JP2018152460A - Controller, and system including controller and semiconductor device controlled by that controller - Google Patents

Controller, and system including controller and semiconductor device controlled by that controller Download PDF

Info

Publication number
JP2018152460A
JP2018152460A JP2017047537A JP2017047537A JP2018152460A JP 2018152460 A JP2018152460 A JP 2018152460A JP 2017047537 A JP2017047537 A JP 2017047537A JP 2017047537 A JP2017047537 A JP 2017047537A JP 2018152460 A JP2018152460 A JP 2018152460A
Authority
JP
Japan
Prior art keywords
semiconductor device
signal
electrode
region
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017047537A
Other languages
Japanese (ja)
Inventor
昭夫 岩渕
Akio Iwabuchi
昭夫 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2017047537A priority Critical patent/JP2018152460A/en
Publication of JP2018152460A publication Critical patent/JP2018152460A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a controller driving a semiconductor device capable of making the semiconductor device low ON-voltage and high breakdown voltage, and to provide a system including that controller and a semiconductor device driven by that controller.SOLUTION: A controller 2 controlling a semiconductor device 1 includes a control electrode 80 placed in a groove 30 facing a base region 40, an auxiliary electrode 70 placed in a groove 30 facing a drift region 20, a first main electrode 90 connected electrically with a source region 50, and a second main electrode 100 connected electrically with a drain region 10, and when a signal of potential less than a threshold level is outputted to the control electrode 80 of the semiconductor device 1, outputs a signal so that a potential less than the threshold level of the semiconductor device is given to the auxiliary electrode 70, and after a signal of potential equal to or exceeding the threshold level is outputted to the control electrode 80 of the semiconductor device, outputs a signal for increasing the voltage applied to the auxiliary electrode 70 to the voltage applied to the control electrode 80 or higher.SELECTED DRAWING: Figure 2

Description

本発明は、制御装置と、その制御装置とその制御装置により制御される半導体装置とを含むシステムに関する。   The present invention relates to a system including a control device, the control device, and a semiconductor device controlled by the control device.

大電流のスイッチング動作を行う半導体装置(パワー半導体素子)として、トレンチゲート型のMOSFETが広く用いられている。   A trench gate type MOSFET is widely used as a semiconductor device (power semiconductor element) that performs a switching operation with a large current.

トレンチゲート型のMOSFETは、図1の半導体装置1で示すように、一般的に第1導電型のドレイン領域10と、第1導電型のドレイン領域10の上に形成された第1導電型のドリフト領域20と、第1導電型のドリフト領域20上に形成された第2導電型のベース領域40と、第2導電型のベース領域40上に選択的に形成された第1導電型のソース領域50と、ソース領域50からベース領域40を貫通してドリフト領域20に達する溝30と、ベース領域40と対向する溝30の側壁に絶縁膜60を介して形成されたゲート電極80と、ソース領域50と電気的に接続したソース電極90と、ドレイン領域10と電気的に接続したドレイン電極100と、ソース電極90と電気的に接続し且つ溝30内におけるゲート電極80よりも下に形成された補助電極70と、を備える。トレンチゲート型のMOSFETはソース電極90とドレイン電極100との間に所定のドレイン・ソース間電圧を印加し、ソース電極90とゲート電極80との間に所定のゲート電圧を印加する。このとき半導体装置1はチャネル領域においてp型からn型に反転してチャネルが形成される。すると、ソース電極90からチャネルを通過して、電子がドリフト領域20に注入され、半導体装置1はオンすることができる。   As shown in the semiconductor device 1 of FIG. 1, the trench gate type MOSFET generally has a first conductivity type drain region 10 and a first conductivity type drain region 10 formed on the first conductivity type drain region 10. Drift region 20, second conductivity type base region 40 formed on first conductivity type drift region 20, and first conductivity type source selectively formed on second conductivity type base region 40 A region 50, a trench 30 extending from the source region 50 through the base region 40 to the drift region 20, a gate electrode 80 formed on the sidewall of the trench 30 facing the base region 40 via an insulating film 60, a source Source electrode 90 electrically connected to region 50, drain electrode 100 electrically connected to drain region 10, and electrically connected to source electrode 90 and more than gate electrode 80 in trench 30 It includes an auxiliary electrode 70 formed on, a. The trench gate type MOSFET applies a predetermined drain-source voltage between the source electrode 90 and the drain electrode 100, and applies a predetermined gate voltage between the source electrode 90 and the gate electrode 80. At this time, the semiconductor device 1 is inverted from p-type to n-type in the channel region to form a channel. Then, electrons pass through the channel from the source electrode 90 and are injected into the drift region 20, so that the semiconductor device 1 can be turned on.

ここで、特許文献1のように、トレンチゲート型のMOSFETにおいて、補助電極70の電位を数ボルトにすることで、低いオン電圧とゲート・ドレイン間容量の低減を図る構造が公知である。   Here, as in Patent Document 1, in a trench gate type MOSFET, a structure is known in which the potential of the auxiliary electrode 70 is set to several volts so as to reduce the on-voltage and the gate-drain capacitance.

特開昭63−296282号公報JP 63-296282 A

特許文献1の構造において更なるオン抵抗の低減を図るため、ドリフト領域20の不純物濃度を高めると半導体装置のオン電圧は低減されるが、半導体装置の耐圧は逆に低くなる。つまり、半導体装置のオン抵抗と耐圧はトレードオフの関係にある。 In order to further reduce the on-resistance in the structure of Patent Document 1, when the impurity concentration of the drift region 20 is increased, the on-voltage of the semiconductor device is reduced, but the breakdown voltage of the semiconductor device is conversely lowered. That is, the on-resistance and breakdown voltage of the semiconductor device are in a trade-off relationship.

そこで、本発明はかかる問題点に鑑みてなされたものであり、上記問題点を解決することができる制御装置、及びその制御装置とその制御装置で駆動する半導体装置を含むシステムを提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and provides a control device that can solve the above problems, and a system including the control device and a semiconductor device driven by the control device. Objective.

