JP2018155583A - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
JP2018155583A
JP2018155583A JP2017052406A JP2017052406A JP2018155583A JP 2018155583 A JP2018155583 A JP 2018155583A JP 2017052406 A JP2017052406 A JP 2017052406A JP 2017052406 A JP2017052406 A JP 2017052406A JP 2018155583 A JP2018155583 A JP 2018155583A
Authority
JP
Japan
Prior art keywords
core component
advance
retreat
support structure
accommodating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017052406A
Other languages
Japanese (ja)
Other versions
JP6802736B2 (en
Inventor
晃久 岩崎
Akihisa Iwasaki
晃久 岩崎
和生 廣田
Kazuo Hirota
和生 廣田
慎一郎 松原
Shinichiro Matsubara
慎一郎 松原
一輝 川村
Kazuki Kawamura
一輝 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2017052406A priority Critical patent/JP6802736B2/en
Publication of JP2018155583A publication Critical patent/JP2018155583A/en
Application granted granted Critical
Publication of JP6802736B2 publication Critical patent/JP6802736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Supports For Pipes And Cables (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reactor capable of easily providing a structure which can suppress jumping up of a core component by vertical vibrations.SOLUTION: A reactor includes: a core component 14 having a support structure having a plurality of connecting tubes arranged inside a reactor vessel and a support plate 12 for supporting the connecting tubes, entrance nozzles 16 inserted into the connecting tubes and a fuel rod main body 17 upper than the entrance nozzles 16; and a nozzle side stepped part 18 located between the entrance nozzle 16 and the fuel rod main boy 17 and abutting against the connecting tubes from above. The core component 14 includes: a storage part 40 provided on the nozzle side step part 18 and opened by facing the connecting tubes; and an advance/retreat part 41 stored while being protrusible downward in the storage part 40 and sinking while generating a damping force by abutting against the connecting tubes from above.SELECTED DRAWING: Figure 3

Description

本発明は、原子炉に関する。   The present invention relates to a nuclear reactor.

原子力発電設備では、炉心で進行する核分裂反応による熱を用いてタービンを駆動し、発電が行われる。炉心内部には、核燃料が封入された核燃料棒や、核分裂反応の進行を制御する制御棒等の炉心構成要素が格納されている。   In a nuclear power generation facility, power is generated by driving a turbine using heat from a fission reaction that proceeds in a core. Core components such as a nuclear fuel rod in which nuclear fuel is sealed and a control rod for controlling the progress of the fission reaction are stored inside the core.

炉心構成要素の端部にはエントランスノズルが形成されている。このエントランスノズルが連結管に挿入されることにより、炉心構成要素はそれぞれ自立した状態で支持されている。したがって、地震発生時に上下方向の振動が炉心構成要素に加わった場合、炉心構成要素連結管から上方に跳び上がってしまう。この場合、炉心構成要素が炉心内で散逸し、特に制御棒の挿入に支障を来す可能性がある。   An entrance nozzle is formed at the end of the core component. By inserting the entrance nozzle into the connecting pipe, the core components are supported in a self-supporting state. Therefore, if vertical vibrations are applied to the core components when an earthquake occurs, they will jump upward from the core component connecting pipe. In this case, the core components can be dissipated in the core, which can hinder the insertion of control rods in particular.

上記のような炉心構成要素の跳び上がりを抑制するための技術として、下記特許文献1に記載されたダッシュポッド構造を備えるものが知られている。特許文献1に記載された原子炉では、エントランスノズルの嵌合面に形成された段差部と、連結管の嵌合面に形成された段差部とによってダッシュポッド部としての空間が形成されている。これにより、炉心構成要素に跳び上がりを生じさせる力が加わった場合であっても、ダッシュポッド部内に充満した流体(液体)の体積変化を妨げる力が減衰力として作用することで、炉心構成要素の跳び上がりを抑制することができるとされている。   As a technique for suppressing the jumping of the core components as described above, a technique having a dash pod structure described in Patent Document 1 is known. In the nuclear reactor described in Patent Document 1, a space as a dash pod portion is formed by the stepped portion formed on the fitting surface of the entrance nozzle and the stepped portion formed on the fitting surface of the connecting pipe. . As a result, even when a force that causes a jump to the core component is applied, the force that prevents the volume change of the fluid (liquid) filled in the dash pod acts as a damping force, so that the core component It is said that it is possible to suppress jumping up.

特開2013−117500号公報JP 2013-117500 A

しかしながら、炉心構成要素の跳び上がりを抑制するためにダッシュポッド構造を設けた従来の原子炉では、連結管の嵌合面と炉心構成要素の嵌合面との間にダッシュポッド構造が形成されている。すなわち、連結管における上端側に立ち上り部などを設けて嵌合面を特定形状に形成するとともに、炉心構成要素におけるエントランスノズル側の嵌合面を特定形状に形成し、両者の相対形状を適切に設定することで、ダッシュポッド構造が形成されている。
そのため連結管と炉心構成要素とのそれぞれの形状に制約があり、炉心構成要素の跳び上がりを抑制するための構造を設け難く、特に、既存の原子炉に炉心構成要素の跳び上がりを抑制するための構造を追加することが容易でないという問題点があった。
However, in the conventional nuclear reactor in which the dash pod structure is provided in order to suppress the jumping of the core component, the dash pod structure is formed between the fitting surface of the connecting pipe and the fitting surface of the core component. Yes. That is, a rising portion is provided on the upper end side of the connecting pipe to form the fitting surface in a specific shape, and the fitting surface on the entrance nozzle side in the core component is formed in a specific shape so that the relative shape of both is appropriately By setting, a dash pod structure is formed.
For this reason, there are restrictions on the shapes of the connecting pipe and the core components, and it is difficult to provide a structure for suppressing the jumping of the core components, especially to suppress the jumping of the core components in the existing nuclear reactor. There was a problem that it was not easy to add the structure.

本発明は上記課題を解決するためになされたものであって、上下方向の振動による炉心構成要素の跳び上がりを抑制できる構造を容易に設けることが可能な原子炉を提供することを目的とする。   The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a nuclear reactor capable of easily providing a structure capable of suppressing the jumping of core components due to vertical vibration. .

本発明の第一の態様によれば、原子炉は、内部が液体で満たされる原子炉容器と、該原子炉容器内に設けられ、上下方向に延びる筒状をなすとともに水平方向に複数配列された連結管、及び、該連結管を支持して水平方向に延びる支持板を有する支持構造と、前記連結管に挿入される小径部、該小径部よりも上方に位置する大径部、及び、前記小径部と前記大径部との間に位置して前記連結管に上方から当接して支持される形状変化部を有する炉心構成要素と、を備え、前記炉心構成要素は、前記形状変化部に設けられて前記連結管と対向して開口した収容部と、前記収容部に下方に向かって突没可能に収容され、前記連結管に上方から当接することで減衰力を発生しつつ没する進退部と、を備えている。   According to the first aspect of the present invention, the nuclear reactor includes a nuclear reactor vessel that is filled with a liquid and a reactor vessel that is provided in the nuclear reactor vessel and has a cylindrical shape that extends in the vertical direction and is arranged in a plurality in the horizontal direction. And a support structure having a support plate that supports the connection pipe and extends in the horizontal direction, a small diameter portion that is inserted into the connection pipe, a large diameter portion that is located above the small diameter portion, and A core component having a shape change portion that is positioned between the small diameter portion and the large diameter portion and is supported by being in contact with the connecting pipe from above, and the core component is the shape change portion A housing portion that is open to face the connecting pipe, and is housed in the housing portion so as to be able to project and retract downward, and is brought into contact with the connecting pipe from above to sink while generating a damping force. And a retreating part.

本発明によれば、収容部に突没可能に収容された進退部が、連結管に上方から当接することで減衰力を発生しつつ没するように構成されている。そのため炉心構成要素が支持構造から上方へ変位して、形状変化部から進退部が下方へ突出すると、再び下方へ変位して支持構造に当接した際、進退部が没して運動エネルギーを減衰できる。これにより炉心構成要素に上下方向の振動が負荷されても炉心構成要素が支持構造から跳び上がることを抑制できる。   According to the present invention, the advancing / retreating part accommodated in the accommodating part so as to be able to project and retract is configured to sunk while generating a damping force by coming into contact with the connecting pipe from above. Therefore, when the core components are displaced upward from the support structure and the advance / retreat part protrudes downward from the shape change part, the advance / retreat part sinks and attenuates kinetic energy when it is displaced downward again and contacts the support structure. it can. Thereby, even if the vertical vibration is applied to the core component, it is possible to suppress the core component from jumping up from the support structure.

そして収容部及び進退部が炉心構成要素に設けられているので、支持構造の連結管に炉心構成要素の跳び上がりを抑制するための構造を設ける必要がなく、連結管の構造の自由度が大きい。例えば既存の原子炉の支持構造や連結管をそのまま利用して、炉心構成要素の跳び上がりを抑制するための構造を実現することも可能である。   And since the accommodating part and the advancing / retreating part are provided in the core component, it is not necessary to provide a structure for suppressing the jump of the core component in the connecting pipe of the support structure, and the degree of freedom of the structure of the connecting pipe is large. . For example, it is also possible to realize a structure for suppressing the jumping up of the core components by using the existing reactor support structure and connecting pipe as they are.

本発明の第二の態様によれば、上記第一の態様において、前記炉心構成要素では、前記進退部の進退により容積が増減する貯留部と、前記貯留部に前記液体を流入及び流出させる抵抗流路と、を有する減衰部を前記収容部に設けていてもよい。   According to a second aspect of the present invention, in the first aspect, in the core component, a storage part whose volume is increased or decreased by the advance / retreat of the advance / retreat part, and a resistance that causes the liquid to flow into and out of the storage part. An attenuation portion having a flow path may be provided in the housing portion.

