JP2018152291A - Electrolyte - Google Patents

Electrolyte Download PDF

Info

Publication number
JP2018152291A
JP2018152291A JP2017048934A JP2017048934A JP2018152291A JP 2018152291 A JP2018152291 A JP 2018152291A JP 2017048934 A JP2017048934 A JP 2017048934A JP 2017048934 A JP2017048934 A JP 2017048934A JP 2018152291 A JP2018152291 A JP 2018152291A
Authority
JP
Japan
Prior art keywords
compound
oligoether
mass
epnoe
phosphorus ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017048934A
Other languages
Japanese (ja)
Other versions
JP6790934B2 (en
Inventor
眞一 小形
Shinichi Ogata
眞一 小形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2017048934A priority Critical patent/JP6790934B2/en
Publication of JP2018152291A publication Critical patent/JP2018152291A/en
Application granted granted Critical
Publication of JP6790934B2 publication Critical patent/JP6790934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve ion conductivity of a solvated ionic liquid at low temperature.SOLUTION: An electrolyte is an electrolyte conducting alkali metal ions and includes an oligoether compound, a sulfonylimide salt containing an alkali metal, and a prescribed phosphorus ester compound. Examples of the phosphorus ester compound include a phosphonic acid type ester, a phosphoric acid type ester, a phosphoric acid amide type ester, and a phosphorous acid type ester.SELECTED DRAWING: None

Description

本明細書で開示する発明である本開示は、電解液に関する。   The present disclosure, which is an invention disclosed herein, relates to an electrolytic solution.

従来、リチウム二次電池などに用いられる電解液としては、グライムとアルカリ金属塩とを有する溶媒和イオン液体が提案されている(例えば、特許文献1参照)。この電解液は熱安定性が高く、高電位の二次電池に利用できるとしている。また、電解液としては、テトラヒドロフランやジオキソラン、ジオキサン、グライムなどのエーテル化合物とリチウム塩とを含むものにハイドロフルオロカーボン又はハイドロフルオロエーテルを添加したものが提案されている(例えば、特許文献2、3参照)。この電解液では、充放電サイクルによる放電容量の低下を抑制することができるとしている。また、電解液としては、グライムとスルホニルイミド塩とを有する溶媒和イオン液体にリン系アルカリ金属塩化合物を添加したものが提案されている(特許文献4参照)。この溶媒和イオン液体では、低温でのイオン伝導度の低下を抑制することができる。   Conventionally, a solvated ionic liquid having glyme and an alkali metal salt has been proposed as an electrolytic solution used for a lithium secondary battery or the like (see, for example, Patent Document 1). This electrolytic solution has high thermal stability, and can be used for a secondary battery having a high potential. In addition, as an electrolytic solution, a solution containing an ether compound such as tetrahydrofuran, dioxolane, dioxane, glyme and a lithium salt and a hydrofluorocarbon or hydrofluoroether added has been proposed (for example, see Patent Documents 2 and 3). ). This electrolyte solution can suppress a decrease in discharge capacity due to a charge / discharge cycle. Moreover, what added the phosphorus alkali metal salt compound to the solvation ionic liquid which has a glyme and a sulfonylimide salt as an electrolyte solution is proposed (refer patent document 4). With this solvated ionic liquid, it is possible to suppress a decrease in ionic conductivity at low temperatures.

特開2010−73489号公報JP 2010-73489 A 特開2013−225496号公報JP 2013-225496 A 特開2014−112526号公報JP 2014-112526 A 特開2015−2153号公報Japanese Patent Laying-Open No. 2015-2153

しかしながら、上述した特許文献1〜3の電解液では、例えば、−20℃など、低温ではイオン伝導度が低下する問題があった。また、−20℃の低温、常温、40℃以上の高温など温度変化した際にイオン伝導度が大きく変化してしまうヒステリシスがみられることがあった。また、特許文献4の電解液では、低温でのイオン伝導度の低下を抑制することができるものではあるが、まだ十分でなく、更なる改良が望まれていた。   However, the above-described electrolytic solutions of Patent Documents 1 to 3 have a problem that the ionic conductivity decreases at a low temperature such as −20 ° C., for example. Further, there was a case where hysteresis was observed in which the ionic conductivity changed greatly when the temperature changed such as a low temperature of −20 ° C., a normal temperature, and a high temperature of 40 ° C. or higher. Moreover, although the electrolyte solution of patent document 4 can suppress the fall of the ionic conductivity in low temperature, it is still not enough and the further improvement was desired.

本開示は、このような課題を解決するためになされたものであり、低温でのイオン伝導性をより向上させることができる電解液を提供することを主目的とする。   This indication is made in order to solve such a subject, and it aims at providing the electrolyte solution which can improve the ionic conductivity in low temperature more.

上述した目的を達成するために、本発明者らは、グライムとイミド塩とを含む溶媒和イオン液体に所定のリン系エステル化合物を添加したところ、低温でのイオン伝導度をより向上することができることを見いだし本発明を完成するに至った。   In order to achieve the above-mentioned object, the present inventors added a predetermined phosphorus ester compound to a solvated ionic liquid containing glyme and an imide salt, so that the ionic conductivity at low temperature can be further improved. The inventors have found what can be done and have completed the present invention.

即ち、本明細書で開示する電解液は、
アルカリ金属イオンを伝導する電解液であって、
オリゴエーテル化合物と、
アルカリ金属を含むスルホニルイミド塩と、
式(1)〜(11)に示すリン系エステル化合物と、
を含むものである。
That is, the electrolytic solution disclosed in this specification is
An electrolyte that conducts alkali metal ions,
An oligoether compound,
A sulfonylimide salt containing an alkali metal;
A phosphorus ester compound represented by formulas (1) to (11);
Is included.

この電解液では、低温でのイオン伝導性をより向上させることができる。このような効果が得られる理由は、例えば、以下のように推察される。グライムを含むオリゴエーテル化合物とアルカリ金属を含むスルホニルイミド塩とを含む溶媒和イオン液体としては、例えば、特許文献1〜3に示すように、トリグライム(G3)又はテトラグライム(G4)と、Liイミド塩(LiTFSI)とをモル比1:1で混合したものが挙げられる。この溶媒和イオン液体は、低温(−10〜−30℃)でイオン伝導度が大きく低下する。特許文献3では、溶媒和イオン液体にハイドロフルオロエーテル(HFE−A)で希釈する効果によってイオン伝導性が向上するとしているが、十分ではなかった。また、特許文献4では、リン系アルカリ金属塩を添加して低温でのイオン伝導性の低下を抑制しているが、過冷却で結晶化することもあり、十分ではなかった。本開示の電解液では、溶媒和イオン液体にリン系エステル化合物を含むものとすることにより、P=O結合が溶媒和化合物のLiイオンに配位するなどして、新規な溶媒和化合物が形成されると推察される。その結果、Li+/オリゴエーテル化合物の錯カチオンがイミドアニオンと解離し易くなり、低温でのイオン伝導性がより向上するものと推察される。また、ジグライム(G2)や12−クラウン−4の溶媒和化合物(Li塩+オリゴエーテル化合物)は固体であり、電解液としては従来利用できなかったが、所定のリン系エステル化合物を含むものとすると、P=O結合が溶媒和化合物のLiイオンに配位することによって液状となり、新規な電解液として利用可能となるものと推察される。 With this electrolytic solution, ion conductivity at low temperatures can be further improved. The reason why such an effect is obtained is assumed as follows, for example. As a solvated ionic liquid containing an oligoether compound containing glyme and a sulfonylimide salt containing an alkali metal, for example, as shown in Patent Documents 1 to 3, triglyme (G3) or tetraglyme (G4) and Liimide What mixed salt (LiTFSI) by molar ratio 1: 1 is mentioned. This solvated ionic liquid has a significant decrease in ionic conductivity at low temperatures (−10 to −30 ° C.). In Patent Document 3, the ion conductivity is improved by the effect of diluting the solvated ionic liquid with hydrofluoroether (HFE-A), but this is not sufficient. Moreover, in patent document 4, although the phosphorus-based alkali metal salt is added and the fall of the ionic conductivity at low temperature is suppressed, it may crystallize by supercooling and was not enough. In the electrolytic solution of the present disclosure, by including a phosphorus ester compound in the solvated ionic liquid, a novel solvate is formed, for example, by coordination of the P═O bond to the Li ion of the solvate. It is guessed. As a result, it is presumed that the complex cation of the Li + / oligoether compound is easily dissociated from the imide anion, and the ionic conductivity at low temperature is further improved. Further, diglyme (G2) and 12-crown-4 solvate (Li salt + oligoether compound) are solid and cannot be conventionally used as an electrolyte, but include a predetermined phosphorus ester compound. , P = O bond is coordinated to Li ions of the solvate, and is assumed to be liquid and usable as a novel electrolyte.