本発明は、上記課題を解決すべく、以下に掲げる構成とした。
本発明の半導体装置の制御装置は、第1導電型の第1半導体領域と、第1半導体領域上に配置され、前記第1半導体領域よりも不純物濃度の低い第1導電型の第2半導体領域と、第2半導体領域上に配置された、第1導電型と反対導電型である第2導電型の第3半導体領域と、第3半導体領域上に配置された、第1導電型の第4半導体領域と、第4半導体領域から第3半導体領域を貫通し、第2半導体領域に達する溝と、第3半導体領域と対向する溝の側壁上に絶縁膜を介して溝内に配置された制御電極と、第2半導体領域と対向する溝の壁面上に絶縁膜を介して溝内に配置された補助電極と、第4半導体領域と電気的に接続された第1の主電極と、第1半導体領域と電気的に接続された第2の主電極と、を備える半導体装置を制御する制御装置であって、制御装置は半導体装置の制御電極に閾値未満の電位の信号を出力している時、半導体装置の閾値未満の電位を補助電極に与えるように信号を出力し、半導体装置の制御電極に閾値以上の電位の信号を出力した後、補助電極に印加される電圧を制御電極に印加される電圧以上に上げる信号を出力することを特徴とする。
In order to solve the above problems, the present invention has the following configurations.
A control device for a semiconductor device according to the present invention includes a first conductive type first semiconductor region, and a first conductive type second semiconductor region disposed on the first semiconductor region and having a lower impurity concentration than the first semiconductor region. A third semiconductor region of a second conductivity type disposed on the second semiconductor region and having a conductivity type opposite to the first conductivity type, and a fourth of the first conductivity type disposed on the third semiconductor region. A semiconductor region, a trench penetrating from the fourth semiconductor region to the third semiconductor region, reaching the second semiconductor region, and a control disposed in the trench via an insulating film on a sidewall of the trench facing the third semiconductor region An electrode, an auxiliary electrode disposed in the groove on the wall surface of the groove facing the second semiconductor region via an insulating film, a first main electrode electrically connected to the fourth semiconductor region, a first And a second main electrode electrically connected to the semiconductor region. When the control device outputs a signal having a potential lower than the threshold value to the control electrode of the semiconductor device, the control device outputs a signal so that the potential lower than the threshold value of the semiconductor device is applied to the auxiliary electrode, and the threshold value is output to the control electrode of the semiconductor device. After outputting the signal having the above potential, a signal for increasing the voltage applied to the auxiliary electrode to be higher than the voltage applied to the control electrode is output.

本発明は以上のように構成されているので、半導体装置を低オン電圧で高耐圧とすることができる半導体装置を駆動する制御装置及びその制御装置と制御装置により駆動する半導体装置を含むシステムを提供することができる。   Since the present invention is configured as described above, a control device for driving a semiconductor device capable of increasing the breakdown voltage with a low on-voltage, and a system including the control device and the semiconductor device driven by the control device. Can be provided.

半導体装置1の断面図である。1 is a cross-sectional view of a semiconductor device 1. FIG. 半導体装置1と半導体装置1を制御する制御装置2とを含むシステム3に周辺部品を含めた接続図である。1 is a connection diagram including peripheral components in a system 3 including a semiconductor device 1 and a control device 2 that controls the semiconductor device 1. 制御装置2の出力信号と半導体装置1の動作を簡略した示す図である。FIG. 4 is a diagram schematically illustrating an output signal of a control device 2 and an operation of the semiconductor device 1.

以下、本発明の実施の形態となる半導体装置について説明する。なお、本発明において、図を参酌しながら詳細に説明するが、本発明はこれに限定されるものではない。
まず、半導体装置1の断面図を図1で示す。この半導体装置1は、ドレイン領域となるn領域(第1の半導体領域)10の上に、n領域10よりも不純物濃度が低いドリフト領域となるn領域(第2の半導体領域)20、ベース領域となるp領域(第3の半導体領域)40を備える。また、半導体装置1は、p領域40を貫通して底部がn領域20に達する第1の溝(溝)30を備える。第1の溝30は、図1における紙面と垂直方向に延伸し、紙面と平行方向に繰返し複数形成されている。
Hereinafter, a semiconductor device according to an embodiment of the present invention will be described. Although the present invention will be described in detail with reference to the drawings, the present invention is not limited to this.
First, a cross-sectional view of the semiconductor device 1 is shown in FIG. The semiconductor device 1 includes an n region (second semiconductor region) 20 serving as a drift region having an impurity concentration lower than that of the n + region 10 on an n + region (first semiconductor region) 10 serving as a drain region. , A p region (third semiconductor region) 40 serving as a base region is provided. Further, the semiconductor device 1 includes a first groove (groove) 30 that penetrates the p region 40 and reaches the n region 20 at the bottom. The first groove 30 extends in a direction perpendicular to the paper surface in FIG. 1, and a plurality of first grooves 30 are repeatedly formed in a direction parallel to the paper surface.

第1の溝30の両側に、n領域20よりも不純物濃度が高いソース領域となるn領域(第4の半導体領域)50が形成されている。第1の溝30の内面(側面及び底面)には絶縁膜60が形成されている。その絶縁膜60を介してp領域40と対向するように、第1の溝30内にゲート電極(制御電極)80が形成されている。ゲート電極80は、例えば高濃度にドープされた導電性の多結晶シリコン(ポリシリコン)で構成される。ゲート電極80の下にはゲート電極80及びn領域20と絶縁された補助電極70が形成されている。絶縁膜60を介してn領域20と対向するように、第1の溝30内に補助電極70が形成されていることにより、半導体装置1はゲート・コレクタ間の容量(Cgd)を低減することができ、スイッチング損失を低減することができる。第1の溝30の底面と第1の溝30の側面及びゲート電極80と補助電極70との間において絶縁膜60を備えるため、補助電極70はゲート電極80及びn領域20と絶縁されている。第1の溝30の底面と第1の溝30の側面及びゲート電極80と補助電極70との間の絶縁膜60の少なくとも一部が異なる材料で形成されても良い。 On both sides of the first trench 30, n + regions (fourth semiconductor regions) 50 serving as source regions having a higher impurity concentration than the n region 20 are formed. An insulating film 60 is formed on the inner surface (side surface and bottom surface) of the first groove 30. A gate electrode (control electrode) 80 is formed in the first trench 30 so as to face the p region 40 through the insulating film 60. The gate electrode 80 is made of, for example, conductive polycrystalline silicon (polysilicon) doped at a high concentration. Under the gate electrode 80, the auxiliary electrode 70 insulated from the gate electrode 80 and the n region 20 is formed. Since the auxiliary electrode 70 is formed in the first trench 30 so as to face the n region 20 through the insulating film 60, the semiconductor device 1 reduces the gate-collector capacitance (Cgd). Switching loss can be reduced. Since the insulating film 60 is provided between the bottom surface of the first groove 30, the side surface of the first groove 30, and between the gate electrode 80 and the auxiliary electrode 70, the auxiliary electrode 70 is insulated from the gate electrode 80 and the n region 20. Yes. The bottom surface of the first groove 30, the side surface of the first groove 30, and at least a part of the insulating film 60 between the gate electrode 80 and the auxiliary electrode 70 may be formed of different materials.

