JP2018151132A - Cleaning method of heat exchanger - Google Patents

Cleaning method of heat exchanger Download PDF

Info

Publication number
JP2018151132A
JP2018151132A JP2017048052A JP2017048052A JP2018151132A JP 2018151132 A JP2018151132 A JP 2018151132A JP 2017048052 A JP2017048052 A JP 2017048052A JP 2017048052 A JP2017048052 A JP 2017048052A JP 2018151132 A JP2018151132 A JP 2018151132A
Authority
JP
Japan
Prior art keywords
cleaning
acid
heat exchanger
concentration
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017048052A
Other languages
Japanese (ja)
Other versions
JP7042030B2 (en
Inventor
祐介 肌埜
Yusuke Hadano
祐介 肌埜
典仁 川部
Norihito Kawabe
典仁 川部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquas Corp
Original Assignee
Aquas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquas Corp filed Critical Aquas Corp
Priority to JP2017048052A priority Critical patent/JP7042030B2/en
Publication of JP2018151132A publication Critical patent/JP2018151132A/en
Application granted granted Critical
Publication of JP7042030B2 publication Critical patent/JP7042030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Detergent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cleaning method of a heat exchanger capable of easily determining a terminal point of cleaning, and performing stationary cleaning without interrupting cleaning to confirm a removable state of scale.SOLUTION: Scale attached to a heat exchange member is swelled or stripped by controlling a concentration of a first cleaning fluid by allowing the first cleaning liquid to flow into and circulate in a heat exchange member 4a or a fluid container 4, periodically measuring a concentration index of the first cleaning fluid of circulation water, and allowing the first cleaning fluid to additionally flow until the lowering of the concentration index is substantially stopped, and then the scale attached to the heat exchange member is dissolved and removed by controlling concentration of a second cleaning fluid by periodically measuring a concentration index of the second cleaning fluid of the circulation water while allowing the second cleaning fluid to flow and circulate into the circulation water of the heat exchange member 4a or the fluid container 4, and allowing the second cleaning fluid to additionally flow until the lowering of the concentration index is substantially stopped.SELECTED DRAWING: Figure 1

Description

本発明は、冷却水系、給湯器、ボイラ、半導体洗浄水濃縮等に用いられる熱交換器の洗浄に使用される熱交換器の洗浄方法に関するものである。より詳しくは、熱交換器に付着するスケール、特にカルシウムやシリカを含むスケールを容易に除去することができる熱交換器の洗浄方法に関するものである。   The present invention relates to a heat exchanger cleaning method used for cleaning a heat exchanger used for cooling water systems, hot water heaters, boilers, semiconductor cleaning water concentration, and the like. More specifically, the present invention relates to a heat exchanger cleaning method capable of easily removing scales adhering to a heat exchanger, particularly scales containing calcium and silica.

冷却水系や給湯器等に用いられる熱交換器は、用途に応じてプレート式や、シェル&チューブ式、フィンチューブ式などのチューブ式等が用いられる。プレートやチューブは銅、アルミニウム、鉄、ステンレス等の金属材料により形成されるが、プレートはステンレスが、チューブは熱伝導率の高い銅が主として用いられる。シェル内やプレート間空隙には熱を受ける或いは与える第一流体が流通し、チューブ内や前記プレート間に隣接するプレート間空隙には前記第一流体と熱交換する第二流体が流通し、これらの第一流体と第二流体とでチューブ壁やプレート等を介して熱交換するように構成されている。ここで、第一流体が水系の場合、水にはカルシウム、マグネシウム等の硬度成分やシリカ等が含有されているため、熱交換器内には、長期間にわたって水を流通させる等により、水による熱交換器の腐食に起因する金属腐食生成物が付着するとともに水内の硬度成分やシリカ等に起因するスケールがチューブの外、流入するプレート壁に付着し、熱交換器の能力の低下により運転に支障をきたすようになる。なお、第二流体が水系の場合には、スケールはチューブの内、流入するプレート壁に付着する。   As a heat exchanger used for a cooling water system, a water heater, or the like, a plate type, a tube type such as a shell and tube type, a fin tube type, or the like is used depending on the application. The plate and the tube are made of a metal material such as copper, aluminum, iron, and stainless steel. The plate is mainly made of stainless steel, and the tube is mainly made of copper having high thermal conductivity. A first fluid that receives or applies heat flows through the shell or between the plates, and a second fluid that exchanges heat with the first fluid flows through the tube or between the plates adjacent to the plate. The first fluid and the second fluid are configured to exchange heat via a tube wall or a plate. Here, when the first fluid is water-based, water contains hardness components such as calcium and magnesium, silica, and the like. Therefore, in the heat exchanger, water is circulated for a long period of time. The metal corrosion products resulting from corrosion of the heat exchanger adhere, and the scale due to hardness components in the water and silica adheres to the inflowing plate wall outside the tube, resulting in reduced heat exchanger capacity. Will be disturbed. When the second fluid is an aqueous system, the scale adheres to the inflowing plate wall in the tube.