この構成によれば、進退部の進退により容積が増減する貯留部と、貯留部に液体を流入及び流出させる抵抗流路と、を有する減衰部を設けているので、進退部の進退により抵抗流路を流れる液体の流動抵抗により、進退部の進退速度に応じた減衰力を発生することができる。しかも減衰部を収容部に設けるので、炉心構成要素の跳び上がりを抑制できる構造を収容部に集約し易い。   According to this configuration, since the attenuation portion having the storage portion whose volume is increased or decreased by the advancement / retraction of the advance / retreat portion and the resistance flow path for allowing the liquid to flow into and out of the storage portion is provided, the resistance flow is caused by the advance / retreat of the advance / retreat portion. A damping force corresponding to the advance / retreat speed of the advance / retreat portion can be generated by the flow resistance of the liquid flowing through the path. In addition, since the damping part is provided in the housing part, it is easy to consolidate the structure capable of suppressing the jumping of the core components into the housing part.

本発明の第三の態様によれば、上記第二の態様において、前記炉心構成要素は、前記進退部を下方へ付勢する付勢部を備えていてもよい。
この構成によれば、付勢部により進退部が下方に付勢されるので、炉心構成要素が支持構造から上方に変位した際、形状変化部から進退部が確実に突出することができる。そのため炉心構成要素に上下方向の振動が負荷された際に炉心構成要素が支持構造から跳び上がることを確実に抑制し易い。
According to a third aspect of the present invention, in the second aspect, the core component may include a biasing portion that biases the advance / retreat portion downward.
According to this configuration, the advancing / retreating portion is urged downward by the urging portion, so that the advancing / retreating portion can reliably project from the shape changing portion when the core component is displaced upward from the support structure. Therefore, it is easy to reliably suppress the core component from jumping up from the support structure when vertical vibration is applied to the core component.

本発明の第四の態様によれば、上記第三の態様において、前記炉心構成要素は、内部が前記液体で満たされた筒状をなし、前記付勢部は、前記収容部を前記炉心構成要素内に開口させた連通開口部と、前記進退部に設けられて前記連通開口部を介して前記炉心構成要素内の圧力で下方に加圧される受圧部と、を有していてもよい。   According to a fourth aspect of the present invention, in the third aspect, the core component has a cylindrical shape filled with the liquid, and the urging portion includes the accommodating portion as the core configuration. There may be provided a communication opening portion opened in the element, and a pressure receiving portion that is provided in the advance / retreat portion and is pressed downward by the pressure in the core component through the communication opening portion. .

貯留部内へは連通開口部を通じて炉心構成要素の内部から液体が流入する。このため連通開口部での圧力損失によって、炉心構成要素の内部に比べて貯留部内の液体の圧力は低い。
そして上記構成によれば、付勢部が収容部を炉心構成要素内に開口させた連通開口部と進退部の受圧部とを有している。そのため炉心構成要素が上方へ変位した際、進退部の受圧部に炉心構成要素内の高い圧力が作用し、進退部の下端側に支持構造上方における炉心構成要素周囲の低い圧力が作用する。よって炉心構成要素の内部と貯留部の内部との間の差圧によって進退部を下方へ付勢することができる。
これにより炉心構成要素が上方へ変位した際、進退部を確実に下方へ突出させることができ、付勢するための機械部材等を設置する必要がなくて簡素化できる。
The liquid flows into the reservoir from the inside of the core component through the communication opening. For this reason, the pressure of the liquid in a storage part is low compared with the inside of a core component by the pressure loss in a communicating opening part.
And according to the said structure, the urging | biasing part has a communicating opening part which made the accommodating part open in a core component, and the pressure receiving part of an advancing / retreating part. Therefore, when the core component is displaced upward, a high pressure in the core component acts on the pressure receiving portion of the advance / retreat portion, and a low pressure around the core component above the support structure acts on the lower end side of the advance / retreat portion. Therefore, the advance / retreat portion can be urged downward by the differential pressure between the inside of the core component and the inside of the storage portion.
As a result, when the core component is displaced upward, the advancing / retreating portion can be reliably projected downward, and it is not necessary to install a mechanical member or the like for biasing, and simplification can be achieved.

本発明の第五の態様によれば、上記第三の態様において、前記収容部は、下向きに開口した有底形状をなし、前記収容部の底部と前記進退部との間に前記貯留部が設けられ、前記収容部の内周側面と前記進退部の外周側面との間の前記抵抗流路が設けられ、前記付勢部は、前記収容部内に配置された弾性部材であってもよい。   According to a fifth aspect of the present invention, in the third aspect, the storage portion has a bottomed shape that opens downward, and the storage portion is between the bottom portion of the storage portion and the advance / retreat portion. The resistance flow path may be provided between the inner peripheral side surface of the accommodating portion and the outer peripheral side surface of the advance / retreat portion, and the biasing portion may be an elastic member disposed in the accommodating portion.

この構成によれば、有底穴形状の収容部内に進退部及び弾性部材が配置されると共に貯留部及び抵抗流路が設けられている。そのため炉心構成要素の跳び上がりを抑制するための構造を収容部に集約しつつ、弾性部材によって形状変化部から進退部を確実に突出させて炉心構成要素の跳び上がりを抑制することができる。   According to this configuration, the advancing / retreating portion and the elastic member are disposed in the bottomed hole-shaped accommodation portion, and the storage portion and the resistance flow path are provided. Therefore, the structure for suppressing the jumping of the core component can be concentrated in the housing portion, and the advancement / retraction portion can be reliably protruded from the shape changing portion by the elastic member, thereby suppressing the jumping of the core component.

本発明の第六の態様によれば、上記第五の態様において、前記連結管には、前記収容部とは異なる位置で前記炉心構成要素に対向して下方から当接可能な突出部が設けられていてもよい。   According to a sixth aspect of the present invention, in the fifth aspect, the connecting pipe is provided with a protruding portion that can contact the core component from below at a position different from the accommodating portion. It may be done.

このような構成によれば、支持構造に炉心構成要素が着座した状態において、進退部の周りで収容部が設けられていない位置で突出部が炉心構成要素を下方から支持できる。このため進退部へ支持構造から全ての荷重がかかることを回避できる。よって弾性部材が振動し、着座状態が不安定となることを回避できる。また炉心構成要素が支持構造に着座した状態において、例えば弾性部材を過剰に圧縮するようなことを防止できる。   According to such a configuration, in a state where the core component is seated on the support structure, the protruding portion can support the core component from below at a position where the accommodating portion is not provided around the advance / retreat portion. For this reason, it can avoid that all the loads are applied to the advance / retreat portion from the support structure. Therefore, it can avoid that an elastic member vibrates and a seating state becomes unstable. In addition, in a state where the core component is seated on the support structure, for example, excessive compression of the elastic member can be prevented.

本発明の第七の態様によれば、上記第五又は第六の態様において、前記進退部の上端面には、前記弾性部材を収容可能な凹形状の格納部が設けられていてもよい。   According to a seventh aspect of the present invention, in the fifth or sixth aspect, a concave storage portion that can accommodate the elastic member may be provided on an upper end surface of the advance / retreat portion.

このような構成によれば、進退部の上端面に格納部が設けられているので、炉心構成要素が支持構造に着座した状態において、弾性部材である付勢部を格納部内に収容できる。よって炉心構成要素が支持構造に着座した状態において、弾性部材を過剰に圧縮するようなことを回避できる。   According to such a structure, since the storage part is provided in the upper end surface of the advancing / retreating part, the urging | biasing part which is an elastic member can be accommodated in a storage part in the state in which the core component was seated on the support structure. Therefore, it is possible to avoid excessive compression of the elastic member in a state where the core component is seated on the support structure.

本発明によれば、上下方向の振動による炉心構成要素の跳び上がりを抑制できる構造を容易に設けることが可能な原子炉を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the nuclear reactor which can provide easily the structure which can suppress the jump of the core component by the vibration of an up-down direction can be provided.

本発明の第一実施形態に係る原子炉の構成を示す図である。It is a figure showing composition of a nuclear reactor concerning a first embodiment of the present invention. 本発明の第一実施形態に係る炉心構成要素を示す斜視図である。It is a perspective view showing a core component concerning a first embodiment of the present invention. 本発明の第一実施形態に係る炉心構成要素、及び支持構造の構成を示す拡大断面図であり、炉心構成要素が支持構造に着座した状態を示す。It is an expanded sectional view showing composition of a core constituent concerning a first embodiment of the present invention, and a support structure, and shows a state where a core constituent was seated on a support structure. 本発明の第一実施形態に係る炉心構成要素、及び支持構造の構成を示す拡大断面図であり、炉心構成要素が支持構造から上方へ変位した状態を示す。It is an expanded sectional view showing composition of a core constituent concerning a first embodiment of the present invention, and a support structure, and shows a state where a core constituent was displaced upwards from a support structure. 本発明の第一実施形態に係る炉心構成要素、及び支持構造の構成を示す拡大断面図であり、炉心構成要素が支持構造から上方へ変位した後に炉心構成要素が下方の支持構造上に向かって変位した状態を示す。It is an expanded sectional view showing the composition of the core component concerning a first embodiment of the present invention, and a support structure, and after the core component is displaced upward from the support structure, the core component goes on the lower support structure The displaced state is shown. 本発明の第一実施形態に係る炉心構成要素の付勢部及び減衰部を示す拡大断面図である。It is an expanded sectional view showing the energizing part and attenuation part of the core component concerning a first embodiment of the present invention. 本発明の第二実施形態に係る炉心構成要素、及び支持構造の構成を示す拡大断面図であり、炉心構成要素が支持構造に着座した状態を示す。It is an expanded sectional view showing the composition of the core component concerning a second embodiment of the present invention, and a support structure, and shows the state where the core component was seated on the support structure. 本発明の第二実施形態に係る炉心構成要素、及び支持構造の構成を示す拡大断面図であり、炉心構成要素が支持構造から上方へ変位した状態を示す。It is an expanded sectional view which shows the structure of the core structural element which concerns on 2nd embodiment of this invention, and a support structure, and shows the state which the core structural element displaced upwards from the support structure. 本発明の第二実施形態に係る炉心構成要素、及び支持構造の構成を示す拡大断面図であり、炉心構成要素が支持構造から上方へ変位した後に炉心構成要素が下方の支持構造上に変位した状態を示す。It is an expanded sectional view showing the composition of the core component concerning a second embodiment of the present invention, and a support structure, and after the core component displaced upward from the support structure, the core component displaced on the lower support structure Indicates the state. 本発明の第二実施形態に係る炉心構成要素の付勢部及び減衰部を示す拡大断面図である。It is an expanded sectional view which shows the urging | biasing part and attenuation | damping part of the core component which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係る炉心構成要素の付勢部及び減衰部を示す拡大断面図である。It is an expanded sectional view which shows the urging | biasing part and attenuation | damping part of the core component which concerns on 3rd embodiment of this invention. 本発明の第四実施形態に係る炉心構成要素の付勢部及び減衰部を示す拡大断面図である。It is an expanded sectional view which shows the urging | biasing part and attenuation | damping part of the core component which concerns on 4th embodiment of this invention.