実験例1−1,1−5のイオン伝導度σ−温度T曲線。The ion conductivity (sigma) -temperature T curve of Experimental example 1-1, 1-5. 溶媒和イオン液体ILa〜dのσ−T曲線。Σ-T curve of solvated ionic liquids ILa-d. 実験例1−8、2−2,5,9、3−4のσ−T曲線。Σ-T curves of Experimental Examples 1-8, 2-2, 5, 9, 3-4. 液体セルで測定した実験例1−7、5−2〜4のσ−T曲線。Σ-T curves of Experimental Examples 1-7 and 5-2 to 4 measured with a liquid cell. セパレータ有で測定した実験例1−6、6−1〜4のσ−T曲線。Σ-T curves of Experimental Examples 1-6 and 6-1 to 4 measured with a separator. 各電解液の全波数領域でのラマンスペクトル。Raman spectrum in the full wave number region of each electrolyte. イミドアニオンのO=Sに由来する740cm-1付近の吸収スペクトル。Absorption spectrum near 740 cm −1 derived from O═S of imide anion. イミドアニオンのO=Sに由来する1250cm-1付近の吸収スペクトル。Absorption spectrum near 1250 cm −1 derived from O═S of imide anion. 溶媒和化合物の説明図。Explanatory drawing of a solvate. カチオン錯体の−O−結合由来の850cm-1付近の吸収スペクトル。Absorption spectrum near 850 cm −1 derived from —O— bond of a cation complex. EPnOEのO=P結合由来の700cm-1付近の吸収スペクトル。Absorption spectrum in the vicinity of 700 cm −1 derived from the O═P bond of EPnOE.

本明細書で開示する電解液は、アルカリ金属イオンを伝導する電解液であって、オリゴエーテル化合物と、アルカリ金属を含むスルホニルイミド塩と、リン系エステル化合物と、を含むものである。この電解液は、アルカリ金属として、リチウムイオン、ナトリウムイオン、カリウムイオンなどを伝導するが、このうちリチウムイオンであることが好ましい。   The electrolytic solution disclosed in the present specification is an electrolytic solution that conducts alkali metal ions, and includes an oligoether compound, a sulfonylimide salt containing an alkali metal, and a phosphorus ester compound. This electrolyte conducts lithium ions, sodium ions, potassium ions, and the like as alkali metals, and among these, lithium ions are preferable.

オリゴエーテル化合物としては、例えば、グライムや、トリグライムモノメチルエーテル、テトラグライムモノメチルエーテル及び12−クラウン−4などが挙げられ、このうち1以上を含むことが好ましい。グライムは、直鎖状の対称グリコールジエーテルの総称であり、例えば、R−O(CH2CH2O)n−Rで表されるものとしてもよい。式中、Rは、アルキル基又はアリール基であり、nは1以上の整数である。アルキル基としては、メチル、エチル、プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチルなどが挙げられる。アリール基としては、フェニル、ナフチル、アントリルなどが挙げられる。nは、1以上の整数であればよいが、3又は4であることが好ましい。グライムは、ジグライム(G2)、トリグライム(G3)、テトラグライム(G4)のうち1以上であるものとしてもよい。オリゴエーテル化合物は1種を単独で用いてもよいし、2種以上を混合して用いてもよい。 Examples of the oligoether compound include glyme, triglyme monomethyl ether, tetraglyme monomethyl ether, 12-crown-4, and the like, and it is preferable to include one or more of these. Glyme is a general term for linear symmetric glycol diethers, and may be represented by, for example, R—O (CH 2 CH 2 O) n —R. In the formula, R is an alkyl group or an aryl group, and n is an integer of 1 or more. Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl and the like. Aryl groups include phenyl, naphthyl, anthryl and the like. n may be an integer of 1 or more, but is preferably 3 or 4. The glyme may be one or more of diglyme (G2), triglyme (G3), and tetraglyme (G4). An oligo ether compound may be used individually by 1 type, and 2 or more types may be mixed and used for it.

スルホニルイミド塩は、例えば、イミド構造を含むアニオンを含むものとしてもよい。このアニオンとしては、例えば、窒素にカルボニル基が2つ結合したイミドアニオンのほか、窒素に2つのスルホニル基が結合したスルホニルイミドアニオンや、窒素に1つのスルホニル基と1つのカルボニル基が結合したスルホニルカルボニルイミドアニオンなどを含むものとしてもよい。イミド構造を含むアニオンとしては、スルホニルイミドアニオンやスルホニルカルボニルイミドアニオンが好ましく、スルホニルイミドアニオンがより好ましい。スルホニルイミドアニオンとしては、例えば、ビス(トリフルオロメタンスルホニル)イミドアニオン(TFSI) やビス(ペンタフルオロエタンスルホニル)イミドアニオン(BETI)、ビス(フルオロスルホニル)イミドアニオン(FSI)、フルオロスルホニルトリフルオロメタンスルホニルイミドアニオン(FTA)、4,4,5,5,−テトラフルオロ−1,3,2−ジチアゾリン−1,1,3,3−テトラオキシドアニオン(CTFSI)等が挙げられる。スルホニルカルボニルイミドアニオンとしては、例えば、2,2,2−トリフルオロ−N−(トリフルオロメチルスルホニル)アセトアミドアニオン(TSAC)等が挙げられる。このうち、オリゴエーテル化合物に対する溶解性や、錯体形成しやすさなどの観点からは、TFSIやFSIが好ましい。このイミド構造を含むアニオンは、アルカリ金属イオンを対カチオンとしてもよい。アルカリ金属としては、例えば、リチウム、ナトリウム、カリウムなどが好ましく、リチウムがより好ましい。このスルホニルイミド塩としては、例えば、LiFSIやLiTFSIなどが好ましい。   The sulfonylimide salt may contain, for example, an anion containing an imide structure. Examples of the anion include an imide anion in which two carbonyl groups are bonded to nitrogen, a sulfonylimide anion in which two sulfonyl groups are bonded to nitrogen, and a sulfonyl in which one sulfonyl group and one carbonyl group are bonded to nitrogen. A carbonylimide anion or the like may be included. As an anion containing an imide structure, a sulfonylimide anion and a sulfonylcarbonylimide anion are preferable, and a sulfonylimide anion is more preferable. Examples of the sulfonylimide anion include bis (trifluoromethanesulfonyl) imide anion (TFSI), bis (pentafluoroethanesulfonyl) imide anion (BETI), bis (fluorosulfonyl) imide anion (FSI), and fluorosulfonyltrifluoromethanesulfonylimide. Anion (FTA), 4,4,5,5, -tetrafluoro-1,3,2-dithiazoline-1,1,3,3-tetraoxide anion (CTFSI) and the like can be mentioned. Examples of the sulfonylcarbonylimide anion include 2,2,2-trifluoro-N- (trifluoromethylsulfonyl) acetamide anion (TSAC). Among these, TFSI and FSI are preferable from the viewpoint of solubility in the oligoether compound and ease of complex formation. The anion containing this imide structure may have an alkali metal ion as a counter cation. As the alkali metal, for example, lithium, sodium, potassium and the like are preferable, and lithium is more preferable. As this sulfonylimide salt, for example, LiFSI and LiTFSI are preferable.

リン系エステル化合物としては、式(1)〜(11)に示す化合物が挙げられる。具体的には、エチルホスホン酸ジエチル(EPnOE)、メチルホスホン酸ジメチル(MPnOM)、フェニルホスホン酸ジエチル(PhPnOE)、メチルホスホン酸ビス(トリフルオロエチル)(MPnOEF)、エチルホスホン酸ビス(トリフルオロエチル)(EPnOEF)、ホスホン酸ビス(トリフルオロエチル)(HPnOEF)、リン酸トリス(トリフルオロエチル)(TFEPa)、リン酸トリフェニル(TPPa)、リン酸トリエチル(TEPa)、亜リン酸トリス(トリフルオロエチル)(TFEPi)、リン酸ビス(2,2,2−トリフルオロエチル)ジメチルアミド(PF−39;Pam)などが挙げられる。リン系エステル化合物としては、リン酸トリエチル(TEPa)と、ホスホン酸ビス(トリフルオロエチル)(HPnOEF)と、メチルホスホン酸ジメチル(MPnOM)と、エチルホスホン酸ジエチル(EPnOE)とのうち2以上が電解液に含まれていることが好ましい。特に、リン系エステル化合物としては、エチルホスホン酸ジエチル(EPnOE)を含むものとすることが好ましい。このリン系エステル化合物は、オリゴエーテル化合物とスルホニルイミド塩との全体に対して20質量%以上300質量%以下の範囲で含まれていることが好ましい。この範囲では、−10℃以下など低温領域でのイオン伝導性をより向上でき好ましい。このリン系エステル化合物の含有量は、250質量%以下であることがより好ましく、200質量%以下であることが更に好ましい。また、この含有量は、30質量%以上であることがより好ましく、50質量%以上であることが更に好ましい。   As a phosphorus ester compound, the compound shown to Formula (1)-(11) is mentioned. Specifically, diethyl ethylphosphonate (EPnOE), dimethyl methylphosphonate (MPnOM), diethyl phenylphosphonate (PhPnOE), bis (trifluoroethyl) methylphosphonate (MPnOEF), bis (trifluoroethyl) ethylphosphonate ( EPnOEF), bis (trifluoroethyl) phosphonate (HPnOEF), tris phosphate (trifluoroethyl) (TFEPa), triphenyl phosphate (TPPa), triethyl phosphate (TEPa), tris phosphite (trifluoroethyl) ) (TFEPi), bis (2,2,2-trifluoroethyl) dimethylamide phosphate (PF-39; Pam), and the like. As the phosphorus ester compound, two or more of triethyl phosphate (TEPa), bis (trifluoroethyl) phosphonate (HPnOEF), dimethyl methylphosphonate (MPnOM) and diethyl ethylphosphonate (EPnOE) are electrolyzed. It is preferably contained in the liquid. In particular, the phosphorus ester compound preferably contains diethyl ethylphosphonate (EPnOE). The phosphorus ester compound is preferably contained in the range of 20% by mass or more and 300% by mass or less with respect to the whole of the oligoether compound and the sulfonylimide salt. In this range, the ion conductivity in a low temperature region such as −10 ° C. or lower can be further improved, which is preferable. The content of the phosphorus ester compound is more preferably 250% by mass or less, and further preferably 200% by mass or less. Further, this content is more preferably 30% by mass or more, and further preferably 50% by mass or more.