従来、熱交換器内の金属腐食生成物やスケールを除去するための洗浄剤は酸を含有している( 例えば、特許文献1、特許文献2、特許文献3参照)。そして、洗浄剤が熱交換器内に流入されたときには、酸によって金属腐食生成物等を溶解することにより熱交換器内を洗浄するが、フレーム等の鉄製部品も腐食させる他、シリカスケールは除去が難しいという問題があった。   Conventionally, cleaning agents for removing metal corrosion products and scales in heat exchangers contain an acid (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3). When the cleaning agent flows into the heat exchanger, the heat exchanger is cleaned by dissolving metal corrosion products with acid, but it also corrodes iron parts such as frames and removes the silica scale. There was a problem that was difficult.

鉄腐食とシリカスケール除去の改良として、被洗浄対象物を鉄製部材から取り外してからカルシウムスケール用酸性液とシリカスケール用フッ化水素アンモニウムを主成分とする酸性液により除去する洗浄方法(特許文献4)、有機酸又はその塩を含有する酸溶液と水酸化カリウム又は水酸化ナトリウム含有のアルカリ溶液で順次洗浄する洗浄方法(特許文献5)、および酸性洗浄剤による洗浄処理、次いで乾燥処理、次いでアルカリ性洗浄剤による洗浄処理を行うスケールの除去方法(特許文献6)が開示されている。   As an improvement of iron corrosion and silica scale removal, a cleaning method in which an object to be cleaned is removed from an iron member and then removed with an acidic liquid mainly composed of calcium scale acidic liquid and silica scale ammonium hydrogen fluoride (Patent Document 4). ), An acid solution containing an organic acid or a salt thereof and an alkaline solution containing potassium hydroxide or sodium hydroxide (Patent Document 5), and a washing treatment with an acidic detergent, followed by a drying treatment and then an alkaline solution A scale removal method (Patent Document 6) for performing a cleaning treatment with a cleaning agent is disclosed.

特開2000−265196号公報JP 2000-265196 A 特開平10−73396号公報Japanese Patent Laid-Open No. 10-73396 特開2013−49035号公Japanese Unexamined Patent Publication No. 2013-49035 特開2002−97586号公報JP 2002-97586 A 特開2005−42026号公報JP-A-2005-42026 特開2013−31823号公報JP 2013-31823 A

ところが、従来の洗浄方法では洗浄の終点を把握することができないので、スケールを完全に除去するために過剰に高濃度の洗浄液で長時間の洗浄を行ったり、あるいは、スケールの除去状況を把握するために、洗浄を一時的に中断して熱交換器内部を目視等で確認したりしなければならないという問題があった。   However, since the end point of cleaning cannot be grasped by the conventional cleaning method, in order to completely remove the scale, it is possible to perform cleaning for a long time with an excessively high concentration cleaning solution or to grasp the removal state of the scale. Therefore, there has been a problem that the cleaning must be temporarily interrupted to visually check the inside of the heat exchanger.

本発明は、このような従来技術に存在する問題点に着目してなされたものである。その目的とするところは、熱交換器に付着したスケール、特にカルシウムやシリカを含むスケールを洗浄する際に、洗浄の終点を容易に見極めることができ、スケールの除去状況確認のために洗浄を中断することなく定置洗浄が可能な熱交換器の洗浄方法を提供することにある。   The present invention has been made paying attention to such problems existing in the prior art. The objective is to easily determine the end point of cleaning when cleaning scales attached to heat exchangers, especially scales containing calcium or silica, and interrupting the cleaning to check the scale removal status. It is an object of the present invention to provide a heat exchanger cleaning method that can perform stationary cleaning without the need for cleaning.