[第一実施形態]
本発明の第一実施形態について、図1から図6を参照して説明する。図1に示すように、本実施形態に係る原子炉1は、原子炉容器2と、炉心3と、支持構造4と、上部構造物5と、を備えている。
[First embodiment]
A first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, a nuclear reactor 1 according to this embodiment includes a nuclear reactor vessel 2, a core 3, a support structure 4, and an upper structure 5.

原子炉容器2は、原子炉容器本体6と、遮蔽プラグ7と、冷却材入口配管8及び冷却材出口配管9と、隔壁10と、を有する。原子炉容器本体6の上部には開孔部11が形成され、上部とは反対側の底部を鉛直下方に向けて原子炉格納容器(図示省略)内に格納されている。遮蔽プラグ7は、原子炉容器本体6における上記開孔部11に配置されることで、該開孔部11を封止している。冷却材入口配管8及び冷却材出口配管9は、原子炉容器2内への冷却材C(一次主冷却材)の出入口を形成する。隔壁10は、中央部に開孔が形成された板状の部材である。隔壁10は、原子炉容器2の内部で水平方向に延びることで、原子炉容器2内を上下方向に区画している。また、この原子炉容器2の内部は液体としての冷却材Cによって満たされている。   The reactor vessel 2 includes a reactor vessel body 6, a shielding plug 7, a coolant inlet pipe 8 and a coolant outlet pipe 9, and a partition wall 10. An opening 11 is formed in the upper part of the reactor vessel body 6 and is stored in a reactor containment vessel (not shown) with the bottom opposite to the upper part facing vertically downward. The shielding plug 7 is disposed in the opening 11 in the reactor vessel body 6 to seal the opening 11. The coolant inlet pipe 8 and the coolant outlet pipe 9 form an inlet / outlet of the coolant C (primary main coolant) into the reactor vessel 2. The partition wall 10 is a plate-like member having an opening at the center. The partition wall 10 extends in the horizontal direction inside the reactor vessel 2, thereby dividing the inside of the reactor vessel 2 in the vertical direction. Further, the inside of the reactor vessel 2 is filled with a coolant C as a liquid.

炉心3は、主として燃料棒集合体や、制御棒集合体を有し、原子炉容器2内の中央部に配置される。ここでは、燃料棒集合体や制御棒集合体など炉心3を構成する要素を総称して炉心構成要素14と呼ぶ。なお、本実施形態に係る支持構造4は、炉心構成要素14のうち、燃料棒15に対して特に好適に採用することができる。   The reactor core 3 mainly has a fuel rod assembly and a control rod assembly, and is disposed in the central portion in the reactor vessel 2. Here, elements constituting the core 3 such as a fuel rod assembly and a control rod assembly are collectively referred to as a core component 14. Note that the support structure 4 according to the present embodiment can be particularly preferably employed for the fuel rod 15 in the core component 14.

支持構造4は、図1及び図2に示すように、炉心構成要素14を下方から支持するために原子炉容器2内に設けられた構造物であり、上下方向から見て原子炉容器2の中央部に配置される。隔壁10は、この支持構造4と原子炉容器2とに固定されている。
支持構造4は、水平方向に延びる支持板12と、この支持板12に上方から挿通されて支持された複数の連結管13と、を有している。連結管13は上下方向に延びる筒状をなし、水平方向に配列されている。各連結管13には、炉心構成要素14が1つずつ配置されている(図2参照)。
As shown in FIGS. 1 and 2, the support structure 4 is a structure provided in the reactor vessel 2 to support the core component 14 from below. Located in the center. The partition wall 10 is fixed to the support structure 4 and the reactor vessel 2.
The support structure 4 includes a support plate 12 extending in the horizontal direction, and a plurality of connecting pipes 13 inserted into and supported by the support plate 12 from above. The connecting pipe 13 has a cylindrical shape extending in the vertical direction and is arranged in the horizontal direction. One core component 14 is disposed in each connecting pipe 13 (see FIG. 2).

上部構造物5は、例えば炉心構成要素14である制御棒を駆動するための駆動装置等を含む。この上部構造物5は、炉心3の上方に配置され、遮蔽プラグ7を上下方向に貫通するとともに、該遮蔽プラグ7によって原子炉容器2に対して固定される。   The superstructure 5 includes, for example, a driving device for driving a control rod that is the core component 14. The upper structure 5 is disposed above the core 3, penetrates the shielding plug 7 in the vertical direction, and is fixed to the reactor vessel 2 by the shielding plug 7.

次に、上記の支持構造4及び炉心構成要素14の構成について詳述する。
支持構造4は、水平方向に広がる支持板12と、支持板12によって支持される複数の連結管13と、を有している。支持板12は、軸線Ac方向(上下方向)に間隔をあけて配列された上側板部24及び下側板部25を有している(図1参照)。上側板部24と下側板部25との間の空間には冷却材Cの一部が流通する。
Next, the configuration of the support structure 4 and the core component 14 will be described in detail.
The support structure 4 includes a support plate 12 that extends in the horizontal direction, and a plurality of connecting pipes 13 that are supported by the support plate 12. The support plate 12 has an upper plate portion 24 and a lower plate portion 25 that are arranged with an interval in the direction of the axis Ac (vertical direction) (see FIG. 1). Part of the coolant C flows in the space between the upper plate portion 24 and the lower plate portion 25.

連結管13は、上側板部24及び下側板部25の挿入開孔26に上側から挿入されることで支持されている。本実施形態に係る連結管13は、筒状部28と、連結管側段差部30と、を有している。
筒状部28は、支持構造4に挿入される部位であり、連結管13に燃料棒15が挿入されている状態において、筒状部28の内周面とエントランスノズル16の外周面との間には間隙31が形成されている。この間隙31は、軸線Ac方向から見て円環状をなすとともに、当該軸線Ac方向にわたって広がる空間であり、エントランスノズル16の流入開孔20が配置されている。
The connecting pipe 13 is supported by being inserted into the insertion holes 26 of the upper plate portion 24 and the lower plate portion 25 from above. The connecting pipe 13 according to the present embodiment includes a cylindrical part 28 and a connecting pipe side step part 30.
The cylindrical portion 28 is a portion that is inserted into the support structure 4, and between the inner peripheral surface of the cylindrical portion 28 and the outer peripheral surface of the entrance nozzle 16 in a state where the fuel rod 15 is inserted into the connecting pipe 13. Is formed with a gap 31. The gap 31 has a ring shape when viewed from the direction of the axis Ac and is a space that extends over the direction of the axis Ac, and the inflow hole 20 of the entrance nozzle 16 is disposed therein.

筒状部28における軸線Ac方向の中央部には、上側板部24と下側板部25との間の空間を臨む開孔32が形成されている。開孔32を経て、上側板部24と下側板部25との間の空間内を流通する冷却材Cの一部が間隙31内に取り込まれる。   An opening 32 that faces the space between the upper plate portion 24 and the lower plate portion 25 is formed in the central portion of the cylindrical portion 28 in the axis Ac direction. A part of the coolant C flowing through the space between the upper plate portion 24 and the lower plate portion 25 is taken into the gap 31 through the opening 32.

連結管側段差部30は、上側板部24の上側の面と当接する円環状のフランジ部36と、このフランジ部36の内周側に一体に設けられた段差部本体37と、を有している。
フランジ部36は挿入開孔26の開孔寸法よりも大きい。フランジ部36が上側板部24に対して上側から当接することで、当該連結管13が下方へ脱落することなく支持される。
The connecting pipe side step portion 30 includes an annular flange portion 36 that comes into contact with the upper surface of the upper plate portion 24, and a step portion main body 37 that is integrally provided on the inner peripheral side of the flange portion 36. ing.
The flange portion 36 is larger than the opening size of the insertion opening 26. When the flange portion 36 comes into contact with the upper plate portion 24 from above, the connecting pipe 13 is supported without dropping downward.

段差部本体37は、燃料棒15のノズル側段差部18を上方から当接させて支持する部位であり、燃料棒15におけるノズル側段差部18の外表面23に対して外周側から及び下方から対向する対向面38を有している。本実施形態では対向面38はノズル側段差部18の外表面23に対応して上方に向かうに従って拡径した略円錐台の外周面の形状をなしている。ここで対向面38は、略円錐台の外周面の形状をなす場合に限らず、球面状,
曲面状等をなしていてもよい。
The stepped portion main body 37 is a portion that supports the nozzle-side stepped portion 18 of the fuel rod 15 from the upper side and supports the outer surface 23 of the nozzle-side stepped portion 18 of the fuel rod 15 from the outer peripheral side and from below. Opposite facing surfaces 38 are provided. In the present embodiment, the facing surface 38 has a shape of a substantially frustoconical outer peripheral surface whose diameter increases toward the upper side corresponding to the outer surface 23 of the nozzle side step portion 18. Here, the facing surface 38 is not limited to the shape of the outer peripheral surface of the substantially truncated cone,
It may be curved.

