JP2018155417A - Flash steam generator - Google Patents

Flash steam generator Download PDF

Info

Publication number
JP2018155417A
JP2018155417A JP2017050420A JP2017050420A JP2018155417A JP 2018155417 A JP2018155417 A JP 2018155417A JP 2017050420 A JP2017050420 A JP 2017050420A JP 2017050420 A JP2017050420 A JP 2017050420A JP 2018155417 A JP2018155417 A JP 2018155417A
Authority
JP
Japan
Prior art keywords
steam
drain
pressure
line
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017050420A
Other languages
Japanese (ja)
Inventor
直之 小泉
Naoyuki Koizumi
直之 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2017050420A priority Critical patent/JP2018155417A/en
Publication of JP2018155417A publication Critical patent/JP2018155417A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flash steam generator capable of supplying flash steam of high dryness.SOLUTION: A flash steam generator 30 includes a flash tank 31 for re-evaporating recovered steam drain D1 and separating it into flash steam S3 and hot water W3, a drain recovering line L31 for recovering the steam drain D1 to the flash tank 31, an initial drain discharge line L35 for discharging the steam drain D1 from the drain recovering line L31, temperature detection means 36 detecting a temperature of the steam drain D1, circulation passage switching means 32 composed of a plurality of control valves including at least an initial drain discharge valve V35 disposed on the initial drain discharge line L35, and control means 37 controlling the circulation passage switching means 32. The control means 37 opens the initial drain discharge valve V35 when a detection temperature of the drain temperature detection means 36 is a first set temperature or less.SELECTED DRAWING: Figure 1

Description

本発明は、フラッシュ蒸気発生装置に関するものである。   The present invention relates to a flash steam generator.

従来、特許文献1、2に示されるように、フラッシュ蒸気発生装置は、蒸気システムに組み込まれて使用され、高圧蒸気利用設備から排出される蒸気ドレン(蒸気凝縮水)をフラッシュタンクに回収し、この回収した蒸気ドレンをフラッシュタンク内で再蒸発させてフラッシュ蒸気と温水とに分離すると共に、フラッシュ蒸気を低圧蒸気利用設備に供給するようになっている。   Conventionally, as shown in Patent Documents 1 and 2, a flash steam generator is used by being incorporated in a steam system, and collects steam drain (steam condensed water) discharged from a high-pressure steam utilization facility in a flash tank, The recovered steam drain is re-evaporated in a flash tank to separate it into flash steam and hot water, and the flash steam is supplied to a low-pressure steam utilization facility.

特開2012−7762号公報JP 2012-7762 A 特開2009−198038号公報JP 2009-198038 A

高圧蒸気利用設備の冷態起動時に排出される蒸気ドレンの初流部分(初期ドレン)は、設備内からの溶出物(例えば、熱交換器から溶出した鉄分)等で汚染されているうえ、再利用できる熱量が少ない低温状態であるために利用価値がほとんどない。そのため、フラッシュタンクに初期ドレンが流入した場合には、缶内から排出することが行われている。   The initial flow portion (initial drain) of the steam drain discharged at the time of cold start of the high-pressure steam utilization facility is contaminated with the effluent from the facility (for example, iron eluted from the heat exchanger). Since it is in a low temperature state with a small amount of heat available, it has little utility value. For this reason, when the initial drain flows into the flash tank, it is discharged from the inside of the can.

しかしながら、低温のドレンは再蒸発しにくいため、フラッシュタンクの缶内圧力が上昇せず、ドレンの排出がうまく行えないことがある。特に、初期ドレンが大量に流入すると、ドレンの排出不良が生じて缶内が満水になりやすい。その結果、高温のドレンが流入してフラッシュ蒸気が発生した時に、滞留ドレンのキャリーオーバーによってフラッシュ蒸気の乾き度が低下するという課題があった。   However, since the low-temperature drain is difficult to re-evaporate, the pressure inside the can of the flash tank does not rise, and the drain may not be discharged well. In particular, when a large amount of initial drain flows, drain discharge failure occurs and the inside of the can tends to become full. As a result, when high-temperature drain flows and flash vapor is generated, there is a problem that the dryness of the flash vapor decreases due to carry-over of the accumulated drain.

そこで、本発明は、乾き度の高いフラッシュ蒸気を供給可能なフラッシュ蒸気発生装置を提供することを目的とする。   Then, an object of this invention is to provide the flash steam generator which can supply flash steam with a high dryness.

本発明は、回収した蒸気ドレンを再蒸発させてフラッシュ蒸気と温水とに分離するフラッシュタンクと、蒸気ドレンを前記フラッシュタンクに回収するドレン回収ラインと、フラッシュ蒸気を前記フラッシュタンクから送気する蒸気送気ラインと、温水を前記フラッシュタンクから排出するドレン排出ラインと、前記フラッシュタンクに対して蒸気ドレンを迂回させるバイパスラインと、蒸気ドレンを前記ドレン回収ラインから排出する初期ドレン排出ラインと、前記送気ラインに設けられ蒸気送気弁、前記ドレン排出ラインに設けられたドレン排出弁、前記バイパスラインに設けられたバイパス弁、及び前記初期ドレン排出ラインに設けられた初期ドレン排出弁を少なくとも含む複数の制御弁から構成される流通経路切換手段と、前記ドレン回収ラインに流入、又は前記ドレン回収ラインを流通する蒸気ドレンの温度を検出するドレン温度検出手段と、前記流通経路切換手段を制御する制御手段と、を備え、前記制御手段は、前記ドレン温度検出手段の検出温度が第1設定温度以下の場合には、前記初期ドレン排出弁を開放することを特徴とする。   The present invention relates to a flash tank for re-evaporating the recovered steam drain to separate it into flash steam and hot water, a drain recovery line for recovering the steam drain to the flash tank, and steam for supplying the flash steam from the flash tank. An air supply line; a drain discharge line for discharging hot water from the flash tank; a bypass line for bypassing the steam drain to the flash tank; an initial drain discharge line for discharging the steam drain from the drain recovery line; A steam supply valve provided in the air supply line; a drain discharge valve provided in the drain discharge line; a bypass valve provided in the bypass line; and an initial drain discharge valve provided in the initial drain discharge line. A flow path switching means comprising a plurality of control valves; A drain temperature detecting means for detecting the temperature of the steam drain flowing into the recovery line or flowing through the drain recovery line; and a control means for controlling the flow path switching means, wherein the control means detects the drain temperature. When the detected temperature of the means is equal to or lower than the first set temperature, the initial drain discharge valve is opened.

更に、本発明は、次のような構成を備えるのが好ましい。
〔2〕前記制御手段は、前記ドレン温度検出手段の検出温度が第1設定温度よりも高い第2設定温度以上の場合には、前記初期ドレン排出弁を閉止する。
Furthermore, the present invention preferably comprises the following configuration.
[2] The control means closes the initial drain discharge valve when the temperature detected by the drain temperature detection means is equal to or higher than a second set temperature higher than the first set temperature.

〔3〕前記流通経路切換手段は、前記ドレン回収ラインに設けられた入口弁を更に含み、前記制御手段は、前記初期ドレン排出弁を開放する場合には、前記入口弁を閉止する。 [3] The flow path switching means further includes an inlet valve provided in the drain recovery line, and the control means closes the inlet valve when the initial drain discharge valve is opened.

〔4〕前記入口弁の上流側の前記ドレン回収ラインの管路内圧力を検出するライン圧力検出手段を備え、前記制御手段は、前記ライン圧力検出手段の検出圧力が設定圧力以上の場合には、前記バイパスラインに設けられたバイパス弁を開放する。 [4] Line pressure detection means for detecting the pressure in the drain recovery line upstream of the inlet valve is provided, and the control means, when the detected pressure of the line pressure detection means is greater than a set pressure The bypass valve provided in the bypass line is opened.

本発明によれば、乾き度の高いフラッシュ蒸気を供給可能なフラッシュ蒸気発生装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the flash steam generator which can supply flash steam with high dryness can be provided.

本発明の実施形態に係るフラッシュ蒸気発生装置が組み込まれた蒸気システムの概略構成図である。1 is a schematic configuration diagram of a steam system incorporating a flash steam generator according to an embodiment of the present invention. フラッシュ蒸気発生装置の運転制御に係るフローチャートである。It is a flowchart which concerns on the operation control of a flash steam generator. 流通経路切換手段を構成する初期ドレン排出弁の制御に係るフローチャートである。It is a flowchart which concerns on control of the initial drain discharge valve which comprises a flow path switching means. 流通経路切換手段を構成する蒸気送気弁の制御、並びに蒸気昇圧機の制御に係るフローチャートである。It is a flowchart which concerns on control of the steam feed valve which comprises a flow path switching means, and control of a steam booster. 流通経路切換手段を構成するドレン排出弁の制御に係るフローチャートである。It is a flowchart which concerns on control of the drain discharge valve which comprises a flow path switching means. フロースイッチのオンオフ状態と水位判定の関係、並びにドレン排出弁の開度設定値を示すテーブルである。It is a table which shows the ON / OFF state of a flow switch, the relationship of water level determination, and the opening setting value of a drain discharge valve. 流通経路切換手段を構成するバイパス弁の制御に係るフローチャートである。It is a flowchart which concerns on control of the bypass valve which comprises a flow path switching means. 流通経路切換手段を構成するバイパス弁の制御に係るフローチャートである。It is a flowchart which concerns on control of the bypass valve which comprises a flow path switching means. 流通経路切換手段を構成するブロー弁の制御に係るフローチャートである。It is a flowchart which concerns on control of the blow valve which comprises a flow path switching means. 流通経路切換手段を構成する入口弁の制御に係るフローチャートである。It is a flowchart which concerns on control of the inlet valve which comprises a flow path switching means. 流通経路切換手段を構成する入口弁の制御に係るフローチャートである。It is a flowchart which concerns on control of the inlet valve which comprises a flow path switching means.

以下、本発明に係るフラッシュ蒸気発生装置の実施形態について、図面を参照しながら説明する。本発明に係るフラッシュ蒸気発生装置は、蒸気を熱媒として各種生産設備で利用する蒸気システムに組み込まれて使用される。   Hereinafter, an embodiment of a flash steam generator according to the present invention will be described with reference to the drawings. The flash steam generator according to the present invention is used by being incorporated in a steam system that uses steam as a heat medium in various production facilities.

<蒸気システム>
図1は、本発明の実施形態に係るフラッシュ蒸気発生装置が組み込まれた蒸気システムの概略構成図である。図1に示すように、蒸気システム1は、蒸気ボイラ装置群10と、スチームヘッダ12と、高圧蒸気利用設備13と、低圧蒸気利用設備14と、フラッシュ蒸気発生装置30と、蒸気昇圧機15と、給水タンク40と、を備える。また、蒸気システム1は、第1蒸気ラインL11と、第2蒸気ラインL12と、第3蒸気ラインL13と、第4蒸気ラインL14と、第5蒸気ラインL15と、第1ドレンラインL21と、第2ドレンラインL22と、第3ドレンラインL23と、第4ドレンラインL24と、ボイラ給水ラインL41と、補給水ラインL52と、を備える。
<Steam system>
FIG. 1 is a schematic configuration diagram of a steam system in which a flash steam generator according to an embodiment of the present invention is incorporated. As shown in FIG. 1, the steam system 1 includes a steam boiler device group 10, a steam header 12, a high-pressure steam utilization facility 13, a low-pressure steam utilization facility 14, a flash steam generator 30, and a steam booster 15. The water supply tank 40 is provided. The steam system 1 includes a first steam line L11, a second steam line L12, a third steam line L13, a fourth steam line L14, a fifth steam line L15, a first drain line L21, 2 drain line L22, 3rd drain line L23, 4th drain line L24, boiler feed water line L41, and makeup water line L52 are provided.

蒸気ボイラ装置群10は、例えば、多管式小型貫流ボイラの構造を有する複数台の蒸気ボイラ装置11,11,…からなり、高圧蒸気S1(例えば、0.5〜2MPaの蒸気)の供給源となるものである。蒸気ボイラ装置11は、ガス燃料や油燃料をバーナーで燃焼させながら水管内のボイラ水を加熱し、高圧蒸気S1を発生させる。蒸気ボイラ装置群10においては、蒸気ボイラ装置11の運転台数及び各蒸気ボイラ装置11の燃焼状態(例えば、高燃焼状態、中燃焼状態、低燃焼状態及び停止状態)を制御することにより、蒸気供給量を調節可能に構成されている。   The steam boiler apparatus group 10 includes, for example, a plurality of steam boiler apparatuses 11, 11,... Having a multi-tubular small once-through boiler structure, and a supply source of high-pressure steam S1 (for example, 0.5 to 2 MPa steam). It will be. The steam boiler device 11 heats the boiler water in the water pipe while burning gas fuel or oil fuel with a burner, and generates high-pressure steam S1. In the steam boiler device group 10, steam supply is performed by controlling the number of operating steam boiler devices 11 and the combustion states (for example, high combustion state, middle combustion state, low combustion state, and stopped state) of each steam boiler device 11. The amount can be adjusted.

第1蒸気ラインL11は、蒸気ボイラ装置11で製造された高圧蒸気S1をスチームヘッダ12に供給するための管路である。スチームヘッダ12は、複数台の蒸気ボイラ装置11,11,…で製造された高圧蒸気S1を一箇所に集め、ボイラ間の蒸気圧力のばらつきを吸収させるための設備である。スチームヘッダ12に集められた高圧蒸気S1は、複数の蒸気利用設備(負荷機器)に向けて分配される。   The first steam line L <b> 11 is a conduit for supplying high-pressure steam S <b> 1 manufactured by the steam boiler device 11 to the steam header 12. The steam header 12 is a facility for collecting high-pressure steam S1 produced by a plurality of steam boiler apparatuses 11, 11,... At one place and absorbing variations in steam pressure between the boilers. The high-pressure steam S1 collected in the steam header 12 is distributed toward a plurality of steam utilization facilities (load equipment).

第2蒸気ラインL12は、スチームヘッダ12に集められた高圧蒸気S1を高圧蒸気利用設備13に供給するための管路である。高圧蒸気利用設備13は、スチームヘッダ12から供給される高圧蒸気S1を熱媒として利用する設備である。高圧蒸気利用設備13としては、例えば、クリーニング工場の乾燥機、食品加工工場のフライヤー等の生産設備が該当する。   The second steam line L12 is a conduit for supplying the high-pressure steam S1 collected in the steam header 12 to the high-pressure steam utilization facility 13. The high-pressure steam utilization facility 13 is a facility that utilizes the high-pressure steam S1 supplied from the steam header 12 as a heat medium. Examples of the high-pressure steam utilization equipment 13 include production equipment such as a dryer in a cleaning factory and a fryer in a food processing factory.

第3蒸気ラインL13は、スチームヘッダ12に集められた高圧蒸気S1を減圧して低圧蒸気S2とし、この低圧蒸気S2を低圧蒸気利用設備14に供給するための管路である。第3蒸気ラインL13には、高圧蒸気S1から所要圧力の低圧蒸気S2(例えば、0.1〜0.4MPaの蒸気)を得るために、減圧弁V11が設けられている。低圧蒸気利用設備14は、減圧弁V11を介して供給される低圧蒸気S2、又は後述する蒸気昇圧機15を介して供給される低圧蒸気S2を熱媒として利用する設備である。低圧蒸気利用設備14としては、例えば、クリーニング工場の連続洗濯機、食品加工工場の蒸し器等の生産設備が該当する。   The third steam line L13 is a pipe line for reducing the pressure of the high-pressure steam S1 collected in the steam header 12 to low-pressure steam S2, and supplying the low-pressure steam S2 to the low-pressure steam utilization facility 14. The third steam line L13 is provided with a pressure reducing valve V11 in order to obtain a low pressure steam S2 (for example, 0.1 to 0.4 MPa steam) having a required pressure from the high pressure steam S1. The low-pressure steam utilization facility 14 is a facility that uses the low-pressure steam S2 supplied via the pressure reducing valve V11 or the low-pressure steam S2 supplied via the steam booster 15 described later as a heat medium. The low-pressure steam utilization equipment 14 includes, for example, production equipment such as a continuous washing machine in a cleaning factory and a steamer in a food processing factory.

第4蒸気ラインL14は、フラッシュ蒸気発生装置30で生成したフラッシュ蒸気S3を昇圧して低圧蒸気S2とし、この低圧蒸気S2を低圧蒸気利用設備14に供給するための管路である。第4蒸気ラインL14の上流側の端部は、フラッシュ蒸気発生装置30の蒸気出口(符号省略)に接続されている。第4蒸気ラインL14の下流側の端部は、減圧弁V11の下流側の第3蒸気ラインL13と接続されている。第4蒸気ラインL14には、フラッシュ蒸気S3から所要圧力の低圧蒸気S2(例えば、0.1〜0.4MPaの蒸気)を得るために、蒸気昇圧機15が設けられている。蒸気昇圧機15としては、例えばスクリュー式圧縮機を使用することができ、この蒸気昇圧機15は、フラッシュ蒸気発生装置30の制御手段37(後述)から送信される駆動指令信号及び停止指令信号により制御される。   The fourth steam line L <b> 14 is a pipeline for increasing the pressure of the flash steam S <b> 3 generated by the flash steam generator 30 to the low pressure steam S <b> 2 and supplying the low pressure steam S <b> 2 to the low pressure steam utilization facility 14. The upstream end of the fourth steam line L14 is connected to the steam outlet (reference numeral omitted) of the flash steam generator 30. The downstream end of the fourth steam line L14 is connected to the third steam line L13 on the downstream side of the pressure reducing valve V11. A steam booster 15 is provided in the fourth steam line L14 in order to obtain low pressure steam S2 (for example, 0.1 to 0.4 MPa steam) having a required pressure from the flash steam S3. As the steam booster 15, for example, a screw type compressor can be used. This steam booster 15 is driven by a drive command signal and a stop command signal transmitted from the control unit 37 (described later) of the flash steam generator 30. Be controlled.