上記の目的を達成するために、
(1)
第1の発明は、流体用容器と、該流体用容器の内部に設けられた熱交換部材とを備えた熱交換器の洗浄方法であって、第一洗浄液を前記熱交換部材内又は流体用容器に流入、循環させ、定期的に循環水の第一洗浄液濃度指標を測定して該濃度指標の低下が実質停止するまで第一洗浄液を追加流入させて第一洗浄液濃度を制御することで前記熱交換部材に付着したスケールを膨潤又は剥落させ、その後、第二洗浄液を、前記熱交換部材内又は流体用容器に流入し、循環させ、定期的に循環水の第二洗浄液濃度指標を測定して該濃度指標の低下が実質停止するまで第二洗浄液を追加流入させて第二洗浄液濃度を制御することで前記熱交換部材に付着したスケールを溶解除去する熱交換器の洗浄方法である。
(2) 第2の発明は、第1の発明において、前記第一洗浄液が酸溶液であり、第二洗浄液が水に溶解してフッ化物イオンを生成するフッ化物を含むフッ化物水溶液である熱交換器の洗浄方法である。
(3) 第3の発明は、第2の発明において、前記フッ化物水溶液がフッ化水素アンモニウムを含有する熱交換器の洗浄方法である。
(4) 第4の発明は、第2または第3の発明において、前記熱交換部材内又は流体用容器に流入させた酸溶液の循環水の酸濃度指標、およびフッ化物水溶液の循環水のフッ化物濃度指標として酸濃度を用いる熱交換器の洗浄方法である。
(5) 第5の発明は、第2から第4のいずれかの発明において、前記熱交換器にステンレス製およびチタン製の部材が使用されていない熱交換器の洗浄方法である。
(6) 第6の発明は、第1の発明において、前記第一洗浄液が酸溶液であり、該酸溶液を、前記熱交換部材内又は流体用容器に流入、循環させ、定期的に循環水の酸濃度指標を測定して酸濃度指標の低下が実質停止するまで酸溶液を追加流入させて濃度を制御することで前記熱交換部材に付着したスケールを膨潤又は剥落させ、次いで、前記熱交換部材内又は流体用容器から酸溶液を排出し、その後、第二洗浄液としてアルカリ溶液を、前記熱交換部材内又は流体用容器に流入、循環させ、定期的に循環水のアルカリ濃度指標を測定してアルカリ濃度指標の低下が実質停止するまでアルカリ溶液を追加流入させてアルカリ濃度を制御することで前記熱交換部材に付着したスケールを溶解除去する熱交換器の洗浄方法である。
(7) 第7の発明は、第6の発明において、前記アルカリ溶液が、水酸化カリウム及び水酸化ナトリウムから選ばれる少なくとも一種を含有するアルカリ溶液である熱交換器の洗浄方法である。
(8) 第8の発明は、第6または第7の発明において、前記アルカリ溶液が、キレート作用及びスケール分散作用を有する沈殿防止剤を含有する熱交換器の洗浄方法である。
(9) 第9の発明は、第6から第8のいずれかの発明において、前記熱交換器にステンレス製またはチタン製の部材が使用されている熱交換器の洗浄方法である。
(10) 第10の発明は、第6から第9のいずれかの発明において、前記熱交換部材内又は流体用容器に流入させたアルカリ溶液の循環水のアルカリ濃度指標としてアルカリ濃度を用いる熱交換器の洗浄方法である。
(11) 第11の発明は、第6から第10のいずれかの発明において、前記酸溶液及びアルカリ溶液が、食品添加物により構成されている熱交換器の洗浄方法である。
(12) 第12の発明は、第1から第11のいずれかの発明において、前記酸溶液が、水溶性カルボン酸類、スルファミン酸、メタンスルホン酸、及びそれらの塩から選ばれる少なくとも一種を含有する溶液である熱交換器の洗浄方法である。
(13) 第13の発明は、第1から第12のいずれかの発明において、前記酸溶液が、キレート作用及びスケール分散作用を有する洗浄性向上剤を含有する熱交換器の洗浄方法である。
(14) 第14の発明は、前記酸溶液が、第1から第13のいずれかの発明において、スルファミン酸またはその塩を含有する熱交換器の洗浄方法である。
To achieve the above objective,
(1)
A first invention is a heat exchanger cleaning method comprising a fluid container and a heat exchange member provided inside the fluid container, wherein the first cleaning liquid is used in the heat exchange member or fluid. The first cleaning liquid concentration is controlled by controlling the first cleaning liquid concentration by adding the first cleaning liquid until the first cleaning liquid concentration index of the circulating water is periodically measured and the decrease in the concentration index is substantially stopped. The scale adhering to the heat exchange member is swollen or peeled off, and then the second cleaning liquid flows into the heat exchange member or fluid container and circulates, and periodically measures the second cleaning liquid concentration index of the circulating water. Thus, the second cleaning liquid is additionally introduced until the decrease in the concentration index substantially stops, and the concentration of the second cleaning liquid is controlled to dissolve and remove the scale attached to the heat exchange member.
(2) The second invention is the heat according to the first invention, wherein the first cleaning liquid is an acid solution, and the second cleaning liquid is a fluoride aqueous solution containing fluoride that generates fluoride ions by dissolving in water. This is a cleaning method for the exchanger.
(3) The third invention is the heat exchanger cleaning method according to the second invention, wherein the fluoride aqueous solution contains ammonium hydrogen fluoride.
(4) According to a fourth invention, in the second or third invention, the acid concentration index of the circulating water of the acid solution that has flowed into the heat exchange member or the fluid container, and the circulating water hook of the aqueous fluoride solution. This is a heat exchanger cleaning method that uses acid concentration as a chemical concentration indicator.
(5) 5th invention is the washing | cleaning method of the heat exchanger in which stainless steel and the member made from titanium are not used for the said heat exchanger in any one of 2nd-4th invention.
(6) In a sixth aspect based on the first aspect, the first cleaning liquid is an acid solution, and the acid solution is caused to flow into and circulate in the heat exchange member or the fluid container to periodically circulate water. The acid concentration index is measured and the acid attached to the heat exchange member is swollen or peeled off by controlling the concentration by adding an acid solution until the decrease in the acid concentration index substantially stops, and then the heat exchange. The acid solution is discharged from the member or the fluid container, and then an alkaline solution as the second cleaning liquid flows into and circulates in the heat exchange member or the fluid container, and periodically measures the alkali concentration index of the circulating water. In this heat exchanger cleaning method, the scale adhering to the heat exchange member is dissolved and removed by additionally introducing an alkaline solution and controlling the alkali concentration until the decrease in the alkali concentration index substantially stops.
(7) A seventh invention is a cleaning method for a heat exchanger according to the sixth invention, wherein the alkaline solution is an alkaline solution containing at least one selected from potassium hydroxide and sodium hydroxide.
(8) The eighth invention is the cleaning method for a heat exchanger according to the sixth or seventh invention, wherein the alkaline solution contains a precipitation inhibitor having a chelating action and a scale dispersing action.
(9) A ninth invention is a method of cleaning a heat exchanger according to any one of the sixth to eighth inventions, wherein a member made of stainless steel or titanium is used for the heat exchanger.
(10) In a tenth aspect of the invention according to any one of the sixth to ninth aspects, heat exchange using an alkali concentration as an alkali concentration index of circulating water of an alkaline solution that has flowed into the heat exchange member or the fluid container. This is a cleaning method for the vessel.
(11) An eleventh aspect of the invention is a heat exchanger cleaning method according to any one of the sixth to tenth aspects, wherein the acid solution and the alkaline solution are constituted by food additives.
(12) In a twelfth invention according to any one of the first to eleventh inventions, the acid solution contains at least one selected from water-soluble carboxylic acids, sulfamic acid, methanesulfonic acid, and salts thereof. This is a method for cleaning a heat exchanger that is a solution.
(13) A thirteenth aspect of the present invention is the heat exchanger cleaning method according to any one of the first to twelfth aspects, wherein the acid solution contains a detergency improver having a chelating action and a scale dispersing action.
(14) A fourteenth aspect of the invention is a method for cleaning a heat exchanger, wherein the acid solution contains sulfamic acid or a salt thereof in any one of the first to thirteenth aspects.