炉心構成要素14としての燃料棒15は、上下方向に延びる軸線Acを中心とする円柱状又は角柱状をなしている。具体的には燃料棒15は、水平方向の形状が相対的に小さいエントランスノズル16(小径部)と、このエントランスノズル16よりも上方に位置し、水平方向の形状が相対的に大きな断面形状を有する燃料棒本体17(大径部)と、エントランスノズル16および燃料棒本体17を上下方向に接続するノズル側段差部18(形状変化部)と、を有している。
燃料棒15の内側の領域は、上下方向にわたって中空に形成されている。当該中空部は、外部から流入した冷却材Cが下方から上方に向かって流通させる冷却材流路19の一部を構成している。
The fuel rod 15 as the core component 14 has a columnar shape or a prismatic shape with an axis Ac extending in the vertical direction as the center. Specifically, the fuel rod 15 has an entrance nozzle 16 (small diameter portion) having a relatively small horizontal shape, and a cross-sectional shape that is positioned above the entrance nozzle 16 and has a relatively large horizontal shape. The fuel rod main body 17 (large diameter part) which has, and the nozzle side step part 18 (shape change part) which connects the entrance nozzle 16 and the fuel rod main body 17 to an up-down direction are provided.
The region inside the fuel rod 15 is formed hollow in the vertical direction. The hollow portion constitutes a part of the coolant channel 19 through which the coolant C flowing from the outside flows from below to above.

エントランスノズル16は、燃料棒15の下端側に設けられ、連結管13に挿入されることで支持構造4内に挿入される部位である。エントランスノズル16には、周囲を流通する液体としての冷却材Cを冷却材流路19に取り入れるための複数の流入開孔20が形成されている。エントランスノズル16の下側の端部は、封止部材21によって封止されている。
燃料棒本体17は、核燃料等を内蔵することで、燃料棒15の主要部をなす部材である。燃料棒本体17は、軸線Ac方向から見て六角形の断面形状を有している。燃料棒本体17の内側の空間が冷却材流路19の一部を構成している。
The entrance nozzle 16 is provided on the lower end side of the fuel rod 15 and is a part that is inserted into the support structure 4 by being inserted into the connecting pipe 13. The entrance nozzle 16 is formed with a plurality of inflow apertures 20 for taking the coolant C as a liquid flowing through the periphery into the coolant channel 19. The lower end of the entrance nozzle 16 is sealed with a sealing member 21.
The fuel rod main body 17 is a member forming a main part of the fuel rod 15 by incorporating nuclear fuel or the like. The fuel rod body 17 has a hexagonal cross-sectional shape when viewed from the direction of the axis Ac. The space inside the fuel rod main body 17 constitutes a part of the coolant channel 19.

ノズル側段差部18は、エントランスノズル16と燃料棒本体17との間に位置し、エントランスノズル16と燃料棒本体17とを軸線Acに沿って同軸に連結する部位である。より具体的には、ノズル側段差部18は、エントランスノズル16側から燃料棒本体17側に向かうにしたがって次第に拡径する外表面23を有している。外表面23は円錐面状、球面状、曲面状等をなしていてもよい。   The nozzle-side step portion 18 is located between the entrance nozzle 16 and the fuel rod main body 17 and is a part that coaxially connects the entrance nozzle 16 and the fuel rod main body 17 along the axis Ac. More specifically, the nozzle side step portion 18 has an outer surface 23 that gradually increases in diameter from the entrance nozzle 16 side toward the fuel rod body 17 side. The outer surface 23 may be conical, spherical, curved or the like.

燃料棒15のノズル側段差部18は、収容部40と、収容部40に収容された進退部41と、進退部41を付勢するように設けられた付勢部42と、進退部41の進退で減衰力を生じるように設けた減衰部43と、を備えている。
収容部40は、上下方向に延びる軸線Acに沿って燃料棒15に設けられた中空部位であり、ノズル側段差部18の連結管13と対向する外表面に開口して設けられている。収容部40は単数又は複数の孔としてもよいが、本実施形態では弧状又は環状に設けた間隙により構成されている。この収容部40では水平方向の断面形状が軸線Acに沿って略一定形状に連続するのがよい。
The nozzle side step portion 18 of the fuel rod 15 includes an accommodating portion 40, an advancing / retracting portion 41 accommodated in the accommodating portion 40, an urging portion 42 provided to urge the advancing / retreating portion 41, And a damping part 43 provided so as to generate a damping force when moving forward and backward.
The accommodating portion 40 is a hollow portion provided in the fuel rod 15 along the axis Ac that extends in the up-down direction, and is provided to open on the outer surface of the nozzle side step portion 18 facing the connecting pipe 13. Although the accommodating part 40 is good also as a single hole or a some hole, in this embodiment, it is comprised by the gap | interval provided in arc shape or cyclic | annular form. In this accommodating part 40, it is good that the horizontal cross-sectional shape continues in a substantially constant shape along the axis line Ac.

本実施形態に係る収容部40は、ノズル側段差部18の外表面23周囲の空間、即ち、支持構造4上方における燃料棒15の外側周囲の空間と、燃料棒15内部の冷却材流路19と、の間を上下に連通している。
この収容部40は下端側の下部収容部44と上端側の上部収容部45とを有する。上部収容部45は下部収容部44より太く形成され、上端には冷却材流路19に開口した連通開口部46が設けられている。
The accommodating portion 40 according to the present embodiment includes a space around the outer surface 23 of the nozzle side step portion 18, that is, a space around the outside of the fuel rod 15 above the support structure 4, and a coolant channel 19 inside the fuel rod 15. Between the top and bottom.
The accommodating portion 40 has a lower accommodating portion 44 on the lower end side and an upper accommodating portion 45 on the upper end side. The upper accommodating portion 45 is formed thicker than the lower accommodating portion 44, and a communication opening 46 that opens to the coolant channel 19 is provided at the upper end.

進退部41は、上下方向に延びる軸線Acに沿う形状を有し、収容部40に下方に向かって突没可能に収容されている。進退部41は、下端側の下部進退部47と上端側となる上部進退部48とを有している。
下部進退部47は収容部40の下部収容部44に応じた水平断面形状を有している。下部進退部47が下部収容部44よりも細く形成されることで、下部進退部47と下部収容部44との間に上下方向に延びる間隙からなる抵抗流路49が形成されている。
進退部41が上方に没した状態、即ち、最も上部に配置された状態で下部進退部47の上端側が上部収容部45内に配置され、下部進退部47と上部収容部45との間に貯留部50が形成される。
The advancing / retreating portion 41 has a shape along the axis Ac extending in the vertical direction, and is accommodated in the accommodating portion 40 so as to be able to project and retract downward. The advance / retreat portion 41 has a lower advance / retreat portion 47 on the lower end side and an upper advance / retreat portion 48 on the upper end side.
The lower advancing / retracting portion 47 has a horizontal cross-sectional shape corresponding to the lower accommodating portion 44 of the accommodating portion 40. The lower advancing / retracting portion 47 is formed to be narrower than the lower accommodating portion 44, thereby forming a resistance flow path 49 including a gap extending in the vertical direction between the lower advancing / retreating portion 47 and the lower accommodating portion 44.
In a state where the advancing / retreating portion 41 is sunk upward, that is, in a state where it is disposed at the top, the upper end side of the lower advancing / retreating portion 47 is disposed in the upper accommodating portion 45, and is stored between the lower advancing / retreating portion 47 and the upper accommodating portion 45. Part 50 is formed.

下部進退部47の下端面には、下向きに突出した球面形状の球面座51が設けられている。球面座51は連結管13の対向面38と当接している。進退部41が最も上部に配置された状態で下部進退部47の下端面がノズル側段差部18の外表面23と略連続する位置に配置されている。   A spherical seat 51 having a spherical shape protruding downward is provided on the lower end surface of the lower advancement / retraction portion 47. The spherical seat 51 is in contact with the facing surface 38 of the connecting pipe 13. The lower end surface of the lower advance / retreat portion 47 is disposed at a position substantially continuous with the outer surface 23 of the nozzle side step portion 18 with the advance / retreat portion 41 being disposed at the uppermost portion.

進退部41の上部進退部48は、収容部40の上部収容部45に対応した水平断面形状を有して板状に形成されている。上部進退部48が上部収容部45に収容されることで、上部進退部48より下方に形成される貯留部50の上端が閉じられている。
上部進退部48と上部収容部45との間には微小な間隙が設けられている。
The upper advance / retreat portion 48 of the advance / retreat portion 41 has a horizontal sectional shape corresponding to the upper accommodation portion 45 of the accommodation portion 40 and is formed in a plate shape. By accommodating the upper advance / retreat part 48 in the upper accommodation part 45, the upper end of the storage part 50 formed below the upper advance / retreat part 48 is closed.
A minute gap is provided between the upper advancing / retracting portion 48 and the upper accommodating portion 45.

付勢部42は、収容部40内に収容された進退部41を下方へ付勢する構造を有している。即ち本実施形態に係る付勢部42は、連通開口部46と、進退部41の上部進退部48に設けられた受圧部52を用いて構成されている。上部進退部48の上面に設けられた受圧部52には、後述するメカニズムによって燃料棒本体17内の冷却材流路19から圧力が負荷されている。また、連通開口部46は上部進退部48と上部収容部45との間に設けられた微小な間隙である。   The urging portion 42 has a structure for urging the advance / retreat portion 41 accommodated in the accommodating portion 40 downward. That is, the urging portion 42 according to the present embodiment is configured by using the communication opening portion 46 and the pressure receiving portion 52 provided in the upper advance / retreat portion 48 of the advance / retreat portion 41. Pressure is applied to the pressure receiving portion 52 provided on the upper surface of the upper advance / retreat portion 48 from the coolant channel 19 in the fuel rod body 17 by a mechanism described later. The communication opening 46 is a minute gap provided between the upper advance / retreat part 48 and the upper housing part 45.

減衰部43は、進退部41の進退速度に応じて進退部41に受ける運動エネルギーに対する減衰力を発生する構造を有している。即ち本実施形態に係る減衰部43は、収容部40と進退部41との間に形成された抵抗流路49と貯留部50とを用いて構成されている。   The attenuating unit 43 has a structure that generates a damping force for the kinetic energy received by the advancing / retreating unit 41 according to the advancing / retreating speed of the advancing / retreating unit 41. That is, the attenuation unit 43 according to the present embodiment is configured using the resistance flow path 49 and the storage unit 50 formed between the storage unit 40 and the advance / retreat unit 41.

