JP2018152444A - Semiconductor device and manufacturing method for the same - Google Patents

Semiconductor device and manufacturing method for the same Download PDF

Info

Publication number
JP2018152444A
JP2018152444A JP2017046965A JP2017046965A JP2018152444A JP 2018152444 A JP2018152444 A JP 2018152444A JP 2017046965 A JP2017046965 A JP 2017046965A JP 2017046965 A JP2017046965 A JP 2017046965A JP 2018152444 A JP2018152444 A JP 2018152444A
Authority
JP
Japan
Prior art keywords
substrate
layer
alloy layer
alloy
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017046965A
Other languages
Japanese (ja)
Inventor
山崎 一寿
Kazuhisa Yamazaki
一寿 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2017046965A priority Critical patent/JP2018152444A/en
Publication of JP2018152444A publication Critical patent/JP2018152444A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

PROBLEM TO BE SOLVED: To alloy an electrode and a solder layer appropriately.SOLUTION: A semiconductor device comprises: a first substrate 10a and a second substrate 10b; and connection terminals 14 for connecting the first substrate and the second substrate, which includes electrodes 12a, 12b which are provided at least on one surfaces of the first substrate and the second substrate, respectively, and consist chiefly of Cu, first alloy layers 22a, 22b which are provided on the electrodes, respectively, and consist chiefly of Cu and Ni, second alloy layers 24a, 24b which are provided on the first alloy layers, respectively, and consist chiefly of Ni and Sn, and third alloy layers 26a, 26b which are provided on the second alloy layers, respectively, and consist chiefly of Cu and Sn.SELECTED DRAWING: Figure 10

Description

本発明は、半導体装置およびその製造方法に関し、電極と半田とが接合する半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof, and relates to a semiconductor device in which an electrode and solder are joined and a manufacturing method thereof.

銅電極と半田層とを接合させることで、基板同士を接合する方法が用いられている。Cu(銅)電極とSn(錫)含有半田との間にNi(ニッケル)層またはP(リン)またはB(ホウ素)を含むNiCu層を設け、リフローすることでCu電極とSn含有半田とを接合させることが知られている(例えば特許文献1)。   A method of bonding substrates together by bonding a copper electrode and a solder layer is used. A Ni (nickel) layer or a NiCu layer containing P (phosphorus) or B (boron) is provided between the Cu (copper) electrode and the Sn (tin) -containing solder, and the Cu electrode and the Sn-containing solder are reflowed. It is known to join (for example, Patent Document 1).

特開2007−59937号公報JP 2007-59937 A

Cu電極とSn含有半田層とは、間に合金層が形成されることにより電流密度耐性が向上する。しかし、電極の酸化防止のため電極と半田層との間にNi層を設けると、Niの半田への拡散速度が遅く、合金層が形成され難い。また、電極と半田層との間にPまたはBを含むNiCu層を設けると、接合部にPまたはBが残存し、合金層が形成され難い。合金層が形成され難いと接合部の電流密度耐性が低くなる。   The current density resistance is improved by forming an alloy layer between the Cu electrode and the Sn-containing solder layer. However, if an Ni layer is provided between the electrode and the solder layer to prevent oxidation of the electrode, the diffusion rate of Ni into the solder is slow and it is difficult to form an alloy layer. In addition, when a NiCu layer containing P or B is provided between the electrode and the solder layer, P or B remains at the joint and it is difficult to form an alloy layer. If the alloy layer is difficult to be formed, the current density resistance of the joint is reduced.

本発明は、電極と半田層とを適切に合金化することを目的とする。   An object of the present invention is to appropriately alloy an electrode and a solder layer.

1つの態様では、半導体装置は、第1基板および第2基板と、前記第1基板および前記第2基板の少なくとも一方の表面上に設けられたCuを主成分とする電極と、前記電極上に設けられ、CuとNiとを主成分とする第1合金層と、前記第1合金層上に設けられ、NiとSnとを主成分とする第2合金層と、前記第2合金層上に設けられCuとSnとを主成分とする第3合金層と、を備え、前記第1基板と前記第2基板とを接続する接続端子と、を具備する。   In one aspect, a semiconductor device includes: a first substrate; a second substrate; an electrode having Cu as a main component provided on at least one surface of the first substrate and the second substrate; and A first alloy layer comprising Cu and Ni as main components; a second alloy layer comprising Ni and Sn as main components provided on the first alloy layer; and the second alloy layer. And a third alloy layer mainly composed of Cu and Sn, and a connection terminal for connecting the first substrate and the second substrate.

また、1つの態様では、半導体装置は、基板と、前記基板の表面上に設けられたCuを主成分とする電極と、前記電極上に設けられ、CuとNiとを主成分とする合金層と、前記合金層上に設けられSn合金を主成分とする半田層と、を具備する。   In one aspect, a semiconductor device includes a substrate, an electrode mainly composed of Cu provided on a surface of the substrate, and an alloy layer mainly formed of Cu and Ni provided on the electrode. And a solder layer provided on the alloy layer and containing a Sn alloy as a main component.

また、1つの態様では、半導体装置の製造方法は、半田層が第1基板と第2基板との間に設けられ、前記第1基板および前記第2基板の少なくとも一方の表面上に設けられたCuを主成分とする電極と前記半田層との間にCuとNiとを主成分とする第1合金層が設けられるように、前記第1基板上に前記第2基板を配置し、前記第1基板および前記第2基板を熱処理することで、前記第1基板と前記第2基板とを接合する。   In one embodiment, a method for manufacturing a semiconductor device includes a solder layer provided between a first substrate and a second substrate, and provided on at least one surface of the first substrate and the second substrate. The second substrate is disposed on the first substrate such that a first alloy layer mainly composed of Cu and Ni is provided between the electrode mainly composed of Cu and the solder layer. One substrate and the second substrate are heat-treated to join the first substrate and the second substrate.

1つの側面として、電極と半田層とを適切に合金化することができる。   As one aspect, the electrode and the solder layer can be appropriately alloyed.