開口部にn領域50が設けられた第1の溝30間に、p領域40を貫通しない第2の溝120と第2の溝120の底部にpコンタクト領域110が形成されている。第2の溝120は、第1の溝30と同様に図1における紙面と垂直方向に延伸し、紙面と平行方向に第1の溝30と第2の溝120が繰返し複数備える。ただし、第2の溝120とpコンタクト領域110は形成されていなくても良い。また、n領域50は紙面と垂直方向にある領域と無い領域が繰り返されていてもよい。また、図1の断面においてn領域50とpコンタクト領域110は両方が設けられているが、n領域50とpコンタクト領域110は紙面と垂直方向に交互に繰り返し形成してもよい。 Between the first groove 30 in which the n + region 50 is provided in the opening, a second groove 120 that does not penetrate the p region 40 and a p + contact region 110 are formed at the bottom of the second groove 120. . Similarly to the first groove 30, the second groove 120 extends in a direction perpendicular to the paper surface in FIG. 1, and a plurality of first grooves 30 and a plurality of second grooves 120 are provided in a direction parallel to the paper surface. However, the second trench 120 and the p + contact region 110 may not be formed. Further, the n + region 50 may be a region that is perpendicular to the paper surface and a region that is not present. Further, although both the n + region 50 and the p + contact region 110 are provided in the cross section of FIG. 1, the n + region 50 and the p + contact region 110 may be alternately and repeatedly formed in a direction perpendicular to the paper surface. .

ソース電極(第1の主電極)90がゲート電極80上の絶縁膜60上及び第2の溝120内に形成され、n領域50と電気的に接続されている。ここで、ソース電極90はp領域40と電気的に接続してもよい。これにより、p領域4とn領域5とのpn接合界面近傍の電位上昇を抑制し、半導体装置1のアバランシェ耐量の低下を抑制することができる。また、第2の溝120の底部にp領域40よりも不純物濃度が高いpコンタクト領域110を備え、pコンタクト領域110を介してp領域40とソース電極90が電気的に接続しても良い。
半導体装置1のn層10の裏面全面には、n層10と電気的に接続されるドレイン電極(第2の主電極)100が形成されている。
A source electrode (first main electrode) 90 is formed on the insulating film 60 on the gate electrode 80 and in the second trench 120, and is electrically connected to the n + region 50. Here, the source electrode 90 may be electrically connected to the p region 40. Thereby, an increase in potential in the vicinity of the pn junction interface between p region 4 and n + region 5 can be suppressed, and a decrease in avalanche resistance of semiconductor device 1 can be suppressed. In addition, a p + contact region 110 having an impurity concentration higher than that of the p region 40 is provided at the bottom of the second trench 120, and the p region 40 and the source electrode 90 are electrically connected via the p + contact region 110. May be.
The entire back surface of the n + layer 10 of the semiconductor device 1, n + layer 10 and electrically connected to the drain electrode (second main electrode) 100 is formed.

半導体装置1を動作させる制御装置2及び半導体装置1と制御装置2を含むシステム3について、図2で説明する。図2は図1で示す半導体装置1と、ブロック図で示す制御装置2と、半導体装置1と制御装置2を含むシステム3と、システム3と電源や外部負荷などの周辺部品との接続関係を示す。
図2で示すように、制御装置2は半導体装置1のゲート電極80へ信号を出力するドライバ回路D1と、ドライバ回路D1がオンとオフの信号を出力するように制御信号を出力するパルス回路P1と、パルス回路P1の出力信号に応じて出力する制御装置2の出力端子T1と、半導体装置1の補助電極70へ信号を出力するドライバ回路D2と、ドライバ回路D2がオンとオフの信号を出力するように制御信号を出力するパルス回路P2と、パルス回路P2の出力信号に応じて出力する制御装置2の出力端子T2を備える。図2においてパルス回路P1とパルス回路P2を別々の装置として構成したが、パルス回路P1とパルス回路P2を1つのパルス回路内で2出力できる構成とし、ドライバ回路D2への制御信号をドライバ回路D1への制御信号よりも所定時間だけ早くオン・オフする若しくは所定時間だけ遅くオン・オフするように制御装置2を構成しても良い。また、制御装置2が1つのパルス回路内で2出力できるように構成され、ドライバ回路D2がドライバ回路D1よりも所定時間だけ早くオン・オフする若しくは所定時間だけ遅くオン・オフするように、制御装置2の中にパルス回路の代わりに別途リレー回路等を組み込んでも良い。また、ドライバ回路D1とドライバ回路D2の少なくとも何れか1つを制御装置2の外に設けて、パルス回路P1、P2の少なくとも何れか1つが制御装置2の出力端子と電気的に接続しても良い。
A control device 2 for operating the semiconductor device 1 and a system 3 including the semiconductor device 1 and the control device 2 will be described with reference to FIG. 2 shows the connection relationship between the semiconductor device 1 shown in FIG. 1, the control device 2 shown in the block diagram, the system 3 including the semiconductor device 1 and the control device 2, and the system 3 and peripheral components such as a power source and an external load. Show.
As shown in FIG. 2, the control device 2 outputs a driver circuit D1 that outputs a signal to the gate electrode 80 of the semiconductor device 1, and a pulse circuit P1 that outputs a control signal so that the driver circuit D1 outputs an on / off signal. The output terminal T1 of the control device 2 that outputs in response to the output signal of the pulse circuit P1, the driver circuit D2 that outputs a signal to the auxiliary electrode 70 of the semiconductor device 1, and the driver circuit D2 that outputs an on / off signal. The control circuit 2 includes a pulse circuit P2 that outputs a control signal and an output terminal T2 of the control device 2 that outputs the control signal according to the output signal of the pulse circuit P2. In FIG. 2, the pulse circuit P1 and the pulse circuit P2 are configured as separate devices. However, the pulse circuit P1 and the pulse circuit P2 are configured to output two signals in one pulse circuit, and a control signal to the driver circuit D2 is transmitted to the driver circuit D1. The control device 2 may be configured to turn on / off earlier than a control signal by a predetermined time or turn on / off later by a predetermined time. Further, the control device 2 is configured to be able to output two outputs in one pulse circuit, and the driver circuit D2 is controlled to turn on / off earlier than the driver circuit D1 by a predetermined time or turn on / off later by a predetermined time. A separate relay circuit or the like may be incorporated in the device 2 instead of the pulse circuit. Further, at least one of the driver circuit D1 and the driver circuit D2 is provided outside the control device 2, and at least one of the pulse circuits P1 and P2 is electrically connected to the output terminal of the control device 2. good.