以上詳述したように、本発明の熱交換器の洗浄方法によれば、洗浄終点を容易に見極められ、特にカルシウムやシリカを含むスケールを容易に除去することができる。また、熱交換器の洗浄に際して冷却水系、給湯器、ボイラ水系、半導体洗浄水系等から熱交換器を取り外す必要は無く、定置洗浄が可能となる。   As described above in detail, according to the heat exchanger cleaning method of the present invention, the end point of cleaning can be easily determined, and in particular, scales containing calcium and silica can be easily removed. Further, when cleaning the heat exchanger, it is not necessary to remove the heat exchanger from the cooling water system, the hot water heater, the boiler water system, the semiconductor cleaning water system, etc., and stationary cleaning is possible.

本発明の、第一の洗浄方法は、内部に熱交換部材が設けられた流体用容器に、酸溶液、好ましくは水溶性カルボン酸類、スルファミン酸、メタンスルホン酸、及びそれらの塩の酸溶液を循環させ、経時の濃度変化が実質停止するまで追加流入させて酸濃度を制御することにより熱交換器に付着したシリカ系スケールを同酸溶液により膨潤又は剥落させ、その後、水に溶解してフッ化物イオンを生成するフッ化物を含むフッ化物水溶液、好ましくはフッ化水素アンモニウム溶液を循環させ、経時の濃度変化が実質停止するまで追加流入させることにより溶解させるという簡単な操作で、カルシウムやシリカを含むスケールを容易に除去することができる。   In the first cleaning method of the present invention, an acid solution, preferably an acid solution of water-soluble carboxylic acids, sulfamic acid, methanesulfonic acid, and salts thereof is placed in a fluid container provided with a heat exchange member. The silica scale adhering to the heat exchanger is swollen or peeled off by the acid solution by controlling the acid concentration by circulating and adding additional flow until the concentration change over time is substantially stopped, and then dissolving in the water to fluorinate. Calcium and silica can be dissolved by a simple operation of circulating an aqueous fluoride solution containing fluoride that generates fluoride ions, preferably an ammonium hydrogen fluoride solution, and dissolving it by additional inflow until the concentration change over time substantially stops. The containing scale can be easily removed.