図1(a)および図1(b)は、比較例1に係る半導体装置の製造方法を示す断面図である。1A and 1B are cross-sectional views illustrating a method for manufacturing a semiconductor device according to Comparative Example 1. FIG. 図2(a)および図2(b)は、比較例1におけるリフロー前後の半田層および電極付近の断面図である。2A and 2B are cross-sectional views of the vicinity of the solder layer and the electrode before and after reflow in Comparative Example 1. FIG. 図3(a)および図3(b)は、比較例1における接合部断面の反射電子像を示す画像およびその模式図である。FIG. 3A and FIG. 3B are an image and a schematic diagram showing a backscattered electron image of a junction section in Comparative Example 1. FIG. 図4(a)および図4(b)は、比較例2におけるリフロー前後の半田層および電極付近の断面図である。4A and 4B are cross-sectional views of the vicinity of the solder layer and the electrodes before and after reflow in Comparative Example 2. FIG. 図5(a)および図5(b)は、比較例1における接合部断面の反射電子像を示す画像およびその模式図である。FIG. 5A and FIG. 5B are an image and a schematic diagram showing a backscattered electron image of a junction section in Comparative Example 1. FIG. 図6(a)は、実施例1におけるリフロー前の半田層および電極付近の断面図、図6(b)および図6(c)は、リフロー後の半田層および電極付近の断面図である。6A is a cross-sectional view of the vicinity of the solder layer and the electrode before reflowing in Example 1, and FIGS. 6B and 6C are cross-sectional views of the solder layer and the vicinity of the electrode after reflowing. 図7(a)および図7(b)は、実施例1における接合部断面の反射電子像を示す画像およびその模式図である。FIG. 7A and FIG. 7B are an image and a schematic diagram showing a backscattered electron image of a junction cross section in the first embodiment. 図8(a)および図8(b)は、実施例1に係る半導体装置の製造方法を示す断面図(その1)である。8A and 8B are cross-sectional views (part 1) illustrating the method for manufacturing the semiconductor device according to the first embodiment. 図9(a)から図9(c)は、実施例1に係る半導体装置の製造方法を示す断面図(その2)である。FIG. 9A to FIG. 9C are cross-sectional views (part 2) illustrating the method for manufacturing the semiconductor device according to the first embodiment. 図10(a)および図10(b)は、実施例1に係る半導体装置の製造方法を示す断面図(その3)である。FIG. 10A and FIG. 10B are cross-sectional views (part 3) illustrating the method for manufacturing the semiconductor device according to the first embodiment. 図11は、実施例2に係る半導体装置の断面図である。FIG. 11 is a cross-sectional view of the semiconductor device according to the second embodiment.

[比較例1]
図1(a)および図1(b)は、比較例1に係る半導体装置の製造方法を示す断面図である。図1(a)に示すように、基板10aの上面に電極12aが設けられている。基板10bの下面に電極12bが設けられている。基板10aおよび10bは、絶縁基板である。電極12aおよび12bは、Cu電極であり、Cuを主成分とする電極である。電極12bの先端に半田層20が設けられている。半田層20はSn合金を主成分とする。なお、ある元素(例えばCu)を主成分とするとは、本願の作用効果が得られる程度にある元素を含むことであり、例えばある元素以外の元素はある元素の原子%以上含まないことである。以下の比較例および実施例についても同様である。
[Comparative Example 1]
1A and 1B are cross-sectional views illustrating a method for manufacturing a semiconductor device according to Comparative Example 1. FIG. As shown in FIG. 1A, an electrode 12a is provided on the upper surface of the substrate 10a. An electrode 12b is provided on the lower surface of the substrate 10b. The substrates 10a and 10b are insulating substrates. The electrodes 12a and 12b are Cu electrodes, and are electrodes mainly composed of Cu. A solder layer 20 is provided at the tip of the electrode 12b. The solder layer 20 is mainly composed of Sn alloy. It should be noted that a certain element (for example, Cu) as a main component means that an element is present to such an extent that the effect of the present application can be obtained. For example, an element other than a certain element does not include more than atomic% of the certain element. . The same applies to the following comparative examples and examples.

図1(b)に示すように、半田層20を電極12aの上面に接触させる。その後リフローする。これにより、半田層20と電極12aおよび12bとの間に合金層が形成される。合金層の形成により半田層20と電極12aおよび12bとが接合する。これにより、電極12aと12bとが接合した接続端子14が形成される。   As shown in FIG. 1B, the solder layer 20 is brought into contact with the upper surface of the electrode 12a. Then reflow. Thereby, an alloy layer is formed between the solder layer 20 and the electrodes 12a and 12b. The solder layer 20 and the electrodes 12a and 12b are joined by the formation of the alloy layer. Thereby, the connection terminal 14 in which the electrodes 12a and 12b are joined is formed.

電極12bのようなCuピラーの先端に少量の半田層20を設け、電極12aと接合することで、接続端子14の微細化が可能となる。接続端子14が微細化すると、接続端子14を流れる電流密度が増加する。Snを含有する半田層20に大きな電流密度の電流を長時間通電すると、接続端子14が破損することがある。そこで、半田層20と電極12aおよび12bとの合金を形成する。半田層20の多くが合金層となると、電流密度に対する耐性が向上する。   By providing a small amount of solder layer 20 at the tip of a Cu pillar such as the electrode 12b and joining the electrode 12a, the connection terminal 14 can be miniaturized. When the connection terminal 14 is miniaturized, the current density flowing through the connection terminal 14 increases. If a current having a large current density is passed through the solder layer 20 containing Sn for a long time, the connection terminal 14 may be damaged. Therefore, an alloy of the solder layer 20 and the electrodes 12a and 12b is formed. When many of the solder layers 20 are alloy layers, resistance to current density is improved.