抵抗流路49は収容部40と進退部41との間の間隙に設けられているので、一端が支持構造4の上方における燃料棒15の外側周囲の空間に開口し、他端が貯留部50に開口している。抵抗流路49は、収容部40の進退位置に拘わらず、下部収容部44の上下方向の長さを有する。   Since the resistance flow path 49 is provided in the gap between the accommodating part 40 and the advance / retreat part 41, one end opens into the space around the outside of the fuel rod 15 above the support structure 4, and the other end is the storage part 50. Is open. The resistance flow path 49 has a length in the vertical direction of the lower housing portion 44 regardless of the advance / retreat position of the housing portion 40.

上部進退部48により貯留部50の上端が閉じられているため、進退部41の進退により貯留部50の容積が増減する。貯留部50の容積の増減により抵抗流路49及び連通開口部46を介して貯留部50に液体が流入又は流出する構成である。
減衰部43では、抵抗流路49を介して貯留部50に液体が流入又は流出する際の流動抵抗により進退部41が受ける運動エネルギーを減衰するように構成されている。また連通開口部46でも運動エネルギーが減衰されるようになっている。
Since the upper end of the storage part 50 is closed by the upper advance / retreat part 48, the volume of the storage part 50 increases or decreases as the advance / retreat part 41 advances / retreats. In this configuration, the liquid flows into or out of the storage section 50 via the resistance channel 49 and the communication opening 46 by increasing or decreasing the volume of the storage section 50.
The attenuation unit 43 is configured to attenuate the kinetic energy received by the advancing / retreating unit 41 due to the flow resistance when the liquid flows into or out of the storage unit 50 via the resistance channel 49. The kinetic energy is also attenuated at the communication opening 46.

以上のような原子炉1では、図3に示す通常の稼働時に炉心構成要素が支持構造に着座した状態では、炉心3(燃料棒15)での核分裂反応により、熱が発生する。さらに、冷却材Cが上記の冷却材入口配管8から原子炉容器2内の下部に供給された後、下方から上方に向かって流れる。冷却材Cは連結管13を経て燃料棒15の内部を通過しながら炉心3の熱を吸収する。高温となった冷却材Cは、冷却材出口配管9から原子炉容器2の外部に送出される。   In the nuclear reactor 1 as described above, heat is generated by the fission reaction in the core 3 (fuel rod 15) in a state where the core components are seated on the support structure during normal operation shown in FIG. Further, after the coolant C is supplied from the coolant inlet pipe 8 to the lower part in the reactor vessel 2, the coolant C flows upward from below. The coolant C absorbs the heat of the core 3 while passing through the inside of the fuel rod 15 through the connecting pipe 13. The coolant C that has reached a high temperature is delivered from the coolant outlet pipe 9 to the outside of the reactor vessel 2.

そして、収容部40の上部収容部45と進退部41の上部進退部48との間の間隙を通して、冷却材流路19の冷却材Cが貯留部50に流入し、貯留部50から抵抗流路49を通して燃料棒15の周囲に流出している。上部収容部45と上部進退部48との間の狭い間隙(連通開口部46)から貯留部50に冷却材Cが流入するため、その際の圧力損失により貯留部50内の液体は冷却材流路19より低圧に保たれている。   Then, the coolant C of the coolant channel 19 flows into the storage unit 50 through the gap between the upper storage unit 45 of the storage unit 40 and the upper advance / retreat unit 48 of the advance / retreat unit 41, and the resistance channel from the storage unit 50. 49 flows out around the fuel rod 15. Since the coolant C flows into the reservoir 50 from a narrow gap (communication opening 46) between the upper accommodating portion 45 and the upper advance / retreat portion 48, the liquid in the reservoir 50 flows into the reservoir 50 due to pressure loss at that time. It is kept at a lower pressure than the road 19.

よって貯留部50内の冷却材Cと冷却材流路19内の冷却材Cとの間の圧力差によって、付勢部42では受圧部52に下方へ向かう力が常時負荷されることで、進退部41が下方に付勢されている。   Therefore, due to the pressure difference between the coolant C in the reservoir 50 and the coolant C in the coolant channel 19, the urging portion 42 is constantly loaded with a downward force on the pressure receiving portion 52, so that it advances and retreats. The part 41 is urged downward.

進退部41が下方に付勢されることで、下部進退部47に設けられた球面座51は、連結管13の略円錐形状の対向面38に加圧状態で線接触する。冷却材流路19の圧力が受圧部52に負荷されて進退部41が下方に付勢されているため、その付勢力により燃料棒15が支持構造4に支持される。   When the advancing / retreating portion 41 is biased downward, the spherical seat 51 provided in the lower advancing / retreating portion 47 makes line contact with the substantially conical facing surface 38 of the connecting pipe 13 in a pressurized state. Since the pressure in the coolant channel 19 is applied to the pressure receiving portion 52 and the advance / retreat portion 41 is urged downward, the fuel rod 15 is supported by the support structure 4 by the urging force.

地震などにより上下方向の振動が原子炉1に負荷され、図4に示すように、燃料棒15が支持構造4から上方へ変位し、例えば跳び上がると、冷却材流路19と貯留部50との圧力差により、進退部41がノズル側段差部18から下方へ突出する。   When a vertical vibration is applied to the reactor 1 due to an earthquake or the like and the fuel rod 15 is displaced upward from the support structure 4 as shown in FIG. 4, for example, jumps up, the coolant channel 19 and the reservoir 50 Due to the pressure difference, the advance / retreat portion 41 protrudes downward from the nozzle side step portion 18.

その後、図5及び図6に示すように上方へ変位した燃料棒15が下方の支持構造4へ向かって変位し、例えば支持構造4上へ落下すると、減衰部43ではノズル側段差部18から下方へ突出した進退部41が先に支持構造4の連結管13に上方から当接し、収容部40へ収容される。   After that, as shown in FIGS. 5 and 6, when the fuel rod 15 displaced upward is displaced toward the lower support structure 4, for example, falls onto the support structure 4, the attenuation portion 43 moves downward from the nozzle side step portion 18. The advancing / retreating portion 41 that protrudes toward the first contacts the connecting pipe 13 of the support structure 4 from above and is accommodated in the accommodating portion 40.

この際、燃料棒15が支持構造4上へ変位して進退部41が没して後退することで、貯留部50の容積は増大し、抵抗流路49を流動して貯留部50に冷却材Cを吸引する。また抵抗流路49では進退部41の進退速度に対応して液体が流動して流動抵抗が生じるため、進退部41の進退速度に応じて進退部41の移動抵抗が生じる。またこの際には抵抗流路49及び連通開口部46を流動する冷却材Cの流速が急激に増加するため、進退部41がダッシュポットとして機能し進退部41が支持構造4から受ける運動エネルギーに対する減衰力が発生し、上方へ変位した燃料棒15が支持構造4上に変位する際の衝撃を緩和できる。   At this time, the fuel rod 15 is displaced onto the support structure 4 and the advance / retreat portion 41 sinks and retracts, whereby the volume of the storage portion 50 increases, flows through the resistance flow path 49, and flows into the storage portion 50 as a coolant. Aspirate C. Further, in the resistance flow path 49, the liquid flows corresponding to the advance / retreat speed of the advance / retreat section 41 and a flow resistance is generated. At this time, since the flow velocity of the coolant C flowing through the resistance flow path 49 and the communication opening 46 increases rapidly, the advance / retreat portion 41 functions as a dashpot, and the advance / retreat portion 41 responds to the kinetic energy received from the support structure 4. A damping force is generated, and the impact when the fuel rod 15 displaced upward is displaced onto the support structure 4 can be mitigated.

以上のような原子炉1によれば、収容部40に突没可能に収容された進退部41が、連結管13に上方から当接することで減衰力を発生しつつ没するように構成されていることで、上下方向の振動が負荷されても燃料棒15が支持構造4から跳び上がることを抑制できる。   According to the nuclear reactor 1 as described above, the advancing / retreating part 41 accommodated in the accommodating part 40 so as to be able to project and retract is configured to sunk while generating a damping force by contacting the connecting pipe 13 from above. As a result, it is possible to prevent the fuel rod 15 from jumping up from the support structure 4 even when a vertical vibration is applied.

即ち、本実施形態の原子炉1では、付勢部42により、冷却材Cの圧力差で進退部41が下方に付勢されるので、燃料棒15が支持構造4から上方に変位した際、ノズル側段差部18から進退部41を確実に突出させることができる。そして進退部41が再び支持構造4に接触して退避することにより、進退部41をいわゆるダッシュポットとして機能し、進退部41の進退により抵抗流路49を流れる液体の流動抵抗により、進退部41の移動速度に応じた減衰力を発生できる。   That is, in the nuclear reactor 1 of the present embodiment, the advancing / retreating portion 41 is urged downward by the urging portion 42 due to the pressure difference of the coolant C. Therefore, when the fuel rod 15 is displaced upward from the support structure 4, The advancing / retreating portion 41 can be reliably projected from the nozzle side step portion 18. The advancing / retreating portion 41 again comes into contact with the support structure 4 and retreats, so that the advancing / retreating portion 41 functions as a so-called dashpot. It is possible to generate a damping force according to the moving speed.

よって進退部41を下方に付勢するための機械部材を別途設置する必要がなく、減衰部43を収容部40に設けるので燃料棒15の跳び上がりを抑制する構造を収容部40に集約し易い。構造を簡素化しつつ上下方向の振動が原子炉1に負荷された際に燃料棒15が支持構造4から跳び上がることを確実に抑制できる。   Therefore, it is not necessary to separately install a mechanical member for urging the advance / retreat portion 41 downward, and the damping portion 43 is provided in the accommodation portion 40, so that a structure that suppresses the jumping of the fuel rod 15 is easily integrated in the accommodation portion 40. . While simplifying the structure, it is possible to reliably suppress the fuel rod 15 from jumping up from the support structure 4 when vertical vibration is applied to the nuclear reactor 1.