本発明の第二の洗浄方法は、内部に熱交換部材が設けられた流体用容器に、酸溶液、好ましくは水溶性カルボン酸類、スルファミン酸、メタンスルホン酸、及びそれらの塩の酸溶液を循環させ、経時の濃度変化が実質停止するまで追加流入させて酸濃度を制御することにより熱交換器に付着したシリカ系スケールを同酸溶液により膨潤又は剥落させ、同酸溶液を流体容器から排出した後にアルカリ溶液、好ましくは水酸化カリウム及び水酸化ナトリウムから選ばれる少なくとも一種の溶液を循環させ、経時の濃度変化が実質停止するまで追加流入させることにより溶解させるという簡単な操作で、カルシウムやシリカを含むスケールを容易に除去することができる。この方法は、特に熱交換器がステンレス製またはチタン製である場合に洗浄による腐食の発生を抑えられるので好ましい。   In the second cleaning method of the present invention, an acid solution, preferably an acid solution of water-soluble carboxylic acids, sulfamic acid, methanesulfonic acid, and salts thereof is circulated in a fluid container provided with a heat exchange member. The silica scale adhering to the heat exchanger was swollen or peeled off by the acid solution by controlling the acid concentration by adding an additional flow until the concentration change over time substantially stopped, and discharging the acid solution from the fluid container. Thereafter, an alkaline solution, preferably at least one solution selected from potassium hydroxide and sodium hydroxide, is circulated and dissolved by further inflow until the concentration change with time is substantially stopped, so that calcium and silica are dissolved. The containing scale can be easily removed. This method is preferable because the occurrence of corrosion due to cleaning can be suppressed particularly when the heat exchanger is made of stainless steel or titanium.

本発明である熱交換器の洗浄方法を実施する際に使用する、(シェル&チューブ式)熱交換器に接続した仮設循環回路と仮設循環タンクのモデル図である。It is a model figure of the temporary circulation circuit and temporary circulation tank which were used when implementing the washing | cleaning method of the heat exchanger which is this invention, and were connected to the (shell & tube type) heat exchanger. 本発明である熱交換器の洗浄方法を実施するに際して使用する、他の形態の(プレート式)熱交換器に接続した仮設循環回路と仮設循環タンクのモデル図である。It is a model figure of the temporary circulation circuit and temporary circulation tank which were used when implementing the washing | cleaning method of the heat exchanger which is this invention, and were connected to the (plate type) heat exchanger of another form.

以下、本発明の実施形態について具体的に説明する。
本発明の熱交換器の洗浄方法は、第一洗浄液として、酸溶液、好ましくは水溶性カルボン酸類、スルファミン酸、メタンスルホン酸、及びそれらの塩から選ばれる少なくとも一種を含有する酸溶液を内部に熱交換部材が設けられた流体用容器に流入、循環させ、定期的に循環水の酸濃度指標を測定して酸濃度指標の低下が実質停止するまで酸溶液を追加流入させて酸濃度を制御し、その後、第二洗浄液として、水に溶解してフッ化物イオンを生成するフッ化物を含むフッ化物水溶液、好ましくはフッ化水素アンモニウム、フッ化水素ナトリウム、フッ化水素カリウム溶液の少なくともいずれかを、流体用容器の循環水に流入、循環させ、定期的に循環水のフッ化物濃度指標を測定してフッ化物濃度指標の低下が実質停止するまでフッ化物溶液を追加流入させてフッ化物濃度を制御するものである。
Hereinafter, embodiments of the present invention will be specifically described.
The heat exchanger cleaning method of the present invention includes, as a first cleaning liquid, an acid solution, preferably an acid solution containing at least one selected from water-soluble carboxylic acids, sulfamic acid, methanesulfonic acid, and salts thereof. Flow into and circulate through a fluid container equipped with a heat exchange member, periodically measure the acid concentration index of the circulating water, and control the acid concentration by adding an acid solution until the decrease in the acid concentration index substantially stops. Then, as the second cleaning liquid, an aqueous fluoride solution containing fluoride that dissolves in water to generate fluoride ions, preferably at least one of ammonium hydrogen fluoride, sodium hydrogen fluoride, and potassium hydrogen fluoride solution. , Flow into and circulate the circulating water in the fluid container, periodically measure the fluoride concentration index of the circulating water, and the fluoride solution until the decrease in the fluoride concentration index substantially stops It controls the fluoride concentration by adding inlet.