図2(a)および図2(b)は、比較例1におけるリフロー前後の半田層および電極付近の断面図である。電極12aと半田層20との間または電極12bと半田層20との間を示している。以下の図も同様である。図2(a)に示すように、電極12上に半田層20が設けられている。図2(b)に示すように、リフローすると、電極12と半田層20との間にCuとSnとの合金層30が形成される。   2A and 2B are cross-sectional views of the vicinity of the solder layer and the electrode before and after reflow in Comparative Example 1. FIG. It shows between the electrode 12 a and the solder layer 20 or between the electrode 12 b and the solder layer 20. The same applies to the following figures. As shown in FIG. 2A, a solder layer 20 is provided on the electrode 12. As shown in FIG. 2B, when reflowing, an alloy layer 30 of Cu and Sn is formed between the electrode 12 and the solder layer 20.

図3(a)および図3(b)は、比較例1における接合部断面の反射電子像を示す画像およびその模式図である。図3(a)中のバーの長さが5μmに相当する。半田層20はAgが2重量%のSnAgである。リフロー条件は以下である。まず、仮止めのためのリフローを、余熱を140℃から160℃で120秒行い、その後240℃から250℃がピークとなるように10秒行った。次に本接合のためのリフローを、余熱を140℃から160℃で120秒行い、その後260℃から280℃がピークとなるように60秒行った。反射電子像は平均原子量が大きいと明るく、平均原子量が小さいと暗くなる。図3(a)および図3(b)に示すように、電極12は、主にCuを含むため平均原子量が小さく暗い。半田層20は、主にSnを含むため平均原子量が大きく明るい。電極12と半田層20との間に形成された合金層30は、CuとSnを含むため、電極12と半田層20の間の明るさである。EPMA(Electron Probe Micro Analysis)法を用いて分析した。合金層30内の半田層20側ではCuSn合金が多く、合金層30内の電極12側ではCuSn合金が多い。 FIG. 3A and FIG. 3B are an image and a schematic diagram showing a backscattered electron image of a junction section in Comparative Example 1. FIG. The length of the bar in FIG. 3A corresponds to 5 μm. The solder layer 20 is SnAg with 2 wt% Ag. The reflow conditions are as follows. First, reflow for temporary fixing was performed at 140 to 160 ° C. for 120 seconds, followed by 10 seconds so that 240 to 250 ° C. peaked. Next, reflow for the main joining was performed at 140 to 160 ° C. for 120 seconds, followed by 60 seconds so that 260 to 280 ° C. peaked. The reflected electron image is bright when the average atomic weight is large, and dark when the average atomic weight is small. As shown in FIG. 3A and FIG. 3B, the electrode 12 mainly contains Cu, so that the average atomic weight is small and dark. Since the solder layer 20 mainly contains Sn, the average atomic weight is large and bright. Since the alloy layer 30 formed between the electrode 12 and the solder layer 20 contains Cu and Sn, the brightness is between the electrode 12 and the solder layer 20. Analysis was performed using an EPMA (Electron Probe Micro Analysis) method. There are many Cu 6 Sn 5 alloys on the solder layer 20 side in the alloy layer 30, and many Cu 3 Sn alloys on the electrode 12 side in the alloy layer 30.

CuはSnとの間の拡散速度が速い。このため、リフローによりCuが半田層20に内に拡散し厚い合金層30が形成される。合金層30としては抵抗の低いCuSn合金が形成されることが好ましい。 Cu has a high diffusion rate with Sn. Therefore, Cu is diffused into the solder layer 20 by reflow to form a thick alloy layer 30. As the alloy layer 30, a Cu 3 Sn alloy having low resistance is preferably formed.

比較例1では、半田層20にCuが拡散し合金層30を形成する。これにより、電流密度の大きな電流を長時間通電しても接続端子14が破壊することを抑制できる。しかしながら、Cuは酸化し易い。例えば電極12の形成工程および/または半田層20の形成工程において、電極12の表面が酸化される。酸化したCuは半田濡れ性が悪い。このため、電極12と半田層20との間に合金層30が形成され難くなり、接合不良となってしまう。   In Comparative Example 1, Cu diffuses into the solder layer 20 to form the alloy layer 30. Thereby, it is possible to suppress the connection terminal 14 from being broken even when a current having a large current density is applied for a long time. However, Cu is easily oxidized. For example, in the step of forming the electrode 12 and / or the step of forming the solder layer 20, the surface of the electrode 12 is oxidized. Oxidized Cu has poor solder wettability. For this reason, it becomes difficult to form the alloy layer 30 between the electrode 12 and the solder layer 20, resulting in poor bonding.

[比較例2]
そこで、電極12の表面に酸化し難く半田の濡れ性がよいNi層を設ける。図4(a)および図4(b)は、比較例2におけるリフロー前後の半田層および電極付近の断面図である。図4(a)に示すように、電極12と半田層20との間にNi層32を設ける。図4(b)に示すように、リフローすると、Ni層32と半田層20との間にNiとSnとの合金層34が形成される。
[Comparative Example 2]
Therefore, a Ni layer that hardly oxidizes and has good solder wettability is provided on the surface of the electrode 12. 4A and 4B are cross-sectional views of the vicinity of the solder layer and the electrodes before and after reflow in Comparative Example 2. FIG. As shown in FIG. 4A, a Ni layer 32 is provided between the electrode 12 and the solder layer 20. As shown in FIG. 4B, when reflowing, an alloy layer 34 of Ni and Sn is formed between the Ni layer 32 and the solder layer 20.

図5(a)および図5(b)は、比較例1における接合部断面の反射電子像を示す画像およびその模式図である。半田層20はAgが2重量%のSnAgであり、リフロー条件は比較例1と同じである。図5(a)および図5(b)に示すように、Ni層32と半田層20との間にNiとSnを含む合金層34が形成されている。合金層34は図3の合金層30に比べ薄い。   FIG. 5A and FIG. 5B are an image and a schematic diagram showing a backscattered electron image of a junction section in Comparative Example 1. FIG. The solder layer 20 is SnAg with 2 wt% Ag, and the reflow conditions are the same as in Comparative Example 1. As shown in FIGS. 5A and 5B, an alloy layer 34 containing Ni and Sn is formed between the Ni layer 32 and the solder layer 20. The alloy layer 34 is thinner than the alloy layer 30 of FIG.