半導体装置1及び制御装置2を含むシステム3において、半導体装置1のゲート電極80と電気的に接続された端子Gと制御装置2の出力端子T1とが電気的に接続されている。そして半導体装置1の補助電極70と電気的に接続した半導体装置1の端子T3と制御装置2の出力端子T2とが電気的に接続されている。
このようなシステム3において、半導体装置1のソース電極90と電気的に接続した端子Sは、コイルやモータ等の誘導負荷や抵抗などの外部負荷Lの一方の端子T4と電気的に接続され、半導体装置1のドレイン電極100と電気的に接続した端子Dは、入力(外部電源)VOの高圧側の端子T6と電気的に接続され、コイルやモータ等の誘導負荷や抵抗などの外部負荷Lの他方の端子T5は入力(外部電源)VOの低圧側の端子T7と電気的に接続される。システム3は外部負荷Lに流れる電流または電圧を制御する。
In the system 3 including the semiconductor device 1 and the control device 2, the terminal G electrically connected to the gate electrode 80 of the semiconductor device 1 and the output terminal T1 of the control device 2 are electrically connected. The terminal T3 of the semiconductor device 1 electrically connected to the auxiliary electrode 70 of the semiconductor device 1 and the output terminal T2 of the control device 2 are electrically connected.
In such a system 3, the terminal S electrically connected to the source electrode 90 of the semiconductor device 1 is electrically connected to one terminal T4 of an external load L such as an induction load such as a coil or a motor or a resistance, A terminal D electrically connected to the drain electrode 100 of the semiconductor device 1 is electrically connected to a terminal T6 on the high voltage side of the input (external power supply) VO, and an external load L such as an induction load or resistance such as a coil or a motor. The other terminal T5 is electrically connected to a terminal T7 on the low voltage side of the input (external power source) VO. The system 3 controls the current or voltage flowing through the external load L.

図3は制御装置2の端子T1とT2から出力する信号VT1とVT2を図3で示す。なお、図3において制御装置2の信号に対して半導体装置1がどのようにドレイン・ソース間電流IDSとドレイン・ソース間電圧VDSが生じるか簡略的に説明する波形も併せて示す。
図2の半導体装置1がオフの時、図3の期間Pで示すように半導体装置1のゲート電極80に負電位又はゼロ電位が印加されるように、制御装置2のパルス回路P1の信号はオフを出力し、ドライバ回路D1は負電位又はゼロ電位を出力する。よって、制御装置2の端子T1の電圧VT1は負電位又はゼロ電位を出力する。一方、図3で示すように半導体装置1の補助電極70にゲート閾値電圧(閾値電圧)よりも低い正の電位VT2Lが印加されるように、制御装置2のパルス回路P2の信号はロウ信号を出力し、ドライバ回路D2は正の電位VT2Lを出力する。
図2の半導体装置1がオフの時、半導体装置1のドレイン・ソース間電流IDSは流れず、半導体装置1のドレイン・ソース間電圧VDSに所定の電圧が印加されている。そして外部負荷Lには電圧が印加されず、電流が流れない。
このとき、半導体装置1のn領域20には空乏層が広がっている。半導体装置1の補助電極70にゲート閾値電圧(閾値電圧)よりも低い正の電位VT2Lが印加されているので、n領域10と補助電極70との電位差は小さくなり、補助電極70に近い溝近傍における電界集中が緩和される。よって、半導体装置1のオフ時の耐圧を高めることができる。
FIG. 3 shows signals VT1 and VT2 output from the terminals T1 and T2 of the control device 2 in FIG. 3 also shows waveforms that briefly explain how the semiconductor device 1 generates the drain-source current I DS and the drain-source voltage V DS with respect to the signal of the control device 2.
When the semiconductor device 1 of FIG. 2 is off, the signal of the pulse circuit P1 of the control device 2 is such that a negative potential or a zero potential is applied to the gate electrode 80 of the semiconductor device 1 as indicated by the period P of FIG. The driver circuit D1 outputs a negative potential or a zero potential. Therefore, the voltage VT1 at the terminal T1 of the control device 2 outputs a negative potential or a zero potential. On the other hand, as shown in FIG. 3, the signal of the pulse circuit P2 of the control device 2 is a low signal so that a positive potential VT2L lower than the gate threshold voltage (threshold voltage) is applied to the auxiliary electrode 70 of the semiconductor device 1. The driver circuit D2 outputs a positive potential VT2L.
When the semiconductor device 1 of FIG. 2 is off, the drain-source current I DS of the semiconductor device 1 does not flow, a predetermined voltage is applied to the drain-source voltage V DS of the semiconductor device 1. No voltage is applied to the external load L, and no current flows.
At this time, a depletion layer spreads in the n region 20 of the semiconductor device 1. Since the positive potential VT2L lower than the gate threshold voltage (threshold voltage) is applied to the auxiliary electrode 70 of the semiconductor device 1, the potential difference between the n + region 10 and the auxiliary electrode 70 becomes small, and the groove close to the auxiliary electrode 70 Electric field concentration in the vicinity is relaxed. Therefore, the breakdown voltage when the semiconductor device 1 is turned off can be increased.

制御装置2のパルス回路P1の信号がオフからオンに切り替えると、図3に示すように、少し遅れてドレイン・ソース間電電流IDSは流れ、ドレイン・ソース間電圧VDSは下がる。これを詳細に見ると、図3の期間Qで示すように、制御装置2のパルス回路P1の信号をオフからオンに切り替えると、ドライバ回路D1の出力及び制御装置2の端子T1の電圧VT1は負電位又はゼロ電位から立ち上がる。半導体装置1のゲート電極80の電圧VGSは除々に立ち上がり、電圧VGEは、やがて正の電圧が印加される。そして半導体装置1のゲート電極80が半導体装置1の閾値電圧を超えると、図4で示すように半導体装置1のドレイン・ソース間電電流IDSが流れ始めて、ドレイン・ソース間電圧VDSは減少し始める。そして外部負荷Lには電圧が印加され、電流が流れる。
やがて、半導体装置1のドレイン・ソース間電電流IDSは、ほぼ一定の定常状態(オン状態)となる。
なお、上記期間Qにおいて、半導体装置1の補助電極70に半導体装置1のゲート閾値電圧(閾値電圧)よりも低い正の電位VT2Lが印加されるように、制御装置2のパルス回路P2の信号はロウ信号を出力し、ドライバ回路D2は正の電位VT2Lを出力する。
When the signal of the pulse circuit P1 of the control device 2 is switched from OFF to ON, as shown in FIG. 3, the drain-source current I DS flows with a slight delay, and the drain-source voltage V DS decreases. Looking at this in detail, as shown by the period Q in FIG. 3, when the signal of the pulse circuit P1 of the control device 2 is switched from OFF to ON, the output of the driver circuit D1 and the voltage VT1 of the terminal T1 of the control device 2 are Rise from negative or zero potential. The voltage VGS of the gate electrode 80 of the semiconductor device 1 gradually rises, and a positive voltage is applied as the voltage VGE. When the gate electrode 80 of the semiconductor device 1 exceeds the threshold voltage of the semiconductor device 1, the drain-source current I DS of the semiconductor device 1 starts to flow as shown in FIG. 4, and the drain-source voltage V DS decreases. Begin to. A voltage is applied to the external load L, and a current flows.
Eventually, the drain-source electric current I DS of the semiconductor device 1 is substantially constant steady state (ON state).
In the period Q, the signal of the pulse circuit P2 of the control device 2 is such that a positive potential VT2L lower than the gate threshold voltage (threshold voltage) of the semiconductor device 1 is applied to the auxiliary electrode 70 of the semiconductor device 1. A low signal is output, and the driver circuit D2 outputs a positive potential VT2L.