この電解液において、オリゴエーテル化合物は、トリグライム、テトラグライム、トリグライムモノメチルエーテル及びテトラグライムモノメチルエーテルのうち1以上であり、このオリゴエーテル化合物は、スルホニルイミド塩に対してモル比で0.8以上1.2以下の範囲で含まれていることが好ましい。これらのオリゴエーテル化合物とスルホニルイミド塩とがモル比で1:1近傍で含まれると、溶媒和イオン液体となりやすい。あるいは、この電解液において、オリゴエーテル化合物は、ジグライム及び12−クラウン−4のうち1以上であり、このオリゴエーテル化合物は、スルホニルイミド塩に対してモル比で1.8以上2.2以下の範囲で含まれていることが好ましい。これらのオリゴエーテル化合物とスルホニルイミド塩とがモル比で2:1近傍で含まれると、溶媒和化合物となりやすい。オリゴエーテル化合物は、ジグライム及び12−クラウン−4である場合は、そのままでは固体で有り電解液として利用できないが、この固体に上述したリン系エステル化合物を添加すると、液状になり、電解液として利用できるようになる。   In this electrolytic solution, the oligoether compound is one or more of triglyme, tetraglyme, triglyme monomethyl ether and tetraglyme monomethyl ether, and the oligoether compound is 0.8 or more in molar ratio to the sulfonylimide salt. It is preferably included in the range of 1.2 or less. When these oligoether compounds and the sulfonylimide salt are contained in a molar ratio of about 1: 1, a solvated ionic liquid tends to be formed. Alternatively, in this electrolytic solution, the oligoether compound is one or more of diglyme and 12-crown-4, and the oligoether compound has a molar ratio of 1.8 to 2.2 with respect to the sulfonylimide salt. It is preferable that it is included in the range. When these oligoether compounds and sulfonylimide salts are contained in a molar ratio of around 2: 1, solvates are easily formed. When the oligoether compound is diglyme and 12-crown-4, it is solid as it is and cannot be used as an electrolytic solution. However, when the above-described phosphorus ester compound is added to this solid, it becomes a liquid and is used as an electrolytic solution. become able to.

この電解液の用途としては、例えば、リチウムイオン電池等のアルカリ金属イオン電池や、コンデンサー、燃料電池、太陽電池などの構成材料などが挙げられる。   Examples of the use of the electrolytic solution include alkali metal ion batteries such as lithium ion batteries, and constituent materials such as capacitors, fuel cells, and solar cells.

以上説明した電解液では、低温でのイオン伝導性をより向上することができる。このような効果が得られる理由は、例えば、以下のように推察される。グライムを含むオリゴエーテル化合物とアルカリ金属を含むスルホニルイミド塩とを含む溶媒和イオン液体としては、例えば、トリグライム(G3)又はテトラグライム(G4)と、Liイミド塩(LiTFSI)とをモル比1:1で混合したものが挙げられる。この溶媒和イオン液体は、低温(−10℃〜−30℃)でイオン伝導度が大きく低下する。この電解液では、溶媒和イオン液体にリン系エステル化合物を含むものとすることにより、P=O結合が溶媒和化合物のLiイオンに配位するなどして、新規な溶媒和化合物が形成されると推察される。その結果、Li+/オリゴエーテル化合物の錯カチオンがイミドアニオンと解離し易くなり、低温でのイオン伝導性がより向上するものと推察される。また、ジグライム(G2)や12−クラウン−4の溶媒和化合物(Li塩+オリゴエーテル化合物)は固体であり、電解液としては従来利用できなかったが、上述したリン系エステル化合物を含むものとすると、P=O結合が溶媒和化合物のLiイオンに配位することによって液状となり、新規な電解液として利用可能となるものと推察される。 In the electrolytic solution described above, the ion conductivity at a low temperature can be further improved. The reason why such an effect is obtained is assumed as follows, for example. As a solvated ionic liquid containing an oligoether compound containing glyme and a sulfonylimide salt containing an alkali metal, for example, a molar ratio of triglyme (G3) or tetraglyme (G4) and Liimide salt (LiTFSI) is 1: What was mixed in 1 is mentioned. This solvated ionic liquid has a significant decrease in ionic conductivity at low temperatures (−10 ° C. to −30 ° C.). In this electrolytic solution, it is assumed that a solvated ionic liquid contains a phosphorus ester compound, whereby a P = O bond is coordinated to a Li ion of the solvated compound and a new solvated compound is formed. Is done. As a result, it is presumed that the complex cation of the Li + / oligoether compound is easily dissociated from the imide anion, and the ionic conductivity at low temperature is further improved. Further, diglyme (G2) and solvate of 12-crown-4 (Li salt + oligoether compound) are solid and cannot be conventionally used as an electrolyte, but include the above-described phosphorus ester compounds. , P = O bond is coordinated to Li ions of the solvate, and is assumed to be liquid and usable as a novel electrolyte.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

以下では上述した電解液を具体的に作製した例について説明する。なお、実験例1−1〜8、6−1〜5が参考例に相当し、それ以外が実施例に相当する。   Below, the example which produced the electrolyte solution mentioned above concretely is demonstrated. Experimental examples 1-1 to 8 and 6-1 to 5 correspond to reference examples, and the others correspond to examples.

[原料の略称等]
G4 Tetraethylene glycol dimethyl ether:東京化成製
G3 Triethylene glycol dimethyl ether:東京化成製
G3OH Triethylene glycol monomethyl ether:東京化成製
G2 Diethylene glycol dimethyl ether:東京化成製
12−C−4 12-Crown-4 (1,4,7,10-Tetraoxacyclodecane):東京化成製
LiTFSI Lithium Bis(trifluoromethanesulfonyl)imide:キシダ化学製
LiFSI Lithium Bis(fluorosulfonyl)imide:キシダ化学製
EPnOE Diethyl ethlphosphonate:Aldrich製
MPnOM Dimethyl methlphosphonate:Aldrich製
PhPnOE Diethyl Phenylphosphonate:東京化成製
TMPa Trimethyl phosphate:東京化成製
TEPa Triethyl phosphate:東京化成製
TPPa Triphenyl phosphate:東京化成製
MPnOEF Bis(2,2,2-trifluoroethyl)methylphosphonate:Aldrich製
HPnOEF Bis(2,2,2-trifluoroethyl)phosphonate:Aldrich製
TFEPa Tris(2,2,2-trifluoroethyl)phosphate:東京化成製
TFEPi Tris(2,2,2-trifluoroethyl)phosphite:Aldrich製
PF−39(Pam) O,O-Bis(2,2,2-trifluoroethyl)N,N-dimethylphosphoramodate:東ソーエフテック製
HFE−A 1,1,2,2-Tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether:東京化成製
(リン系エステル化合物の略号)
Pa:phosphate(リン酸エステル),Pn:phosphonate(ホスホン酸エステル),
Pi:phosphite(亜リン酸エステル),Pam:phosphoramide(リン酸アミドエステル)
[Abbreviations of raw materials]
G4 Tetraethylene glycol dimethyl ether: Tokyo Kasei G3 Triethylene glycol dimethyl ether: Tokyo Kasei G3OH Triethylene glycol monomethyl ether: Tokyo Kasei G2 Diethylene glycol dimethyl ether: Tokyo Kasei 12-C-4 12-Crown-4 (1,4 , 7,10-Tetraoxacyclodecane): Tokyo Chemical LiTFSI Lithium Bis (trifluoromethanesulfonyl) imide: Kishida Chemical LiFSI Lithium Bis (fluorosulfonyl) imide: Kishida Chemical EPnOE Diethyl ethlphosphonate: Aldrich MPnOM Dimethyl methlphosphonate: Aldrich PhPnOE Diethyl Phenylphosphonate Kasei TMPa Trimethyl phosphate: Tokyo Kasei TEPa Triethyl phosphate: Tokyo Kasei TPPa Triphenyl phosphate: Tokyo Kasei MPnOEF Bis (2,2,2-trifluoroethyl) methylphosphonate: Aldrich HPnOEF Bis (2,2,2-trifluoroethyl) phosphonate : TFEPa Tris (2,2,2-trifluoroethyl) phosphate manufactured by Aldrich: manufactured by Tokyo Chemical Industry FEPi Tris (2,2,2-trifluoroethyl) phosphite: PF-39 (Pam) from Aldrich O, O-Bis (2,2,2-trifluoroethyl) N, N-dimethylphosphoramodate: HFE-A 1,1 from Tosoh F-Tech , 2,2-Tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether: manufactured by Tokyo Chemical Industry (abbreviation for phosphorus ester compounds)
Pa: phosphate (phosphate ester), Pn: phosphonate (phosphonate ester),
Pi: phosphite (Phosphite), Pam: phosphoramide (Phosphate amide)