第4蒸気ラインL14において、蒸気昇圧機15の吸込側には、真空破壊弁V12が設けられ、蒸気昇圧機15の吐出側には、逆止弁V13が設けられている。真空破壊弁V12は、蒸気昇圧機15の吸込側が負圧になった場合に吸気作動することにより、吸込側を大気圧まで昇圧させる弁機構である。フラッシュ蒸気発生装置30の運転停止中には、第4蒸気ラインL14(及び送気ラインL31)の放熱と冷却により蒸気が凝縮し、蒸気昇圧機15の吸込側が負圧になりやすい。蒸気昇圧機15がスクリュー式圧縮機である場合、吸込側が負圧になると、低圧蒸気S2の逆流等によってスクリュー歯溝間の液シール部分に異物が噛み込むおそれがある。そこで、本実施形態では、真空破壊弁V12を設けることにより、蒸気昇圧機15の吸込側が負圧状態になるのを防止している。また、逆止弁V13は、設定方向とは逆の流れが生じた場合に閉止作動することにより、蒸気昇圧機15に対して低圧蒸気S2が逆流するのを防止する弁機構である。   In the fourth steam line L14, a vacuum breaker valve V12 is provided on the suction side of the steam booster 15, and a check valve V13 is provided on the discharge side of the steam booster 15. The vacuum breaker valve V12 is a valve mechanism that raises the suction side to atmospheric pressure by performing an intake operation when the suction side of the steam booster 15 becomes negative pressure. While the operation of the flash steam generator 30 is stopped, the steam is condensed by the heat radiation and cooling of the fourth steam line L14 (and the air supply line L31), and the suction side of the steam booster 15 tends to be negative pressure. When the steam pressure booster 15 is a screw compressor, if the suction side has a negative pressure, foreign matter may be caught in the liquid seal portion between the screw teeth due to the backflow of the low-pressure steam S2. Therefore, in this embodiment, the vacuum breaker valve V12 is provided to prevent the suction side of the steam booster 15 from entering a negative pressure state. The check valve V13 is a valve mechanism that prevents the low-pressure steam S2 from flowing back to the steam booster 15 by closing when a flow opposite to the set direction occurs.

低圧蒸気利用設備14に対しては、蒸気ボイラ装置群10に由来する低圧蒸気S2と、フラッシュ蒸気発生装置30に由来する低圧蒸気S2とが合流して供給される。そのため、蒸気システム1では、フラッシュ蒸気発生装置30に由来する低圧蒸気S2の供給量が多いほど、蒸気ボイラ装置群10に由来する低圧蒸気S2の供給量が少なくて済み、システム全体の省エネルギーを図ることができるようになっている。   The low-pressure steam utilization facility 14 is supplied with the low-pressure steam S2 derived from the steam boiler device group 10 and the low-pressure steam S2 derived from the flash steam generator 30. Therefore, in the steam system 1, as the supply amount of the low-pressure steam S2 derived from the flash steam generator 30 is increased, the supply amount of the low-pressure steam S2 derived from the steam boiler device group 10 is reduced, and energy saving of the entire system is achieved. Be able to.

第1ドレンラインL21は、高圧蒸気利用設備13で発生した蒸気ドレンD1を給水タンク40に回収するための管路である。高圧蒸気利用設備13の蒸気出口側には、スチームトラップ21が設けられている。このスチームトラップ21は、蒸気ドレンD1を高圧蒸気S1から分離し、自動で排出する機器である。第1ドレンラインL21は、スチームトラップ21から給水タンク40の近傍まで水平配管(又は傾斜下降配管)で敷設された後、給水タンク40の上方より垂直配管で延設され、配管の末端部分がタンクの貯水領域に水没されている。   The first drain line L <b> 21 is a conduit for collecting the steam drain D <b> 1 generated in the high-pressure steam utilization facility 13 in the water supply tank 40. A steam trap 21 is provided on the steam outlet side of the high-pressure steam utilization facility 13. The steam trap 21 is a device that separates the steam drain D1 from the high-pressure steam S1 and automatically discharges it. The first drain line L21 is laid with a horizontal pipe (or inclined descending pipe) from the steam trap 21 to the vicinity of the water supply tank 40, and then is extended with a vertical pipe from above the water supply tank 40. Submerged in the water storage area.

第1ドレンラインL21は、蒸気ドレンD1を給水タンク40に回収する際には、バイパス弁V36(後述)により流路が開放される一方、蒸気ドレンD1をフラッシュ蒸気発生装置30(後述)のフラッシュタンク31に回収する際には、バイパス弁V36により流路が遮断される。そのため、第1ドレンラインL21は、フラッシュタンク31に対して蒸気ドレンD1を迂回させるバイパスラインとして機能する。   When the first drain line L21 collects the steam drain D1 in the water supply tank 40, the flow path is opened by a bypass valve V36 (described later), while the steam drain D1 is flushed by the flash steam generator 30 (described later). When collecting in the tank 31, the flow path is blocked by the bypass valve V36. Therefore, the first drain line L21 functions as a bypass line that bypasses the steam drain D1 with respect to the flash tank 31.

更に、給水タンク40の上方において、第1ドレンラインL21の水平配管の上面には、蒸気ドレンD1が流通する過程で発生したフラッシュ蒸気S4を取り出す排気口(符号省略)が設けられている。この排気口には、立上り配管部、水平配管部、及び立下り配管部よりなる第5蒸気ラインL15が接続されている。つまり、第5蒸気ラインL15は、第1ドレンラインL21から分岐する管路である。この第5蒸気ラインL15の水平配管部には、排気弁V14が設けられている。第5蒸気ラインL15の立下り配管部の末端は、給水タンク40の非貯水領域に接続されるか、サイレンサを介して貯水領域に接続される。後述するように、バイパス弁V33の開放と同期して排気弁V14を開放することにより、温水とフラッシュ蒸気とに二相化した蒸気ドレンD1は、温水部分が第1ドレンラインL21を通じて給水タンク40に回収される一方で、蒸気部分(S4)が第5蒸気ラインL15を通じて給水タンク40に回収される。   Further, above the water supply tank 40, an exhaust port (reference numeral omitted) is provided on the upper surface of the horizontal pipe of the first drain line L21 to take out the flash steam S4 generated in the process of circulation of the steam drain D1. The exhaust port is connected to a fifth steam line L15 including a rising piping portion, a horizontal piping portion, and a falling piping portion. That is, the fifth steam line L15 is a pipe branching from the first drain line L21. An exhaust valve V14 is provided in the horizontal piping portion of the fifth steam line L15. The terminal of the falling piping part of the 5th steam line L15 is connected to the non-water storage area | region of the water supply tank 40, or is connected to a water storage area | region through a silencer. As will be described later, by opening the exhaust valve V14 in synchronism with the opening of the bypass valve V33, the steam drain D1 that has been two-phased into hot water and flash steam has a hot water portion through the first drain line L21. On the other hand, the steam part (S4) is recovered in the water supply tank 40 through the fifth steam line L15.

第2ドレンラインL22は、高圧蒸気利用設備13で発生した蒸気ドレンD1をフラッシュ蒸気発生装置30に導入させるための管路である。第2ドレンラインL22は、第1ドレンラインL21から分岐し、下流側の端部がフラッシュ蒸気発生装置30のドレン入口(符号省略)に接続されている。   The second drain line L22 is a conduit for introducing the steam drain D1 generated in the high-pressure steam utilization facility 13 into the flash steam generator 30. The second drain line L22 branches from the first drain line L21, and the downstream end is connected to the drain inlet (reference numeral omitted) of the flash steam generator 30.

第3ドレンラインL23は、フラッシュ蒸気発生装置30から排出された温水W3を給水タンク40に回収するための管路である。第3ドレンラインL23は、上流側の端部がフラッシュ蒸気発生装置30の温水出口(符号省略)に接続されており、下流側の端部が第1ドレンラインL21に合流している。   The third drain line L <b> 23 is a conduit for collecting the hot water W <b> 3 discharged from the flash steam generator 30 into the water supply tank 40. The third drain line L23 has an upstream end connected to a hot water outlet (reference numeral omitted) of the flash steam generator 30, and a downstream end joined the first drain line L21.

第4ドレンラインL24は、フラッシュ蒸気発生装置30からブローダウンされた温水W3や蒸気ドレンD1を排水ピット50に廃棄するための管路である。第4ドレンラインL24は上流側の端部がフラッシュ蒸気発生装置30のブロー出口(符号省略)に接続されており、下流側の端部が排水ピット50に向けて大気開放されている。   The fourth drain line L <b> 24 is a conduit for discarding the hot water W <b> 3 blown down from the flash steam generator 30 and the steam drain D <b> 1 to the drain pit 50. The fourth drain line L <b> 24 has an upstream end connected to a blow outlet (reference numeral omitted) of the flash steam generator 30, and a downstream end opened to the atmosphere toward the drain pit 50.

ボイラ給水ラインL41は、補給水W1と温水W3(又は蒸気ドレンD1)が混合されたボイラ給水W2を蒸気ボイラ装置11に供給するための管路である。ボイラ給水ラインL41の上流側の端部は、給水タンク40に接続されている。ボイラ給水ラインL41の下流側の端部は、分岐ラインを介して各蒸気ボイラ装置11,11,…に接続されている。給水タンク40は、蒸気ボイラ装置11に供給されるボイラ給水W2を貯留する大気開放型のタンクである。給水タンク40には、補給水ラインL42が接続されており、補給水W1(例えば、軟化水)が供給されるようになっている。   The boiler feed water line L41 is a conduit for supplying boiler steam supply water W2 in which makeup water W1 and warm water W3 (or steam drain D1) are mixed to the steam boiler apparatus 11. The upstream end of the boiler water supply line L41 is connected to the water supply tank 40. The downstream end of the boiler water supply line L41 is connected to each steam boiler apparatus 11, 11,... Via a branch line. The feed water tank 40 is an open-air tank that stores boiler feed water W <b> 2 supplied to the steam boiler device 11. A supply water line L42 is connected to the water supply tank 40, and supply water W1 (for example, softened water) is supplied.

<フラッシュ蒸気発生装置>
フラッシュ蒸気発生装置30は、フラッシュタンク31と、ドレン回収ラインL31と、蒸気送気ラインL32と、ドレン排出ラインL33と、ブローラインL34と、初期ドレン排出ラインL35と、流通経路切換手段32(入口弁V31;蒸気送気弁V32;ドレン排出弁V33;ブロー弁V34;初期ドレン排出弁V35;バイパス弁V36)と、缶内水位検出手段33(第1水位検出器33A;第2水位検出器33B)と、缶内圧力検出手段34(第1圧力センサ34A;第1圧力スイッチ34B)と、ライン圧力検出手段35(第2圧力センサ35A;第2圧力スイッチ35B)と、ドレン温度検出手段36(温度センサ)と、制御手段37と、を備える。
<Flash steam generator>
The flash steam generator 30 includes a flash tank 31, a drain recovery line L31, a steam supply line L32, a drain discharge line L33, a blow line L34, an initial drain discharge line L35, and a flow path switching means 32 (inlet Steam supply valve V32; Drain discharge valve V33; Blow valve V34; Initial drain discharge valve V35; Bypass valve V36) and in-can water level detection means 33 (first water level detector 33A; second water level detector 33B) ), Can pressure detection means 34 (first pressure sensor 34A; first pressure switch 34B), line pressure detection means 35 (second pressure sensor 35A; second pressure switch 35B), and drain temperature detection means 36 ( Temperature sensor) and control means 37.

フラッシュタンク31は、回収した蒸気ドレンD1を再蒸発させてフラッシュ蒸気S3と温水W3とに分離するための圧力容器(以下、単に「缶体」ともいう)である。フラッシュタンク31は、大気圧における沸点を超える液体を保有する容器であるので、労働安全衛生法施行令第1条第6号に定める小型圧力容器に適合するように製造されている。フラッシュタンク31の上部には、缶内圧力が異常に高まった際に、圧力を放出するための安全弁V37(逃し弁)が接続されている。   The flash tank 31 is a pressure vessel (hereinafter also simply referred to as “can”) for re-evaporating the recovered steam drain D1 and separating it into flash steam S3 and hot water W3. Since the flash tank 31 is a container that holds a liquid that exceeds the boiling point at atmospheric pressure, the flash tank 31 is manufactured so as to be compatible with a small pressure container defined in Article 1-6 of the Ordinance for Enforcement of the Industrial Safety and Health Act. Connected to the upper part of the flash tank 31 is a safety valve V37 (relief valve) for releasing the pressure when the in-can pressure rises abnormally.

フラッシュタンク31には、缶内水位を検出する缶内水位検出手段33として、第1水位検出器33A及び第2水位検出器33Bが設けられている。各水位検出器33A,33Bは、それぞれ水位検出筒を有しており、この水位検出筒の上部と下部は、それぞれ連通管を介してフラッシュタンク31の上部と下部に接続されている。2つの水位検出筒の内部には5個のフロートスイッチが高さを変えて配置されており、フラッシュタンク31の缶内水位を段階的に検出可能に構成されている。第1水位検出器33Aによって検出される設定水位は、下から順に、低水位L及び高水位Hの2段階となっている。一方、第2水位検出器33Bによって検出される設定水位は、下から順に、下限水位LL、中水位M、及び上限HHの3段階となっている。すなわち、両水位検出器33A,33Bを併用することにより、下限水位LL<低水位L<中水位M<高水位H<上限水位HHの関係となる5段階の設定水位が検出可能である。各水位検出器33A,33Bの検出水位(接点信号)は、それぞれ制御手段37へ検出信号として送信される。   The flash tank 31 is provided with a first water level detector 33A and a second water level detector 33B as an in-can water level detecting means 33 for detecting the in-can water level. Each of the water level detectors 33A and 33B has a water level detection cylinder, and the upper and lower parts of the water level detection cylinder are connected to the upper and lower parts of the flash tank 31 via a communication pipe, respectively. Inside the two water level detection cylinders, five float switches are arranged with different heights, and the water level in the can of the flash tank 31 can be detected stepwise. The set water level detected by the first water level detector 33 </ b> A has two levels of low water level L and high water level H in order from the bottom. On the other hand, the set water level detected by the second water level detector 33B is in three stages of the lower limit water level LL, the middle water level M, and the upper limit HH in order from the bottom. That is, by using both the water level detectors 33A and 33B in combination, it is possible to detect five set water levels that satisfy the relationship of lower limit water level LL <low water level L <middle water level M <high water level H <upper limit water level HH. The detected water level (contact signal) of each of the water level detectors 33A and 33B is transmitted to the control means 37 as a detection signal.

また、フラッシュタンク31には、缶内圧力(気相部の圧力)を検出する缶内圧力検出手段34として、第1圧力センサ34Aと、第1圧力スイッチ34Bと、が設けられている。第1圧力センサ34Aは、フラッシュタンク31の缶内圧力を所定の測定レンジで連続的に検出する。第1圧力スイッチ34Bは、フラッシュタンク31の缶内圧力が予め設定された上限圧力に到達したか否かを検出する。第1圧力スイッチ34Bは、例えば、検出圧力が上限圧力以上の場合に接点信号がオンとなる一方で、検出圧力が上限圧力未満の場合に接点信号がオフとなる検出スイッチである。第1圧力センサ34A及び第1圧力スイッチ34Bの検出圧力(接点信号を含む)は、それぞれ制御手段37へ検出信号として送信される。なお、第1圧力スイッチ34Bによる上限圧力の検出は、例えば、送気弁V32の閉故障による缶内圧力異常のアラーム発報に利用される。   Further, the flash tank 31 is provided with a first pressure sensor 34A and a first pressure switch 34B as the can internal pressure detecting means 34 for detecting the can internal pressure (pressure in the gas phase portion). The first pressure sensor 34A continuously detects the internal pressure of the flash tank 31 within a predetermined measurement range. The first pressure switch 34B detects whether or not the pressure inside the can of the flash tank 31 has reached a preset upper limit pressure. For example, the first pressure switch 34B is a detection switch in which the contact signal is turned on when the detected pressure is equal to or higher than the upper limit pressure, and the contact signal is turned off when the detected pressure is lower than the upper limit pressure. The detected pressures (including contact signals) of the first pressure sensor 34A and the first pressure switch 34B are transmitted to the control means 37 as detection signals. The detection of the upper limit pressure by the first pressure switch 34B is used, for example, to issue an alarm for an abnormal pressure in the can due to a closed failure of the air supply valve V32.