比較例2では、電極12の表面にNi層32を設けることで、電極12の酸化を抑制することができる。しかしながら、NiはSn内への拡散速度が遅い。このため、合金層34が形成され難く、合金層34は薄い。よって、通電に対する耐性が低くなってしまう。   In Comparative Example 2, oxidation of the electrode 12 can be suppressed by providing the Ni layer 32 on the surface of the electrode 12. However, Ni has a slow diffusion rate into Sn. For this reason, the alloy layer 34 is difficult to be formed, and the alloy layer 34 is thin. Therefore, the resistance to energization is lowered.

また、比較例2のNi層32の代わりにPまたはBを含有するNiCu層を用いると、PまたはBがCuの半田層20内への拡散を抑制する。よって、合金層が形成され難くなる。例えば、Ni層またはNiCu層を無電解メッキ法を用い形成すると、NI層またはNiCu層内にPが含有してしまう。   When a NiCu layer containing P or B is used instead of the Ni layer 32 of Comparative Example 2, P or B suppresses diffusion of Cu into the solder layer 20. Therefore, it becomes difficult to form an alloy layer. For example, when a Ni layer or a NiCu layer is formed using an electroless plating method, P is contained in the NI layer or the NiCu layer.

実施例1では、電極12の表面に酸化し難く半田の濡れ性がよいNiCu合金層を設ける。図6(a)は、実施例1におけるリフロー前の半田層および電極付近の断面図、図6(b)および図6(c)は、リフロー後の半田層および電極付近の断面図である。図6(a)に示すように、電極12と半田層20との間にNiCu合金層22を設ける。NiCu合金層22はNiおよびCuを主成分とする合金層であり、PおよびBは意図的には添加していない。NiCu合金層22は電解メッキ法を用い形成する。   In Example 1, a NiCu alloy layer that hardly oxidizes and has good solder wettability is provided on the surface of the electrode 12. 6A is a cross-sectional view of the vicinity of the solder layer and the electrode before reflowing in Example 1, and FIGS. 6B and 6C are cross-sectional views of the solder layer and the vicinity of the electrode after reflowing. As shown in FIG. 6A, a NiCu alloy layer 22 is provided between the electrode 12 and the solder layer 20. The NiCu alloy layer 22 is an alloy layer mainly composed of Ni and Cu, and P and B are not intentionally added. The NiCu alloy layer 22 is formed using an electrolytic plating method.

図6(b)に示すように、リフローすると、NiCu合金層22と半田層20との間にNiとSnとを主成分とするNiSn合金層24が形成される。NiSn合金層24と半田層20との間にCuSn合金層26が形成される。CuSn合金層26はNiSn合金層24より厚い。図6(c)のように、半田層20が全て合金化することもある。   As shown in FIG. 6B, when the reflow is performed, a NiSn alloy layer 24 mainly composed of Ni and Sn is formed between the NiCu alloy layer 22 and the solder layer 20. A CuSn alloy layer 26 is formed between the NiSn alloy layer 24 and the solder layer 20. The CuSn alloy layer 26 is thicker than the NiSn alloy layer 24. As shown in FIG. 6C, the solder layer 20 may be entirely alloyed.

図7(a)および図7(b)は、実施例1における接合部断面の反射電子像を示す画像およびその模式図である。半田層20はAgが2重量%のSnAgであり、NiCu合金層22はNiおよびCuが各々50原子%のNiCuである。リフロー条件は比較例1と同じである。図7(a)および図7(b)に示すように、NiCu合金層22と半田層20との間にNiSn合金層24およびCuSn合金層26が形成されている。CuSn合金層26はNiSn合金層24より厚い。NiSn合金層24およびCuSn合金層26をEPMA法を用いて分析した。NiSn合金層24は、NiおよびSnを主成分とし、Cuを微量に含む合金層である。NiSn合金層24は例えば(Ni1−xCuSn(xは0.01から0.2)のような比率の合金と考えられる。CuSn合金層26は例えば(Cu1−xNiSn(xは0.01から0.2)のような比率の合金と考えられる。CuはNiに比べSn内への拡散速度が速いためNiCu合金層22内のCuは半田層20内に拡散しCuSn合金層26を形成する。NiCu合金層22内のNiはCuより遅く拡散しCuSn合金層26とNiCu合金層22との間にNiSn合金層24を形成すると考えられる。 FIG. 7A and FIG. 7B are an image and a schematic diagram showing a backscattered electron image of a junction cross section in the first embodiment. The solder layer 20 is SnAg with 2 wt% Ag, and the NiCu alloy layer 22 is NiCu with 50 atomic% Ni and Cu respectively. The reflow conditions are the same as in Comparative Example 1. As shown in FIGS. 7A and 7B, a NiSn alloy layer 24 and a CuSn alloy layer 26 are formed between the NiCu alloy layer 22 and the solder layer 20. The CuSn alloy layer 26 is thicker than the NiSn alloy layer 24. The NiSn alloy layer 24 and the CuSn alloy layer 26 were analyzed using the EPMA method. The NiSn alloy layer 24 is an alloy layer containing Ni and Sn as main components and containing a small amount of Cu. The NiSn alloy layer 24 is considered to be an alloy having a ratio such as (Ni 1-x Cu x ) 3 Sn 4 (x is 0.01 to 0.2). The CuSn alloy layer 26 is considered to be an alloy having a ratio such as (Cu 1-x Ni x ) 6 Sn 5 (x is 0.01 to 0.2). Since Cu has a faster diffusion rate into Sn than Ni, Cu in the NiCu alloy layer 22 diffuses into the solder layer 20 to form a CuSn alloy layer 26. It is considered that Ni in the NiCu alloy layer 22 diffuses slower than Cu and forms a NiSn alloy layer 24 between the CuSn alloy layer 26 and the NiCu alloy layer 22.