(比較試料:4種の溶媒和イオン液体(ILa,ILb,ILc,ILd)の作製)
Arガスを充填したグローブボックス内で、20mLサンプル瓶に等モル量(50.0mmol)のG4(11.11g)又はG3(8.91g)とLiTFSI(14.36g) 又はLiFSI(9.36g)をとり、サンプル瓶を密封して取り出し、加熱により均一溶液として4種の溶媒和イオン液体(IL)を得た。それぞれ、a:G3+LiFSI、b:G3+LiTFSI、c:G4+LiFSI、d:G4+LiTFSIと略称する。なお、溶媒和ILaを調製後に、冬季(気温10℃以下)2ヵ月間放置したところ、凍結・固化したが、結晶化であることがXRD測定で判った。
(Comparative sample: Preparation of four solvated ionic liquids (ILa, ILb, ILc, ILd))
In a glove box filled with Ar gas, equimolar amounts (50.0 mmol) of G4 (11.11 g) or G3 (8.91 g) and LiTFSI (14.36 g) or LiFSI (9.36 g) in a 20 mL sample bottle The sample bottle was sealed and taken out, and four solvated ionic liquids (IL) were obtained as a uniform solution by heating. They are abbreviated as a: G3 + LiFSI, b: G3 + LiTFSI, c: G4 + LiFSI, and d: G4 + LiTFSI, respectively. After preparation of the solvated ILa, it was allowed to stand for 2 months in the winter (at a temperature of 10 ° C. or less) for 2 months, but it was frozen and solidified, but was found to be crystallized by XRD measurement.

(各種リン系エステル化合物、HFE−Aを添加した溶媒和イオン液体の作製)
Arガスを充填したグローブボックス内で、撹拌子を入れたサンプル瓶中に、溶媒和イオン液体ILa:(G3+LiFSI)又はILd:(G4+LiTFSI)に対して、所定量の各種リン系エステル化合物又はHFE−Aを加えて、撹拌により均一に混合して電解液を調製した。
(Preparation of solvated ionic liquid to which various phosphorus ester compounds and HFE-A were added)
In a glove box filled with Ar gas, in a sample bottle containing a stirring bar, a predetermined amount of various phosphorus ester compounds or HFE- with respect to the solvated ionic liquid ILa: (G3 + LiFSI) or ILd: (G4 + LiTFSI). A was added and mixed uniformly by stirring to prepare an electrolytic solution.

(イオン伝導度の測定)
Arガスを充填したグローブボックス内で、測定セル(ポリマーセルと称する)の内部(直径10mm)に電解液を入れてステンレス製電極で挟み、気泡を抜き密封した。このときに電解液中にセパレータ(直径10mm;ポリエチレンPE製気孔率82%)を配置しないものとするものとで別個に測定した。測定セルを恒温槽内に置いて、25℃、10℃、−10℃、−30℃、−10℃、10℃、25℃、45℃、60℃、70℃、80℃、80℃、70℃、60℃、45℃、25℃となるようにしてインピーダンス測定した。その測定は、振幅電圧を100mVにして、0.1Mhz−1Hzの間で0.5pts/secで行った。得られたCole−ColeプロットのZ’の実軸切片の値もしくはBode線図でθが最小になる|Z|を抵抗値(R)として求めた。この値(R)と膜厚t(cm)及び電極面積S(cm2)から次式に従いイオン伝導度σ(S/cm)を算出した。
イオン伝導度σ(S/cm)=1/R×t/S
(Ion conductivity measurement)
In a glove box filled with Ar gas, an electrolytic solution was put in a measurement cell (referred to as a polymer cell) (diameter 10 mm) and sandwiched between stainless steel electrodes, and air bubbles were removed and sealed. At this time, it was measured separately with a separator (diameter 10 mm; polyethylene PE porosity 82%) not disposed in the electrolyte. Place the measurement cell in a constant temperature bath, 25 ° C, 10 ° C, -10 ° C, -30 ° C, -10 ° C, 10 ° C, 25 ° C, 45 ° C, 60 ° C, 70 ° C, 80 ° C, 80 ° C, 70 ° C. Impedance measurement was performed at temperatures of 60 ° C., 60 ° C., 45 ° C., and 25 ° C. The measurement was performed at 0.5 pts / sec between 0.1 Mhz-1 Hz with an amplitude voltage of 100 mV. In the obtained Cole-Cole plot, the value of the Z ′ real axis intercept or | Z | at which θ is minimized in the Body diagram was obtained as the resistance value (R). Ion conductivity σ (S / cm) was calculated from this value (R), film thickness t (cm), and electrode area S (cm 2 ) according to the following equation.
Ionic conductivity σ (S / cm) = 1 / R × t / S

また、別種の測定セル(液体セルと称する)を用いて、同様にイオン伝導度の温度依存性を測定した。このセルは直径2mm、長さ6.5mmの円筒状空隙に液状電解質を入れて白金電極で上下を挟む構造である。上記2種類の測定セルを用いて測定したσ−T値を表記する際に、その頭に下記略号を付して測定セルを区別した。25℃〜−30℃〜80℃〜25℃の1サイクル測定で得られるσ値(mS/cm)について、25℃のσ値3つ;−30℃のσ値1つ;80℃のσ値1つを表1〜10中に記載した。なお、25℃のσ値3つの中で特に低下が大きい値がある場合、このσ−T曲線はヒステリシスを示す。
(n) :ポリマーセルでセパレータ無し
(sp):ポリマーセルでセパレータ有り
(L) :液体セルでセパレータ無し
Moreover, the temperature dependence of the ionic conductivity was similarly measured using another type of measurement cell (referred to as a liquid cell). This cell has a structure in which a liquid electrolyte is placed in a cylindrical gap having a diameter of 2 mm and a length of 6.5 mm, and is sandwiched between platinum electrodes. When the σ-T values measured using the two types of measurement cells were described, the following abbreviations were attached to the heads to distinguish the measurement cells. For σ values (mS / cm) obtained by one cycle measurement from 25 ° C. to −30 ° C. to 80 ° C. to 25 ° C., three σ values at 25 ° C .; one σ value at −30 ° C .; One is listed in Tables 1-10. Note that this σ-T curve exhibits hysteresis when there is a particularly large decrease among the three σ values at 25 ° C.
(N): Polymer cell without separator (sp): Polymer cell with separator (L): Liquid cell with no separator

(ラマン分光測定)
Arガスを充填したグローブボックス内で、1mLサンプル瓶に試料を1/3体積以上の量を入れて、レーザー・ラマン分光測定を実施した。測定装置は、日本分光社製NRS−3300を用いた。
(Raman spectroscopy measurement)
In a glove box filled with Ar gas, a sample of 1/3 volume or more was put into a 1 mL sample bottle, and laser Raman spectroscopic measurement was performed. As a measuring device, NRS-3300 manufactured by JASCO Corporation was used.

(実験例1−1〜5)
上述した2種類のイオン伝導度測定セル(ポリマーセルと液体セル)を3個ずつ用いて、標準電解液のイオン伝導度の温度依存性(25℃→−30℃→80℃→25℃)を評価した。標準電解液は、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)を体積比で3:4:3で混合した混合溶媒にLiPF6を1M溶解したものを用いた。測定結果を表1に示した。図1は、実験例1−1,1−5のイオン伝導度σ−温度T曲線である。25℃でのイオン伝導度は、ポリマーセルで4〜8mS/cmであり、液体セルでは8〜10mS/cmであった。なお、液体セル測定では昇温過程60℃から先のステップの測定値が乱れたので、ここでは除外した。この原因は電解質の粘性が低い場合にセルから漏れが生じる為と推定した。なお、表中の「e(−n)」は、10-nを表す。
(Experimental Examples 1-1 to 5)
Using the two types of ion conductivity measurement cells (polymer cell and liquid cell) described above, the temperature dependence of the ionic conductivity of the standard electrolyte (25 ° C → -30 ° C → 80 ° C → 25 ° C) evaluated. The standard electrolyte used was a solution obtained by dissolving 1M LiPF 6 in a mixed solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 3: 4: 3. The measurement results are shown in Table 1. FIG. 1 is an ionic conductivity σ-temperature T curve of Experimental Examples 1-1 and 1-5. The ionic conductivity at 25 ° C. was 4 to 8 mS / cm in the polymer cell and 8 to 10 mS / cm in the liquid cell. In the liquid cell measurement, since the measured value of the previous step was disturbed from the temperature rising process of 60 ° C., it was excluded here. This is presumed to be due to leakage from the cell when the electrolyte viscosity is low. In the table, “e (−n)” represents 10 −n .