半導体装置1のゲート電極80の電圧VGSがある程度大きくなると、ミラー容量の効果によって、半導体装置1のゲート電極80の電圧VGSがほぼ一定のまま、半導体装置1のドレイン・ソース間電圧VDSが減少する。ミラー効果の終わりになると、再び半導体装置1のゲート電極80の電圧VGSが上昇し、やがて一定となる。チャネル抵抗は下がり、半導体装置1のドレイン・ソース間電圧VDSは低下する。 When the voltage VGS of the gate electrode 80 of the semiconductor device 1 is increased to some extent, by the effect of Miller capacitance, while the voltage VGS of the gate electrode 80 of the semiconductor device 1 is substantially constant, the drain-source voltage V DS of the semiconductor device 1 is reduced To do. When the mirror effect ends, the voltage VGS of the gate electrode 80 of the semiconductor device 1 rises again and becomes constant over time. Channel resistance is lowered, the drain-source voltage V DS of the semiconductor device 1 is lowered.

その後、図3の期間Rで示すように半導体装置1の補助電極70にゲート電極80の電圧VGS以上の電位が印加されるように、制御装置2のパルス回路P2の出力をロウからハイに切り替え、制御装置2の端子T2の電圧VT2は立ち上がり、半導体装置1の補助電極70に印加される信号がハイとなる。パルス回路P2がオンの時、半導体装置1の補助電極70に印加される電圧が半導体装置1のゲート電極80に印加される電圧以上になるように、制御装置2のドライバ回路D2の出力する電圧を正の電位VT2Lよりも高い正の電位VT2Hに調整する。一方、図3の期間Rで示すように、半導体装置1のゲート電極80には引き続き閾値以上の正電位が印加されるように、制御装置2のパルス回路P1の信号はオン信号を出力し、ドライバ回路D1は正の電位を出力している。よって、制御装置2の端子T1の電位VT1は正電位を出力する。
ここで、半導体装置1の補助電極70に印加される電圧を半導体装置1のゲート電極80に印加される電圧以上とすることで、半導体装置1のn領域20の補助電極70と対向する領域近傍に電子がより多く引きつけられる。これにより、半導体装置1のn領域における補助電極70と対向する領域の不純物濃度が高まり、半導体装置1のドレイン・ソース間電圧VDSをより低減することができる。ここで、半導体装置1の補助電極70に印加される電圧を半導体装置1のゲート電極80に印加される電圧よりも大きくすることが望ましい。これにより、半導体装置1のn領域における補助電極70と対向する領域の不純物濃度が更に高まり、半導体装置1のドレイン・ソース間電圧VDSを更に低減することができる。
なお、制御装置2のパルス回路P2の出力をオフからオンへ切り替える時点は、ミラー効果の終わりゲート電極80に印加される電圧の上昇が終わる、ゲート電極80がほぼ一定の値となった後であることが望ましい。それは、半導体装置1のドレイン・ソース間電圧VDSの減少に伴う半導体装置1のゲート電極80と補助電極70に蓄積された電荷の変化を、補助電極70側でより効果的に吸収することができ、半導体装置1のドレイン・ソース間電圧VDSの立ち下がりを早くすることができるためである。なお、制御装置2のパルス回路P2の出力をオフからオンへ切り替える時点は、外部負荷L等の影響を考慮し、半導体装置1のドレイン・ソース間電流IDSの立ち上がりが終わってドレイン・ソース間電流IDSがほぼ一定となった後としても良い。
Thereafter, the output of the pulse circuit P2 of the control device 2 is switched from low to high so that a potential equal to or higher than the voltage VGS of the gate electrode 80 is applied to the auxiliary electrode 70 of the semiconductor device 1 as indicated by a period R in FIG. The voltage VT2 at the terminal T2 of the control device 2 rises, and the signal applied to the auxiliary electrode 70 of the semiconductor device 1 becomes high. The voltage output from the driver circuit D2 of the control device 2 so that the voltage applied to the auxiliary electrode 70 of the semiconductor device 1 is equal to or higher than the voltage applied to the gate electrode 80 of the semiconductor device 1 when the pulse circuit P2 is on. Is adjusted to a positive potential VT2H higher than the positive potential VT2L. On the other hand, as indicated by a period R in FIG. 3, the signal of the pulse circuit P1 of the control device 2 outputs an ON signal so that a positive potential equal to or higher than the threshold value is continuously applied to the gate electrode 80 of the semiconductor device 1. The driver circuit D1 outputs a positive potential. Therefore, the potential VT1 of the terminal T1 of the control device 2 outputs a positive potential.
Here, by setting the voltage applied to the auxiliary electrode 70 of the semiconductor device 1 to be equal to or higher than the voltage applied to the gate electrode 80 of the semiconductor device 1, the region facing the auxiliary electrode 70 of the n region 20 of the semiconductor device 1. More electrons are attracted to the vicinity. Thereby, the impurity concentration of the region facing the auxiliary electrode 70 in the n region of the semiconductor device 1 is increased, and the drain-source voltage V DS of the semiconductor device 1 can be further reduced. Here, it is desirable to make the voltage applied to the auxiliary electrode 70 of the semiconductor device 1 larger than the voltage applied to the gate electrode 80 of the semiconductor device 1. Thereby, the impurity concentration in the region facing the auxiliary electrode 70 in the n region of the semiconductor device 1 is further increased, and the drain-source voltage V DS of the semiconductor device 1 can be further reduced.
Note that the time point when the output of the pulse circuit P2 of the control device 2 is switched from OFF to ON is after the end of the mirror effect and the rise of the voltage applied to the gate electrode 80 has ended, and the gate electrode 80 has reached a substantially constant value. It is desirable to be. That is, it is possible to more effectively absorb the change in the charges accumulated in the gate electrode 80 and the auxiliary electrode 70 of the semiconductor device 1 due to the decrease in the drain-source voltage VDS of the semiconductor device 1 on the auxiliary electrode 70 side. it can, is because it is possible to speed up the fall of the drain-to-source voltage V DS of the semiconductor device 1. Incidentally, when switching the output of the pulse circuit P2 of the control unit 2 from off to on, the external load effects considering such L, between the drain and source ends is rising of the drain-source current I DS of the semiconductor device 1 It may be after the current IDS becomes substantially constant.