実施例1では、電極12の表面にNiCu合金層22を設けることで、電極12の酸化を抑制することができる。NiCu合金層22内のCuが半田層20に拡散し厚いCuSn合金層26を形成するため、通電に対する耐性を向上できる。   In Example 1, the oxidation of the electrode 12 can be suppressed by providing the NiCu alloy layer 22 on the surface of the electrode 12. Since Cu in the NiCu alloy layer 22 diffuses into the solder layer 20 to form a thick CuSn alloy layer 26, resistance to energization can be improved.

図8(a)から図10(b)は、実施例1に係る半導体装置の製造方法を示す断面図である。図8(a)に示すように、基板10a上に電極12aを形成する。図8(b)に示すように、電極12a上にNiCu合金層22aを形成する。NiCu合金層22aは、例えば電解めっき法を用い形成する。図9(a)に示すように、基板10b上に電極12bを形成する。図9(b)に示すように、電極12b上にNiCu合金層22bを形成する。NiCu合金層22bは、例えば電解めっき法を用い形成する。図9(c)に示すように、NiCu合金層22b上に半田層20を形成する。半田層20は、例えば電解めっき法を用い形成する。   8A to 10B are cross-sectional views illustrating the method for manufacturing the semiconductor device according to the first embodiment. As shown in FIG. 8A, the electrode 12a is formed on the substrate 10a. As shown in FIG. 8B, a NiCu alloy layer 22a is formed on the electrode 12a. The NiCu alloy layer 22a is formed using, for example, an electrolytic plating method. As shown in FIG. 9A, the electrode 12b is formed on the substrate 10b. As shown in FIG. 9B, a NiCu alloy layer 22b is formed on the electrode 12b. The NiCu alloy layer 22b is formed using, for example, an electrolytic plating method. As shown in FIG. 9C, the solder layer 20 is formed on the NiCu alloy layer 22b. The solder layer 20 is formed using, for example, an electrolytic plating method.

基板10aおよび10bは例えば半導体素子を有するシリコン基板等の半導体基板、または樹脂基板もしくはセラミックス基板等の絶縁基板である。基板10aおよび10bの少なくとも一方は半導体基板である。電極12aおよび12bはCuを主成分とする銅電極である。電極12aおよび12bの少なくとも一方はCuピラーでもよい。NiCu合金層22aおよび22bはNiとCuを主成分とし、PまたはBは意図的に添加されていない。NiCu合金層22aは例えば電解メッキ法を用い形成する。半田層20はSn合金を主成分とする。半田層20は例えば電解メッキ法を用い形成する。Sn合金は、例えばSnAg半田またはSnAgCu半田である。SnAg半田には、Agは例えば1重量%から3重量%含まれている。SnAgCu半田には、Agは例えば1重量%から3重量%、Cuは例えば0.5重量%含まれている。   The substrates 10a and 10b are, for example, a semiconductor substrate such as a silicon substrate having semiconductor elements, or an insulating substrate such as a resin substrate or a ceramic substrate. At least one of the substrates 10a and 10b is a semiconductor substrate. The electrodes 12a and 12b are copper electrodes mainly composed of Cu. At least one of the electrodes 12a and 12b may be a Cu pillar. The NiCu alloy layers 22a and 22b are mainly composed of Ni and Cu, and P or B is not intentionally added. The NiCu alloy layer 22a is formed using, for example, an electrolytic plating method. The solder layer 20 is mainly composed of Sn alloy. The solder layer 20 is formed using, for example, an electrolytic plating method. The Sn alloy is, for example, SnAg solder or SnAgCu solder. The SnAg solder contains, for example, 1 wt% to 3 wt% of Ag. The SnAgCu solder contains, for example, 1% to 3% by weight of Ag and 0.5% by weight of Cu, for example.

図10(a)に示すように、NiCu合金層22a上に半田層20を接触させる。図10(b)に示すように、半田リフローを行う。これにより、電極12aおよび12bと半田層20との間に各々接合層25aおよび25bが形成される。接合層25a(または25b)は、NiCu合金層22a(または22b)、NiSn合金層24a(または24b)およびCuSn合金層26a(または26b)を含む。電極12a、12b、接合層25a、25bおよび半田層20により接続端子14が形成される。   As shown in FIG. 10A, the solder layer 20 is brought into contact with the NiCu alloy layer 22a. As shown in FIG. 10B, solder reflow is performed. Thereby, bonding layers 25a and 25b are formed between the electrodes 12a and 12b and the solder layer 20, respectively. The bonding layer 25a (or 25b) includes a NiCu alloy layer 22a (or 22b), a NiSn alloy layer 24a (or 24b), and a CuSn alloy layer 26a (or 26b). The connection terminals 14 are formed by the electrodes 12a and 12b, the bonding layers 25a and 25b, and the solder layer 20.

半田リフローの熱処理温度は、例えば260℃から300℃である。熱処理時間は例えば10秒から5分である。図6(c)のように、半田層20は全て合金化されていてもよい。   The heat treatment temperature for solder reflow is, for example, 260 ° C. to 300 ° C. The heat treatment time is, for example, 10 seconds to 5 minutes. As shown in FIG. 6C, the solder layer 20 may be entirely alloyed.

実施例1によれば、図10(a)のように、基板10a(第1基板)上に基板10b(第2基板)を配置する。このとき、半田層20が基板10aと基板10bとの間に設けられ、電極12aおよび12bと半田層20との間にNiCu合金層22aおよび22bが設けられるようにする。その後、図10(b)のように、基板10aおよび10bを熱処理することで、基板10aと10bとを接合する。   According to the first embodiment, as shown in FIG. 10A, the substrate 10b (second substrate) is arranged on the substrate 10a (first substrate). At this time, the solder layer 20 is provided between the substrate 10a and the substrate 10b, and the NiCu alloy layers 22a and 22b are provided between the electrodes 12a and 12b and the solder layer 20. Thereafter, as shown in FIG. 10B, the substrates 10a and 10b are bonded together by heat-treating the substrates 10a and 10b.