(実験例1−6〜8)
溶媒和イオン液体は、グライム(G3、G4)とLiイミド塩塩(LiFSI、LiTFSI)とを1:1モル比で混合したものであり、室温付近で液状であり、150℃以下の雰囲気で不揮発性であることが知られている。図2は、グライム(G3、G4)とLiイミド塩塩(LiFSI、LiTFSI)から得られる4種類の溶媒和イオン液体について、ポリマーセル(セパレータ)で測定したσ−T曲線である。また、実験例1−6、7(G3+LiFSI)と実験例1−8(G4+LiTFSI)について、ポリマーセル(セパレータ有・無)及び液体セルで測定したイオン伝導度σを表1に示した。図2において、G3+LiFSI、G3+LiTFSI及びG4+LiFSIのσ−T曲線は降温過程と昇温過程でσ値が乖離するヒステリシスを示した。なお、これらの溶媒和イオン液体では、冬場に10℃以下の雰囲気に放置すると結晶化した。したがって調製時や降温時の液状(室温)は過冷却状態と考えられる。一方、G4+LiTFSIのσ−T曲線は、ヒステリシスを示さずに冬場でも固化しない安定な液状であった。
(Experimental Examples 1-6 to 8)
The solvated ionic liquid is a mixture of glyme (G3, G4) and Li imide salt (LiFSI, LiTFSI) in a 1: 1 molar ratio, is liquid near room temperature, and is non-volatile in an atmosphere of 150 ° C. or lower. It is known to be sex. FIG. 2 is a σ-T curve measured with a polymer cell (separator) for four types of solvated ionic liquids obtained from glyme (G3, G4) and Li imide salt (LiFSI, LiTFSI). Table 1 shows the ionic conductivity σ measured in the polymer cell (with / without separator) and the liquid cell for Experimental Examples 1-6 and 7 (G3 + LiFSI) and Experimental Example 1-8 (G4 + LiTFSI). In FIG. 2, the σ-T curves of G3 + LiFSI, G3 + LiTFSI, and G4 + LiFSI showed hysteresis in which the σ value deviates between the temperature decreasing process and the temperature increasing process. These solvated ionic liquids crystallized when left in an atmosphere of 10 ° C. or lower in winter. Therefore, the liquid state (room temperature) at the time of preparation or when the temperature is lowered is considered to be a supercooled state. On the other hand, the σ-T curve of G4 + LiTFSI did not show hysteresis and was a stable liquid that did not solidify even in winter.

(実験例2−1〜9、3−1〜4)
安定な液状を示す溶媒和イオン液体(G4+LiTFSI)のオリゴエーテル化合物(グライム)とスルホニルイミド塩との全体に対して各種のリン系エステル化合物を20質量%又は30質量%添加したものについて、ポリマーセル(セパレータ有・無)及び液体セルで測定したσ−Tの値を表2、3にまとめて示した。表2、3に示すように、ポリマーセル(セパレータsp無)で測定した−30℃のσ値は、いずれのリン系エステル化合物を添加した場合も、無添加の溶媒和イオン液体(n)の値(0.003mS/cm)を上回った。この結果から、溶媒和イオン液体(G4+LiTFSI)にリン系エステル化合物を添加することで、低温域でのイオン伝導性が向上することがわかった。特に、リン系エステル化合物(TEPa、EPnOE、TFEPi、HPnOEF)は顕著な添加効果を示した。図3は、実験例1−8、2−2,5,9、3−4のσ−T曲線である。
(Experimental examples 2-1 to 9, 3-1 to 4)
Polymer cell in which 20% by mass or 30% by mass of various phosphorus ester compounds are added to the entire oligoether compound (glyme) and sulfonylimide salt of solvated ionic liquid (G4 + LiTFSI) showing a stable liquid state Tables 2 and 3 collectively show the values of σ-T measured with (with / without separator) and the liquid cell. As shown in Tables 2 and 3, the σ value at −30 ° C. measured in the polymer cell (without separator sp) is the value of the solvated ionic liquid (n) with no addition when any phosphorus ester compound is added. The value (0.003 mS / cm) was exceeded. From this result, it was found that the ion conductivity in a low temperature region was improved by adding a phosphorus ester compound to the solvated ionic liquid (G4 + LiTFSI). In particular, phosphorus ester compounds (TEPa, EPnOE, TFEPi, HPnOEF) showed a remarkable effect of addition. FIG. 3 is a σ-T curve of Experimental Examples 1-8, 2-2, 5, 9, 3-4.

(実験例4−1〜4)
優れた添加効果を示したリン系エステル化合物の中で、EPnOE(エチルホスホン酸ジエチルエステル)は、ポリマーセル(セパレータ無)だけでなく液体セルで測定したσ値も最大となった(表2)。そこで、安定な液状を示す溶媒和イオン液体(G4+LiTFSI)にEPnOEを添加する際に、その添加量効果を20質量%〜200質量%としてσ−T測定を行った。ポリマーセル(セパレータ有・無)又は液体セルで測定したσ値を表4にまとめて示した。これらの値を一定条件で比較することは難しいが、表4に示したように、EPnOEを200質量%添加しても良好なイオン伝導度を示すことがわかった。
(Experimental examples 4-1 to 4)
Among the phosphorus ester compounds that showed an excellent addition effect, EPnOE (ethylphosphonic acid diethyl ester) had the maximum σ value measured not only in the polymer cell (without separator) but also in the liquid cell (Table 2). . Then, when adding EPnOE to the solvated ionic liquid (G4 + LiTFSI) which shows a stable liquid state, the addition amount effect was 20 mass%-200 mass%, and (sigma) -T measurement was performed. Table 4 summarizes the σ values measured in a polymer cell (with or without a separator) or a liquid cell. Although it is difficult to compare these values under constant conditions, as shown in Table 4, it was found that even when 200% by mass of EPnOE was added, good ionic conductivity was exhibited.

(実験例5−1〜5)
溶媒和イオン液体(G3+LiFSI)は、最も高温の60℃未満までσ−T曲線がヒステリシス形状を示しており(図2)、最も不安定な液状の溶媒和イオン液体といえる。一方、構成物のG3やLiFSIは電気化学的に安定性が高いと報告されているので、この溶媒和イオン液体を安定な液状とすることを検討した。溶媒和イオン液体(G3+LiFSI)にEPnOEを添加する際に、その添加量を20質量%〜400質量%としてσ−Tを測定した。ポリマーセル(セパレータ有)及び液体セルで測定したσ値を表5にまとめて示した。図4は、液体セルで測定した実験例1−7、5−2〜4のσ−T曲線である。溶媒和イオン液体(G3+LiFSI)にEPnOEを添加すると、20質量%から200質量%の間でイオン伝導度が順次増大し、しかもσ−T曲線でヒステリシスが消失して安定な液状となることが、ポリマーセル(セパレータ有)及び液体セルによるσ−T測定の両方で認められた。なお、実験例5−1(L)の−30℃でσ値が急激に低下する事象や、実験例5−3(sp)でσ値が小さい事象は、他の測定法によるこれらの結果と比べると、イレギュラーな測定エラーかもしれない。一方、EPnOEを400質量%添加した実験例5−5では、両セルの測定方法で非常に小さいσ値が得られたことから、EPnOE添加量は200質量%付近でσ最大値を与えることがわかった。そのポリマーセル(セパレータ有)での測定値は、約3.5mS/cm(25℃)であり、液体セル測定値は、約5mS/cm(25℃)であった。表1に示したEPnOE無添加の溶媒和イオン液体(G3+LiFSI)のσ値と比較すると、それぞれ約2倍強と約4倍弱に増大していた。また表1に示した標準電解液のσ値に比較すると、おおよそ0.5倍の大きさに相当する。図4に示すように、実験例5−2〜4では、ヒステリシスが消失し、EPnOE添加による低温域でのイオン伝導性向上が明瞭であった。
(Experimental Examples 5-1 to 5)
The solvated ionic liquid (G3 + LiFSI) can be said to be the most unstable liquid solvated ionic liquid, with the σ-T curve showing a hysteresis shape up to the highest temperature of less than 60 ° C. (FIG. 2). On the other hand, since G3 and LiFSI as constituents have been reported to have high electrochemical stability, it was examined to make this solvated ionic liquid a stable liquid. When EPnOE was added to the solvated ionic liquid (G3 + LiFSI), σ-T was measured with an addition amount of 20% by mass to 400% by mass. Table 5 summarizes the σ values measured in the polymer cell (with separator) and the liquid cell. FIG. 4 is a σ-T curve of Experimental Examples 1-7 and 5-2 to 4 measured in the liquid cell. When EPnOE is added to the solvated ionic liquid (G3 + LiFSI), the ionic conductivity sequentially increases between 20% by mass and 200% by mass, and the hysteresis disappears in the σ-T curve to become a stable liquid. It was observed in both the σ-T measurement by the polymer cell (with separator) and the liquid cell. In addition, the phenomenon in which the σ value suddenly decreases at −30 ° C. in Experimental Example 5-1 (L) and the event in which the σ value is small in Experimental Example 5-3 (sp) are the results of these other measurement methods. It may be an irregular measurement error. On the other hand, in Experimental Example 5-5 in which 400% by mass of EPnOE was added, a very small σ value was obtained by the measurement method of both cells. Therefore, the added amount of EPnOE can give a σ maximum value in the vicinity of 200% by mass. all right. The measured value in the polymer cell (with separator) was about 3.5 mS / cm (25 ° C.), and the measured value in the liquid cell was about 5 mS / cm (25 ° C.). When compared with the σ value of the solvated ionic liquid (G3 + LiFSI) without addition of EPnOE shown in Table 1, they were increased by about 2 times and about 4 times, respectively. Further, when compared with the σ value of the standard electrolyte shown in Table 1, it corresponds to approximately 0.5 times the size. As shown in FIG. 4, in Experimental Examples 5-2 to 4, the hysteresis disappeared, and the ion conductivity improvement in the low temperature region by adding EPnOE was clear.