ドレン回収ラインL31は、第1ドレンラインL21から第2ドレンラインL22に流入する蒸気ドレンD1をフラッシュタンク31に回収するための管路である。ドレン回収ラインL31の上流側の端部は、装置のドレン入口(符号省略)となっている。ドレン回収ラインL31の下流側の端部は、フラッシュタンク31の胴部と接続されている。ドレン回収ラインL31には、上流側から順に、第2圧力センサ35A(ライン圧力検出手段)、温度センサ36(ドレン温度検出手段)、入口弁V31、第2圧力スイッチ35B(ライン圧力検出手段)、ストレーナ38が設けられている。   The drain recovery line L31 is a conduit for recovering the steam drain D1 flowing into the second drain line L22 from the first drain line L21 to the flash tank 31. The upstream end of the drain recovery line L31 is a drain inlet (reference number omitted) of the apparatus. The downstream end of the drain recovery line L31 is connected to the body of the flash tank 31. In the drain recovery line L31, in order from the upstream side, a second pressure sensor 35A (line pressure detection means), a temperature sensor 36 (drain temperature detection means), an inlet valve V31, a second pressure switch 35B (line pressure detection means), A strainer 38 is provided.

第2圧力センサ35Aは、ドレン回収ラインL31の管路内圧力を所定の測定レンジで連続的に検出する。第2圧力スイッチ35Bは、ドレン回収ラインL31の管路内圧力が予め設定された上限圧力に到達したか否かを検出する。第2圧力スイッチ35Bは、例えば、検出圧力が上限圧力以上の場合に接点信号がオンとなる一方で、検出圧力が上限圧力未満の場合に接点信号がオフとなる検出スイッチである。温度センサ36は、ドレン回収ラインL31を流通する蒸気ドレンD1の温度を所定の測定レンジで連続的に検出する。第2圧力センサ35A及び第2圧力スイッチ35Bの検出圧力(接点信号を含む)並びに温度センサ36の検出温度は、それぞれ制御手段37へ検出信号として送信される。なお、第2圧力スイッチ35Bによる上限圧力の検出は、例えば、ストレーナ38の詰まりによる管路内圧力異常のアラーム発報に利用される。   The second pressure sensor 35A continuously detects the pressure in the pipe line of the drain recovery line L31 within a predetermined measurement range. The second pressure switch 35B detects whether or not the in-pipe pressure of the drain recovery line L31 has reached a preset upper limit pressure. The second pressure switch 35B is, for example, a detection switch that turns on the contact signal when the detected pressure is equal to or higher than the upper limit pressure and turns off the contact signal when the detected pressure is lower than the upper limit pressure. The temperature sensor 36 continuously detects the temperature of the steam drain D1 flowing through the drain recovery line L31 in a predetermined measurement range. The detected pressure (including the contact signal) of the second pressure sensor 35A and the second pressure switch 35B and the detected temperature of the temperature sensor 36 are transmitted to the control means 37 as detection signals. The detection of the upper limit pressure by the second pressure switch 35B is used, for example, to issue an alarm for abnormal pressure in the pipeline due to clogging of the strainer 38.

入口弁V31は、流通経路切換手段32を構成する制御弁(例えば、比例制御式電動弁)であり、制御手段37からの駆動信号により制御される。ストレーナ38は、蒸気ドレンD1に含まれる鉄錆等の固形物をろ過するための機器である。   The inlet valve V <b> 31 is a control valve (for example, a proportional control type electric valve) that constitutes the flow path switching unit 32, and is controlled by a drive signal from the control unit 37. The strainer 38 is a device for filtering solids such as iron rust contained in the steam drain D1.

蒸気送気ラインL32は、フラッシュ蒸気S3をフラッシュタンク31から第4蒸気ラインL14へ送気するための管路である。蒸気送気ラインL32の上流側の端部は、フラッシュタンク31の頂部と接続されている。蒸気送気ラインL32の下流側の端部は、装置の蒸気出口(符号省略)となっている。蒸気送気ラインL32には、上流側から順に、真空破壊弁V38及び蒸気送気弁V32が設けられている。   The steam supply line L32 is a conduit for supplying the flash steam S3 from the flash tank 31 to the fourth steam line L14. The upstream end of the steam supply line L32 is connected to the top of the flash tank 31. The downstream end of the steam supply line L32 is a steam outlet (reference number omitted) of the apparatus. In the steam supply line L32, a vacuum break valve V38 and a steam supply valve V32 are provided in this order from the upstream side.

真空破壊弁V38は、フラッシュタンク31の缶内が負圧になった場合に吸気作動することにより、缶内を大気圧まで昇圧させる弁機構である。フラッシュ蒸気発生装置30の運転停止中には、フラッシュタンク31の放熱と冷却に伴うフラッシュ蒸気S3の凝縮により缶内が負圧になりやすい。蒸気送気弁V32がボール式の電動弁である場合、缶内が負圧になると、フラッシュ蒸気S3の逆流等によってシート弁座に異物が噛み込んだり、シート弁座が変形したりするおそれがある。そこで、本実施形態では、真空破壊弁V38を設けることにより、フラッシュタンク31の缶内が負圧状態になるのを防止している。蒸気送気弁V32は、流通経路切換手段32を構成する制御弁(例えば、比例制御式電動弁)であり、制御手段37からの駆動信号により制御される。   The vacuum breaker valve V38 is a valve mechanism that raises the inside of the can to atmospheric pressure by performing an intake operation when the inside of the can of the flash tank 31 becomes negative pressure. While the operation of the flash steam generator 30 is stopped, the inside of the can tends to be negative due to condensation of the flash steam S3 accompanying heat radiation and cooling of the flash tank 31. When the steam supply valve V32 is a ball type motor-operated valve, if the pressure in the can becomes negative, foreign matter may be caught in the seat valve seat or the seat valve seat may be deformed due to the backflow of the flash steam S3. is there. Therefore, in this embodiment, by providing the vacuum break valve V38, the inside of the can of the flash tank 31 is prevented from being in a negative pressure state. The steam supply valve V <b> 32 is a control valve (for example, a proportional control type electric valve) that constitutes the flow path switching unit 32, and is controlled by a drive signal from the control unit 37.

ドレン排出ラインL33は、フラッシュタンク31内の温水W3(フラッシュ蒸気S3を分離後の蒸気ドレンD1)を第3ドレンラインL23へ送出するための管路である。ドレン排出ラインL33の上流側の端部は、フラッシュタンク31の底部と接続されている。ドレン排出ラインL33の下流側の端部は、装置のドレン出口(符号省略)となっている。すなわち、フラッシュタンク31で分離された温水W3は、第3ドレンラインL23及び第1ドレンラインL21を通じて給水タンク40に回収された後、ボイラ給水W2の一部として再利用されるようになっている。ドレン排出ラインL33には、上流側から順にドレン排出弁V33及び逆止弁V39が設けられている。   The drain discharge line L33 is a conduit for sending the hot water W3 in the flash tank 31 (steam drain D1 after separating the flash steam S3) to the third drain line L23. The upstream end of the drain discharge line L33 is connected to the bottom of the flash tank 31. The downstream end of the drain discharge line L33 is a drain outlet (reference numeral omitted) of the apparatus. That is, the hot water W3 separated in the flash tank 31 is collected in the feed water tank 40 through the third drain line L23 and the first drain line L21, and then reused as a part of the boiler feed water W2. . The drain discharge line L33 is provided with a drain discharge valve V33 and a check valve V39 in order from the upstream side.

ドレン排出弁V33は、流通経路切換手段32を構成する制御弁(例えば、比例制御式電動弁)であり、制御手段37からの駆動信号により制御される。また、逆止弁V39は、設定方向とは逆の流れが生じた場合に閉止作動することにより、フラッシュタンク31に対して温水W3が逆流するのを防止する弁機構である。   The drain discharge valve V <b> 33 is a control valve (for example, a proportional control type electric valve) constituting the flow path switching unit 32, and is controlled by a drive signal from the control unit 37. The check valve V39 is a valve mechanism that prevents the warm water W3 from flowing back to the flash tank 31 by closing when a flow opposite to the set direction occurs.

ブローラインL34は、フラッシュタンク31内の温水W3(フラッシュ蒸気S3を分離後の蒸気ドレンD1)を第4ドレンラインL24へ送出するための管路である。ブローラインL34の上流側の端部は、ドレン排出弁V33の上流側のドレン排出ラインL33から分岐されている。ブローラインL34の下流側の端部は、装置のブロー出口(符号省略)となっている。ブローラインL34には、ブロー弁V34が設けられている。このブローV34は、流通経路切換手段32を構成する制御弁(例えば、比例制御式電動弁)であり、制御手段37からの駆動信号により制御される。   The blow line L34 is a conduit for sending the hot water W3 in the flash tank 31 (steam drain D1 after separating the flash steam S3) to the fourth drain line L24. The upstream end of the blow line L34 is branched from the drain discharge line L33 on the upstream side of the drain discharge valve V33. The downstream end of the blow line L34 is a blow outlet (reference numeral omitted) of the apparatus. The blow line L34 is provided with a blow valve V34. The blow V 34 is a control valve (for example, a proportional control type electric valve) that constitutes the flow path switching unit 32, and is controlled by a drive signal from the control unit 37.

初期ドレン排出ラインL35は、ドレン回収ラインL31に流入した蒸気ドレンD1を排出するための管路である。初期ドレン排出ラインL35の上流側の端部は、温度センサ36と入口弁V31の間のドレン回収ラインL31から分岐されている。初期ドレン排出ラインL35の下流側の端部は、ブロー弁V34の下流側のブローラインL34に集合されている。ブローラインL35には、ブロー弁V35が設けられている。ブロー弁V35は、流通経路切換手段32を構成する制御弁(例えば、二位置制御式電動弁)であり、制御手段37からの駆動信号により制御される。   The initial drain discharge line L35 is a conduit for discharging the steam drain D1 flowing into the drain recovery line L31. The upstream end of the initial drain discharge line L35 is branched from a drain recovery line L31 between the temperature sensor 36 and the inlet valve V31. The downstream end of the initial drain discharge line L35 is gathered in the blow line L34 on the downstream side of the blow valve V34. The blow line L35 is provided with a blow valve V35. The blow valve V <b> 35 is a control valve (for example, a two-position control type electric valve) that constitutes the flow path switching unit 32, and is controlled by a drive signal from the control unit 37.

フラッシュタンク31に対するバイパスラインとして機能する第1ドレンラインL21において、第2ドレンラインL22の分岐位置と第5蒸気ラインL15の接続位置の間には、バイパス弁V36が設けられている。このバイパス弁V36は、フラッシュ蒸気発生装置30の外部に設けられるが、流通経路切換手段32を構成する制御弁(例えば、比例制御式電動弁)となっており、制御手段37からの駆動信号により制御される。バイパス弁V36は、スチームトラップ21から排出される蒸気ドレンD1の一部又は全部をフラッシュ蒸気発生装置30に流入させずに、給水タンク40に回収する場合に開放される。   In the first drain line L21 functioning as a bypass line for the flash tank 31, a bypass valve V36 is provided between the branch position of the second drain line L22 and the connection position of the fifth steam line L15. This bypass valve V 36 is provided outside the flash steam generator 30, but is a control valve (for example, a proportional control type electric valve) constituting the flow path switching means 32, and is driven by a drive signal from the control means 37. Be controlled. The bypass valve V <b> 36 is opened when a part or all of the steam drain D <b> 1 discharged from the steam trap 21 is collected in the feed water tank 40 without flowing into the flash steam generator 30.

前述の通り、流通経路切換手段32は、入口弁V31、蒸気送気弁V32、ドレン排出弁V33、ブロー弁V34、初期ドレン排出弁V35、及びバイパスV36の各制御弁からなり、装置内の流体流路を所要の状態に切り換え可能なマルチ弁機構として構成されている。   As described above, the flow path switching means 32 includes the control valves of the inlet valve V31, the steam supply valve V32, the drain discharge valve V33, the blow valve V34, the initial drain discharge valve V35, and the bypass V36, and the fluid in the apparatus. It is configured as a multi-valve mechanism that can switch the flow path to a required state.

制御手段37は、センサ類より取得した系内の物理量情報(圧力,水位,温度)を使用して流通経路切換手段32、蒸気昇圧装置15、排気弁V14等を制御する。制御手段37は、例えばシーケンス制御を実行可能なプログラマブル・ロジック・コントローラ(PLC)により構成される。PLCのメモリ領域には、各種プログラムのほか、予め入力された制御用の設定データや、センサ類による運転中の検出データが記憶される。以下、フラッシュ蒸気発生装置30の制御動作について詳細に説明する。なお、前述した通り、缶内水位の判断に使用する設定水位は、下限水位LL<低水位L<中水位M<高水位H<上限水位HHの関係である。また、缶内圧力の判断に使用する設定圧力は、第1設定圧力P1<第2設定圧力P2<第3設定圧力P3<第4設定圧力P4の関係であり、ドレン温度の判断に使用する設定温度は、第1設定温度T1<第2設定温度T2の関係である。   The control means 37 controls the flow path switching means 32, the steam booster 15, the exhaust valve V14 and the like using physical quantity information (pressure, water level, temperature) in the system acquired from sensors. The control means 37 is comprised by the programmable logic controller (PLC) which can perform sequence control, for example. In the memory area of the PLC, in addition to various programs, setting data for control input in advance and detection data during operation by sensors are stored. Hereinafter, the control operation of the flash steam generator 30 will be described in detail. As described above, the set water level used for determining the water level in the can has a relationship of lower limit water level LL <low water level L <middle water level M <high water level H <upper limit water level HH. Further, the set pressure used for the determination of the internal pressure of the can is the relationship of the first set pressure P1 <the second set pressure P2 <the third set pressure P3 <the fourth set pressure P4, and the set pressure used for determining the drain temperature. The temperature has a relationship of first set temperature T1 <second set temperature T2.

〔a〕運転制御
図2は、制御手段37によるフラッシュ蒸気発生装置30の運転制御に係るフローチャートである。本制御において、制御手段37は、第1水位検出器33A及び第2水位検出器33Bの検出水位を缶内水位として取得する。ステップST0は、装置の電源が投入されていないときには、バイパス弁V36が全開になっていることを示している。この状態では、スチームトラップ21から排出された蒸気ドレンD1は、第1ドレンラインL21を通じて給水タンク40に回収されるようになっている。ステップST0で電源がオンにされると、制御手段37はステップST1に移行して起動準備処理を実行する。起動準備処理では、初期ドレン排出弁V35を全閉、蒸気送気弁V32を全閉、ドレン排出弁V33を全開、ブロー弁V34を全閉、入口弁V31を全閉に制御する。通常、各弁V31〜V35のそれぞれは、装置停止時に所定の開閉状態に制御されるが、装置停止中に手動で弁操作が行われる場合を考慮して、起動準備処理により所定の開閉状態にリセットしている。なお、各弁V31〜V35の開度は、全閉が0%、全開が100%となる。ステップST1で運転スイッチがオンにされると、制御手段37はステップST2〜ST6からなる運転処理を開始する。
[A] Operation Control FIG. 2 is a flowchart relating to operation control of the flash steam generator 30 by the control means 37. In this control, the control means 37 acquires the detected water levels of the first water level detector 33A and the second water level detector 33B as the in-can water level. Step ST0 indicates that the bypass valve V36 is fully open when the apparatus is not powered on. In this state, the steam drain D1 discharged from the steam trap 21 is collected in the water supply tank 40 through the first drain line L21. When the power is turned on in step ST0, the control means 37 moves to step ST1 and executes the startup preparation process. In the start-up preparation process, the initial drain discharge valve V35 is fully closed, the steam supply valve V32 is fully closed, the drain discharge valve V33 is fully opened, the blow valve V34 is fully closed, and the inlet valve V31 is fully closed. Normally, each of the valves V31 to V35 is controlled to a predetermined opening / closing state when the apparatus is stopped. However, considering the case where the valve is manually operated while the apparatus is stopped, the valves V31 to V35 are set to the predetermined opening / closing state by the startup preparation process. It is resetting. In addition, the opening degree of each valve V31-V35 will be 0% for fully closed, and 100% for fully opened. When the operation switch is turned on in step ST1, the control means 37 starts an operation process consisting of steps ST2 to ST6.

さて、装置の停止時間がある程度の長さに及ぶと、フラッシュタンク31の放熱と冷却により缶内蒸気が凝縮すると共に缶内圧力の降下が起こる。真空破壊弁V38の存在により缶内圧力は大気圧以上に保たれるが、凝縮水の排出圧力が低下するので、装置の起動前には缶内水位が上昇していることがある。そこで、制御手段37は、ステップST2において、缶内水位が高水位H以上か否かを判断する。ステップST2でYES(缶内水位≧H)と判断した場合、缶内の凝縮水を排出して水位を下げるため、制御手段37はステップST3に移行して待機処理を実行する。待機処理では、制御手段37は蒸気送気弁V32を全閉、ドレン排出弁V33を全開、入口弁V31を全開、バイパス弁V36を全閉に制御する。これにより、蒸気ドレンD1の導入と凝縮水の排出を促して缶内水位を下降させる。   Now, when the apparatus stop time reaches a certain length, the steam in the can is condensed by the heat radiation and cooling of the flash tank 31, and the pressure in the can is lowered. Although the can internal pressure is maintained at atmospheric pressure or higher due to the presence of the vacuum breaker valve V38, the condensate discharge pressure decreases, so the water level in the can may increase before the apparatus is started. Therefore, the control means 37 determines whether or not the water level in the can is higher than the high water level H in step ST2. When it is determined YES in step ST2 (in-can water level ≧ H), in order to discharge the condensed water in the can and lower the water level, the control unit 37 proceeds to step ST3 and executes a standby process. In the standby process, the control means 37 controls the steam supply valve V32 to be fully closed, the drain discharge valve V33 to be fully open, the inlet valve V31 to be fully open, and the bypass valve V36 to be fully closed. Thereby, introduction of steam drain D1 and discharge of condensed water are promoted, and the water level in the can is lowered.