これにより、電極12aおよび12b、NiCu合金層22aおよび22b(第1合金層)、NiSn合金層24aおよび24b(第2合金層)、並びにCuSn合金層26aおよび26b(第3合金層)を備える接続端子14が形成される。   Thereby, the connection comprising the electrodes 12a and 12b, the NiCu alloy layers 22a and 22b (first alloy layer), the NiSn alloy layers 24a and 24b (second alloy layer), and the CuSn alloy layers 26a and 26b (third alloy layer). Terminal 14 is formed.

NiCu合金層22aおよび22bにより、電極12aおよび12bの酸化が抑制される。よって、比較例1のような半田層20と電極12aおよび12bとの接合不良を抑制できる。NiCu合金層22aおよび22b内のCuが半田層20に拡散し厚いCuSn合金層26を形成する。比較例2に比べ厚い合金層を形成できるため、電流密度が大きな電流の通電に対する耐性を向上できる。このように、電極12aおよび12bと半田層20とを適切に合金化することができる。   The NiCu alloy layers 22a and 22b suppress the oxidation of the electrodes 12a and 12b. Therefore, it is possible to suppress the bonding failure between the solder layer 20 and the electrodes 12a and 12b as in the first comparative example. Cu in the NiCu alloy layers 22a and 22b diffuses into the solder layer 20 to form a thick CuSn alloy layer 26. Since a thick alloy layer can be formed as compared with Comparative Example 2, it is possible to improve resistance to current application with a large current density. Thus, the electrodes 12a and 12b and the solder layer 20 can be appropriately alloyed.

NiCu合金層22aおよび22bは、NiCu合金であり、例えばCuとNi以外に意図的に添加された元素を含まない。NiCu合金層22aおよび22bがCuおよびNi以外元素を含むと、電極12aおよび12bのCuが半田層20に拡散することを抑制するためである。   The NiCu alloy layers 22a and 22b are NiCu alloys and do not contain, for example, elements intentionally added other than Cu and Ni. This is because when the NiCu alloy layers 22 a and 22 b contain elements other than Cu and Ni, Cu of the electrodes 12 a and 12 b is prevented from diffusing into the solder layer 20.

NiSn合金層24aおよび24bは、Cuを含み、Niの原子濃度はCuの原子濃度より大きくなる。また、CuSn合金層26aおよび26bは、Niを含み、Cuの原子濃度はNiの原子濃度より大きくなる。   The NiSn alloy layers 24a and 24b contain Cu, and the atomic concentration of Ni is larger than the atomic concentration of Cu. The CuSn alloy layers 26a and 26b contain Ni, and the atomic concentration of Cu is higher than the atomic concentration of Ni.

CuSn合金層26aと26bとの間には半田層20が残存してもよいし、半田層20は全て合金化されていてもよい。   The solder layer 20 may remain between the CuSn alloy layers 26a and 26b, or the solder layer 20 may be entirely alloyed.

電極12aおよび12bの両方をCuを主成分とする電極として説明したが、電極12aおよび12bの少なくとも一方がCuを主成分とする電極であればよい。   Although both the electrodes 12a and 12b have been described as electrodes having Cu as a main component, at least one of the electrodes 12a and 12b may be an electrode having Cu as a main component.

NiCu合金層22aおよび22bの酸化を抑制するため、NiとCuに対するCuの原子組成比は、80原子%以下が好ましく、60原子%以下がより好ましい。CuSn合金層26aおよび26bを形成するため、NiとCuに対するCuの原子組成比は、30原子%以上が好ましく、40原子%以上がより好ましい。電極12aおよび12bの酸化を抑制するため、NiCu合金層22aおよび22bの膜厚は、0.1μm以上が好ましく、0.5μm以上がより好ましい。CuSn合金層26aおよび26bの形成を促進するため、NiCu合金層22aおよび22bの膜厚は、5μm以下が好ましく、3μm以下がより好ましい。   In order to suppress the oxidation of the NiCu alloy layers 22a and 22b, the atomic composition ratio of Cu to Ni and Cu is preferably 80 atomic% or less, and more preferably 60 atomic% or less. In order to form the CuSn alloy layers 26a and 26b, the atomic composition ratio of Cu to Ni and Cu is preferably 30 atomic% or more, and more preferably 40 atomic% or more. In order to suppress oxidation of the electrodes 12a and 12b, the thickness of the NiCu alloy layers 22a and 22b is preferably 0.1 μm or more, and more preferably 0.5 μm or more. In order to promote the formation of the CuSn alloy layers 26a and 26b, the thickness of the NiCu alloy layers 22a and 22b is preferably 5 μm or less, and more preferably 3 μm or less.

図11は、実施例2に係る半導体装置の断面図である。図11に示すように、回路基板11a上に半田ボール21を介し半導体チップ11bがフリップチップ実装されている。回路基板11aの上面および半導体チップ11bの下面には電極12が設けられている。電極12はCu電極である。電極12と半田ボール21との間には接合層25が形成されている。接合層25は実施例1のNiCu合金層22、NiSn合金層24およびCuSn合金層26を含む。   FIG. 11 is a cross-sectional view of the semiconductor device according to the second embodiment. As shown in FIG. 11, a semiconductor chip 11b is flip-chip mounted on a circuit board 11a via solder balls 21. Electrodes 12 are provided on the upper surface of the circuit board 11a and the lower surface of the semiconductor chip 11b. The electrode 12 is a Cu electrode. A bonding layer 25 is formed between the electrode 12 and the solder ball 21. The bonding layer 25 includes the NiCu alloy layer 22, the NiSn alloy layer 24, and the CuSn alloy layer 26 of Example 1.