(実験例6−1〜5)
次に、溶媒和イオン液体(G3+LiFSI)にハイドロフルオロエーテル(HFE−A)を添加したものについて検討した。HFE−Aは、添加溶媒和化合物に対して反応することなく、単なる希釈する効果によって、添加量に応じてイオン伝導性が向上すると考えられる(特許文献3など参照)。そこで、より不安定な液状を示した溶媒和イオン液体(G3+LiFSI)を用いて、HFE−Aの添加量を22質量%から490質量%まで変化させて、ポリマーセル(セパレータ有)でσ−Tを測定した。表6に測定結果をまとめた。また、図5は、実験例1−6、6−1〜4(セパレータ有)のσ−T曲線である。溶媒和イオン液体(G3+LiFSI)へのHFE−A添加においては、添加量22質量%から490質量%まで、σ値は増大せずに一定であった。また添加量22質量%から100質量%まで、σ−T曲線上にヒステリシスが残留していた。即ち、HFE−Aを添加した溶媒和イオン液体において、セパレータを挟んだセルを用いると、HFE−A量の増加に対しイオン伝導度は一定値であり、温度変化によるσ−T曲線のヒステリシスは消失しないことがわかった。これらの結果より、HFE−Aの添加効果が溶媒和イオン液体の液状の安定性向上に対し効果が小さいことと同時に、イオン伝導性の向上に対しても効果が小さいことが示唆された。これは、リン系エステル化合物の添加効果とは対照的な結果であった。この違いは、リン系エステル化合物が溶媒和イオン液体と相互作用するためではないかと推定する。これについては、後述のラマン分光分析で検討した。
(Experimental examples 6-1 to 5)
Next, what added hydrofluoroether (HFE-A) to the solvation ionic liquid (G3 + LiFSI) was examined. It is thought that HFE-A improves ion conductivity according to the addition amount by the effect of simply diluting without reacting with the added solvate (see Patent Document 3, etc.). Therefore, using a solvated ionic liquid (G3 + LiFSI) showing a more unstable liquid state, the amount of HFE-A added was changed from 22% by mass to 490% by mass, and σ-T was used in the polymer cell (with separator). Was measured. Table 6 summarizes the measurement results. FIG. 5 is a σ-T curve of Experimental Examples 1-6 and 6-1 to 4 (with a separator). In addition of HFE-A to the solvated ionic liquid (G3 + LiFSI), the σ value was constant without increasing from 22 mass% to 490 mass%. Further, hysteresis remained on the σ-T curve from the addition amount of 22% by mass to 100% by mass. That is, in a solvated ionic liquid to which HFE-A is added, when a cell sandwiched between separators is used, the ionic conductivity is a constant value as the amount of HFE-A increases, and the hysteresis of the σ-T curve due to temperature change is It turns out not to disappear. From these results, it was suggested that the effect of addition of HFE-A is small for improving the stability of the solvated ionic liquid, and at the same time, the effect for improving the ion conductivity is small. This was in contrast to the effect of adding the phosphorus ester compound. This difference is presumed to be because the phosphorus ester compound interacts with the solvated ionic liquid. This was examined by Raman spectroscopy described later.

(実験例7−1〜3、8−1〜4、9−1〜4)
グライムG3、G4に代るオリゴエーテル化合物を用いてLiFSIと溶媒和化合物を形成させ、EPnOEの添加効果を検討した。トリグライムモノメチルエーテル(G3OH)、ジグライム(G2)、及び12−クラウン−4(12−C−4)をオリゴエーテル化合物として用いた。(G3OH+LiFSI)にEPnOEを20質量%、200質量%添加した場合のσ−T測定結果を表7にまとめて示した。表7に示すように、200質量%添加のσ値(3mS/cm)が最も大きく、添加効果を確認できた。G2や12−C−4では、LiFSIに対して2:1(モル比)で混合すると、溶媒和化合物が形成されることが報告されている。そこで、その溶媒和化合物に対してEPnOEを20質量%、30質量%、50質量%添加した場合のσ−T測定結果を表8、9にまとめた。(2×G2+LiFSI)と(2×12−C−4+LiFSI)の溶媒和化合物は共に固体であったが、EPnOEを添加すると溶解して液状物となり、イオン伝導性が増大した。後述のラマン分光分析の結果では、これらの場合にも添加効果が発揮されてσ増大したことが示唆された。(2×G2+LiFSI)+EPnOE(30%)では、1.5mS/cmの値を示し、また(2×12−C−4+LiFSI)+EPnOE(30−50%)では、0.4mS/cmの値を示した。
(Experimental examples 7-1 to 3, 8-1 to 4, 9-1 to 4)
LiFSI and a solvate were formed using an oligoether compound instead of glyme G3 and G4, and the effect of adding EPnOE was examined. Triglyme monomethyl ether (G3OH), diglyme (G2), and 12-crown-4 (12-C-4) were used as oligoether compounds. Table 7 summarizes the σ-T measurement results when 20 mass% and 200 mass% of EPnOE were added to (G3OH + LiFSI). As shown in Table 7, the σ value (3 mS / cm) of the addition of 200% by mass was the largest, confirming the addition effect. In G2 and 12-C-4, it is reported that a solvate is formed when mixed at 2: 1 (molar ratio) with respect to LiFSI. Accordingly, Tables 8 and 9 summarize the σ-T measurement results when 20 mass%, 30 mass%, and 50 mass% of EPnOE are added to the solvate. The solvates of (2 × G2 + LiFSI) and (2 × 12−C-4 + LiFSI) were both solids, but when EPnOE was added, the solvates were dissolved to become liquids, and the ionic conductivity was increased. From the results of Raman spectroscopy described later, it was suggested that the effect of addition was also exhibited in these cases and σ increased. (2 × G2 + LiFSI) + EPnOE (30%) shows a value of 1.5 mS / cm, and (2 × 12−C-4 + LiFSI) + EPnOE (30-50%) shows a value of 0.4 mS / cm. It was.

(実験例10−1〜4)
溶媒和イオン液体(G3+LiFSI)へのリン系エステル化合物の添加においては、これまでEPnOEを中心に用いてきたが、2種類のリン系エステル化合物の添加について検討する。(G3+LiFSI)+EPnOE(200%)を基準とし、EPnOEの含有量中の150質量%を、優れた添加効果を示したリン系エステル化合物(TEPa、TFEPi、HPnOEf)、及びMPnOM(メチルホスホン酸ジメチル)に代替する検討を行った。測定結果を表10にまとめて示した。表5の実験例5−2((G3+LiFSI)+EPnOE(50%))の値2.1mS/cmに比べると、表10に示すリン系エステル化合物(150質量%)の追加によってσ値が増大したのは、EPnOE、TEFa、MPnOMであった。更に実験例5−4((G3+LiFSI)+EPnOE(200%))の値3.5mS/cmに比べると、TEPaで同程度で、MPnOMで上回る。これらの結果は、有効な2種類のリン系エステル化合物の添加効果があることが示唆された。
(Experimental examples 10-1 to 4)
In the addition of the phosphorus ester compound to the solvated ionic liquid (G3 + LiFSI), EPnOE has been mainly used so far, but the addition of two types of phosphorus ester compounds will be examined. Based on (G3 + LiFSI) + EPnOE (200%), 150 mass% in the content of EPnOE is added to phosphorus ester compounds (TEPa, TFEPi, HPnOEf) and MPnOM (dimethyl methylphosphonate) that showed an excellent additive effect. Considered alternatives. The measurement results are summarized in Table 10. Compared with the value 2.1 mS / cm of Experimental Example 5-2 ((G3 + LiFSI) + EPnOE (50%)) in Table 5, the addition of the phosphorus ester compound (150% by mass) shown in Table 10 increased the σ value. Were EPnOE, TEFa and MPnOM. Furthermore, when compared with the value 3.5 mS / cm of Experimental Example 5-4 ((G3 + LiFSI) + EPnOE (200%)), it is about the same at TEPa and higher at MPnOM. These results suggest that there is an effect of adding two effective phosphorus ester compounds.