図3の期間Rで示すように、制御装置2のパルス回路P2の出力をオフからオンに切り替えた後、制御装置2のパルス回路P2にロウ信号を出力するまで、半導体装置1のゲート電極80と補助電極70に一定の電位が印加されるように、制御装置2のパルス回路P1及びP2はオン信号を出力し、制御装置2のドライバ回路D1及びD2も所定の正の電圧を出力し、制御装置2のVT1,VT2も所定の正の電圧を出力する。例えば、ゲート電極80の電圧を5Vとなり、補助電極70の電圧が12Vとなるように、ドライバ回路D1及びD2は出力する。 As indicated by a period R in FIG. 3, after the output of the pulse circuit P2 of the control device 2 is switched from OFF to ON, the gate electrode 80 of the semiconductor device 1 is output until a low signal is output to the pulse circuit P2 of the control device 2. The pulse circuits P1 and P2 of the control device 2 output an ON signal so that a constant potential is applied to the auxiliary electrode 70, and the driver circuits D1 and D2 of the control device 2 also output a predetermined positive voltage, VT1 and VT2 of the control device 2 also output a predetermined positive voltage. For example, the driver circuits D1 and D2 output so that the voltage of the gate electrode 80 becomes 5V and the voltage of the auxiliary electrode 70 becomes 12V.

制御装置2のパルス回路P1の信号をオフとすることで、半導体装置1のドレイン・ソース間電流IDSが流れず、半導体装置1はオフとなる。図3の期間Sで示すように、制御装置2のパルス回路P1がオフ信号を出力する前に、制御装置2のパルス回路P2はハイからロウの信号に切り替え、制御装置2のドライブ回路D2の出力を下げ、制御装置2のVT2も半導体装置1のゲート閾値電圧(閾値電圧)未満の正の電位VT2Lが印加されるように、信号を下げる。すると、半導体装置1の補助電極70に印加される電圧VFGは徐々に下がり、やがて電圧VFGSはオフ状態(電圧VFGSが正の電位VT2L)となる。
一方、図3の期間Sにおいて、制御装置2のパルス回路P1はオン信号を出力して、制御装置2のドライバ回路D1も所定の正の電圧を出力し、制御装置2のVT1も所定の正の電圧を出力する。
半導体装置1の補助電極70に印加される電圧が立ち下がることで、半導体装置1のn領域20の補助電極70と対向する領域近傍に電子が集まる量が補助電極70に正の電位が印加された時に比べて減少し、ドレイン・ソース間電圧VDSは若干上昇する。これにより電力損失は若干上昇するが、短時間であるので、半導体装置1の発熱が大きく増加するなどの影響は小さい。
By turning off the signal of the pulse circuit P1 of the control device 2, the drain-source current IDS of the semiconductor device 1 does not flow, and the semiconductor device 1 is turned off. As indicated by a period S in FIG. 3, before the pulse circuit P1 of the control device 2 outputs an OFF signal, the pulse circuit P2 of the control device 2 switches from a high signal to a low signal, and the drive circuit D2 of the control device 2 The output is lowered and the signal is lowered so that a positive potential VT2L less than the gate threshold voltage (threshold voltage) of the semiconductor device 1 is also applied to VT2 of the control device 2. Then, the voltage VFG applied to the auxiliary electrode 70 of the semiconductor device 1 gradually decreases, and eventually the voltage VFGS is turned off (the voltage VFGS is a positive potential VT2L).
On the other hand, in the period S of FIG. 3, the pulse circuit P1 of the control device 2 outputs an ON signal, the driver circuit D1 of the control device 2 also outputs a predetermined positive voltage, and VT1 of the control device 2 also has a predetermined positive voltage. Is output.
When the voltage applied to the auxiliary electrode 70 of the semiconductor device 1 falls, the amount of electrons gathered in the vicinity of the region facing the auxiliary electrode 70 of the n region 20 of the semiconductor device 1 applies a positive potential to the auxiliary electrode 70. is reduced compared to the time was, drain-to-source voltage V DS is increased slightly. As a result, the power loss increases slightly, but since it is a short time, the influence of a large increase in heat generation of the semiconductor device 1 is small.

その後、図3の期間Sで示すように、図2のシステムにおいて、制御装置2のパルス回路P1の信号をオンからオフに切り替える。制御装置2のパルス回路P1をオフすると、制御装置2のドライバ回路D1の出力が低下し、図3の期間Sで示すように半導体装置1のゲート電圧VGSは徐々に下がる。
一方、図3の期間Sにおいて、パルス回路P2の信号はハイからロウと切り替わっており、半導体装置1の補助電極70に印加される電圧を半導体装置1のゲート閾値電圧(閾値電圧)よりも低い正の電位VT1Lとなるように制御装置2のドライバ回路D2は出力を設定している。
やがて、半導体装置1のゲート電圧VGSがある電圧にまで下がると、ミラー容量の効果により、半導体装置1のドレイン・ソース間電圧VDSは上昇するが、ゲート電圧VGSは一定となる。よって、図2の半導体装置1の電圧VDSの立ち上がりは早くなり、半導体装置1はより早くオフさせることができる。
ここで、制御装置2のパルス回路P1の信号をオンからオフに切り替えは、半導体装置1の補助電極70に印加される電圧VFGSの立ち下がりが終わってからの方が望ましい。また、半導体装置1をオンからオフへの切り替えは、図3の期間Sにおいて半導体装置1のドレイン・ソース間電圧VDSが若干上昇することが終わってからの方が望ましい。半導体装置1のドレイン・ソース間電圧VDSの増加に伴う半導体装置1のゲート電極80と補助電極70に蓄積された電荷の変化を、補助電極70側でより効果的に吸収することができ、半導体装置1のドレイン・ソース間電圧VDSの立ち上がりを早め、ミラー容量の効果の終了による電流の立ち下がりを早くすることができる。そして半導体装置1がオフになると、外部負荷Lには電流が流れなくなる。
Thereafter, as indicated by a period S in FIG. 3, the signal of the pulse circuit P1 of the control device 2 is switched from on to off in the system of FIG. When the pulse circuit P1 of the control device 2 is turned off, the output of the driver circuit D1 of the control device 2 decreases, and the gate voltage VGS of the semiconductor device 1 gradually decreases as indicated by a period S in FIG.
On the other hand, in the period S of FIG. 3, the signal of the pulse circuit P <b> 2 switches from high to low, and the voltage applied to the auxiliary electrode 70 of the semiconductor device 1 is lower than the gate threshold voltage (threshold voltage) of the semiconductor device 1. The driver circuit D2 of the control device 2 sets an output so as to be a positive potential VT1L.
Eventually, once it has cooled down to a voltage that the gate voltage VGS of the semiconductor device 1, the effect of Miller capacitance, drain-source voltage V DS of the semiconductor device 1 is increased, the gate voltage VGS is constant. Therefore, the rise of the voltage VDS of the semiconductor device 1 in FIG. 2 is quickened, and the semiconductor device 1 can be turned off earlier.
Here, it is preferable that the signal of the pulse circuit P1 of the control device 2 is switched from on to off after the fall of the voltage VFGS applied to the auxiliary electrode 70 of the semiconductor device 1 is finished. Also, switching off the semiconductor device 1 from on, who after the end of the drain-source voltage V DS of the semiconductor device 1 is increased slightly in the period S in FIG. 3 is desirable. The change in the charge accumulated in the gate electrode 80 and the auxiliary electrode 70 of the semiconductor device 1 accompanying the increase in the drain-source voltage VDS of the semiconductor device 1 can be more effectively absorbed on the auxiliary electrode 70 side, the rise of the drain-source voltage V DS of the semiconductor device 1 can be advanced earlier, the fall of the current due to termination of the effect of Miller capacitance. When the semiconductor device 1 is turned off, no current flows through the external load L.