半導体チップ11b上に半導体チップ11cが接続端子14を介し搭載されている。半導体チップ11bを貫通し電極12と電気的に接続する貫通電極16が設けられている。半導体チップ11cの下面に電極パッド18が形成されている。貫通電極16上および電極パッド18下に電極12が設けられている。電極12間に半田層20が設けられ、半田層20と電極12との間に接合層25が設けられている。接合層25は実施例1のNiCu合金層22、NiSn合金層24およびCuSn合金層26を含む。電極12、接合層25および半田層20は接続端子14を形成する。   A semiconductor chip 11c is mounted on the semiconductor chip 11b via a connection terminal 14. A through electrode 16 that penetrates the semiconductor chip 11 b and is electrically connected to the electrode 12 is provided. Electrode pads 18 are formed on the lower surface of the semiconductor chip 11c. The electrode 12 is provided on the through electrode 16 and the electrode pad 18. A solder layer 20 is provided between the electrodes 12, and a bonding layer 25 is provided between the solder layer 20 and the electrodes 12. The bonding layer 25 includes the NiCu alloy layer 22, the NiSn alloy layer 24, and the CuSn alloy layer 26 of Example 1. The electrode 12, the bonding layer 25, and the solder layer 20 form the connection terminal 14.

実施例2のように、第1基板および第2基板はそれぞれ回路基板および半導体基板でもよい。第1基板および第2基板はともに半導体基板でもよい。   As in the second embodiment, the first substrate and the second substrate may be a circuit substrate and a semiconductor substrate, respectively. Both the first substrate and the second substrate may be semiconductor substrates.

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

なお、以上の説明に関して更に以下の付記を開示する。
(付記1)第1基板および第2基板と、前記第1基板および前記第2基板の少なくとも一方の表面上に設けられたCuを主成分とする電極と、前記電極上に設けられ、CuとNiとを主成分とする第1合金層と、前記第1合金層上に設けられ、NiとSnとを主成分とする第2合金層と、前記第2合金層上に設けられCuとSnとを主成分とする第3合金層と、を備え、前記第1基板と前記第2基板とを接続する接続端子と、を具備する半導体装置。
(付記2)前記第2合金層は、Cuを含み、Niの原子濃度はCuの原子濃度より大きく、前記第3合金層は、Niを含み、Cuの原子濃度はNiの原子濃度より大きい付記1記載の半導体装置。
(付記3)前記接続端子は、前記第3合金層上に設けられ、Sn合金を主成分とする半田層を備える付記1または2記載の半導体装置。
(付記4)前記半田層は、SnAg半田またはSnAgCu半田である付記3記載の半導体装置。
(付記5)前記第1合金層は、CuNi合金である付記1から4のいずれか一項記載の半導体装置。
(付記6)基板と、前記基板の表面上に設けられたCuを主成分とする電極と、前記電極上に設けられ、CuとNiとを主成分とする合金層と、前記合金層上に設けられSn合金を主成分とする半田層と、を具備する半導体装置。
(付記7)前記合金層は、CuNi合金である付記6記載の半導体装置。
(付記8)前記半田層は、SnAg半田またはSnAgCu半田である付記6または7記載の半導体装置。
(付記9)半田層が第1基板と第2基板との間に設けられ、前記第1基板および前記第2基板の少なくとも一方の表面上に設けられたCuを主成分とする電極と前記半田層との間にCuとNiとを主成分とする第1合金層が設けられるように、前記第1基板上に前記第2基板を配置する工程と、前記第1基板および前記第2基板を熱処理することで、前記第1基板と前記第2基板とを接合する工程と、を含む半導体装置の製造方法。
(付記10)前記第1基板と前記第2基板とを接合する工程において、前記第1合金層上に、NiとSnとを主成分とする第2合金層が形成され、前記第2合金層上にCuとSnとを主成分とする第3合金層が形成される付記9記載の半導体装置の製造方法。
In addition, the following additional notes are disclosed regarding the above description.
(Additional remark 1) The 1st board | substrate and 2nd board | substrate, the electrode which has Cu as a main component provided on the surface of at least one of the said 1st board | substrate and the said 2nd board | substrate, provided on the said electrode, Cu, A first alloy layer mainly composed of Ni, a second alloy layer mainly composed of Ni and Sn, and Cu and Sn disposed on the second alloy layer. And a third alloy layer containing as a main component, and a connection terminal for connecting the first substrate and the second substrate.
(Supplementary note 2) The second alloy layer contains Cu, the atomic concentration of Ni is larger than the atomic concentration of Cu, the third alloy layer contains Ni, and the atomic concentration of Cu is larger than the atomic concentration of Ni. 1. The semiconductor device according to 1.
(Additional remark 3) The said connection terminal is a semiconductor device of Additional remark 1 or 2 provided with the solder layer which is provided on the said 3rd alloy layer and has Sn alloy as a main component.
(Supplementary note 4) The semiconductor device according to supplementary note 3, wherein the solder layer is SnAg solder or SnAgCu solder.
(Supplementary note 5) The semiconductor device according to any one of supplementary notes 1 to 4, wherein the first alloy layer is a CuNi alloy.
(Appendix 6) A substrate, an electrode having Cu as a main component provided on the surface of the substrate, an alloy layer having Cu and Ni as main components provided on the electrode, and on the alloy layer And a solder layer comprising a Sn alloy as a main component.
(Supplementary note 7) The semiconductor device according to supplementary note 6, wherein the alloy layer is a CuNi alloy.
(Supplementary note 8) The semiconductor device according to supplementary note 6 or 7, wherein the solder layer is SnAg solder or SnAgCu solder.
(Supplementary note 9) A solder layer is provided between the first substrate and the second substrate, and the electrode mainly composed of Cu provided on at least one surface of the first substrate and the second substrate and the solder Disposing the second substrate on the first substrate such that a first alloy layer mainly composed of Cu and Ni is provided between the layers, and the first substrate and the second substrate. A method of manufacturing a semiconductor device, comprising: joining the first substrate and the second substrate by heat treatment.
(Supplementary Note 10) In the step of bonding the first substrate and the second substrate, a second alloy layer mainly composed of Ni and Sn is formed on the first alloy layer, and the second alloy layer The manufacturing method of a semiconductor device according to appendix 9, wherein a third alloy layer mainly composed of Cu and Sn is formed thereon.