そして、このような収容部40及び進退部41が燃料棒15に設けられているので、支持構造4の連結管13などには、燃料棒15の跳び上がりを抑制するための構造を設ける必要がなく、連結管13の構造の自由度が確保できる。例えば既存の原子炉の支持構造4や連結管13をそのまま利用して、燃料棒15の跳び上がりを抑制するための構造を実現することも可能である。
従ってこの実施形態の原子炉1では、上下方向の振動による燃料棒15の跳び上がりを抑制できる構造を容易に設けることができる。
Since the housing portion 40 and the advancing / retreating portion 41 are provided in the fuel rod 15, it is necessary to provide the connecting pipe 13 of the support structure 4 with a structure for preventing the fuel rod 15 from jumping up. Therefore, the degree of freedom of the structure of the connecting pipe 13 can be ensured. For example, it is possible to realize a structure for suppressing the jumping of the fuel rod 15 by using the existing nuclear reactor support structure 4 and the connecting pipe 13 as they are.
Therefore, in the nuclear reactor 1 of this embodiment, it is possible to easily provide a structure that can suppress the jumping of the fuel rod 15 due to vertical vibration.

なお、上記の実施形態では、炉心構成要素14としての燃料棒15を支持構造4によって支持する場合について説明した。しかしながら、炉心構成要素14としては燃料棒15の他に、制御棒の上下動を案内する制御棒案内管を用いることも可能である。このような構成であっても、上記実施形態と同様の作用効果を得ることができる。   In the above embodiment, the case where the fuel rod 15 as the core component 14 is supported by the support structure 4 has been described. However, as the core component 14, in addition to the fuel rod 15, it is also possible to use a control rod guide tube for guiding the vertical movement of the control rod. Even if it is such a structure, the effect similar to the said embodiment can be acquired.

[第二実施形態]
次に、本発明の第二実施形態について、図7から図10を参照して説明する。なお、上記第一実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。
第二実施形態の原子炉1Aでは、炉心構成要素14の構成が異なる他は、第一実施形態と同様である。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS. In addition, about the structure similar to said 1st embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
The nuclear reactor 1A of the second embodiment is the same as that of the first embodiment except that the configuration of the core component 14 is different.

第二実施形態に係る原子炉1Aの炉心構成要素14である燃料棒15では、燃料棒15のノズル側段差部18に、収容部40Aと、収容部40Aに収容された進退部41Aと、進退部41を付勢するように設けられた付勢部42Aと、進退部41の進退で減衰力を生じるように設けた減衰部43Aと、を備えている。   In the fuel rod 15 which is the core component 14 of the nuclear reactor 1A according to the second embodiment, the nozzle side step portion 18 of the fuel rod 15 includes the accommodating portion 40A, the advance / retreat portion 41A accommodated in the accommodating portion 40A, and the advance / retreat portion. An urging portion 42A provided to urge the portion 41 and an attenuating portion 43A provided to generate a damping force by the advance / retreat of the advance / retreat portion 41 are provided.

第二実施形態では、収容部40Aが下向きに開口した有底の溝形状に設けられている。収容部40Aの水平断面形状は上下方向に延びる軸線Acに沿って略一定に形成されている。
進退部41Aは、上下方向に延びる軸線Acに沿う形状を有し、収容部40Aに下方に向かって突没可能に収容されている。
In the second embodiment, the accommodating portion 40A is provided in a bottomed groove shape that opens downward. The horizontal cross-sectional shape of the accommodating portion 40A is substantially constant along the axis Ac that extends in the vertical direction.
The advance / retreat part 41A has a shape along the axis Ac extending in the vertical direction, and is accommodated in the accommodation part 40A so as to protrude and retract downward.

進退部41Aが上方に没した状態で進退部41Aの上端と収容部40Aの上端の底部との間に貯留部50Aが設けられている。収容部40A内の貯留部50Aに配置されたバネ等の弾性部材53により付勢部42Aが構成されている。   A storage portion 50A is provided between the upper end of the advance / retreat portion 41A and the bottom portion of the upper end of the storage portion 40A in a state where the advance / retreat portion 41A is sunk upward. The urging portion 42A is configured by an elastic member 53 such as a spring disposed in the storage portion 50A in the accommodating portion 40A.

収容部40Aの内側内周側面と進退部41Aの内側外周側面との間、収容部40Aの外側内周側面と進退部41Aの外側外周側面との間の一方又は双方に上下方向に延びる間隙からなる抵抗流路49Aが設けられている。抵抗流路49Aはノズル側段差部18の外表面23周囲の空間と貯留部50Aとの間を上下に連通している。   From a gap extending vertically between one or both of the inner inner peripheral side surface of the accommodating portion 40A and the inner outer peripheral side surface of the advance / retreat portion 41A, or between the outer inner peripheral side surface of the accommodating portion 40A and the outer outer peripheral side surface of the advance / retreat portion 41A. A resistance flow path 49A is provided. The resistance flow path 49A communicates vertically between the space around the outer surface 23 of the nozzle side step portion 18 and the storage portion 50A.

このような第二実施形態の原子炉1Aでは、図7に示す炉心構成要素が支持構造に着座した状態の通常の稼働時には、弾性部材53により進退部41Aが下方に付勢されている。また貯留部50Aには冷却材Cからなる液体が充満している。
地震などにより上下方向の振動が原子炉1に負荷され、図8に示すように、燃料棒15が支持構造4から上方へ変位すると、弾性部材53の付勢力により、進退部41Aがノズル側段差部18から下方へ突出する。
これに伴い、貯留部50Aの容積が増大して、例えばノズル側段差部18の周囲の空間や冷却材流路19から冷却材Cが流入する。
In the nuclear reactor 1A according to the second embodiment, the advance / retreat portion 41A is urged downward by the elastic member 53 during normal operation in a state where the core components shown in FIG. 7 are seated on the support structure. In addition, the reservoir 50A is filled with the liquid made of the coolant C.
When a vertical vibration is applied to the reactor 1 due to an earthquake or the like and the fuel rod 15 is displaced upward from the support structure 4 as shown in FIG. Projects downward from the portion 18.
Along with this, the volume of the reservoir 50A increases, and the coolant C flows from the space around the nozzle-side stepped portion 18 or the coolant channel 19, for example.

そして図9及び図10に示すように、上方へ変位した燃料棒15が下方の支持構造4へ向かって変位すると、減衰部43Aではノズル側段差部18から下方へ突出した進退部41Aが先に支持構造4の連結管13に上方から当接して収容部40Aへ没し、収容部40Aに収容される。   9 and 10, when the fuel rod 15 displaced upward is displaced toward the lower support structure 4, the advancing / retreating portion 41A protruding downward from the nozzle-side step portion 18 is first provided in the damping portion 43A. It contacts the connecting pipe 13 of the support structure 4 from above and sinks into the accommodating portion 40A and is accommodated in the accommodating portion 40A.

燃料棒15が支持構造4上へ変位して進退部41が没して後退することで、貯留部50Aの容積が減少し、抵抗流路49Aを流動して貯留部50Aから冷却材Cを流出する。抵抗流路49Aでは、冷却材Cの流速が急激に増大し、進退部41Aの進退速度に対応して液体が流動して流動抵抗が生じるため、進退部41Aの進退速度に応じて進退部41Aの移動抵抗が生じる。
これにより進退部41Aが受ける運動エネルギーに対する減衰力が発生し、上方へ変位した燃料棒15が支持構造4上に変位する際の衝撃を減衰できる。その結果、地震等により上下方向の振動が負荷されても燃料棒15の跳び上がりを抑制することができる。
As the fuel rod 15 is displaced onto the support structure 4 and the advance / retreat portion 41 sinks and retracts, the volume of the reservoir 50A decreases, flows through the resistance channel 49A, and flows out the coolant C from the reservoir 50A. To do. In the resistance flow path 49A, the flow rate of the coolant C increases rapidly, and the liquid flows corresponding to the advance / retreat speed of the advance / retreat part 41A to generate a flow resistance. Therefore, the advance / retreat part 41A according to the advance / retreat speed of the advance / retreat part 41A. The movement resistance is generated.
As a result, a damping force with respect to the kinetic energy received by the advance / retreat portion 41A is generated, and the impact when the fuel rod 15 displaced upward is displaced onto the support structure 4 can be attenuated. As a result, even if vertical vibration is applied due to an earthquake or the like, the jumping of the fuel rod 15 can be suppressed.

この第二実施形態の原子炉1Aにおいても、第一実施形態と同様の作用効果を得ることができる。
即ち、収容部40Aに突没可能に収容された進退部41Aが、連結管13に上方から当接することで減衰力を発生しつつ没するように構成され、支持構造4の連結管13などに燃料棒15の跳び上がりを抑制するための構造を別途設ける必要がない。そのため、連結管13の構造の自由度が確保しつつ燃料棒15が支持構造4から跳び上がることを抑制できる。
Also in the nuclear reactor 1A of the second embodiment, the same effect as the first embodiment can be obtained.
That is, the advancing / retreating portion 41A accommodated in the accommodating portion 40A so as to be able to project and retract is configured to sink while generating a damping force by coming into contact with the connecting tube 13 from above, and is connected to the connecting tube 13 of the support structure 4 or the like. There is no need to separately provide a structure for suppressing the jumping of the fuel rod 15. Therefore, it is possible to prevent the fuel rod 15 from jumping up from the support structure 4 while ensuring the degree of freedom of the structure of the connecting pipe 13.