上記で示す期間P、Q、R、Sを繰り返すことで、図3のように繰り返し波形となり、半導体装置は制御装置によって制御される。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様の作用効果をそうするものは、いかなるものであっても本発明に含まれる。
たとえば、上記の構成は、いずれもnチャネル型の素子であったが、導電型(p型、n型)を逆転させ、pチャネル型の半導体装置を同様に得ることができることは明らかである。
また、n−領域20が深さ方向に不純物濃度が異なる複数の層からなる場合も同様の効果を奏することも明らかである。また、ゲート電極80が溝の中央側で分断し、ゲート電極80がp領域40と対向する第1の溝30の側面のみに絶縁膜60を介して配置されている場合も同様の効果を奏することも明らかである。
また、半導体装置1と制御装置2との間、ドライバ回路D1とパルス回路P1との間、またドライバ回路D2とパルス回路P2との間にフォトカプラのように半導体装置1と制御装置2とを絶縁する回路を設けた場合やアンプのような増幅回路を設けた場合においても、本発明を実現することができることも明らかである。
By repeating the periods P, Q, R, and S described above, a repetitive waveform is obtained as shown in FIG. 3, and the semiconductor device is controlled by the control device.
The present invention is not limited to the above embodiment. The above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that has the same function and effect can be used. It is included in the present invention.
For example, each of the above configurations is an n-channel element, but it is apparent that a p-channel semiconductor device can be similarly obtained by reversing the conductivity type (p-type and n-type).
It is also clear that the same effect can be obtained when the n− region 20 is composed of a plurality of layers having different impurity concentrations in the depth direction. The same effect can also be obtained when the gate electrode 80 is divided at the center of the groove and the gate electrode 80 is disposed only on the side surface of the first groove 30 facing the p region 40 via the insulating film 60. It is clear that he plays.
Further, between the semiconductor device 1 and the control device 2, between the driver circuit D1 and the pulse circuit P1, and between the driver circuit D2 and the pulse circuit P2, the semiconductor device 1 and the control device 2 are connected like a photocoupler. It is apparent that the present invention can be realized even when an insulating circuit is provided or an amplifier circuit such as an amplifier is provided.

1 半導体装置
2 制御装置
3 システム
10 n領域
20 n領域
30 第1の溝
40 p領域
50 n領域
60 絶縁膜
70 補助電極
80 ゲート電極
90 ソース電極
100 ドレイン電極
110 pコンタクト領域
120 第2の溝
140 層間絶縁膜
D1、D2 ドライバ回路
P1、P2 パルス回路
1 semiconductor device 2 control unit 3 system 10 n + region 20 n - region 30 first groove 40 p - region 50 n + region 60 insulating film 70 auxiliary electrode 80 gate electrode 90 source electrode 100 drain electrode 110 p + contact region 120 Second groove 140 Interlayer insulating film D1, D2 Driver circuit P1, P2 Pulse circuit

Claims (4)