ステップST3に続くステップST4において、制御手段37は内水位が中水位M以上か否かを判断する。ステップST5でYES(缶内水位≧M)と判断した場合、缶内水位が下降途中であるため、制御手段37はステップST3の待機処理を継続する。一方、ステップST4でNO(缶内水位<M)と判断した場合、缶内水位が十分に下がっているので待機処理を解除し、制御手段37はステップST2の処理に戻る。   In step ST4 following step ST3, the control means 37 determines whether or not the internal water level is equal to or higher than the intermediate water level M. If YES in step ST5 (in-can water level ≧ M), since the in-can water level is in the process of lowering, the control means 37 continues the standby process in step ST3. On the other hand, if NO (in-can water level <M) is determined in step ST4, the water level in the can is sufficiently lowered, so that the standby process is canceled, and the control unit 37 returns to the process in step ST2.

ステップST2でNO(缶内水位<H)と判断した場合、制御手段37はステップST5に移行する。ステップST5では、制御手段37は後述する初期ドレン排出弁V35の制御(図3)を実行する。ステップST5に続くステップST6では、後述する蒸気送気弁V32の制御(図4)、蒸気昇圧機15の制御(図4)、ドレン排出弁V33の制御(図5,図6)、バイパス弁V36の制御(図7,図8)、ブロー弁V34の制御(図9)、入口弁V31の制御(図10)を並行して実行する。ステップST7の各制御が終了すると、制御手段37はステップST2の処理に戻る。   If it is determined in step ST2 that NO (water level in the can <H), the control unit 37 proceeds to step ST5. In step ST5, the control means 37 performs control (FIG. 3) of the initial drain discharge valve V35 described later. In step ST6 following step ST5, control of a steam supply valve V32 (FIG. 4), control of a steam booster 15 (FIG. 4), control of a drain discharge valve V33 (FIGS. 5 and 6), and a bypass valve V36 described later. (FIG. 7, FIG. 8), blow valve V34 control (FIG. 9), and inlet valve V31 control (FIG. 10) are executed in parallel. When each control in step ST7 ends, the control means 37 returns to the process in step ST2.

運転処理の実行中に運転スイッチがオフにされると、制御手段37はステップST7に移行して蒸気昇圧機15を停止させる。ステップST7に続くステップST8において、制御手段37は停止処理を実行する。停止処理では、初期ドレン排出弁V35を全閉、蒸気送気弁V32を全閉、ドレン排出弁V33を全開、ブロー弁V34を全閉、入口弁V31を全閉、バイパス弁V36を全開に制御する。ステップST8で運転スイッチがオフにされると、制御手段37はステップST0に移行してバイパス弁V36の全開を維持する。   When the operation switch is turned off during the execution of the operation process, the control unit 37 proceeds to step ST7 and stops the steam booster 15. In step ST8 following step ST7, the control means 37 executes a stop process. In the stop process, the initial drain discharge valve V35 is fully closed, the steam supply valve V32 is fully closed, the drain discharge valve V33 is fully opened, the blow valve V34 is fully closed, the inlet valve V31 is fully closed, and the bypass valve V36 is fully opened. To do. When the operation switch is turned off in step ST8, the control means 37 proceeds to step ST0 and maintains the fully open bypass valve V36.

〔b〕初期ドレン排出弁V35の制御
図3は、制御手段37による初期ドレン排出弁V35の制御に係るフローチャートである。本制御において、制御手段37は、温度センサ36の検出温度をドレン温度として取得する。ステップST11において、制御手段37はドレン温度が第1設定温度T1(例えば、90℃)以下か否かを判断する。ステップST11でYES(ドレン温度≦T1)と判断した場合、スチームトラップ21から排出される蒸気ドレンD1が低温であるため、制御手段37はステップST12に移行して初期ドレン排出弁V35の開度を100%(全開)に制御する。
[B] Control of Initial Drain Discharge Valve V35 FIG. 3 is a flowchart relating to control of the initial drain discharge valve V35 by the control means 37. In this control, the control means 37 acquires the temperature detected by the temperature sensor 36 as the drain temperature. In step ST11, the control unit 37 determines whether or not the drain temperature is equal to or lower than a first set temperature T1 (for example, 90 ° C.). If YES in step ST11 (drain temperature ≦ T1), since the steam drain D1 discharged from the steam trap 21 is at a low temperature, the control unit 37 proceeds to step ST12 and sets the opening of the initial drain discharge valve V35. Control to 100% (fully open).

高圧蒸気利用設備13の冷態起動時に排出される蒸気ドレンD1の初流部分(初期ドレン)は、溶出物による汚染や再利用できる熱量の問題から回収によるメリットがほとんどない。そこで、制御手段37は、ドレン温度が第1設定温度T1以下であると判断した場合には、初期ドレン排出弁V35を開放して蒸気ドレンD1をフラッシュタンク31に流入させないようにする。これにより、第2ドレンラインL22を通じて流入する低温の蒸気ドレンD1は、ドレン排出ラインL35及び第4ドレンラインL24を介して排水ピット50に排出される。   The initial flow portion (initial drain) of the steam drain D1 discharged at the time of cold start of the high-pressure steam utilization facility 13 has almost no merit due to the recovery due to contamination by the effluent and the amount of heat that can be reused. Therefore, when it is determined that the drain temperature is equal to or lower than the first set temperature T1, the control unit 37 opens the initial drain discharge valve V35 so that the steam drain D1 does not flow into the flash tank 31. Thereby, the low temperature steam drain D1 flowing in through the second drain line L22 is discharged to the drain pit 50 through the drain discharge line L35 and the fourth drain line L24.

ステップST11でNO(ドレン温度>T1)と判断した場合、制御手段37はステップST13に移行する。ステップST13において、制御手段37はドレン温度が第1設定温度T1よりも高い第2設定温度T2(例えば、95℃)以上か否かを判断する。ステップST13でNO(ドレン温度<T2)と判断した場合、ドレン温度が十分に高まっていないため、制御手段37はステップST14に移行して初期ドレン排出弁V35の開度を100%のまま保持する。一方、ステップST13でYES(ドレン温度≧T2)と判断した場合、ドレン温度が十分に高まっているため、制御手段37はステップST15に移行して初期ドレン排出弁V35の開度を0%(全閉)に制御する。これにより、フラッシュタンク31への蒸気ドレンD1の回収が許可されるようになる。   If NO (drain temperature> T1) is determined in step ST11, the control unit 37 proceeds to step ST13. In step ST13, the control means 37 determines whether or not the drain temperature is equal to or higher than a second set temperature T2 (for example, 95 ° C.) higher than the first set temperature T1. If NO (drain temperature <T2) is determined in step ST13, since the drain temperature has not increased sufficiently, the control unit 37 proceeds to step ST14 and maintains the opening of the initial drain discharge valve V35 at 100%. . On the other hand, if YES in step ST13 (drain temperature ≧ T2), the drain temperature has increased sufficiently. Therefore, the control unit 37 proceeds to step ST15 and sets the opening of the initial drain discharge valve V35 to 0% (all Closed). Thereby, collection | recovery of the vapor | steam drain D1 to the flash tank 31 comes to be permitted.

なお、本制御の実行時には、初期ドレン排出弁V35と入口弁V31とを連動させるように制御するのが好ましい(後述する入口弁V31の制御を参照)。ステップST12で初期ドレン排出弁V35の開度を100%(全開)に制御した場合、入口弁V31の開度を0%(全閉)に制御する。これにより、装置の運転中に、複数設置された高温蒸気利用設備13の追加起動等で低温の蒸気ドレンD1が排出されたとしても、フラッシュタンク31への流入が防止される。   When this control is executed, it is preferable to control the initial drain discharge valve V35 and the inlet valve V31 to be interlocked (see control of the inlet valve V31 described later). When the opening degree of the initial drain discharge valve V35 is controlled to 100% (fully open) in step ST12, the opening degree of the inlet valve V31 is controlled to 0% (fully closed). Thereby, even if the low temperature steam drain D1 is discharged during the operation of the apparatus due to additional activation of a plurality of installed high temperature steam utilization facilities 13, the inflow to the flash tank 31 is prevented.

また、本制御の実行時には、蒸気ドレンD1の流入量に応じてバイパス弁V36を制御するのが好ましい(後述するバイパス弁V36の制御を参照)。第2圧力センサ35Aの検出圧力が所定の設定圧力以上となった場合、バイパス弁V36の開度を100%(全開)に制御する。これにより、装置の運転中に、複数設置された高温蒸気利用設備13の追加起動等で大量の蒸気ドレンD1が流入したとしても、その排出時間を短縮することができる。   Further, when executing this control, it is preferable to control the bypass valve V36 in accordance with the inflow amount of the steam drain D1 (see control of the bypass valve V36 described later). When the detected pressure of the second pressure sensor 35A is equal to or higher than a predetermined set pressure, the opening degree of the bypass valve V36 is controlled to 100% (fully open). Thereby, even if a large amount of steam drain D1 flows in during the operation of the apparatus due to additional activation of a plurality of high-temperature steam utilization facilities 13 installed, the discharge time can be shortened.

〔c〕蒸気送気弁V32の制御;蒸気昇圧機15の制御
図4は、制御手段37による蒸気送気弁V32の制御及び蒸気昇圧機15の制御に係るフローチャートである。本制御において、制御手段37は第1圧力センサ34Aの検出圧力を缶内圧力として取得する。ステップST21において、制御手段37は缶内圧力が第2設定圧力P2(例えば、0.1MPa)以下か否かを判断する。ステップST21でYES(缶内圧力≦P2)と判断した場合、フラッシュタンク31からの温水W3の排出圧力が確保されていない状態であるため、制御手段37はステップST22に移行して蒸気昇圧機15を停止させる。そして、制御手段37はステップST23に移行して蒸気送気弁V32の開度を0%(全閉)に制御する。これにより、缶内圧力の上昇が促進されるようになる。
[C] Control of Steam Supply Valve V32; Control of Steam Booster 15 FIG. 4 is a flowchart relating to control of the steam supply valve V32 and control of the steam booster 15 by the control means 37. In this control, the control means 37 acquires the detected pressure of the first pressure sensor 34A as the in-can pressure. In step ST21, the control means 37 determines whether or not the can internal pressure is equal to or lower than a second set pressure P2 (for example, 0.1 MPa). If YES in step ST21 (can internal pressure ≦ P2), since the discharge pressure of the hot water W3 from the flash tank 31 is not secured, the control means 37 moves to step ST22 and the steam booster 15 Stop. And the control means 37 transfers to step ST23, and controls the opening degree of the steam supply valve V32 to 0% (fully closed). As a result, an increase in the can internal pressure is promoted.

本制御において、蒸気送気弁V32の閉止に伴って蒸気昇圧機15を停止させる場合、制御手段37は、ステップST22で蒸気昇圧機15に停止指令信号を送信してから所定時間後(例えば、20秒後)に、ステップST23で蒸気送気弁V32に閉止指令信号を送信するようにしている。また、運転制御においても、ステップST7及びステップST8で同様の処理を行っている。蒸気昇圧機15は、通常、停止指令信号の受信後に惰性によりスクリューローターがフリーラン停止するが、蒸気送気弁V32は、閉止指令信号の受信後に弁体が制動されながら閉止するという特性がある。そのため、停止指令信号と停止指令信号を同時に出力すると、蒸気送気弁V32が完全閉止してから蒸気昇圧機15が完全停止するまでにタイムラグが生じ、その間に蒸気昇圧機15の吸込側が負圧になってしまう。前述したように、蒸気昇圧機15がスクリュー式圧縮機である場合、吸込側が負圧になると、低圧蒸気S2の逆流等によってスクリュー歯溝間の液シール部分に異物が噛み込むおそれがある。そこで、本実施形態では、蒸気昇圧機15に停止指令信号を送信するタイミングよりも蒸気送気弁V32に閉止指令信号を送信するタイミングを遅延させることにより、蒸気昇圧機15の吸込側が負圧状態になるのを防止している。   In this control, when stopping the steam booster 15 with the closing of the steam supply valve V32, the control means 37 transmits a stop command signal to the steam booster 15 in step ST22 after a predetermined time (for example, After 20 seconds), a close command signal is transmitted to the steam supply valve V32 in step ST23. In the operation control, the same processing is performed in step ST7 and step ST8. The steam booster 15 normally has a characteristic that the screw rotor is free-run stopped due to inertia after receiving the stop command signal, but the steam supply valve V32 is closed while the valve body is braked after receiving the close command signal. . Therefore, if the stop command signal and the stop command signal are output at the same time, a time lag occurs from when the steam supply valve V32 is completely closed until the steam booster 15 is completely stopped, during which the suction side of the steam booster 15 is negative pressure. Become. As described above, when the steam booster 15 is a screw compressor, if the suction side becomes negative pressure, foreign matter may be caught in the liquid seal portion between the screw tooth grooves due to the backflow of the low-pressure steam S2. Therefore, in this embodiment, the suction side of the steam booster 15 is in a negative pressure state by delaying the timing of transmitting the stop command signal to the steam supply valve V32 from the timing of transmitting the stop command signal to the steam booster 15. Is prevented.

ステップST21でNO(缶内圧力>P2)と判断した場合、制御手段37はステップST24に移行する。ステップST24において、制御手段37は缶内圧力が第2設定圧力よりも高い第3設定圧力P3(例えば、0.2MPa)以上か否かを判断する。ステップST24でYES(缶内圧力≧P3)と判断した場合、フラッシュタンク31からの温水W3の排出圧力が十分に確保されている状態であるため、制御手段37はステップST25に移行して蒸気送気弁V32の開度を100%(全開)に制御する。そして、制御手段37はステップST26に移行して蒸気昇圧機15を駆動させる。これにより、低圧蒸気利用設備14へのフラッシュ蒸気S3の供給が許可されるようになる。   If it is determined in step ST21 that NO (in-can pressure> P2), the control means 37 proceeds to step ST24. In step ST24, the control means 37 determines whether or not the can internal pressure is equal to or higher than a third set pressure P3 (for example, 0.2 MPa) higher than the second set pressure. If YES in step ST24 (can internal pressure ≧ P3), since the discharge pressure of the hot water W3 from the flash tank 31 is sufficiently ensured, the control means 37 moves to step ST25 to transfer steam. The opening degree of the air valve V32 is controlled to 100% (fully open). Then, the control means 37 moves to step ST26 and drives the steam booster 15. Thereby, the supply of the flash steam S3 to the low-pressure steam utilization facility 14 is permitted.

ステップST24でNO(缶内圧力<P3)と判断した場合、フラッシュタンク31からの温水W3の排出圧力が十分に確保されない可能性を考慮して、制御手段37はステップST27に移行して蒸気送気弁V32の開度を調整する。具体的には、缶内圧力がP2とき開度0%、缶内圧力がP3のとき開度100%になるように蒸気送気弁V32の開度を比例制御し、フラッシュ蒸気S3の送気量を調整する。その結果、缶内圧力の低下が抑制され、温水W3の排出圧力が確保される。そして、制御手段37は、ステップST26に移行して蒸気昇圧機15を駆動させる。   If NO (in-can pressure <P3) is determined in step ST24, the control means 37 proceeds to step ST27 and considers the possibility that the discharge pressure of the hot water W3 from the flash tank 31 is not sufficiently secured. The opening degree of the air valve V32 is adjusted. Specifically, the opening degree of the steam supply valve V32 is proportionally controlled so that the opening degree is 0% when the pressure inside the can is P2, and the opening degree is 100% when the pressure inside the can is P3. Adjust the amount. As a result, a decrease in the can internal pressure is suppressed, and the discharge pressure of the hot water W3 is ensured. Then, the control means 37 moves to step ST26 and drives the steam booster 15.

なお、運転制御においては、ステップST2の初期ドレン排出制御を実行してから本制御を含むステップST6に移行させているので、本制御を実行する際には、必ず第2設定温度T2(例えば、95℃)以上の高温の蒸気ドレンD1がフラッシュタンク31に流入するようになっている。これにより、缶内圧力の上昇が促進され、フラッシュタンク31は速やかに温水W3の排出圧力が確保された状態になる。その結果、缶内水位を適正範囲に保つことが容易となり、温水W3のキャリーオーバーによって乾き度の低下したフラッシュ蒸気S3が送気されてしまうことを防止できる。   In the operation control, since the initial drain discharge control in step ST2 is performed and then the process proceeds to step ST6 including this control, the second set temperature T2 (for example, The steam drain D1 having a high temperature of 95 ° C. or higher flows into the flash tank 31. As a result, the increase in the internal pressure of the can is promoted, and the flash tank 31 is immediately in a state where the discharge pressure of the hot water W3 is ensured. As a result, it becomes easy to keep the water level in the can within an appropriate range, and it is possible to prevent the flash steam S3 having a reduced dryness from being carried over due to carry-over of the hot water W3.