10a、10b 基板
12、12a、12b 電極
14 接続端子
20 半田層
22、22a、22b NiCu合金層
24、24a,24b NiSn合金層
26、26a、26b CuSn合金層
10a, 10b Substrate 12, 12a, 12b Electrode 14 Connection terminal 20 Solder layer 22, 22a, 22b NiCu alloy layer 24, 24a, 24b NiSn alloy layer 26, 26a, 26b CuSn alloy layer

Claims (6)

第1基板および第2基板と、
前記第1基板および前記第2基板の少なくとも一方の表面上に設けられたCuを主成分とする電極と、前記電極上に設けられ、CuとNiとを主成分とする第1合金層と、前記第1合金層上に設けられ、NiとSnとを主成分とする第2合金層と、前記第2合金層上に設けられCuとSnとを主成分とする第3合金層と、を備え、前記第1基板と前記第2基板とを接続する接続端子と、
を具備する半導体装置。
A first substrate and a second substrate;
An electrode mainly composed of Cu provided on at least one surface of the first substrate and the second substrate; a first alloy layer mainly composed of Cu and Ni provided on the electrode; A second alloy layer mainly formed of Ni and Sn provided on the first alloy layer, and a third alloy layer mainly formed of Cu and Sn provided on the second alloy layer; A connection terminal for connecting the first substrate and the second substrate;
A semiconductor device comprising:
前記第2合金層は、Cuを含み、Niの原子濃度はCuの原子濃度より大きく、
前記第3合金層は、Niを含み、Cuの原子濃度はNiの原子濃度より大きい請求項1記載の半導体装置。
The second alloy layer includes Cu, the atomic concentration of Ni is greater than the atomic concentration of Cu,
The semiconductor device according to claim 1, wherein the third alloy layer contains Ni, and an atomic concentration of Cu is higher than an atomic concentration of Ni.
前記接続端子は、前記第3合金層上に設けられ、Sn合金を主成分とする半田層を備える請求項1または2記載の半導体装置。   3. The semiconductor device according to claim 1, wherein the connection terminal includes a solder layer that is provided on the third alloy layer and includes a Sn alloy as a main component. 基板と、
前記基板の表面上に設けられたCuを主成分とする電極と、前記電極上に設けられ、CuとNiとを主成分とする合金層と、前記合金層上に設けられSn合金を主成分とする半田層と、を具備する半導体装置。
A substrate,
An electrode having Cu as a main component provided on the surface of the substrate, an alloy layer having Cu and Ni as main components provided on the electrode, and an Sn alloy provided as a main component on the alloy layer And a solder layer.
前記合金層は、CuNi合金である請求項4記載の半導体装置。   The semiconductor device according to claim 4, wherein the alloy layer is a CuNi alloy. 半田層が第1基板と第2基板との間に設けられ、前記第1基板および前記第2基板の少なくとも一方の表面上に設けられたCuを主成分とする電極と前記半田層との間にCuとNiとを主成分とする第1合金層が設けられるように、前記第1基板上に前記第2基板を配置する工程と、
前記第1基板および前記第2基板を熱処理することで、前記第1基板と前記第2基板とを接合する工程と、
を含む半導体装置の製造方法。
A solder layer is provided between the first substrate and the second substrate, and between the solder layer and the electrode mainly composed of Cu provided on at least one surface of the first substrate and the second substrate. Disposing the second substrate on the first substrate such that a first alloy layer mainly composed of Cu and Ni is provided on the first substrate;
Bonding the first substrate and the second substrate by heat-treating the first substrate and the second substrate;
A method of manufacturing a semiconductor device including:
JP2017046965A 2017-03-13 2017-03-13 Semiconductor device and manufacturing method for the same Pending JP2018152444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017046965A JP2018152444A (en) 2017-03-13 2017-03-13 Semiconductor device and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017046965A JP2018152444A (en) 2017-03-13 2017-03-13 Semiconductor device and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2018152444A true JP2018152444A (en) 2018-09-27

Family

ID=63681748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017046965A Pending JP2018152444A (en) 2017-03-13 2017-03-13 Semiconductor device and manufacturing method for the same

Country Status (1)

Country Link
JP (1) JP2018152444A (en)

Similar Documents

Publication Publication Date Title
US8952271B2 (en) Circuit board, semiconductor device, and method of manufacturing semiconductor device
KR100237940B1 (en) A semiconductor device, a method for manufacturing thereof, and a lead made of copper
US7939939B1 (en) Stable gold bump solder connections
US7122894B2 (en) Wiring substrate and process for manufacturing the same
CN103123916B (en) Semiconductor device, electronic device and method, semi-conductor device manufacturing method
US20060276022A1 (en) Capping copper bumps
US20040121267A1 (en) Method of fabricating lead-free solder bumps
US20090246911A1 (en) Substrate for mounting electronic components and its method of manufacture
JP2014116367A (en) Electronic component, method of manufacturing electronic device and electronic device
US20060209497A1 (en) Pad structure of wiring board and wiring board
TWI230994B (en) Circuit carrier
JP2020534695A (en) Alloy diffusion barrier layer
JP6729331B2 (en) Electronic device and method of manufacturing electronic device
TWI228309B (en) Semiconductor device
JP2016006812A (en) Terminal structure, semiconductor device, electronic device and terminal formation method
JP6187226B2 (en) Manufacturing method of electronic device
US8252677B2 (en) Method of forming solder bumps on substrates
US20130000967A1 (en) Electric joint structure and method for preparing the same
JP2018152444A (en) Semiconductor device and manufacturing method for the same
JPH11350190A (en) Material for electric and electronic parts, its production, and electric and electronic parts using the same
JP2000349111A (en) Electrode for solder bonding
JPH11343594A (en) Material for electrical and electronic parts, its production and electrical and electronic parts using the material
US20210217718A1 (en) Solder-metal-solder stack for electronic interconnect
JP2017092341A (en) Electrode structure, bonding method and semiconductor device
JP5439794B2 (en) Electronic device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210525