本発明の他の熱交換器の洗浄方法は、第一洗浄液として、酸溶液、好ましくは水溶性カルボン酸類、スルファミン酸、メタンスルホン酸、及びそれらの塩から選ばれる少なくとも一種を含有する酸溶液を、内部に熱交換部材が設けられた流体用容器に流入、循環させ、定期的に循環水の酸濃度指標を測定して酸濃度指標の低下が実質停止するまで酸溶液を追加流入させ、次いで、流体用容器から酸溶液を排出し、その後、第二洗浄液として、アルカリ溶液、好ましくは水酸化カリウム及び水酸化ナトリウムから選ばれる少なくとも一種を、流体用容器に流入、循環させ、定期的に循環水のアルカリ濃度指標を測定してアルカリ濃度指標の低下が実質停止するまでアルカリ溶液を追加流入させてアルカリ濃度を制御するものである。   In another heat exchanger cleaning method of the present invention, an acid solution, preferably an acid solution containing at least one selected from water-soluble carboxylic acids, sulfamic acid, methanesulfonic acid, and salts thereof is used as the first cleaning liquid. , Flow into and circulate into a fluid container provided with a heat exchange member inside, periodically measure the acid concentration index of the circulating water and add the acid solution until the decrease in the acid concentration index substantially stops, then The acid solution is discharged from the fluid container, and then, as the second cleaning liquid, at least one selected from an alkaline solution, preferably potassium hydroxide and sodium hydroxide, flows into and circulates the fluid container, and is periodically circulated. The alkali concentration index is measured by measuring the alkali concentration index of water and adding an alkaline solution until the decrease in the alkali concentration index substantially stops.

本発明で使用する洗浄剤について説明する。
酸溶液に含まれる酸成分は、例えば水溶性カルボン酸として蟻酸、マロン酸、シュウ酸、マレイン酸、フマル酸、リンゴ酸、クエン酸、グリコール酸、乳酸、酒石酸、及びそれらの塩等が挙げられ、スルホン酸としてメタンスルホン酸、及びその塩、無機酸は塩酸、硝酸、リン酸、ポリリン酸、ホウ酸、硫酸および亜硫酸、スルファミン酸、及びその塩、等が挙げられる。好ましくはスルファミン酸またはその塩が用いられる。
The cleaning agent used in the present invention will be described.
Examples of the acid component contained in the acid solution include formic acid, malonic acid, oxalic acid, maleic acid, fumaric acid, malic acid, citric acid, glycolic acid, lactic acid, tartaric acid, and salts thereof as water-soluble carboxylic acids. Examples of the sulfonic acid include methanesulfonic acid and salts thereof, examples of the inorganic acid include hydrochloric acid, nitric acid, phosphoric acid, polyphosphoric acid, boric acid, sulfuric acid and sulfurous acid, sulfamic acid, and salts thereof. Preferably, sulfamic acid or a salt thereof is used.

流体用容器内の循環水における酸溶液の酸成分の濃度は、0.5質量%から20質量%、好ましくは5質量%から10質量%である。濃度が低すぎると洗浄効果が得にくく、高すぎても増加に見合った洗浄効果の向上が得られない。   The concentration of the acid component of the acid solution in the circulating water in the fluid container is 0.5% by mass to 20% by mass, preferably 5% by mass to 10% by mass. If the concentration is too low, it is difficult to obtain a cleaning effect, and if it is too high, an improvement in cleaning effect commensurate with the increase cannot be obtained.

酸濃度指標は、酸濃度、または計測対象溶液の酸濃度と対応関係を有しており、酸濃度に変換することができる特性値である。例えば、計測対象溶液の酸濃度そのものの他、計測対象溶液のpH、酸化還元電位等が用いられる。   The acid concentration index has a correspondence relationship with the acid concentration or the acid concentration of the solution to be measured, and is a characteristic value that can be converted into an acid concentration. For example, in addition to the acid concentration itself of the measurement target solution, the pH of the measurement target solution, the oxidation-reduction potential, and the like are used.