第1導電型の第1半導体領域と、
前記第1半導体領域上に配置され、前記第1半導体領域よりも不純物濃度の低い第1導電型の第2半導体領域と、
前記第2半導体領域上に配置された、第1導電型と反対導電型である第2導電型の第3半導体領域と、
前記第3半導体領域上に配置された、第1導電型の第4半導体領域と、
前記第4半導体領域から前記第3半導体領域を貫通し、前記第2半導体領域に達する溝と、
前記第3半導体領域と対向する前記溝の側壁上に絶縁膜を介して前記溝内に配置された制御電極と、
前記第2半導体領域と対向する前記溝の壁面上に絶縁膜を介して前記溝内に配置された補助電極と、
前記第4半導体領域と電気的に接続された第1の主電極と、
前記第1半導体領域と電気的に接続された第2の主電極と、
を備える半導体装置を制御する制御装置であって、
前記制御装置は
前記半導体装置の前記制御電極に閾値未満の電位の信号を出力している時、前記半導体装置の閾値未満の電位を前記補助電極に与えるように信号を出力し、
前記半導体装置の前記制御電極に閾値以上の電位の信号を出力した後、前記補助電極に印加される電圧を前記制御電極に印加される電圧以上に上げる信号を出力することを特徴とする制御装置。
A first semiconductor region of a first conductivity type;
A second semiconductor region of a first conductivity type disposed on the first semiconductor region and having an impurity concentration lower than that of the first semiconductor region;
A third semiconductor region of a second conductivity type disposed on the second semiconductor region and having a conductivity type opposite to the first conductivity type;
A fourth semiconductor region of a first conductivity type disposed on the third semiconductor region;
A groove penetrating from the fourth semiconductor region to the third semiconductor region and reaching the second semiconductor region;
A control electrode disposed in the groove via an insulating film on a side wall of the groove facing the third semiconductor region;
An auxiliary electrode disposed in the groove on the wall surface of the groove facing the second semiconductor region via an insulating film;
A first main electrode electrically connected to the fourth semiconductor region;
A second main electrode electrically connected to the first semiconductor region;
A control device for controlling a semiconductor device comprising:
When the control device outputs a signal having a potential lower than a threshold value to the control electrode of the semiconductor device, the control device outputs a signal so that a potential lower than the threshold value of the semiconductor device is applied to the auxiliary electrode,
A control device that outputs a signal having a potential equal to or higher than a threshold value to the control electrode of the semiconductor device, and then increases a voltage applied to the auxiliary electrode to be higher than a voltage applied to the control electrode. .
前記補助電極を下げたことによる前記半導体装置の伝導度変調の飽和が浅くなった後に、前記半導体装置をオフさせるように前記制御電極にオフ信号を出力することを特徴とする請求項1の制御装置。   2. The control according to claim 1, wherein an off signal is output to the control electrode so as to turn off the semiconductor device after the saturation of conductivity modulation of the semiconductor device due to the lowering of the auxiliary electrode becomes shallow. apparatus. 前記半導体装置の前記補助電極と前記溝の底面と間にフローティング電位の導電層を含む、
又は前記溝の底面の下の前記第2半導体領域内に第2導電型のフローティング領域を含んだ半導体装置を制御することを特徴とする請求項1又は2の制御装置。
Including a conductive layer having a floating potential between the auxiliary electrode of the semiconductor device and a bottom surface of the groove;
The control device according to claim 1, wherein the control device controls a semiconductor device including a floating region of a second conductivity type in the second semiconductor region below the bottom surface of the groove.
請求項1〜3の何れか1項に記載の制御装置は、
前記半導体装置の前記制御電極へ信号を出力する第1のドライバ回路と、
前記第1のドライバ回路がオンとオフの信号を出力するように制御信号を出力する第1のパルス回路と、
前記第1のパルス回路の出力信号に応じて出力する第1の出力端子と、
前記半導体装置の前記補助電極へ信号を出力する第2のドライバ回路と、
前記第2のドライバ回路がオンとオフの信号を出力するように制御信号を出力する第2のパルス回路と、
前記第2のパルス回路の出力信号に応じて出力する第2の出力端子と、
を含み、
前記第1の出力端子は前記制御電極と電気的に接続し、
前記第2の出力端子は前記補助電極と電気的に接続し、
前記第1の主電極または第2の主電極と電気的に接続された外部負荷に印加される電圧を制御することを特徴とするシステム。
The control device according to any one of claims 1 to 3,
A first driver circuit for outputting a signal to the control electrode of the semiconductor device;
A first pulse circuit that outputs a control signal so that the first driver circuit outputs an on and off signal;
A first output terminal that outputs in response to an output signal of the first pulse circuit;
A second driver circuit for outputting a signal to the auxiliary electrode of the semiconductor device;
A second pulse circuit that outputs a control signal so that the second driver circuit outputs an on and off signal;
A second output terminal that outputs in accordance with an output signal of the second pulse circuit;
Including
The first output terminal is electrically connected to the control electrode;
The second output terminal is electrically connected to the auxiliary electrode;
A system for controlling a voltage applied to an external load electrically connected to the first main electrode or the second main electrode.
JP2017047537A 2017-03-13 2017-03-13 Controller, and system including controller and semiconductor device controlled by that controller Pending JP2018152460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017047537A JP2018152460A (en) 2017-03-13 2017-03-13 Controller, and system including controller and semiconductor device controlled by that controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017047537A JP2018152460A (en) 2017-03-13 2017-03-13 Controller, and system including controller and semiconductor device controlled by that controller

Publications (1)

Publication Number Publication Date
JP2018152460A true JP2018152460A (en) 2018-09-27

Family

ID=63681789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017047537A Pending JP2018152460A (en) 2017-03-13 2017-03-13 Controller, and system including controller and semiconductor device controlled by that controller

Country Status (1)

Country Link
JP (1) JP2018152460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725182A (en) * 2019-03-18 2020-09-29 株式会社东芝 Semiconductor device and control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083963A (en) * 2000-06-30 2002-03-22 Toshiba Corp Semiconductor element
JP2010129973A (en) * 2008-12-01 2010-06-10 Toyota Motor Corp Semiconductor device
JP2012080062A (en) * 2010-09-10 2012-04-19 Renesas Electronics Corp Controller for semiconductor device
JP2013251395A (en) * 2012-05-31 2013-12-12 Denso Corp Semiconductor device
JP2016181618A (en) * 2015-03-24 2016-10-13 株式会社デンソー Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083963A (en) * 2000-06-30 2002-03-22 Toshiba Corp Semiconductor element
JP2010129973A (en) * 2008-12-01 2010-06-10 Toyota Motor Corp Semiconductor device
JP2012080062A (en) * 2010-09-10 2012-04-19 Renesas Electronics Corp Controller for semiconductor device
JP2013251395A (en) * 2012-05-31 2013-12-12 Denso Corp Semiconductor device
JP2016181618A (en) * 2015-03-24 2016-10-13 株式会社デンソー Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725182A (en) * 2019-03-18 2020-09-29 株式会社东芝 Semiconductor device and control method thereof
CN111725182B (en) * 2019-03-18 2023-08-22 株式会社东芝 Semiconductor device and control method thereof

Similar Documents

Publication Publication Date Title
US8698229B2 (en) Transistor with controllable compensation regions
US9490250B2 (en) Half-bridge circuit with a low-side transistor and a level shifter transistor integrated in a common semiconductor body
US9595602B2 (en) Switching device for power conversion and power conversion device
JP4817827B2 (en) Semiconductor device
US8455948B2 (en) Transistor arrangement with a first transistor and with a plurality of second transistors
US9166028B2 (en) Circuit configured to adjust the activation state of transistors based on load conditions
US8803205B2 (en) Transistor with controllable compensation regions
US9431392B2 (en) Electronic circuit having adjustable transistor device
US7709891B2 (en) Component arrangement including a power semiconductor component having a drift control zone
JP4995873B2 (en) Semiconductor device and power supply circuit
JP2018129350A (en) Device for controlling semiconductor device, and system including semiconductor device and control device for controlling the semiconductor device
JP4971848B2 (en) Power MOS circuit that achieves both low switching loss and low noise
US11133391B2 (en) Transistor device
US9318483B2 (en) Reverse blocking transistor device
JP2018152460A (en) Controller, and system including controller and semiconductor device controlled by that controller
JP6627452B2 (en) Semiconductor device
JP2006210535A (en) Semiconductor device
JP2017147468A (en) Power conversion switching element
WO2015145913A1 (en) Semiconductor device
JP2007295543A (en) Switching circuit
US11489521B2 (en) Power transistor module and controlling method thereof
US11190181B2 (en) Power transistor module and controlling method thereof
CN110212034B (en) Grid-controlled bipolar-field effect composite element semiconductor-based VDMOS
KR20200003593A (en) Semiconductor device
JP5721919B1 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191226