(添加効果の考察)
溶媒和イオン液体(G4+LiTFSI)に関して溶媒和化合物の構造検討をラマン分光分析で実施した。Li+−グライムのカチオン錯体に対してTFSIアニオンがLi+←O=Sによって配位すると、O=S結合に由来する特性吸収(1250cm-1付近と760cm-1付近)が高波数側にシフトすると考えられる。ここでは、(G4+LiTFSI)、(G3+LiFSI)、(2×G2+LiTFSI)、(2×12−C−4+LiTFSI)の溶媒和化合物、及び(G4+LiTFSI)、(G3+LiFSI)へのEPnOE添加物(20質量%、50質量%、200質量%)に関して、ラマン分光分析を実施した。なお、比較試料として各構成成分化合物及びG4+EPnOE(20質量%、50質量%、200質量%)についても測定した。図6は、各電解液の全波数領域でのラマンスペクトルである。LiFSIを含む系では蛍光が生じる場合があり、分析できない場合が3件あった。図7は、イミドアニオンのO=Sに由来する740cm-1付近の吸収スペクトルである。図8は、イミドアニオンのO=Sに由来する1250cm-1付近の吸収スペクトルである。LiTFSIとG4、及びG3とLiFSIを1:1モル比で混合すると、O=S由来の760cm-1付近の吸収は大きく低波数側にシフトした。またO=S由来の1250cm-1付近の吸収も少ないが低波数側にシフトした。そして、その溶媒和イオン液体にEPnOEを添加すると、その添加量に応じて更に低波数側へのシフトが、O=S由来の760cm-1付近の吸収でのみ見られた。この結果は、(Li+−グライム)のカチオン錯体の形成と、イミドアニオンがそこからよりフリーな状態へ変化する様子を反映すると考えられた。即ち、溶媒和化合物が会合型(AGG)から接触イオン対型(CIP)を経て溶媒分離イオン対型(SSIP)になることが示唆された。図9は、溶媒和化合物の説明図であり、図9(a)がカチオン錯体、図9(b)がCIP溶媒和化合物、図9(c)がSSIP溶媒和化合物、図9(d)が溶媒和化合物の種別の説明図である。
(Consideration of additive effect)
The structure of the solvate was studied by Raman spectroscopy for the solvated ionic liquid (G4 + LiTFSI). Li + - the TFSI anion against a cationic complex of glyme is coordinated by Li + ← O = S, the shift characteristic absorption derived from O = S bond (1250 cm around -1 and near 760 cm -1) is the high wave number side I think that. Here, solvates of (G4 + LiTFSI), (G3 + LiFSI), (2 × G2 + LiTFSI), (2 × 12−C-4 + LiTFSI), and EPnOE additives to (G4 + LiTFSI), (G3 + LiFSI) (20% by mass, 50%) Mass spectrometry, 200 mass%), Raman spectroscopy analysis was carried out. In addition, it measured also about each structural-component compound and G4 + EPnOE (20 mass%, 50 mass%, 200 mass%) as a comparative sample. FIG. 6 is a Raman spectrum of each electrolytic solution in the full wavenumber region. In the system containing LiFSI, fluorescence sometimes occurred and there were 3 cases where analysis was impossible. FIG. 7 is an absorption spectrum near 740 cm −1 derived from O═S of the imide anion. FIG. 8 is an absorption spectrum near 1250 cm −1 derived from O═S of the imide anion. When LiTFSI and G4, and G3 and LiFSI were mixed at a 1: 1 molar ratio, the absorption near 760 cm −1 derived from O═S was greatly shifted to the low wavenumber side. Further, although the absorption near 1250 cm −1 derived from O = S was small, it shifted to the low wavenumber side. When EPnOE was added to the solvated ionic liquid, a shift toward a lower wavenumber side was further observed only in the vicinity of 760 cm −1 derived from O═S depending on the addition amount. This result was considered to reflect the formation of a cation complex of (Li + -glyme) and the state of the imide anion changing from there to a more free state. That is, it was suggested that the solvate is changed from the association type (AGG) to the contact ion pair type (CIP) to the solvent separation ion pair type (SSIP). FIG. 9 is an explanatory diagram of a solvate, in which FIG. 9 (a) is a cation complex, FIG. 9 (b) is a CIP solvate, FIG. 9 (c) is an SSIP solvate, and FIG. It is explanatory drawing of the kind of solvate.

図10は、(Li+−グライム)のカチオン錯体の−O−結合由来の850cm-1付近の吸収スペクトルである。4種の溶媒和化合物において、混合前後で−O−結合由来の高波数側へのシフトが見られた。この結果も、(Li+−グライム)のカチオン錯体の形成を示唆するものであった。図11は、EPnOEのO=P結合由来の700cm-1付近の吸収スペクトルである。ここでは、逆にEPnOEに(G4+LiTFSI)を添加していくと見做すと、シフト量は僅かであるが、(G4+LiTFSI)+EPnOE(0質量%、20質量%、50質量%、200質量%)で(G4+LiTFSI)の添加量に応じた高波数側へのシフトが見られた。一方、G4を含まないLiTFSI+EPnOE(20質量%、50質量%、200質量%)ではシフトは全く観測されなかった。したがって、EPnOEがLi+←O=Pによって、(Li+−グライム)のカチオン錯体に配位することが示唆された。(G3+LiFSI)+EPnOE(0質量%、20質量%、50質量%、200質量%)においても、明瞭ではないが、この傾向が見られることから、EPnOEの溶媒和化合物への関与が示唆された。 FIG. 10 is an absorption spectrum near 850 cm −1 derived from the —O— bond of a cation complex of (Li + -glyme). In the four solvates, a shift toward the high wavenumber derived from the —O— bond was observed before and after mixing. This result also suggested the formation of a cation complex of (Li + -glyme). FIG. 11 is an absorption spectrum around 700 cm −1 derived from the O═P bond of EPnOE. Here, conversely, assuming that (G4 + LiTFSI) is added to EPnOE, the shift amount is slight, but (G4 + LiTFSI) + EPnOE (0 mass%, 20 mass%, 50 mass%, 200 mass%) A shift toward the high wave number according to the amount of (G4 + LiTFSI) added was observed. On the other hand, no shift was observed in LiTFSI + EPnOE (20 mass%, 50 mass%, 200 mass%) not containing G4. Therefore, it was suggested that EPnOE coordinates to the (Li + -glyme) cation complex by Li + ← O = P. Even in (G3 + LiFSI) + EPnOE (0% by mass, 20% by mass, 50% by mass, 200% by mass), although this tendency is not clear, participation of EPnOE in the solvate was suggested.

本明細書で開示する電解液は、例えばアルカリ金属イオン二次電池、コンデンサ、燃料電池、太陽電池などの構成材料として利用可能である。   The electrolytic solution disclosed in the present specification can be used as a constituent material of, for example, an alkali metal ion secondary battery, a capacitor, a fuel cell, and a solar cell.