また進退部41Aの進退で容積が増減する貯留部50Aと、貯留部50Aに冷却材Cを流入及び流出させる抵抗流路49Aと、を有する減衰部43Aを設けているので、冷却材Cの流動抵抗により進退部41Aの進退速度に応じた減衰力を発生できる。
さらに弾性部材53である付勢部42Aにより、進退部41Aが下方に付勢されているので、支持構造4から上方に変位した際、ノズル側段差部18から進退部41Aを確実に突出させることができる。
Further, since the damping portion 43A having the storage portion 50A whose volume increases and decreases by the advancement and retraction of the advance / retreat portion 41A and the resistance flow path 49A for flowing the coolant C into and out of the storage portion 50A is provided, the flow of the coolant C A damping force corresponding to the advance / retreat speed of the advance / retreat portion 41A can be generated by the resistance.
Further, since the advancing / retreating portion 41A is urged downward by the urging portion 42A that is the elastic member 53, the advancing / retreating portion 41A is reliably projected from the nozzle side step portion 18 when displaced upward from the support structure 4. Can do.

しかも、第二実施形態の原子炉1Aでは、有底穴形状の収容部40A内に進退部41A及び付勢部42Aの弾性部材53が配置されると共に貯留部50A及び抵抗流路49Aが設けられていても、燃料棒15の跳び上がりを抑制するための構造を収容部40Aに集約できる。   Moreover, in the nuclear reactor 1A of the second embodiment, the elastic member 53 of the advance / retreat portion 41A and the urging portion 42A is disposed in the bottomed hole-shaped storage portion 40A, and the storage portion 50A and the resistance flow path 49A are provided. Even so, the structure for suppressing the jumping of the fuel rod 15 can be concentrated in the accommodating portion 40A.

ここで、本実施形態では、収容部40Aの上面と冷却材流路19とを連通する連通路(例えば第一実施形態の連通開口部46等)を設けてもよい。これにより、第一実施形態と同様に冷却材Cの圧力差によっても、進退部41Aを下方に付勢することができる。   Here, in the present embodiment, a communication path (for example, the communication opening 46 of the first embodiment) that communicates the upper surface of the accommodating portion 40A and the coolant channel 19 may be provided. Thereby, 41 A of advance / retreat parts can be urged | biased by the pressure difference of the coolant C similarly to 1st embodiment.

[第三実施形態]
次に、本発明の第三実施形態について、図11を参照して説明する。なお、上記第二実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。
第三実施形態の原子炉1Bでは、連結管13の上端面の構成が異なる他は、第二実施形態と同様である。
図11に示すように、第三実施形態の原子炉1Bでは、連結管13の連結管側段差部30に上方に突出した球面座54(突出部)が設けられている。
球面座54は軸線Acを中心とした環状に設けてられており、ノズル側段差部18における収容部40A及び進退部41Aとは異なる位置に対向して配置されている。
[Third embodiment]
Next, a third embodiment of the present invention will be described with reference to FIG. In addition, about the structure similar to said 2nd embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
The nuclear reactor 1B of the third embodiment is the same as that of the second embodiment except that the configuration of the upper end surface of the connecting pipe 13 is different.
As shown in FIG. 11, in the nuclear reactor 1 </ b> B of the third embodiment, a spherical seat 54 (protruding portion) that protrudes upward is provided on the connecting tube side step portion 30 of the connecting tube 13.
The spherical seat 54 is provided in an annular shape with the axis Ac as the center, and is disposed to face a position different from the accommodating portion 40A and the advance / retreat portion 41A in the nozzle side step portion 18.

このような第三実施形態の原子炉1Bにおいても第二実施形態と同様の作用効果が得られる。
さらに本実施形態では、炉心構成要素14が支持構造4に着座した状態において、球面座54がノズル側段差部18に当接することで、燃料棒15と連結管13との上下方向の位置を規制することができる。
In such a nuclear reactor 1B of the third embodiment, the same effects as those of the second embodiment can be obtained.
Further, in the present embodiment, in a state where the core component 14 is seated on the support structure 4, the spherical seat 54 abuts on the nozzle side step portion 18, thereby restricting the vertical position of the fuel rod 15 and the connecting pipe 13. can do.

よって炉心構成要素14が支持構造4に着座した状態において、弾性部材53が振動し、着座状態が不安定となることを回避できる。
また炉心構成要素14が支持構造4に着座した状態において、例えば弾性部材53を過剰に圧縮するようなことを防止でき、進退部41Aへの支持構造4からの荷重が直接作用することも回避できる。
ここで球面座54は連結管13側に設けられる場合に限定されず、ノズル側段差部18側に設けられていてもよい。即ち、球面座54は炉心構成要素14に収容部40とは異なる位置で連結管13(連結管側段差部30)に対向して、連結管13に上方から当接可能に設けられていてもよい。この場合であっても支持構造4の着座状態が不安定となることを回避でき、弾性部材53を過剰に圧縮するようなことを防止できる。
Therefore, in a state where the core component 14 is seated on the support structure 4, it can be avoided that the elastic member 53 vibrates and the seating state becomes unstable.
Further, in a state where the core component 14 is seated on the support structure 4, for example, the elastic member 53 can be prevented from being excessively compressed, and the load from the support structure 4 on the advance / retreat portion 41A can also be avoided. .
Here, the spherical seat 54 is not limited to the case where it is provided on the connecting pipe 13 side, and may be provided on the nozzle side step portion 18 side. That is, the spherical seat 54 may be provided on the core component 14 so as to be opposed to the connecting pipe 13 (the connecting pipe side stepped portion 30) at a position different from the accommodating part 40 and to contact the connecting pipe 13 from above. Good. Even in this case, the seating state of the support structure 4 can be prevented from becoming unstable, and the elastic member 53 can be prevented from being excessively compressed.

[第四実施形態]
次に、本発明の第四実施形態について、図12を参照して説明する。なお、上記第二実施形態及び第三実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。
第四実施形態の原子炉1Cでは、進退部41の構成が異なる他は、第二実施形態と同様である。
図12に示すように、第四実施形態の原子炉1Cでは、進退部41Cの上端面から下方に凹むことで弾性部材53を収容する凹形状の格納部55を設けている。これにより進退部41Cの上端面には、径方向外側及び内側の端部の位置で上方に突出するように突出縁部56が設けられている。軸線Acに沿う断面を見た時に、径方向外側及び内側の各々の突出縁部56は、上方に向かって徐々に肉厚が薄くなっていく。即ち格納部55は軸線Acに沿う断面を見た時に、上方に向かって径方向の寸法が徐々に大きくなる断面台形状をなしている。ただし格納部55はこのような形状に限定されず、単に弾性部材53を収容可能な形状をなしていればよい。
[Fourth embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIG. In addition, about the structure similar to said 2nd embodiment and 3rd embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
The nuclear reactor 1C of the fourth embodiment is the same as the second embodiment except that the configuration of the advance / retreat section 41 is different.
As shown in FIG. 12, in the nuclear reactor 1 </ b> C of the fourth embodiment, a concave storage portion 55 that houses the elastic member 53 by being recessed downward from the upper end surface of the advance / retreat portion 41 </ b> C is provided. Thus, a protruding edge portion 56 is provided on the upper end surface of the advance / retreat portion 41C so as to protrude upward at the positions of the radially outer and inner end portions. When the section along the axis Ac is viewed, the radially outer and inner protruding edges 56 gradually decrease in thickness toward the upper side. That is, the storage portion 55 has a trapezoidal shape in which the radial dimension gradually increases upward when viewing the cross section along the axis Ac. However, the storage portion 55 is not limited to such a shape, and may simply have a shape that can accommodate the elastic member 53.

このような第四実施形態の原子炉1Cにおいても第二実施形態と同様の作用効果が得られる。
特に本実施形態では、進退部41Cの上端面に格納部55が設けられているので、炉心構成要素14が支持構造4に着座した状態において、突出縁部56の上端が有底形状の収容部40Aの上端部に当接することで、弾性部材53である付勢部42Aを格納部55内に収容できる。
そのため炉心構成要素が支持構造に着座した状態において、弾性部材53を過剰に圧縮するようなことを防止できる。
In such a nuclear reactor 1 </ b> C of the fourth embodiment, the same effects as those of the second embodiment can be obtained.
In particular, in the present embodiment, since the storage portion 55 is provided on the upper end surface of the advance / retreat portion 41C, the upper end of the protruding edge portion 56 is a bottomed storage portion in a state where the core component 14 is seated on the support structure 4. The abutting portion 42 </ b> A that is the elastic member 53 can be accommodated in the storage portion 55 by contacting the upper end portion of 40 </ b> A.
Therefore, it is possible to prevent the elastic member 53 from being excessively compressed in a state where the core component is seated on the support structure.

以上、本発明の各実施形態について図面を参照して説明した。なお、上記の各実施形態は一例に過ぎず、本発明の要旨を逸脱しない限りにおいて、上記の構成に種々の変更を加えることが可能である。
例えば各実施形態では、収容部40と進退部41(41A、41C)との間の間隙に付勢部42(42A)や減衰部43(43A)を設けた例について説明したが、特に限定されるものではなく、収容部40内に収容された進退部41に付勢力や減衰力を与えるように構成することも可能である。
The embodiments of the present invention have been described above with reference to the drawings. Note that each of the above embodiments is merely an example, and various modifications can be made to the above configuration without departing from the gist of the present invention.
For example, in each embodiment, although the example which provided the urging | biasing part 42 (42A) and the attenuation | damping part 43 (43A) in the clearance gap between the accommodating part 40 and the advance / retreat part 41 (41A, 41C) was demonstrated, it is specifically limited. Instead of this, it is also possible to apply an urging force or a damping force to the advancing / retreating part 41 accommodated in the accommodating part 40.