〔d〕ドレン排出弁V33の制御
図5は、制御手段37によるドレン排出弁V33の制御に係るフローチャートである。図6は、第1水位検出器33A及び第2水位検出器33Bにおけるフロートスイッチのオンオフ状態と水位判定の関係、並びにドレン排出弁V33の開度設定値を示すテーブルである。本制御において、制御手段37は両水位検出器33A,33Bの検出水位を缶内水位Wとして取得する。また、本制御を実行するに当たり、制御手段37に記憶されている各水位に応じた開度設定値を利用する。
[D] Control of Drain Discharge Valve V33 FIG. 5 is a flowchart relating to control of the drain discharge valve V33 by the control means 37. FIG. 6 is a table showing the relationship between the on / off state of the float switch and the water level determination in the first water level detector 33A and the second water level detector 33B, and the opening setting value of the drain discharge valve V33. In this control, the control means 37 acquires the detected water level of both water level detectors 33A and 33B as the in-can water level W. Further, when executing this control, an opening set value corresponding to each water level stored in the control means 37 is used.

図6の上段に示すように、5つフロートスイッチ全てがオフのときには、水位判定はW<LLとなり、制御手段37は缶内水位Wが下限水位LL未満であると認識する。「0%(固定)」の表記は、開度が0%(全閉)に固定されることを示している。最下方のフロートスイッチのみがオンのときには、水位判定はLL≦W<Lとなり、制御手段37は缶内水位Wが下限水位LLであると認識する。「10%(LL)」の表記は、下限水位LLの開度設定値が10%であることを示している。下方から2つのフロートスイッチがオンのときには、水位判定はL≦W<Mとなり、制御手段37は缶内水位Wが低水位Lであると認識する。「50%(L)」の表記は、低水位Lの開度設定値が50%であることを示している。下方から3つのフロートスイッチがオンのときには、水位判定はM≦W<Hとなり、制御手段37は缶内水位Wが中水位Mであると認識する。「100%(M)」の表記は、中水位Mの開度設定値が100%であることを示している。下方から4つのフロートスイッチがオンのときには、水位判定はH≦W<HHとなり、制御手段37は缶内水位Wが高水位Hであると認識する。「100%(H)」の表記は、高水位Hの開度設定値が100%であることを示している。5つフロートスイッチ全てがオンのときには、水位判定はHH≦Wとなり、制御手段37は缶内水位Wが上限水位HH超過であると認識する。「100%(固定)」の表記は、開度が100%(全開)に固定されることを示している。   As shown in the upper part of FIG. 6, when all five float switches are off, the water level determination is W <LL, and the control means 37 recognizes that the in-can water level W is lower than the lower limit water level LL. The notation “0% (fixed)” indicates that the opening degree is fixed at 0% (fully closed). When only the lowermost float switch is on, the water level determination is LL ≦ W <L, and the control means 37 recognizes that the in-can water level W is the lower limit water level LL. The notation of “10% (LL)” indicates that the opening setting value of the lower limit water level LL is 10%. When the two float switches are on from below, the water level determination is L ≦ W <M, and the control means 37 recognizes that the in-can water level W is the low water level L. The notation “50% (L)” indicates that the opening setting value of the low water level L is 50%. When the three float switches are on from below, the water level determination is M ≦ W <H, and the control means 37 recognizes that the in-can water level W is the middle water level M. The notation “100% (M)” indicates that the opening setting value of the middle water level M is 100%. When the four float switches are on from below, the water level determination is H ≦ W <HH, and the control means 37 recognizes that the in-can water level W is the high water level H. The notation “100% (H)” indicates that the opening setting value of the high water level H is 100%. When all five float switches are on, the water level determination is HH ≦ W, and the control means 37 recognizes that the in-can water level W exceeds the upper limit water level HH. The notation “100% (fixed)” indicates that the opening degree is fixed at 100% (fully open).

図5のフローチャートは水位上昇時のものであり、ステップST31において、制御手段37は缶内水位Wが下限水位LL以上か否かを判断する。ステップST31でNO(W<LL)と判断した場合、制御手段37はステップST32へと進み、缶内水位W<LLの状態で第1設定時間t1(例えば、10秒)が経過したか否かを判断する。ステップST32でYES(W<LLのままt1経過)と判断した場合、制御手段37はステップST33に移行してドレン排出弁V33の開度を0%(固定)に制御する。一方、ステップST32でNO(t1経過せずにW≧LLに復帰)と判断した場合、制御手段37はステップST34に移行してドレン排出弁V33の開度を10%(LL)に制御する。   The flowchart in FIG. 5 is for when the water level rises, and in step ST31, the control means 37 determines whether or not the in-can water level W is equal to or higher than the lower limit water level LL. If NO (W <LL) is determined in step ST31, the control unit 37 proceeds to step ST32, and whether or not the first set time t1 (for example, 10 seconds) has elapsed in the state where the in-can water level W <LL. Judging. If it is determined YES in step ST32 (t1 elapses while W <LL), the control unit 37 proceeds to step ST33 and controls the opening of the drain discharge valve V33 to 0% (fixed). On the other hand, if it is determined NO in step ST32 (returns to W ≧ LL without elapse of t1), the control unit 37 proceeds to step ST34 and controls the opening of the drain discharge valve V33 to 10% (LL).

ステップST31でYES(W≧LL)と判断した場合、制御手段37はステップST35に移行し、缶内水位Wが低水位L以上か否かを判断する。ステップST35でNO(W<L)と判断した場合、制御手段37はステップST36に移行してドレン排出弁V33の開度を10%(LL)に制御する。   If YES in step ST31 (W ≧ LL), the control unit 37 proceeds to step ST35 and determines whether or not the in-can water level W is equal to or higher than the low water level L. If NO (W <L) is determined in step ST35, the control unit 37 proceeds to step ST36 and controls the opening degree of the drain discharge valve V33 to 10% (LL).

ステップST35でYES(W≧L)と判断した場合、制御手段37はステップST37に移行し、缶内水位Wが中水位M以上か否かを判断する。ステップST37でNO(W<M)と判断した場合、制御手段37はステップST38に移行してドレン排出弁V33の開度を50%(L)に制御する。   If YES (W ≧ L) is determined in step ST35, the control unit 37 proceeds to step ST37 and determines whether the in-can water level W is equal to or higher than the middle water level M. If NO (W <M) is determined in step ST37, the control unit 37 proceeds to step ST38 and controls the opening of the drain discharge valve V33 to 50% (L).

ステップST37でYES(W≧M)と判断した場合、制御手段37はステップST39に移行し、缶内水位Wが高水位H以上か否かを判断する。ステップST39でNO(W<H)と判断した場合、制御手段37はステップST40に移行してドレン排出弁V33の開度を100%(M)に制御する。   If YES (W ≧ M) is determined in step ST37, the control unit 37 proceeds to step ST39 and determines whether or not the in-can water level W is higher than the high water level H. If NO (W <H) is determined in step ST39, the control unit 37 proceeds to step ST40 and controls the opening degree of the drain discharge valve V33 to 100% (M).

ステップST39でYES(W≧H)と判断した場合、制御手段37はステップST41に移行し、缶内水位Wが上限水位HH以上か否かを判断する。ステップST41でNO(W<HH)と判断した場合、制御手段37はステップST42に移行してドレン排出弁V33の開度を100%(H)に制御する。続いて、制御手段37はステップST43へと進み、W≧Hの状態で第2設定時間t2(例えば、10秒)が経過したか否かを判断する。ステップST43でYES(W≧Hのままt2経過)と判断した場合、制御手段37はステップST3(図2)に移行して待機処理を実行する。一方、ステップST43でNO(t2経過せずにW<Hに変化)と判断した場合、制御手段37は処理を終了する。   If YES (W ≧ H) is determined in step ST39, the control unit 37 proceeds to step ST41 and determines whether or not the in-can water level W is equal to or higher than the upper limit water level HH. If NO (W <HH) is determined in step ST41, the control unit 37 proceeds to step ST42 and controls the opening degree of the drain discharge valve V33 to 100% (H). Subsequently, the control unit 37 proceeds to step ST43, and determines whether or not a second set time t2 (for example, 10 seconds) has elapsed in a state where W ≧ H. If it is determined in step ST43 that YES (t2 has elapsed while W ≧ H), the control unit 37 proceeds to step ST3 (FIG. 2) and executes standby processing. On the other hand, if it is determined NO in step ST43 (changes to W <H without elapse of t2), the control unit 37 ends the process.

ステップST41でYES(W≧HH)と判断した場合、制御手段37はステップST44に移行してドレン排出弁V33の開度を100%(固定)に制御する。続いて、制御手段37はステップST45へと進み、缶内水位W≧HHの状態で第3設定時間t3(例えば、10秒)が経過したか否かを判断する。ステップST45でYES(W≧HHのままt3経過)と判断した場合、制御手段37はステップST46に移行してアラームを発報し、ステップST7(図2)に進む。すなわち、缶内水位Wが上限水位HHを超える状態が継続した場合には、制御手段37は装置を停止させるように制御する。一方、ステップST45でNO(t3経過せずにW<HHに変化)と判断した場合、制御手段37は処理を終了する。   If YES (W ≧ HH) is determined in step ST41, the control unit 37 proceeds to step ST44 and controls the opening of the drain discharge valve V33 to 100% (fixed). Subsequently, the control unit 37 proceeds to step ST45, and determines whether or not a third set time t3 (for example, 10 seconds) has elapsed in a state where the in-can water level W ≧ HH. If it is determined as YES in step ST45 (t3 elapses while W ≧ HH), the control unit 37 proceeds to step ST46, issues an alarm, and proceeds to step ST7 (FIG. 2). That is, when the state where the in-can water level W exceeds the upper limit water level HH continues, the control means 37 controls to stop the apparatus. On the other hand, if it is determined NO in step ST45 (change to W <HH without elapse of t3), the control unit 37 ends the process.

ステップST43から待機処理に移行した後は、ドレン排出弁V33が全開に制御されることにより缶内水位が下降する。図6の下段に示すように、下方から3つのフロートスイッチがオン(水位判定M≦W<H)になると、制御手段37は缶内水位Wが中水位Mであると認識し、ドレン排出弁V33の開度を100%(M)に制御する。その後、更に温水W3の排出が進んで下方から2つのフロートスイッチがオン(水位判定L≦W<M)になると、ステップST4でNOと判断され、ドレン排出弁V33の開度が100%(M)に制御された状態で待機が解除される。   After shifting from step ST43 to standby processing, the drain discharge valve V33 is controlled to be fully opened, so that the water level in the can is lowered. As shown in the lower part of FIG. 6, when the three float switches are turned on from below (water level determination M ≦ W <H), the control means 37 recognizes that the water level W in the can is the middle water level M, and the drain discharge valve The opening degree of V33 is controlled to 100% (M). Thereafter, when the discharge of the hot water W3 further proceeds and the two float switches are turned on from below (water level determination L ≦ W <M), it is determined NO in step ST4, and the opening degree of the drain discharge valve V33 is 100% (M ) Is released in a controlled state.

待機の解除後に缶内水位が上昇し、水位判定がM≦W<Hとなった場合には、ドレン排出弁V33の開度がそのまま100%(M)に制御される。逆に、待機の解除後に缶内水位が下降し、水位判定がLL≦W<Lとなった場合には、ドレン排出弁V33の開度は一段階低い50%(L)に制御される。ドレン排出弁V33の開度が50%(L)に制御された状態で缶内水位が上昇し、水位判定がL≦W<Mとなった場合には、ドレン排出弁V33の開度がそのまま50%(L)に制御される。一方、ドレン排出弁V33の開度が50%(L)に制御された状態で缶内水位が下降し、水位判定がW<LLとなった場合には、ドレン排出弁V33の開度が0%(固定)に制御される。   When the water level in the can rises after the standby is canceled and the water level determination is M ≦ W <H, the opening degree of the drain discharge valve V33 is controlled to 100% (M) as it is. On the contrary, when the water level in the can is lowered after the standby is canceled and the water level determination is LL ≦ W <L, the opening degree of the drain discharge valve V33 is controlled to 50% (L), which is one step lower. When the water level in the can rises while the opening degree of the drain discharge valve V33 is controlled to 50% (L) and the water level determination is L ≦ W <M, the opening degree of the drain discharge valve V33 remains unchanged. It is controlled to 50% (L). On the other hand, when the water level in the can drops while the opening degree of the drain discharge valve V33 is controlled to 50% (L) and the water level determination is W <LL, the opening degree of the drain discharge valve V33 is 0. % (Fixed).

上記した通り、本制御では、缶内水位Wが高水位H以上の状態で第2設定時間t2が経過したと判断した場合(ステップST43でYES)、待機処理(図3のステップST3)を実行するようになっている。待機処理では、蒸気送気弁V32が全閉に制御されるため、缶内水位の上昇により温水W3のキャリーオーバーが起きやすい状態になっていても、乾き度の低下したフラッシュ蒸気S3が送気されてしまうことを防止できる。   As described above, in this control, when it is determined that the second set time t2 has elapsed with the in-can water level W being equal to or higher than the high water level H (YES in step ST43), standby processing (step ST3 in FIG. 3) is executed. It is supposed to be. In the standby processing, since the steam supply valve V32 is controlled to be fully closed, even if the hot water W3 is likely to carry over due to the rise of the water level in the can, the flash steam S3 having a reduced dryness is supplied. Can be prevented.

また、本制御では、缶内水位Wが低水位L未満と判断した場合(ステップST35でNO)、制御手段37はドレン排出弁V33の開度を0%としないで10%に制御するようになっている。さらに、本制御では、第1設定時間t1を経過せずに缶内水位Wが下限水位LL以上に復帰した判断した場合(ステップST32でNO)にも、ドレン排出弁V33の開度を0%としないで10%に制御するようになっている。つまり、本制御においては、特別な状況を除いてドレン排出弁V33の開度を全閉にならない最小設定開度以上の範囲で制御し、温水W3の排出が継続的に行われるようにしている。これにより、缶内水位の上昇が抑えられ、温水W3のキャリーオーバーが防止される。また、蒸気ドレンD1の流入量が急増して缶内水位が上昇したとしても、最小設定開度10%を起点としてドレン排出弁V33の開度を段階的に増やすことになるので、短時間で缶内水位を適正範囲まで下降させることができる。   In this control, when it is determined that the in-can water level W is lower than the low water level L (NO in step ST35), the control means 37 controls the opening of the drain discharge valve V33 to 10% without setting it to 0%. It has become. Further, in this control, when it is determined that the water level W in the can has returned to the lower limit water level LL or more without passing the first set time t1 (NO in step ST32), the opening degree of the drain discharge valve V33 is set to 0%. It is designed to be controlled to 10%. That is, in this control, except for special circumstances, the opening degree of the drain discharge valve V33 is controlled in a range that is not less than the minimum set opening degree that is not fully closed, so that the warm water W3 is continuously discharged. . Thereby, the raise of the water level in a can is suppressed and the carry over of warm water W3 is prevented. Further, even if the inflow amount of the steam drain D1 increases rapidly and the water level in the can rises, the opening degree of the drain discharge valve V33 is increased stepwise starting from the minimum setting opening degree 10%. The water level in the can can be lowered to an appropriate range.

なお、ドレン排出弁V33を全閉にしないように操作することで、蒸気ドレンD1の缶内保有量が最小限に保たれるが、これは第1ドレンラインL21の振動抑制にも効果がある。第1ドレンラインL21の振動が起こりやすい事例は、フラッシュタンク31の缶内水位を強制的に下げるために、バイパス弁V36を全閉状態から全開状態に制御して蒸気ドレンD1の回収量を制限する場合(図7に示す2位置制御例)である。この事例では、バイパス弁V36が開放された瞬間に、スチームトラップ21から排出された蒸気ドレンD1の再蒸発に加えて、フラッシュタンク31内の蒸気ドレンD1の再蒸発が同時に起こり、大量のフラッシュ蒸気が給水タンク40に向かって一気に流れ出ようとする。そうすると、フラッシュ蒸気が高流速で流通することによって第1ドレンラインL21が激しく振動し、衝撃により配管の破損を招くおそれがあった。そこで、蒸気ドレンD1の缶内保有量を最小限に保つように操作し、フラッシュタンク31内での再蒸発量を低減させるようにする。これにより、バイパス弁V36を全閉から全開に制御した際に生じるフラッシュ蒸気の急激な流出が緩和されるので、第1ドレンラインL21の振動が抑制される。   By operating the drain discharge valve V33 so as not to be fully closed, the amount of the steam drain D1 held in the can is kept to a minimum, but this is also effective in suppressing the vibration of the first drain line L21. . In the case where the vibration of the first drain line L21 is likely to occur, the recovery amount of the steam drain D1 is limited by controlling the bypass valve V36 from the fully closed state to the fully opened state in order to forcibly lower the water level in the can of the flash tank 31. This is the case (two-position control example shown in FIG. 7). In this case, at the moment when the bypass valve V36 is opened, in addition to the re-evaporation of the steam drain D1 discharged from the steam trap 21, the re-evaporation of the steam drain D1 in the flash tank 31 occurs at the same time. Tends to flow toward the water supply tank 40 at a stretch. As a result, the first drain line L21 vibrates vigorously due to the flow of the flash vapor at a high flow rate, which may cause damage to the piping due to the impact. Therefore, the operation is performed so as to keep the amount of the vapor drain D1 in the can to be minimized, so that the amount of reevaporation in the flash tank 31 is reduced. Thereby, since the rapid outflow of the flash vapor generated when the bypass valve V36 is controlled from fully closed to fully open is alleviated, vibration of the first drain line L21 is suppressed.