水に溶解してフッ化物イオンを生成するフッ化物は、例えばフッ化水素アンモニウム、フッ化水素ナトリウム、フッ化水素カリウム、フッ化水素アミンなどのフッ化水素化合物やフッ化アンモニウム、フッ化ナトリウム、フッ化カリウム、フッ化アミンなどが挙げられる。好ましくはフッ化水素アンモニウムが用いられる。   Fluorides that dissolve in water to produce fluoride ions are, for example, hydrogen fluoride compounds such as ammonium hydrogen fluoride, sodium hydrogen fluoride, potassium hydrogen fluoride, hydrogen fluoride amine, ammonium fluoride, sodium fluoride, Examples include potassium fluoride and amine fluoride. Preferably, ammonium hydrogen fluoride is used.

流体用容器内の循環水におけるフッ化物の濃度は、0.1質量%から10質量%、好ましくは2質量%から5質量%である。濃度が低すぎると洗浄効果が得にくく、高すぎても増加に見合った洗浄効果の向上が得られない。   The concentration of fluoride in the circulating water in the fluid container is 0.1% by mass to 10% by mass, preferably 2% by mass to 5% by mass. If the concentration is too low, it is difficult to obtain a cleaning effect, and if it is too high, an improvement in cleaning effect commensurate with the increase cannot be obtained.

フッ化物濃度指標は、フッ化物濃度として、熱加水分解法によりフッ素含有物を加熱し、発生するフッ化物を含んだガスを分析する方法で得られるが、簡便かつ迅速な方法としてフッ化物を添加することによる酸濃度指標の変化を測定することによりフッ化物濃度に変換できる。   The fluoride concentration index is obtained by a method of heating the fluorine-containing material by the thermal hydrolysis method and analyzing the gas containing the generated fluoride as the fluoride concentration, but adding fluoride as a simple and rapid method It can be converted to fluoride concentration by measuring the change in the acid concentration index.

アルカリ溶液のアルカリ成分は、例えば水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、炭酸カリウム、ケイ酸ナトリウム、ケイ酸カリウム、アンモニアなどが挙げられ、好ましくは水酸化ナトリウム、水酸化カリウムが用いられる。   Examples of the alkaline component of the alkaline solution include sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, sodium silicate, potassium silicate, and ammonia. Preferably, sodium hydroxide and potassium hydroxide are used. Used.

流体用容器内の循環水におけるアルカリ溶液のアルカリ成分の濃度は、0.5質量%から20質量%、好ましくは2質量%から10質量%である。濃度が低すぎると洗浄効果が得にくく、高すぎても増加に見合った洗浄効果の向上が得られない。   The concentration of the alkaline component of the alkaline solution in the circulating water in the fluid container is 0.5% by mass to 20% by mass, preferably 2% by mass to 10% by mass. If the concentration is too low, it is difficult to obtain a cleaning effect, and if it is too high, an improvement in cleaning effect commensurate with the increase cannot be obtained.

アルカリ濃度指標は、アルカリ濃度、または計測対象溶液のアルカリ濃度と対応関係を有しており、アルカリ濃度に変換することができる特性値である。例えば、計測対象溶液のアルカリ濃度そのものの他、計測対象溶液のpH、酸化還元電位等が用いられる。   The alkali concentration index has a corresponding relationship with the alkali concentration or the alkali concentration of the solution to be measured, and is a characteristic value that can be converted into an alkali concentration. For example, in addition to the alkali concentration itself of the measurement target solution, the pH of the measurement target solution, the oxidation-reduction potential, and the like are used.

本発明で、酸溶液を前記流体用容器に流入、循環させ、定期的に循環水の酸濃度指標を測定して酸濃度指標の低下が実質停止するまで酸溶液を追加流入させて酸濃度を制御する場合の定期的に酸濃度指標を測定するとは、一定時間ごとに測定することであり、10分から2時間の間隔で最適な間隔を決めて測定することが好まししい。定期的に循環水のフッ化物濃度指標を測定する場合、定期的に循環水のアルカリ濃度指標を測定する場合も一定時間ごとに測定することであり、10分から2時間の間隔で測定することが好ましい。   In the present invention, the acid solution is caused to flow into and circulate through the fluid container, and the acid concentration index of the circulating water is periodically measured, and the acid concentration is adjusted by adding the acid solution until the decrease in the acid concentration index substantially stops. Measuring the acid concentration index periodically in the case of control is to measure at regular intervals, and it is preferable to determine an optimum interval from 10 minutes to 2 hours. When periodically measuring the fluoride concentration index of the circulating water, when measuring the alkaline concentration index of the circulating water regularly, it is also measured at regular intervals, and can be measured at intervals of 10 minutes to 2 hours. preferable.