1、1A、1B、1C…原子炉
2…原子炉容器
3…炉心
4…支持構造
5…上部構造物
6…原子炉容器本体
7…遮蔽プラグ
8…冷却材入口配管
9…冷却材出口配管
10…隔壁
11…開孔部
12…支持板
13…連結管
14…炉心構成要素
15…燃料棒
16…エントランスノズル
17…燃料棒本体
18…ノズル側段差部
19…冷却材流路
20…流入開孔
21…封止部材
23…外表面
24…上側板部
25…下側板部
26…挿入開孔
28…筒状部
30…連結管側段差部
31…間隙
32…開孔
36…フランジ部
37…段差部本体
38…対向面
40、40A…収容部
41、41A、41C…進退部
42、42A…付勢部
43、43A…減衰部
44…下部収容部
45…上部収容部
46…連通開口部
47…下部進退部
48…上部進退部
49、49A…抵抗流路
50、50A…貯留部
51…球面座
52…受圧部
53…弾性部材
54…球面座
55…格納部
56…突出縁部
Ac…軸線
C…冷却材
DESCRIPTION OF SYMBOLS 1, 1A, 1B, 1C ... Reactor 2 ... Reactor vessel 3 ... Core 4 ... Support structure 5 ... Upper structure 6 ... Reactor vessel body 7 ... Shield plug 8 ... Coolant inlet piping 9 ... Coolant outlet piping 10 ... partition wall 11 ... opening part 12 ... support plate 13 ... connecting pipe 14 ... core component 15 ... fuel rod 16 ... entrance nozzle 17 ... fuel rod body 18 ... nozzle side step part 19 ... coolant channel 20 ... inflow opening DESCRIPTION OF SYMBOLS 21 ... Sealing member 23 ... Outer surface 24 ... Upper side plate part 25 ... Lower side plate part 26 ... Insertion hole 28 ... Cylindrical part 30 ... Connecting pipe side step part 31 ... Gap 32 ... Opening 36 ... Flange part 37 ... Step Part main body 38 ... opposing surfaces 40, 40A ... accommodating parts 41, 41A, 41C ... advance / retreat parts 42, 42A ... biasing parts 43, 43A ... damping part 44 ... lower accommodating part 45 ... upper accommodating part 46 ... communication opening 47 ... Lower advancing / retracting portion 48... Upper advancing / retreating portion 49, 49 A. , 50A ... storage portion 51 ... spherical seat 52 ... pressure receiving portion 53 ... resilient member 54 ... spherical seat 55 ... storage unit 56 ... protruding edge Ac ... axis C ... coolant

Claims (7)

内部が液体で満たされる原子炉容器と、
該原子炉容器内に設けられ、上下方向に延びる筒状をなすとともに水平方向に複数配列された連結管、及び、該連結管を支持して水平方向に延びる支持板を有する支持構造と、
前記連結管に挿入される小径部、該小径部よりも上方に位置する大径部、及び、前記小径部と前記大径部との間に位置して前記連結管に上方から当接して支持される形状変化部を有する炉心構成要素と、
を備え、
前記炉心構成要素は、前記形状変化部に設けられて前記連結管と対向して開口した収容部と、前記収容部に下方に向かって突没可能に収容され、前記連結管に上方から当接することで減衰力を発生しつつ没する進退部と、を備える原子炉。
A reactor vessel filled with a liquid,
A connecting pipe provided in the reactor vessel, having a cylindrical shape extending in the vertical direction and arranged in a plurality in the horizontal direction, and a support structure having a support plate extending in the horizontal direction to support the connecting pipe;
A small-diameter portion inserted into the connecting pipe, a large-diameter portion positioned above the small-diameter portion, and positioned between the small-diameter portion and the large-diameter portion so as to contact and support the connecting tube from above. A core component having a shape change portion,
With
The core component is provided in the shape changing portion and is opened facing the connecting tube, and is accommodated in the receiving portion so as to be able to project and retract downward, and comes into contact with the connecting tube from above. And an advancing / retreating part that sinks while generating a damping force.
前記炉心構成要素では、前記進退部の進退により容積が増減する貯留部と、前記貯留部に前記液体を流入及び流出させる抵抗流路と、を有する減衰部を前記収容部に設けた請求項1に記載の原子炉。   The said core component WHEREIN: The attenuation | damping part which has the storage part to which a volume is increased / decreased by the advance / retreat of the said advancing / retreating part, and the resistance flow path into which the said liquid flows in / out is provided in the said accommodating part. The nuclear reactor described in 1. 前記炉心構成要素は、前記進退部を下方へ付勢する付勢部を備える請求項2に記載の原子炉。   The nuclear reactor according to claim 2, wherein the core component includes a biasing portion that biases the advance / retreat portion downward. 前記炉心構成要素は、内部が前記液体で満たされた筒状をなし、
前記付勢部は、前記収容部を前記炉心構成要素内に開口させた連通開口部と、前記進退部に設けられて前記連通開口部を介して前記炉心構成要素内の圧力で下方に加圧される受圧部と、を有する請求項3に記載の原子炉。
The core component has a cylindrical shape filled with the liquid,
The urging portion is provided with a communication opening portion in which the housing portion is opened in the core component, and is provided in the advancement / retraction portion, and is pressed downward by the pressure in the core component through the communication opening portion. The nuclear reactor according to claim 3, further comprising: a pressure receiving portion.
前記収容部は、下向きに開口した有底形状をなし、
前記収容部の底部と前記進退部との間に前記貯留部が設けられ、
前記収容部の内周側面と前記進退部の外周側面との間の前記抵抗流路が設けられ、
前記付勢部は、前記収容部内に配置された弾性部材である請求項3に記載の原子炉。
The housing portion has a bottomed shape opened downward,
The storage portion is provided between the bottom portion of the housing portion and the advance / retreat portion,
The resistance flow path between the inner peripheral side surface of the accommodating portion and the outer peripheral side surface of the advance / retreat portion is provided,
The nuclear reactor according to claim 3, wherein the urging portion is an elastic member disposed in the accommodating portion.
前記連結管には、前記収容部とは異なる位置で前記炉心構成要素に対向して下方から当接可能な突出部が設けられている請求項5に記載の原子炉。   The nuclear reactor according to claim 5, wherein the connecting pipe is provided with a protruding portion that can face the core component at a position different from the accommodating portion and can contact from below. 前記進退部の上端面には、前記弾性部材を収容可能な凹形状の格納部が設けられている請求項5又は6に記載の原子炉。   The nuclear reactor according to claim 5 or 6, wherein a concave storage part capable of accommodating the elastic member is provided on an upper end surface of the advance / retreat part.
JP2017052406A 2017-03-17 2017-03-17 Reactor Active JP6802736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017052406A JP6802736B2 (en) 2017-03-17 2017-03-17 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017052406A JP6802736B2 (en) 2017-03-17 2017-03-17 Reactor

Publications (2)

Publication Number Publication Date
JP2018155583A true JP2018155583A (en) 2018-10-04
JP6802736B2 JP6802736B2 (en) 2020-12-16

Family

ID=63715685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017052406A Active JP6802736B2 (en) 2017-03-17 2017-03-17 Reactor

Country Status (1)

Country Link
JP (1) JP6802736B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436470A (en) * 1977-08-26 1979-03-17 Toshiba Corp Floating prevention device of nuclear fuel assembly
JPH0271192A (en) * 1988-09-06 1990-03-09 Mitsubishi Atom Power Ind Inc Reactor core support structure
JPH04363694A (en) * 1990-05-18 1992-12-16 Toshiba Corp Supporting structure of reactor core elements
JPH07280977A (en) * 1994-04-15 1995-10-27 Toshiba Corp Core supporting structure in fast reactor
JP2013117500A (en) * 2011-12-05 2013-06-13 Mitsubishi Heavy Ind Ltd Atomic reactor
JP2017049170A (en) * 2015-09-03 2017-03-09 三菱重工業株式会社 Atomic reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436470A (en) * 1977-08-26 1979-03-17 Toshiba Corp Floating prevention device of nuclear fuel assembly
JPH0271192A (en) * 1988-09-06 1990-03-09 Mitsubishi Atom Power Ind Inc Reactor core support structure
JPH04363694A (en) * 1990-05-18 1992-12-16 Toshiba Corp Supporting structure of reactor core elements
JPH07280977A (en) * 1994-04-15 1995-10-27 Toshiba Corp Core supporting structure in fast reactor
JP2013117500A (en) * 2011-12-05 2013-06-13 Mitsubishi Heavy Ind Ltd Atomic reactor
JP2017049170A (en) * 2015-09-03 2017-03-09 三菱重工業株式会社 Atomic reactor

Also Published As

Publication number Publication date
JP6802736B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP6173334B2 (en) Device for starting and inserting absorbers and / or moderators into the nuclear fission zone of a nuclear reactor and nuclear fuel assembly comprising such a device
JP2017501417A5 (en)
JP5445946B2 (en) Bottom end piece having an anti-debris device with a baffle for a nuclear fuel assembly and the nuclear fuel assembly
US10854343B2 (en) Nuclear fuel assembly for a thermal neutron reactor
JP2015500463A (en) Reactor assembly comprising nuclear fuel and a system for activating and inserting at least one neutron absorption and / or mitigation element
JP2010037789A (en) Base-isolated structure, building, and base-isolated building
KR20090111330A (en) Closure device for a pressure reservoir of a gas-refrigeration generator, which can be filled with a compressed gas
JP2017049170A (en) Atomic reactor
JP4825763B2 (en) Reflector-controlled fast reactor
JP2018155583A (en) Reactor
JP5550980B2 (en) Single cylinder shock absorber
JP2014160079A (en) Fixed cluster having spider-shaped supporting body, core of pressurized-water reactor, nuclear fuel assembly, and assembly equipped with fixed cluster
JP2011247584A (en) Reactor container
KR101543261B1 (en) Break flow stoppage device and nuclear power plant having the same
US4584168A (en) System for controlling destructive vibration of a nuclear control rod
CN106941013B (en) Triggering and inserting device and system, nuclear fuel assembly and nuclear reactor
JP4306632B2 (en) Liquid storage container
JP6542139B2 (en) Jet pump and diffuser extension sleeve thereof
JP5999890B2 (en) Reactor
JP6899294B2 (en) Fast reactor core and fast reactor equipped with this core
JP2018031773A (en) Device for hydraulically braking absorbent assembly of fast neutron reactor
KR101205630B1 (en) External reactor vessel cooling system using a seal plate and rupture disc
JP2005345477A (en) Method and apparatus for reducing vibration in component of nuclear reactor
US20160358677A1 (en) Control Rod Drive Mechanism
JP2023090159A (en) horizontal cylindrical tank

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170321

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201127

R150 Certificate of patent or registration of utility model

Ref document number: 6802736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150