〔e〕バイパス弁V36の制御(2位置制御例)
図7は、制御手段37によるバイパス弁V36の制御に係るフローチャートである。本制御において、制御手段37は第1圧力センサ34Aの検出圧力を缶内圧力として取得すると共に、制御手段37は両水位検出器33A,33Bの検出水位を缶内水位として取得する。また、制御手段37は第2圧力センサ35Aの検出圧力をライン圧力として取得する。ステップST51において、制御手段37は初期ドレン排出弁V35の制御状態が開度100%であるか否かを判断する。ステップST51でYES(初期ドレン排出弁V35が全開)と判断した場合、蒸気ドレンD1の流入量を評価するため、制御手段37はステップST52に移行する。
[E] Control of bypass valve V36 (example of 2-position control)
FIG. 7 is a flowchart relating to the control of the bypass valve V36 by the control means 37. In this control, the control unit 37 acquires the detected pressure of the first pressure sensor 34A as the in-can pressure, and the control unit 37 acquires the detected water levels of both the water level detectors 33A and 33B as the in-can water level. Further, the control unit 37 acquires the detected pressure of the second pressure sensor 35A as the line pressure. In step ST51, the control means 37 determines whether or not the control state of the initial drain discharge valve V35 is an opening degree of 100%. When it is determined YES in step ST51 (the initial drain discharge valve V35 is fully open), the control means 37 proceeds to step ST52 in order to evaluate the inflow amount of the steam drain D1.

ステップST52において、制御手段37はライン圧力が設定圧力PL以上か否かを判断する。ステップST52でYES(ライン圧力≧PL)と判断した場合、初期ドレン排出ラインL35からのドレン排出が追い付いていない可能性があるため、制御手段37はステップST54に移行してバイパス弁V36の開度を100%(全開)に制御する。これにより、蒸気ドレンD1の排出ルートが追加される。   In step ST52, the control unit 37 determines whether or not the line pressure is equal to or higher than the set pressure PL. If YES in step ST52 (line pressure ≧ PL), there is a possibility that the drain discharge from the initial drain discharge line L35 may not catch up, so the control means 37 moves to step ST54 and the opening degree of the bypass valve V36. Is controlled to 100% (fully open). Thereby, the discharge route of the steam drain D1 is added.

ステップST52でNO(ライン圧力<PL)と判断した場合、制御手段37はステップST53に進み、缶内水位が高水位H未満か否かを判断する。ステップST53でNO(缶内水位≧H)と判断した場合、温水W3のキャリーオーバーによって乾き度の低下したフラッシュ蒸気S3が送気されてしまう可能性があるため、制御手段37はステップST54に移行してバイパス弁V36の開度を100%(全開)に制御する。これにより、フラッシュタンク31への蒸気ドレンD1の流入量が減少し、缶内水位の下降が促進される。   If NO (line pressure <PL) is determined in step ST52, the control unit 37 proceeds to step ST53 and determines whether or not the water level in the can is lower than the high water level H. If it is determined in step ST53 that NO (in-can water level ≧ H), the flash steam S3 having a reduced dryness may be sent due to carry-over of the hot water W3, so the control unit 37 proceeds to step ST54. Thus, the opening degree of the bypass valve V36 is controlled to 100% (fully open). Thereby, the inflow amount of the steam drain D1 to the flash tank 31 is reduced, and the lowering of the in-can water level is promoted.

ステップST53でYES(缶内水位<H)と判断した場合、制御手段37はステップST55に進み、缶内圧力が第3設定圧力よりも高い第4設定圧力P4(例えば、0.44MPa)未満か否かを判断する。ステップST55でNO(缶内圧力≧P4)と判断した場合、フラッシュタンク31の最高使用圧力付近まで缶内圧力が高まっているため、制御手段37はステップST54に移行してバイパス弁V36の開度を100%(全開)に制御する。これにより、フラッシュタンク31への蒸気ドレンD1の流入量が減少し、缶内圧力の下降が促進される。   If YES in step ST53 (the water level in the can <H), the control unit 37 proceeds to step ST55 and determines whether the pressure in the can is lower than a fourth set pressure P4 (eg, 0.44 MPa) higher than the third set pressure. Judge whether or not. If NO (can internal pressure ≧ P4) is determined in step ST55, the internal pressure of the can has increased to near the maximum operating pressure of the flash tank 31, so the control means 37 proceeds to step ST54 and the opening degree of the bypass valve V36. Is controlled to 100% (fully open). Thereby, the inflow amount of the steam drain D1 to the flash tank 31 is reduced, and the decrease in the can internal pressure is promoted.

ステップST55でYES(缶内圧力<P4)と判断した場合、制御手段37はステップST56に進み、缶内水位が中水位M未満か否かを判断する。ステップST56でNO(缶内水位≧M)と判断した場合、缶内水位の下降を促進するため、制御手段37はステップST57に移行してバイパス弁V36の開度を100%のまま保持する。   If YES in step ST55 (can internal pressure <P4), the control means 37 proceeds to step ST56 and determines whether or not the water level in the can is lower than the middle water level M. If NO (in-can water level ≧ M) is determined in step ST56, the control unit 37 proceeds to step ST57 and maintains the opening degree of the bypass valve V36 at 100% in order to promote the lowering of the in-can water level.

ステップST56でYES(缶内水位<M)と判断した場合、制御手段37はステップST58に進み、缶内圧力が第3設定圧力P3(例えば、0.34MPa)未満か否かを判断する。ステップST58でNO(缶内圧力≧P3)と判断した場合、缶内圧力の下降を促進するため、制御手段37はステップST57に移行してバイパス弁V36の開度を100%のまま保持する。一方、ステップST58でYES(缶内圧力<P3)と判断した場合、缶内圧力及び缶内水位が適正範囲にあるため、制御手段37はステップST59に移行してバイパス弁V36の開度を0%(全閉)に制御する。   If it is determined as YES in step ST56 (water level in the can <M), the control unit 37 proceeds to step ST58 and determines whether or not the pressure in the can is less than a third set pressure P3 (for example, 0.34 MPa). If NO (in-can pressure ≧ P3) is determined in step ST58, the control unit 37 proceeds to step ST57 and maintains the opening degree of the bypass valve V36 at 100% in order to promote the decrease in the in-can pressure. On the other hand, if YES in step ST58 (can internal pressure <P3), since the can internal pressure and the water level in the can are within the appropriate ranges, the control unit 37 proceeds to step ST59 and sets the opening of the bypass valve V36 to 0. % (Fully closed).

ところで、本制御のようにバイパス弁V36を全閉状態から全開状態に制御して蒸気ドレンD1の回収量を制限する場合、前述した原因により、第1ドレンラインL21の振動が発生する懸念がある。そこで、バイパス弁V36の開度を100%に制御する場合には、同時に第5蒸気ラインL15の排気弁V14を開放するのが好ましい。蒸気ドレンD1の降圧により発生したフラッシュ蒸気の一部を第5蒸気ラインL15に逃すことにより、第1ドレンラインL21から蒸気ドレンD1が円滑に排出されるので、第1ドレンラインL21の振動が効果的に抑制される。   By the way, when the bypass valve V36 is controlled from the fully closed state to the fully open state and the recovery amount of the steam drain D1 is limited as in this control, there is a concern that the first drain line L21 may vibrate due to the above-described causes. . Therefore, when the opening degree of the bypass valve V36 is controlled to 100%, it is preferable to simultaneously open the exhaust valve V14 of the fifth steam line L15. Since the steam drain D1 is smoothly discharged from the first drain line L21 by letting a part of the flash steam generated by the pressure reduction of the steam drain D1 to the fifth steam line L15, the vibration of the first drain line L21 is effective. Is suppressed.

〔e´〕バイパス弁V36の制御(比例制御例)
制御手段37によるバイパス弁V36の制御は、図7に示した2位置制御以外に比例制御を採用することもできる。図8は、バイパス弁V36の比例制御に係るフローチャートである。本制御において、制御手段37は第1圧力センサ34Aの検出圧力を缶内圧力として取得する。また、制御手段37は両水位検出器33A,33Bの検出水位を缶内水位として取得する。ステップST61において、制御手段37は初期ドレン排出弁V35の制御状態が開度100%であるか否かを判断する。ステップST61でYES(初期ドレン排出弁V35が全開)と判断した場合、蒸気ドレンD1の流入量を評価するため、制御手段37はステップST62に移行する。
[E '] Control of bypass valve V36 (proportional control example)
The control of the bypass valve V36 by the control means 37 may employ proportional control other than the two-position control shown in FIG. FIG. 8 is a flowchart relating to proportional control of the bypass valve V36. In this control, the control means 37 acquires the detected pressure of the first pressure sensor 34A as the in-can pressure. Moreover, the control means 37 acquires the detected water level of both the water level detectors 33A and 33B as the water level in the can. In step ST61, the control means 37 determines whether or not the control state of the initial drain discharge valve V35 is the opening degree 100%. If YES in step ST61 (initial drain discharge valve V35 is fully open), control means 37 proceeds to step ST62 in order to evaluate the inflow amount of steam drain D1.

ステップST62において、制御手段37はライン圧力が設定圧力PL以上か否かを判断する。ステップST62でYES(ライン圧力≧PL)と判断した場合、初期ドレン排出ラインL35からのドレン排出が追い付いていない可能性があるため、制御手段37はステップST64に移行してバイパス弁V36の開度を100%(全開)に制御する。これにより、蒸気ドレンD1の排出ルートが追加される。   In step ST62, the control means 37 determines whether or not the line pressure is equal to or higher than the set pressure PL. If YES in step ST62 (line pressure ≧ PL), there is a possibility that the drain discharge from the initial drain discharge line L35 may not catch up, so the control means 37 moves to step ST64 and the opening degree of the bypass valve V36. Is controlled to 100% (fully open). Thereby, the discharge route of the steam drain D1 is added.

ステップST62でNO(ライン圧力<PL)と判断した場合、制御手段37はステップST63に進み、缶内水位が高水位H未満か否かを判断する。ステップST63でNO(缶内水位≧H)と判断した場合、温水W3のキャリーオーバーによって乾き度の低下したフラッシュ蒸気S3が送気されてしまう可能性があるため、制御手段37はステップST64に移行してバイパス弁V36の開度を100%(全開)に制御する。これにより、フラッシュタンク31への蒸気ドレンD1の流入量が減少し、缶内水位の下降が促進される。なお、この開度100%は、比例制御の最大設定開度(ハイセレクト)でもある。   When it is determined NO (line pressure <PL) in step ST62, the control unit 37 proceeds to step ST63 and determines whether or not the water level in the can is lower than the high water level H. If it is determined in step ST63 that NO (in-can water level ≧ H), the flash steam S3 having a reduced dryness may be sent due to carry-over of the hot water W3, so the control unit 37 proceeds to step ST64. Thus, the opening degree of the bypass valve V36 is controlled to 100% (fully open). Thereby, the inflow amount of the steam drain D1 to the flash tank 31 is reduced, and the lowering of the in-can water level is promoted. The opening degree 100% is also the maximum set opening degree (high select) of proportional control.

ステップST63でYES(缶内水位<H)と判断した場合、制御手段37はステップST65に進み、缶内水位が下限水位LL未満か否かを判断する。ステップST63でYES(缶内水位<LL)と判断した場合、蒸気ドレンD1の流入量を増やすため、制御手段37はステップST66に移行してバイパス弁V36の開度を20%に制御する。これにより、缶内水位が回復すると共にフラッシュ蒸気S3の発生が促進される。なお、この開度20%は、比例制御の最小設定開度(ローセレクト)でもある。   If YES in step ST63 (the water level in the can <H), the control unit 37 proceeds to step ST65 and determines whether or not the water level in the can is less than the lower limit water level LL. If YES in step ST63 (in-can water level <LL), in order to increase the inflow amount of the steam drain D1, the control means 37 proceeds to step ST66 and controls the opening degree of the bypass valve V36 to 20%. As a result, the water level in the can is recovered and the generation of the flash steam S3 is promoted. The opening 20% is also the minimum set opening (low select) for proportional control.

ステップST65でNO(缶内水位≧LL)と判断した場合、制御手段37はステップST67に進み、缶内圧力が第4設定圧力P4(例えば、0.44MPa)未満か否かを判断する。ステップST67でNO(缶内圧力≧P4)と判断した場合、フラッシュタンク31の最高使用圧力付近まで缶内圧力が高まっているため、制御手段37はステップST64に移行してバイパス弁V36の開度を100%(全開)に制御する。これにより、フラッシュタンク31への蒸気ドレンD1の流入量が減少し、缶内圧力の下降が促進される。   If it is determined NO in step ST65 (in-can water level ≧ LL), the control unit 37 proceeds to step ST67 and determines whether or not the in-can pressure is less than a fourth set pressure P4 (for example, 0.44 MPa). If NO (in-can pressure ≧ P4) is determined in step ST67, the can-inside pressure has increased to near the maximum working pressure of the flash tank 31, so the control means 37 proceeds to step ST64 and the opening degree of the bypass valve V36. Is controlled to 100% (fully open). Thereby, the inflow amount of the steam drain D1 to the flash tank 31 is reduced, and the decrease in the can internal pressure is promoted.

ステップST67でYES(缶内圧力<P4)と判断した場合、制御手段37はステップST68に進み、缶内圧力が第3設定圧力P3(例えば、0.34MPa)未満か否かを判断する。ステップST68でYES(缶内圧力<P3)と判断した場合、缶内圧力が適正範囲にあるため、制御手段37はステップST66に移行してバイパス弁V36の開度を20%に制御する。一方、ステップST68でNO(缶内圧力≧P3)と判断した場合、缶内圧力の下降を促進するため、制御手段37はステップST69に移行してバイパス弁V36の開度を調整する。具体的には、缶内圧力が第3設定圧力P3とき開度20%、缶内圧力が第4設定圧力P4のとき開度100%になるようにバイパス弁V36の開度を缶内圧力に基づいて比例制御し、蒸気ドレンD1の流入量を調整する。その結果、缶内圧力が適正範囲に維持され、乾き度の高い高品質のフラッシュ蒸気S3を安定して送気可能になる。   If YES in step ST67 (can internal pressure <P4), the control unit 37 proceeds to step ST68 and determines whether the internal pressure in the can is less than a third set pressure P3 (for example, 0.34 MPa). If YES in step ST68 (can internal pressure <P3), the internal pressure of the can is in the proper range, so the control unit 37 proceeds to step ST66 and controls the opening degree of the bypass valve V36 to 20%. On the other hand, if NO (in-can pressure ≧ P3) is determined in step ST68, the control unit 37 proceeds to step ST69 and adjusts the opening degree of the bypass valve V36 in order to promote the decrease in the in-can pressure. Specifically, the opening of the bypass valve V36 is set to the can internal pressure so that the opening is 20% when the can internal pressure is the third set pressure P3 and the opening is 100% when the can internal pressure is the fourth set pressure P4. Based on the proportional control, the inflow amount of the steam drain D1 is adjusted. As a result, the internal pressure of the can is maintained in an appropriate range, and high-quality flash steam S3 having a high dryness can be stably supplied.

比例制御における開度の範囲は、給水タンク40に連通する第1ドレンラインL21の振動抑制を考慮して設定する。図7に示した2位置制御のようにバイパス弁V36を全閉状態から全開状態に制御して蒸気ドレンD1の回収量を制限する場合、前述した原因により、第1ドレンラインL21の振動が発生する懸念がある。そこで、バイパス弁V36を下限設定開度以上で制御するようにしておき、蒸気ドレンD1から少量のフラッシュ蒸気を発生させながら、第1ドレンラインL21に常時流通させておく。これにより、バイパス弁V36を全開状態に制御した際に生じるフラッシュ蒸気の急激な流出が緩和されるので、第1ドレンラインL21の振動が抑制される。   The range of the opening degree in the proportional control is set in consideration of vibration suppression of the first drain line L21 communicating with the water supply tank 40. When the bypass valve V36 is controlled from the fully closed state to the fully opened state and the recovery amount of the steam drain D1 is limited as in the two-position control shown in FIG. 7, the first drain line L21 vibrates due to the above-described causes. There are concerns. In view of this, the bypass valve V36 is controlled to be equal to or higher than the lower limit opening, and is constantly circulated through the first drain line L21 while generating a small amount of flash steam from the steam drain D1. Thereby, since the rapid outflow of the flash steam generated when the bypass valve V36 is controlled to be fully opened is reduced, the vibration of the first drain line L21 is suppressed.

〔f〕ブロー弁V34の制御
図9は、制御手段37によるブロー弁V34の制御に係るフローチャートである。本制御において、制御手段37は第1圧力センサ34Aの検出圧力を缶内圧力として取得する。また、制御手段37は両水位検出器33A,33Bの検出水位を缶内水位として取得する。ステップST71において、制御手段37は缶内水位が中水位M未満か否かを判断する。ステップST71でYES(缶内水位<M)と判断した場合、温水W3のキャリーオーバーによって乾き度の低下したフラッシュ蒸気S3が送気されてしまう可能性はないため、制御手段37はステップST72に移行してブロー弁V34の開度を0%(全閉)に制御する。
[F] Control of Blow Valve V34 FIG. 9 is a flowchart relating to control of the blow valve V34 by the control means 37. In this control, the control means 37 acquires the detected pressure of the first pressure sensor 34A as the in-can pressure. Moreover, the control means 37 acquires the detected water level of both the water level detectors 33A and 33B as the water level in the can. In step ST71, the control means 37 determines whether or not the water level in the can is less than the middle water level M. If YES in step ST71 (the water level in the can <M), the control means 37 moves to step ST72 because there is no possibility that the flash steam S3 having a reduced dryness will be sent due to carry-over of the hot water W3. Then, the opening degree of the blow valve V34 is controlled to 0% (fully closed).