Claims (8)

アルカリ金属イオンを伝導する電解液であって、
オリゴエーテル化合物と、
アルカリ金属を含むスルホニルイミド塩と、
式(1)〜(11)に示すリン系エステル化合物と、
を含む電解液。
An electrolyte that conducts alkali metal ions,
An oligoether compound,
A sulfonylimide salt containing an alkali metal;
A phosphorus ester compound represented by formulas (1) to (11);
An electrolyte solution.
前記リン系エステル化合物は、前記オリゴエーテル化合物と前記スルホニルイミド塩との全体に対して20質量%以上200質量%以下の範囲で含まれている、請求項1に記載の電解液。   2. The electrolytic solution according to claim 1, wherein the phosphorus ester compound is contained in an amount of 20% by mass or more and 200% by mass or less based on the total of the oligoether compound and the sulfonylimide salt. 前記オリゴエーテル化合物は、ジグライム、トリグライム、テトラグライム、トリグライムモノメチルエーテル、テトラグライムモノメチルエーテル及び12−クラウン−4のうち1以上を含む、請求項1又は2に記載の電解液。   The electrolyte solution according to claim 1 or 2, wherein the oligoether compound includes one or more of diglyme, triglyme, tetraglyme, triglyme monomethyl ether, tetraglyme monomethyl ether, and 12-crown-4. 前記リン系エステル化合物は、リン酸トリエチル(TEPa)と、ホスホン酸ビス(トリフルオロエチル)(HPnOEF)と、メチルホスホン酸ジメチル(MPnOM)と、エチルホスホン酸ジエチル(EPnOE)とのうち2以上が含まれている、請求項1〜3のいずれか1項に記載の電解液。   The phosphorus ester compound includes two or more of triethyl phosphate (TEPa), bis (trifluoroethyl) phosphonate (HPnOEF), dimethyl methylphosphonate (MPnOM), and diethyl ethylphosphonate (EPnOE). The electrolyte solution according to any one of claims 1 to 3. 前記オリゴエーテル化合物は、トリグライム、テトラグライム、トリグライムモノメチルエーテル及びテトラグライムモノメチルエーテルのうち1以上であり、該オリゴエーテル化合物は、前記スルホニルイミド塩に対してモル比で0.8以上1.2以下の範囲で含まれている、請求項1〜4のいずれか1項に記載の電解液。   The oligoether compound is at least one of triglyme, tetraglyme, triglyme monomethyl ether, and tetraglyme monomethyl ether, and the oligoether compound has a molar ratio of 0.8 to 1.2 with respect to the sulfonylimide salt. The electrolyte solution of any one of Claims 1-4 contained in the following ranges. 前記オリゴエーテル化合物は、ジグライム及び12−クラウン−4のうち1以上であり、該オリゴエーテル化合物は、前記スルホニルイミド塩に対してモル比で1.8以上2.2以下の範囲で含まれている、請求項1〜4のいずれか1項に記載の電解液。   The oligoether compound is one or more of diglyme and 12-crown-4, and the oligoether compound is included in a range of 1.8 to 2.2 in terms of molar ratio to the sulfonylimide salt. The electrolyte solution according to any one of claims 1 to 4. 前記リン系エステル化合物は、エチルホスホン酸ジエチル(EPnOE)である、請求項1〜6のいずれか1項に記載の電解液。   The electrolyte solution according to claim 1, wherein the phosphorus ester compound is diethyl ethylphosphonate (EPnOE). 前記スルホニルイミド塩は、ビス(トリフルオロメタンスルホニル)イミドアニオン(TFSI)及びビス(フルオロスルホニル)イミドアニオン(FSI)のうち1以上を含む、請求項1〜7のいずれか1項に記載の電解液。   The electrolyte solution according to claim 1, wherein the sulfonylimide salt includes one or more of bis (trifluoromethanesulfonyl) imide anion (TFSI) and bis (fluorosulfonyl) imide anion (FSI). .
JP2017048934A 2017-03-14 2017-03-14 Electrolyte Active JP6790934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017048934A JP6790934B2 (en) 2017-03-14 2017-03-14 Electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017048934A JP6790934B2 (en) 2017-03-14 2017-03-14 Electrolyte

Publications (2)

Publication Number Publication Date
JP2018152291A true JP2018152291A (en) 2018-09-27
JP6790934B2 JP6790934B2 (en) 2020-11-25

Family

ID=63681848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017048934A Active JP6790934B2 (en) 2017-03-14 2017-03-14 Electrolyte

Country Status (1)

Country Link
JP (1) JP6790934B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170230A (en) * 2017-03-30 2018-11-01 株式会社豊田中央研究所 Lithium secondary battery
WO2019188360A1 (en) * 2018-03-26 2019-10-03 Tdk株式会社 Secondary battery electrolyte and secondary battery
JP2020129496A (en) * 2019-02-08 2020-08-27 株式会社豊田自動織機 Electrolyte solution and secondary battery
JP2020135992A (en) * 2019-02-15 2020-08-31 株式会社豊田中央研究所 Electrolyte solution and lithium secondary battery
CN114552000A (en) * 2022-02-15 2022-05-27 北京航空航天大学 Ultralow-temperature graphite-based lithium ion battery and preparation method of electrolyte thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063871A (en) * 2003-08-19 2005-03-10 Sanyo Electric Co Ltd Lithium secondary battery
WO2009133899A1 (en) * 2008-04-28 2009-11-05 旭硝子株式会社 Secondary cell nonaqueous electrolyte and secondary cell
JP2014116077A (en) * 2012-12-06 2014-06-26 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery, secondary battery system including the same, nonaqueous electrolytic solution for lithium ion secondary battery
WO2015008496A1 (en) * 2013-07-19 2015-01-22 パナソニック株式会社 Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary cell using same
JP2016219422A (en) * 2015-05-25 2016-12-22 パナソニックIpマネジメント株式会社 Electrolytic solution for battery and battery
JP2017004603A (en) * 2015-06-04 2017-01-05 東ソ−・エフテック株式会社 Non-aqueous electrolyte and non-aqueous secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063871A (en) * 2003-08-19 2005-03-10 Sanyo Electric Co Ltd Lithium secondary battery
WO2009133899A1 (en) * 2008-04-28 2009-11-05 旭硝子株式会社 Secondary cell nonaqueous electrolyte and secondary cell
JP2014116077A (en) * 2012-12-06 2014-06-26 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery, secondary battery system including the same, nonaqueous electrolytic solution for lithium ion secondary battery
WO2015008496A1 (en) * 2013-07-19 2015-01-22 パナソニック株式会社 Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary cell using same
JP2016219422A (en) * 2015-05-25 2016-12-22 パナソニックIpマネジメント株式会社 Electrolytic solution for battery and battery
JP2017004603A (en) * 2015-06-04 2017-01-05 東ソ−・エフテック株式会社 Non-aqueous electrolyte and non-aqueous secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170230A (en) * 2017-03-30 2018-11-01 株式会社豊田中央研究所 Lithium secondary battery
WO2019188360A1 (en) * 2018-03-26 2019-10-03 Tdk株式会社 Secondary battery electrolyte and secondary battery
JPWO2019188360A1 (en) * 2018-03-26 2021-03-11 Tdk株式会社 Rechargeable battery electrolyte and secondary battery
JP7014290B2 (en) 2018-03-26 2022-02-01 Tdk株式会社 Electrolyte for secondary batteries and secondary batteries
JP2020129496A (en) * 2019-02-08 2020-08-27 株式会社豊田自動織機 Electrolyte solution and secondary battery
JP2020135992A (en) * 2019-02-15 2020-08-31 株式会社豊田中央研究所 Electrolyte solution and lithium secondary battery
JP7295652B2 (en) 2019-02-15 2023-06-21 株式会社豊田中央研究所 Electrolyte and lithium secondary battery
CN114552000A (en) * 2022-02-15 2022-05-27 北京航空航天大学 Ultralow-temperature graphite-based lithium ion battery and preparation method of electrolyte thereof

Also Published As

Publication number Publication date
JP6790934B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6790934B2 (en) Electrolyte
US10308587B2 (en) Functionalized fluoropolymers and electrolyte compositions
EP4106070A1 (en) Phosphorus-containing electrolytes
JP5725510B2 (en) Solvent for electrolytic solution, electrolytic solution, and gel electrolyte
US9543619B2 (en) Functionalized phosphorus containing fluoropolymers and electrolyte compositions
JP7209688B2 (en) Modified triazine functional compound
KR102669779B1 (en) Ionic liquids with silane functional groups
JP2022084688A (en) Nonaqueous electrolyte composition comprising silyl oxalate
US5660947A (en) Electrolyte for use in a galvanic cell
Xu et al. A fusible orthoborate lithium salt with high conductivity in solutions
JP2002033127A (en) Silane compound to be used as electrolyte additive for electrochemical cell
US20020022182A1 (en) Fluoroalkyl phosphates for use in electrochemical cells
KR20020036760A (en) Tetrakisfluoroalkylborate salts and their use as conducting salts
KR102631722B1 (en) Denatured ionic liquid containing triazine
WO2004059782A1 (en) Additive for nonaqueous electrolytic solution of secondary battery and nonaqueous electrolyte secondary battery
KR20010095331A (en) Lithium salts, process for preparing them, nonaqueous electrolyte and electrochemical cell
KR20010040169A (en) Complex salts for use in electrochemical cells
JP6435235B2 (en) Fluorine-containing phosphate ester cyanoalkylamide, nonaqueous electrolyte containing the same, and nonaqueous secondary battery
WO2015069854A1 (en) Electrolyte solution for capacitors and batteries
JP2019064923A (en) Ionic compound, nonaqueous electrolyte including ionic compound and electricity storage device using nonaqueous electrolyte
KR20210107060A (en) Modified Ionic Liquids Containing Boron
KR101614017B1 (en) Method for Preparation of Ionic Liquids Containing Ether Substituted Anion and Liquid or Ionogel Electrolytes Prepared Using the Same
EP4315476A1 (en) Flame retardants for battery electrolytes
KR20220101630A (en) Flame Retardant for Lithium Battery
McOwen Developing New Electrolytes for Advanced Li-ion Batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R150 Certificate of patent or registration of utility model

Ref document number: 6790934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150