The discriminating unit further includes a discriminating control unit for performing control to apply an AC voltage of 10 kHz to 30 kHz by the transmitting unit when the removal status of the short-circuit grounding device at the other point cannot be discriminated. A ground short-circuit detection device.
請求項1〜4のいずれかに記載の接地短絡判別装置において、
前記送信手段が、複数の前記配電線路に対して、前記交流電圧を同時に印加して電流を送信することを特徴とする
接地短絡判別装置。
In the ground short-circuit determination device according to any one of claims 1 to 4,
The grounding short-circuit determination device, wherein the transmission means transmits the current by simultaneously applying the AC voltage to the plurality of distribution lines.
JP2017054147A 2017-03-21 2017-03-21 Ground short discrimination device Pending JP2018155681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017054147A JP2018155681A (en) 2017-03-21 2017-03-21 Ground short discrimination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017054147A JP2018155681A (en) 2017-03-21 2017-03-21 Ground short discrimination device

Publications (1)

Publication Number Publication Date
JP2018155681A true JP2018155681A (en) 2018-10-04

Family

ID=63715716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017054147A Pending JP2018155681A (en) 2017-03-21 2017-03-21 Ground short discrimination device

Country Status (1)

Country Link
JP (1) JP2018155681A (en)

Similar Documents

Publication Publication Date Title
RU2571629C1 (en) Method and device for assessment of angle of zero-phase-sequence voltage at single line-to-ground fault
US9482699B2 (en) Method and apparatus for monitoring high voltage bushings safely
CN103344884B (en) Power overhead network fault two-frequency signal detection and location method and special orientator thereof
CN105676092B (en) Electric substation's power cable insulation level monitoring method and system
CN107209210A (en) Actively monitoring system and its correlation technique for bushing
KR100778089B1 (en) System and method for acquiring underground lv networks configured with plural transformers in the urban area
KR101303597B1 (en) A detection device of insulation resistance for non-interruption of electric power and hot-line
CN104101812A (en) Single-phase grounding fault detection and positioning method and system for low-current grounding power distribution network
CN106443320B (en) Method for detecting ground fault in LVDC wire and electronic device thereof
EP2940483A1 (en) Evaluation method for determining of the probability of an asymmetrical fault location in a distribution network and a monitoring system for performing such method
CA3095262C (en) Device and method for detecting high-voltage power distribution line path having improved stability
JP2017159720A (en) Method for detecting ground fault in ac-side connection wire of rectifier for dc feeding
Garcia-Santander et al. Down-conductor fault detection and location via a voltage based method for radial distribution networks
CN105548814A (en) Method and system for determining ground fault of distribution network line
KR100918515B1 (en) Method for measuring earth resistance of a single ground in active state
CN103983895A (en) PT secondary circuit online N-line multipoint ground fault detection method and device
CN113834956A (en) Grounded receptacle and method for insulation fault localization in ungrounded power supply systems including insulation monitoring
JP2018155681A (en) Ground short discrimination device
CN105403808B (en) A kind of localization method and device of DC line earth fault
CN107305233A (en) One kind 20 to 10kV distribution lines are grounded strategy, algorithm and circuit between constituency
JP5602082B2 (en) Short-circuit locating device, short-circuit locating method and program
JP2016070854A (en) Short-circuit fault-point determining system
CN111060846B (en) CT secondary circuit fault on-line monitoring method
KR200465727Y1 (en) Electric insulation monitoring system of ground feeding cable
CN210401531U (en) Electric safety monitoring device