ステップST71でNO(缶内水位≧M)と判断した場合、制御手段37はステップST73に進み、缶内圧力が第2設定圧力P2(例えば、0.1MPa)未満か否かを判断する。ステップST73でNO(缶内圧力≧P2)と判断した場合、フラッシュタンク31からの温水W3の排出圧力が十分に確保されている状態であるため、制御手段37はステップST72に移行してブロー弁V34の開度を0%(全閉)に制御する。   If it is determined in step ST71 that NO (in-can water level ≧ M), the control unit 37 proceeds to step ST73, and determines whether or not the in-can pressure is less than a second set pressure P2 (for example, 0.1 MPa). If NO (in-can pressure ≧ P2) is determined in step ST73, since the discharge pressure of the hot water W3 from the flash tank 31 is sufficiently secured, the control means 37 proceeds to step ST72 and the blow valve The opening degree of V34 is controlled to 0% (fully closed).

ステップST73でYES(缶内圧力<P2)と判断した場合、制御手段37はステップST74に進み、缶内水位が高水位H未満か否かを判断する。ステップST74でYES(缶内水位<H)と判断した場合、温水W3のキャリーオーバーが起こる可能性はないため、制御手段37はステップST75に移行してブロー弁V34の開度を0%(全閉)のまま保持する。   If YES in step ST73 (can internal pressure <P2), the control unit 37 proceeds to step ST74 and determines whether or not the water level in the can is lower than the high water level H. If YES in step ST74 (the water level in the can <H), there is no possibility that the hot water W3 carries over, so the control means 37 proceeds to step ST75 and sets the opening of the blow valve V34 to 0% (all Keep it closed.

ステップST74でNO(缶内水位≧H)と判断した場合、制御手段37はステップST76に進み、缶内圧力が第2設定圧力P2よりも低い第1設定圧力P1(例えば、0.05MPa)未満か否かを判断する。ステップST76でNO(缶内圧力≧P1)と判断した場合、フラッシュタンク31からの温水W3の排出圧力が十分に確保されている状態であるため、制御手段37はステップST75に移行してブロー弁V34の開度を0%(全閉)のまま保持する。   If it is determined in step ST74 that NO (in-can water level ≧ H), the control means 37 proceeds to step ST76, and the can-internal pressure is lower than the second set pressure P2 and lower than the first set pressure P1 (for example, 0.05 MPa). Determine whether or not. If NO (in-can pressure ≧ P1) is determined in step ST76, since the discharge pressure of the hot water W3 from the flash tank 31 is sufficiently secured, the control means 37 proceeds to step ST75 and the blow valve The opening of V34 is kept 0% (fully closed).

ステップST76でYES(缶内圧力<P1)と判断した場合、フラッシュタンク31からの温水W3の排出圧力が十分に確保されていない状態であるため、制御手段37はステップST77に移行してブロー弁V34の開度を100%(全開)に制御する。これにより、ドレン排出弁V33からの温水W3の排出に加えてブロー弁V34からも温水W3が排出され、缶内水位を適正範囲に保つことができる。   If YES in step ST76 (can internal pressure <P1), since the discharge pressure of the hot water W3 from the flash tank 31 is not sufficiently ensured, the control means 37 moves to step ST77 and the blow valve The opening degree of V34 is controlled to 100% (fully open). Thereby, in addition to the discharge of the warm water W3 from the drain discharge valve V33, the warm water W3 is also discharged from the blow valve V34, and the water level in the can can be maintained in an appropriate range.

〔g〕入口弁V31の制御(缶内圧力に基づく比例制御例)
図10は、制御手段37による入口弁V31の缶内圧力に基づく比例制御に係るフローチャートである。本制御において、制御手段37は第1圧力センサ34Aの検出圧力を缶内圧力として取得する。ステップST81において、制御手段37は初期ドレン排出弁V35の制御状態が開度100%であるか否かを判断する。ステップST81でYES(初期ドレン排出弁V35が全開)と判断した場合、低温の蒸気ドレンD1をフラッシュタンク31に流入させないようにするため、制御手段37はステップST83に移行して入口弁V31の開度を0%(全閉)に制御する。
[G] Control of inlet valve V31 (proportional control example based on can internal pressure)
FIG. 10 is a flowchart relating to proportional control based on the pressure inside the can of the inlet valve V31 by the control means 37. In this control, the control means 37 acquires the detected pressure of the first pressure sensor 34A as the in-can pressure. In step ST81, the control means 37 determines whether or not the control state of the initial drain discharge valve V35 is an opening degree of 100%. If YES in step ST81 (the initial drain discharge valve V35 is fully open), the control means 37 moves to step ST83 to prevent the low temperature steam drain D1 from flowing into the flash tank 31, and opens the inlet valve V31. The degree is controlled to 0% (fully closed).

ステップST81でNO(初期ドレン排出弁V35が全閉)と判断した場合、制御手段37はステップST82に進み、缶内圧力が第2設定圧力(例えば、0.1MPa)以上か否かを判断する。ステップST82でYES(缶内圧力≧P2)と判断した場合、フラッシュ蒸気S3の送気圧力が蒸気昇圧機15の吸込上限圧力を上回るおそれがあるため、制御手段37はステップST83に移行して入口弁V31の開度を0%(全閉)に制御する。これにより、フラッシュタンク31への蒸気ドレンD1の流入が中断され、缶内圧力ひいてはフラッシュ蒸気S3の送気圧力の下降が促進される。   If it is determined NO in step ST81 (the initial drain discharge valve V35 is fully closed), the control unit 37 proceeds to step ST82, and determines whether or not the can internal pressure is equal to or higher than a second set pressure (for example, 0.1 MPa). . If YES in step ST82 (can internal pressure ≧ P2), the air pressure of the flash steam S3 may exceed the suction upper limit pressure of the steam booster 15. Therefore, the control unit 37 proceeds to step ST83 and enters the inlet. The opening degree of the valve V31 is controlled to 0% (fully closed). As a result, the flow of the steam drain D1 into the flash tank 31 is interrupted, and the decrease in the pressure inside the can and thus the supply pressure of the flash steam S3 is promoted.

ステップST82でNO(缶内圧力<P2)と判断した場合、制御手段37はステップST84に移行する。ステップST83において、制御手段37は缶内圧力が第1設定圧力P1(例えば、0.05MPa)以下か否かを判断する。ステップST84でYES(缶内圧力≦P1)と判断した場合、フラッシュ蒸気S3の送気圧力が蒸気昇圧機15の吸込下限圧力を下回るおそれがあるため、制御手段37はステップST85に移行して入口弁V31の開度を100%(全開)に制御する。これにより、フラッシュタンク31への蒸気ドレンD1の流入量が最大化され、缶内圧力ひいてはフラッシュ蒸気S3の送気圧力の上昇が促進される。   If it is determined in step ST82 that NO (in-can pressure <P2), the control unit 37 proceeds to step ST84. In step ST83, the control means 37 determines whether or not the can internal pressure is equal to or lower than a first set pressure P1 (for example, 0.05 MPa). If YES in step ST84 (can internal pressure ≦ P1), the air pressure of the flash steam S3 may fall below the suction lower limit pressure of the steam booster 15, so the control means 37 proceeds to step ST85 and enters the inlet. The opening degree of the valve V31 is controlled to 100% (fully open). As a result, the inflow amount of the steam drain D1 into the flash tank 31 is maximized, and the increase in the internal pressure of the can and hence the supply pressure of the flash steam S3 is promoted.

ステップST84でNO(缶内圧力>P1)と判断した場合、蒸気昇圧機15に対するフラッシュ蒸気S3の送気圧力を安定させるため、制御手段37はステップST86に移行して入口弁V31の開度を調整する。具体的には、缶内圧力が第1設定圧力P1とき開度0%、缶内圧力が第2設定圧力P2のとき開度100%になるように入口弁V31の開度を缶内圧力に基づいて比例制御し、フラッシュ蒸気S3の送気圧力を調整する。その結果、蒸気昇圧機15の吸込圧力が適正範囲に維持され、安定した低圧蒸気S2の供給が可能になる。   If NO (in-can pressure> P1) is determined in step ST84, the control means 37 proceeds to step ST86 to stabilize the opening pressure of the inlet valve V31 in order to stabilize the supply pressure of the flash steam S3 to the steam booster 15. adjust. Specifically, the opening of the inlet valve V31 is set to the can internal pressure so that the opening is 0% when the can internal pressure is the first set pressure P1, and the opening is 100% when the can internal pressure is the second set pressure P2. Proportional control is performed based on this to adjust the air supply pressure of the flash steam S3. As a result, the suction pressure of the steam booster 15 is maintained in an appropriate range, and stable supply of the low-pressure steam S2 becomes possible.

〔g´〕入口弁V31の制御(缶内水位に基づく比例制御例)
制御手段37による入口弁V36の制御は、蒸気昇圧機15の設置がある場合には、その吸込圧力を適正範囲に維持するため、図10に示した缶内圧力に基づく制御が望ましい。しかし、蒸気昇圧機15の設置がない場合には、缶内水位に基づく制御を採用することもできる。この制御を採用する場合、両水位検出器33A,33Bは、缶内水位を連続的に検出可能な水位センサ(例えば、静電容量式レベルセンサ)に変更するのがよい。
[G ′] Control of inlet valve V31 (example of proportional control based on water level in can)
The control of the inlet valve V36 by the control means 37 is preferably based on the can internal pressure shown in FIG. 10 in order to maintain the suction pressure within an appropriate range when the steam booster 15 is installed. However, when the steam booster 15 is not installed, control based on the water level in the can can be employed. When this control is adopted, both the water level detectors 33A and 33B are preferably changed to a water level sensor (for example, a capacitive level sensor) that can continuously detect the water level in the can.

図11は、制御手段37による入口弁V31の缶内水位に基づく比例制御に係るフローチャートである。本制御において、制御手段37は水位センサの検出水位を缶内水位として取得する。ステップST91において、制御手段37は初期ドレン排出弁V35の制御状態が開度100%であるか否かを判断する。ステップST91でYES(初期ドレン排出弁V35が全開)と判断した場合、低温の蒸気ドレンD1をフラッシュタンク31に流入させないようにするため、制御手段37はステップST92に移行して入口弁V31の開度を0%(全閉)に制御する。   FIG. 11 is a flowchart relating to proportional control based on the water level in the can of the inlet valve V31 by the control means 37. In this control, the control means 37 acquires the water level detected by the water level sensor as the water level in the can. In step ST91, the control means 37 determines whether or not the control state of the initial drain discharge valve V35 is an opening degree of 100%. If YES in step ST91 (the initial drain discharge valve V35 is fully open), the control means 37 moves to step ST92 to prevent the low temperature steam drain D1 from flowing into the flash tank 31, and opens the inlet valve V31. The degree is controlled to 0% (fully closed).

ステップST91でNO(初期ドレン排出弁V35が全閉)と判断した場合、制御手段37はステップST93に進み、缶内水位が中水位M以上か否かを判断する。ステップST93でYES(缶内水位≧M)と判断した場合、缶内水位が上昇傾向にあるため、制御手段37はステップST94に移行して入口弁V31の開度を10%に制御する。これにより、フラッシュタンク31への蒸気ドレンD1の流入量が低減され、温水W3のキャリーオーバーが防止される。なお、この開度10%は、比例制御の最小設定開度(ローセレクト)でもある。   If it is determined NO in step ST91 (the initial drain discharge valve V35 is fully closed), the control unit 37 proceeds to step ST93 and determines whether or not the water level in the can is the middle water level M or higher. If YES in step ST93 (in-can water level ≧ M), since the in-can water level tends to increase, the control unit 37 proceeds to step ST94 and controls the opening of the inlet valve V31 to 10%. Thereby, the inflow amount of the steam drain D1 to the flash tank 31 is reduced, and the carry over of the hot water W3 is prevented. In addition, this opening degree 10% is also the minimum setting opening degree (low select) of proportional control.

ステップST93でNO(缶内水位<M)と判断した場合、制御手段37はステップST95に移行する。ステップST95において、制御手段37は缶内水位が下限水位LL未満か否かを判断する。ステップST95でYES(缶内水位<LL)と判断した場合、蒸気ドレンD1の貯留量がなくなるおそれがあるため、制御手段37はステップST96に移行して入口弁V31の開度を100%(全開)に制御する。これにより、フラッシュタンク31への蒸気ドレンD1の流入量が最大化され、フラッシュ蒸気S3の発生が促進される。なお、この開度100%は、比例制御の最小設定開度(ハイセレクト)でもある。   If it is determined in step ST93 that NO (in-can water level <M), the control means 37 proceeds to step ST95. In step ST95, the control means 37 determines whether or not the water level in the can is lower than the lower limit water level LL. If YES in step ST95 (the water level in the can <LL), the storage amount of the steam drain D1 may be lost. Therefore, the control unit 37 proceeds to step ST96 and sets the opening of the inlet valve V31 to 100% (fully open). ) To control. Thereby, the inflow amount of the steam drain D1 to the flash tank 31 is maximized, and the generation of the flash steam S3 is promoted. The opening degree 100% is also the minimum setting opening degree (proper selection) of proportional control.

ステップST95でNO(缶内水位≧LL)と判断した場合、蒸気ドレンD1の流入量を安定させるため、制御手段37はステップST97に移行して入口弁V31の開度を調整する。具体的には、缶内水位が中水位Mとき開度10%、缶内水位が下限水位LLのとき開度100%になるように入口弁V31の開度を缶内水位に基づいて比例制御し、蒸気ドレンD1の流入量を調整する。その結果、缶内水位が適正範囲に維持され、安定した流量のフラッシュ蒸気S3の供給が可能になる。   When it is determined NO in step ST95 (in-can water level ≧ LL), the control means 37 moves to step ST97 and adjusts the opening degree of the inlet valve V31 in order to stabilize the inflow amount of the steam drain D1. Specifically, the opening degree of the inlet valve V31 is proportionally controlled based on the water level in the can so that the opening degree is 10% when the water level in the can is the middle water level M and 100% when the water level in the can is the lower limit water level LL. Then, the inflow amount of the steam drain D1 is adjusted. As a result, the water level in the can is maintained in an appropriate range, and it is possible to supply the flash steam S3 at a stable flow rate.

本実施形態に係るフラッシュ蒸気発生装置30によれば、以下の効果を発揮することができる。   According to the flash steam generator 30 according to the present embodiment, the following effects can be exhibited.

本実施形態のフラッシュ蒸気発生装置30において、制御手段37は、温度センサ36の検出温度が第1設定温度T1以下の場合には、初期ドレン排出弁V35を開放する。これにより、高圧蒸気利用設備13から大量の初期ドレンが流入したとしても、初期ドレン排出ラインL35から排出されてしまうので、缶内が満水になることがない。その結果、高温の蒸気ドレンD1を回収してフラッシュ蒸気S3を発生させた時に、滞留ドレンのキャリーオーバーが発生しないので、フラッシュ蒸気S3の乾き度を高めることができる。   In the flash steam generator 30 of the present embodiment, the control unit 37 opens the initial drain discharge valve V35 when the temperature detected by the temperature sensor 36 is equal to or lower than the first set temperature T1. Thereby, even if a large amount of initial drain flows from the high-pressure steam utilization facility 13, it is discharged from the initial drain discharge line L35, so that the inside of the can is not filled with water. As a result, when the high-temperature steam drain D1 is collected and the flash steam S3 is generated, the retained drain does not carry over, so the dryness of the flash steam S3 can be increased.

また、本実施形態のフラッシュ蒸気発生装置30において、制御手段37は、温度センサ36の検出温度が第1設定温度T1よりも高い第2設定温度T2以上の場合には、初期ドレン排出弁V35を閉止する。これにより、フラッシュタンク31に高温の蒸気ドレンD1を選択的に流入させることができるので、缶内圧力が速やかに上昇し、温水W3の排出圧力が確保された状態になる。その結果、缶内水位が適正範囲に保たれ、滞留ドレンのキャリーオーバーを防止できる。   Further, in the flash steam generator 30 of the present embodiment, the control means 37 sets the initial drain discharge valve V35 when the temperature detected by the temperature sensor 36 is equal to or higher than the second set temperature T2 higher than the first set temperature T1. Close. As a result, the high-temperature steam drain D1 can be selectively introduced into the flash tank 31, so that the pressure inside the can quickly rises and the discharge pressure of the hot water W3 is secured. As a result, the water level in the can can be maintained within an appropriate range, and carryover of the accumulated drain can be prevented.

また、本実施形態のフラッシュ蒸気発生装置30において、制御手段37は、初期ドレン排出弁V35を開放する場合には、入口弁V31を閉止する。これにより、低温の初期ドレンで缶内が満たされることがないので、高温の蒸気ドレンD1を受け入れたときの温度低下が起こらない。その結果、高温の蒸気ドレンD1の受け入れ開始後、速やかにフラッシュ蒸気S3を発生させることができる。   Moreover, in the flash steam generator 30 of this embodiment, the control means 37 closes the inlet valve V31, when opening the initial drain discharge valve V35. Thereby, since the inside of the can is not filled with the low temperature initial drain, the temperature does not decrease when the high temperature steam drain D1 is received. As a result, the flash steam S3 can be generated promptly after the start of receiving the high-temperature steam drain D1.

また、本実施形態のフラッシュ蒸気発生装置30において、制御手段37は、第2圧力センサ35Aの検出圧力が設定圧力以上の場合には、バイパス弁V36を開放する。すなわち、制御手段37は、蒸気ドレンD1の流入量が過剰であったり、初期ドレン排出ラインL35に背圧がかかったりすることにより、ドレン回収ラインL31の管路内圧力が上昇している場合には、蒸気ドレンD1の一部を第1ドレンラインL21(バイパスライン)から給水タンク40に誘導する。その結果、スチームトラップ21から低温の蒸気ドレンD1の排出を円滑に行わせ、フラッシュ蒸気S3の発生までの時間を短縮することができる。   In the flash steam generator 30 of the present embodiment, the control unit 37 opens the bypass valve V36 when the detected pressure of the second pressure sensor 35A is equal to or higher than the set pressure. In other words, the control means 37 is configured when the inflow amount of the steam drain D1 is excessive or the pressure in the pipe line of the drain recovery line L31 is increased due to the back pressure being applied to the initial drain discharge line L35. Guides a part of the steam drain D1 from the first drain line L21 (bypass line) to the water supply tank 40. As a result, it is possible to smoothly discharge the low temperature steam drain D1 from the steam trap 21, and to shorten the time until the generation of the flash steam S3.

以上、本発明の好ましい一実施形態について説明したが、本発明は、上記実施形態に制限されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更が可能である。以下にフラッシュ蒸気発生装置30の変形例について述べるが、本願発明は、上記実施形態ないし変形例でサポートされるものである。   The preferred embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the invention. Although the modification of the flash steam generator 30 is described below, this invention is supported by the said embodiment thru | or modification.

<温度センサの位置変更>
温度センサ36(ドレン温度検出手段)は、フラッシュタンク31に流入する前の蒸気ドレンD1の温度を検出できるのであれば、ドレン回収ラインL31に変えて他の位置に設置することもできる。例えば、温度センサ36は、スチームトラップ21近傍の第1ドレンラインL21や第2ドレンラインL22に設置してもよい。ドレン回収ラインL31に流入する前の蒸気ドレンD1の温度を検出する場合でも、初期ドレン排出弁V35の制御を支障なく実施することができる。
<Temperature sensor position change>
If the temperature sensor 36 (drain temperature detection means) can detect the temperature of the steam drain D1 before flowing into the flash tank 31, it can be installed in another position instead of the drain recovery line L31. For example, the temperature sensor 36 may be installed in the first drain line L21 or the second drain line L22 near the steam trap 21. Even when the temperature of the steam drain D1 before flowing into the drain recovery line L31 is detected, the control of the initial drain discharge valve V35 can be performed without any trouble.

<温水排出弁の簡素化と水位制御の省略>
上記したバイパス弁V36の比例制御(図8)により、フラッシュタンク31の缶内水位を所定範囲(下限水位LL〜高水位H)に保つことができる場合には、ドレン排出弁V33を制御弁に替えて手動弁とすることもできる。ドレン排出弁V33を手動弁に替えることにより、ドレン排出弁V33による水位制御を省略することができる。この場合、手動弁としたドレン排出弁V33は、比例制御のローセレクトである最小設定開度(例えば、20%)に相当する弁開度に調節して使用する。
<Simplification of hot water discharge valve and omission of water level control>
When the water level in the can of the flash tank 31 can be maintained within a predetermined range (lower limit water level LL to high water level H) by proportional control of the bypass valve V36 (FIG. 8), the drain discharge valve V33 is used as a control valve. Alternatively, a manual valve can be used. The water level control by the drain discharge valve V33 can be omitted by replacing the drain discharge valve V33 with a manual valve. In this case, the drain discharge valve V33, which is a manual valve, is used after being adjusted to a valve opening corresponding to a minimum setting opening (for example, 20%) which is a low select of proportional control.

<蒸気昇圧機の省略>
低圧蒸気利用設備14で使用する蒸気量が比較的少なく、フラッシュタンク31でのフラッシュ率(蒸気ドレン1kgから発生するフラッシュ蒸気の重量)を低く保てる場合には、フラッシュ蒸気S3の圧力を高めることができるので、蒸気昇圧機15を省略した構成とすることもできる。蒸気昇圧機15を省略する場合、その保護に用いる真空破壊弁V12も省略してよい。また、図10に示した缶内圧力に基づく入口弁V31の比例制御も不要となる。
<Omission of steam booster>
When the amount of steam used in the low-pressure steam utilization facility 14 is relatively small and the flash rate in the flash tank 31 (the weight of flash steam generated from 1 kg of steam drain) can be kept low, the pressure of the flash steam S3 can be increased. Thus, the steam booster 15 can be omitted. When the steam booster 15 is omitted, the vacuum breaker valve V12 used for protection thereof may be omitted. Further, the proportional control of the inlet valve V31 based on the can internal pressure shown in FIG. 10 is also unnecessary.

<その他の変形例>
上記実施形態では、流通経路切換手段32は、入口弁V31、蒸気送気弁V32、ドレン排出弁V33、ブロー弁V34、初期ドレン排出弁V35、及びバイパス弁V36からなる5つの制御弁で構成されているが、発明の趣旨を逸脱しない範囲で制御弁の数を増減することもできる。例えば、蒸気昇圧機15がなく吸込圧力を調整する必要がない場合には、入口弁V31を削減してもよい。
<Other variations>
In the above embodiment, the flow path switching means 32 is composed of five control valves including the inlet valve V31, the steam supply valve V32, the drain discharge valve V33, the blow valve V34, the initial drain discharge valve V35, and the bypass valve V36. However, the number of control valves can be increased or decreased without departing from the spirit of the invention. For example, when there is no steam booster 15 and it is not necessary to adjust the suction pressure, the inlet valve V31 may be reduced.

上記実施形態では、缶内水位検出手段33として、5個のフロートスイッチが組み込まれた水位検出器33A,33Bについて説明した。しかし、缶内水位検出手段33として、水位を連続的に検出する水位検出器(例えば、静電容量式水位センサや超音波式水位センサ)を備えていても良く、段階検出方式の水位検出器及び連続検出方式の水位検出器の両方を備えていても良い。   In the above embodiment, the water level detectors 33A and 33B in which five float switches are incorporated have been described as the in-can water level detection means 33. However, a water level detector (for example, a capacitive water level sensor or an ultrasonic water level sensor) that continuously detects the water level may be provided as the in-can water level detection means 33, and a water level detector of a stage detection type. And a continuous detection type water level detector may be provided.

上記実施形態では、フラッシュ蒸気発生装置30は、1個のフラッシュタンク31を備えているが、フラッシュタンク31は1個に限定されず、複数個のフラッシュタンクを備えていても良い。その場合、初期ドレン排出ラインL35及び初期ドレン排出弁V35は、フラッシュタンク毎に設けられても良く、また、フラッシュ蒸気発生装置全体に対してそれぞれ1つずつ設けられても良い。   In the above embodiment, the flash steam generator 30 includes one flash tank 31, but the flash tank 31 is not limited to one and may include a plurality of flash tanks. In that case, the initial drain discharge line L35 and the initial drain discharge valve V35 may be provided for each flash tank, or may be provided one by one for the entire flash steam generator.

1 蒸気システム
10 蒸気ボイラ装置群
11 蒸気ボイラユニット
12 スチームヘッダ
13 高圧蒸気利用設備
14 低圧蒸気利用設備
15 蒸気昇圧機
21 スチームトラップ
30 フラッシュ蒸気発生装置
31 フラッシュタンク
32 流通経路切換手段
33 缶内水位検出手段
33A 第1水位検出器
33B 第2水位検出器
34 缶内圧力検出手段
34A 第1圧力センサ
34B 第1圧力スイッチ
35 ライン圧力検出手段
35A 第2圧力センサ
35B 第2圧力スイッチ
36 ドレン温度検出手段(温度センサ)
37 制御手段
38 ストレーナ
40 給水タンク
50 排水ピット
L11 第1蒸気ライン
L12 第2蒸気ライン
L13 第3蒸気ライン
L14 第4蒸気ライン
L15 第5蒸気ライン
L21 第1ドレンライン(バイパスライン)
L22 第2ドレンライン
L23 第3ドレンライン
L24 第4ドレンライン
L31 ドレン回収ライン
L32 蒸気送気ライン
L33 ドレン排出ライン
L34 ブローライン
L35 初期ドレン排出ライン
L41 ボイラ給水ライン
L42 補給水ライン
V11 減圧弁
V12 真空破壊弁
V13 逆止弁
V14 排気弁
V31 入口弁
V32 蒸気送気弁
V33 ドレン排出弁
V34 ブロー弁
V35 初期ドレン排出弁
V36 バイパス弁
V37 安全弁
V38 真空破壊弁
V39 逆止弁
D1 蒸気ドレン
S1 高圧蒸気
S2 低圧蒸気
S3 フラッシュ蒸気
W1 補給水
W2 ボイラ給水
W3 温水
DESCRIPTION OF SYMBOLS 1 Steam system 10 Steam boiler apparatus group 11 Steam boiler unit 12 Steam header 13 High pressure steam utilization equipment 14 Low pressure steam utilization equipment 15 Steam booster 21 Steam trap 30 Flash steam generator 31 Flash tank 32 Distribution path switching means 33 Detection of water level in can Means 33A First water level detector 33B Second water level detector 34 Can pressure detection means 34A First pressure sensor 34B First pressure switch 35 Line pressure detection means 35A Second pressure sensor 35B Second pressure switch 36 Drain temperature detection means ( Temperature sensor)
37 Control means 38 Strainer 40 Water tank 50 Drain pit L11 1st steam line L12 2nd steam line L13 3rd steam line L14 4th steam line L15 5th steam line L21 1st drain line (bypass line)
L22 2nd drain line L23 3rd drain line L24 4th drain line L31 Drain recovery line L32 Steam supply line L33 Drain discharge line L34 Blow line L35 Initial drain discharge line L41 Boiler feed line L42 Supply water line V11 Pressure reducing valve V12 Vacuum break Valve V13 Check valve V14 Exhaust valve V31 Inlet valve V32 Steam supply valve V33 Drain discharge valve V34 Blow valve V35 Initial drain discharge valve V36 Bypass valve V37 Safety valve V38 Vacuum break valve V39 Check valve D1 Steam drain S1 High pressure steam S2 Low pressure steam S3 Flash steam W1 Make-up water W2 Boiler feed water W3 Hot water

Claims (4)

回収した蒸気ドレンを再蒸発させてフラッシュ蒸気と温水とに分離するフラッシュタンクと、
蒸気ドレンを前記フラッシュタンクに回収するドレン回収ラインと、
フラッシュ蒸気を前記フラッシュタンクから送気する蒸気送気ラインと、
温水を前記フラッシュタンクから排出するドレン排出ラインと、
前記フラッシュタンクに対して蒸気ドレンを迂回させるバイパスラインと、
蒸気ドレンを前記ドレン回収ラインから排出する初期ドレン排出ラインと、
前記初期ドレン排出ラインに設けられた初期ドレン排出弁を少なくとも含む一つ以上の制御弁から構成される流通経路切換手段と、
前記ドレン回収ラインに流入、又は前記ドレン回収ラインを流通する蒸気ドレンの温度を検出するドレン温度検出手段と、
前記流通経路切換手段を制御する制御手段と、を備え、
前記制御手段は、前記ドレン温度検出手段の検出温度が第1設定温度以下の場合には、前記初期ドレン排出弁を開放する
ことを特徴とするフラッシュ蒸気発生装置。
A flash tank that re-evaporates the recovered steam drain and separates it into flash steam and hot water;
A drain recovery line for recovering steam drain into the flash tank;
A steam supply line for supplying flash steam from the flash tank;
A drain discharge line for discharging hot water from the flash tank;
A bypass line for bypassing the steam drain to the flash tank;
An initial drain discharge line for discharging steam drain from the drain recovery line;
A flow path switching means comprising one or more control valves including at least an initial drain discharge valve provided in the initial drain discharge line;
A drain temperature detecting means for detecting the temperature of the steam drain flowing into the drain recovery line or flowing through the drain recovery line;
Control means for controlling the distribution path switching means,
The said control means opens the said initial drain discharge valve, when the detected temperature of the said drain temperature detection means is below 1st preset temperature, The flash steam generator characterized by the above-mentioned.
前記制御手段は、前記ドレン温度検出手段の検出温度が第1設定温度よりも高い第2設定温度以上の場合には、前記初期ドレン排出弁を閉止する
ことを特徴とする請求項1に記載のフラッシュ蒸気発生装置。
The said control means closes the said initial drain discharge valve, when the detected temperature of the said drain temperature detection means is more than 2nd setting temperature higher than 1st setting temperature. Flash steam generator.
前記流通経路切換手段は、前記ドレン回収ラインに設けられた入口弁を更に含み、
前記制御手段は、前記初期ドレン排出弁を開放する場合には、前記入口弁を閉止する
ことを特徴とする請求項2に記載のフラッシュ蒸気発生装置。
The flow path switching means further includes an inlet valve provided in the drain recovery line,
The flash steam generator according to claim 2, wherein the control means closes the inlet valve when the initial drain discharge valve is opened.
前記入口弁の上流側の前記ドレン回収ラインの管路内圧力を検出するライン圧力検出手段を備え、
前記制御手段は、前記ライン圧力検出手段の検出圧力が設定圧力以上の場合には、前記バイパスラインに設けられたバイパス弁を開放する
ことを特徴とする請求項3に記載のフラッシュ蒸気発生装置。
Line pressure detecting means for detecting the pressure in the drain recovery line upstream of the inlet valve,
4. The flash steam generator according to claim 3, wherein the control means opens a bypass valve provided in the bypass line when the detected pressure of the line pressure detecting means is equal to or higher than a set pressure.
JP2017050420A 2017-03-15 2017-03-15 Flash steam generator Pending JP2018155417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017050420A JP2018155417A (en) 2017-03-15 2017-03-15 Flash steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017050420A JP2018155417A (en) 2017-03-15 2017-03-15 Flash steam generator

Publications (1)

Publication Number Publication Date
JP2018155417A true JP2018155417A (en) 2018-10-04

Family

ID=63717941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017050420A Pending JP2018155417A (en) 2017-03-15 2017-03-15 Flash steam generator

Country Status (1)

Country Link
JP (1) JP2018155417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112833379A (en) * 2019-12-31 2021-05-25 杭州堃博生物科技有限公司 Steam ablation equipment and heating control method, controller, equipment and medium thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4493608A (en) * 1982-12-27 1985-01-15 General Electric Company Surge control in compressor
JP2014178052A (en) * 2013-03-13 2014-09-25 Miura Co Ltd Drain recovery system
JP2015052406A (en) * 2013-09-05 2015-03-19 東京瓦斯株式会社 Drain recovery equipment, operation method of the same, and heat utilization system using drain recovery equipment
JP2015096783A (en) * 2013-11-15 2015-05-21 三浦工業株式会社 Flash steam generating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4493608A (en) * 1982-12-27 1985-01-15 General Electric Company Surge control in compressor
JP2014178052A (en) * 2013-03-13 2014-09-25 Miura Co Ltd Drain recovery system
JP2015052406A (en) * 2013-09-05 2015-03-19 東京瓦斯株式会社 Drain recovery equipment, operation method of the same, and heat utilization system using drain recovery equipment
JP2015096783A (en) * 2013-11-15 2015-05-21 三浦工業株式会社 Flash steam generating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112833379A (en) * 2019-12-31 2021-05-25 杭州堃博生物科技有限公司 Steam ablation equipment and heating control method, controller, equipment and medium thereof

Similar Documents

Publication Publication Date Title
JP6862950B2 (en) Flash steam generator
JP2018155417A (en) Flash steam generator
JP2018155418A (en) Flash steam generator
JP6132188B2 (en) Water heating system
JP2009300055A (en) Heat pump water heater
JP6841101B2 (en) Flash steam generator
JP6237109B2 (en) Water heating system
WO2021090806A1 (en) Hot water supply device
JP6686512B2 (en) Boiler system
JP6090568B2 (en) Water heating system
JP2003042539A (en) Hot waste water heat recovery system
JP3331620B2 (en) Operation control device for air conditioner
JP5962971B2 (en) Water heating system
JP2014169820A (en) Feedwater heating system
JP2017146032A (en) Feedwater heating system
JP2013238336A (en) Water supply heating system
JP2014112018A (en) Power generation unit, and method of recovering flash tank drain in starting power generation unit
JP6210204B2 (en) Water heating system
JP2015081708A (en) Water supply heating system
JP6249282B2 (en) Water heating system
JP2012247130A (en) Storage water heater
JP2015132445A (en) Feedwater heating system
JP2017146034A (en) Feedwater heating system
JP3666266B2 (en) Hot water system
JP6187813B2 (en) Water heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210706