本発明で、酸濃度指標の低下が実質停止するまで、フッ化物濃度指標の低下が実質停止するまで、およびアルカリ濃度指標の低下が実質停止するまでとは、各指標を測定した結果と、一定時間後に行った次の測定結果との差が実質ゼロになるまでであり、前後の測定指標の差が前測定指標の概略5%以内になるまでをいう。   In the present invention, until the decrease of the acid concentration index substantially stops, until the decrease of the fluoride concentration index substantially stops, and until the decrease of the alkali concentration index substantially stops, the results of measuring each index are constant. This is until the difference from the next measurement result made after time becomes substantially zero, and until the difference between the previous and next measurement indices is within approximately 5% of the previous measurement index.

本発明で、アルカリ溶液に含有させることができる、キレート作用及びスケール分散作用を有する沈殿防止剤は、剥落したシリカスケールの分散性を向上し、溶解したシリカスケール等が沈殿物として析出するのを防止する。沈殿防止剤の具体例としては、ポリマレイン酸等のマレイン酸系化合物、アミノトリ(メチレンホスホン酸)、1-ヒドロキシエチリデン-1,1-ジホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、ヘキサメチレンジアミンテトラ(メチレンホスホン酸)、ジエチレンテトラミンペンタ(メチレンホスホン酸)、ホスホノカルボン酸、2−ホスホノブタン−1,2,4−トリカルボン酸等のホスホン酸系化合物、ポリリン酸ナトリウム、ポリリン酸カリウム等のポリリン酸系化合物、エチレンジアミン四酢酸(EDTA)−2Na等のEDTA塩等が挙げられる。これらは単独で含有されてもよいし、二種以上を組み合わせて含有されてもよい。 これらの中でも、食品添加物として用いられるポリマレイン酸、ポリリン酸又はそれらのナトリウム塩、カリウム塩又はカルシウム塩等が、食品用機器に用いられる熱交換器の洗浄に使用することができるために好ましい   In the present invention, the precipitation inhibitor having a chelating action and a scale dispersing action that can be contained in an alkaline solution improves the dispersibility of the peeled silica scale, and the dissolved silica scale and the like are precipitated as a precipitate. To prevent. Specific examples of the precipitation inhibitor include maleic acid compounds such as polymaleic acid, aminotri (methylenephosphonic acid), 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra (methylenephosphonic acid), hexamethylenediaminetetra ( Methylenephosphonic acid), diethylenetetraminepenta (methylenephosphonic acid), phosphonocarboxylic acid, phosphonic acid compounds such as 2-phosphonobutane-1,2,4-tricarboxylic acid, polyphosphoric acid compounds such as sodium polyphosphate and potassium polyphosphate Examples thereof include EDTA salts such as compounds and ethylenediaminetetraacetic acid (EDTA) -2Na. These may be contained alone or in combination of two or more. Among these, polymaleic acid, polyphosphoric acid used as a food additive, or a sodium salt, potassium salt, or calcium salt thereof is preferable because it can be used for washing heat exchangers used in food equipment.

本発明で、酸溶液に含有させることができる、キレート作用及びスケール分散作用を有する洗浄性向上剤としては、溶解した金属腐食生成物等が流体用容器の内表面等に再付着するのを防止し、剥落したシリカスケールの分散性を向上させることによって洗浄性を向上させる。洗浄性向上剤の具体例としては、前記のアルカリ溶液に含有させることができる沈殿防止剤と同様の化合物が使用可能である。   In the present invention, as a detergency improver having a chelating action and a scale dispersing action that can be contained in an acid solution, a dissolved metal corrosion product or the like is prevented from reattaching to the inner surface of a fluid container. And the detergency is improved by improving the dispersibility of the peeled silica scale. As a specific example of the detergency improver, the same compound as the precipitation inhibitor that can be contained in the alkaline solution can be used.

本発明における、酸溶液、フッ化物水溶液、及びアルカリ溶液の洗浄液の少なくとも何れかを用いた洗浄に際して、洗浄液に気泡を混入して洗浄することも可能である。特に熱交換器が洗浄時に気泡を滞留せずに速やかに流出する構造であれば気泡混入洗浄によりスケールをより効果的に除去することができ、スケールの付着状況により気泡の大きさや混入量を調整することでさらに効果的となる。   In the present invention, when cleaning is performed using at least one of an acid solution, an aqueous fluoride solution, and an alkaline solution, it is also possible to perform cleaning by mixing bubbles in the cleaning solution. In particular, if the heat exchanger has a structure that quickly flows out without retaining bubbles during cleaning, the scale can be more effectively removed by cleaning with bubbles, and the size and amount of bubbles can be adjusted according to the state of adhesion of the scale. It becomes more effective by doing.

(実施例1)
流体用容器4と、流体用容器4の内部に設けられた銅により形成されている熱交換部材4a(例えばチューブ)からなり、熱交換部材4aの内又は外表面等に金属腐食生成物やシリカスケール等が付着している(シェル&チューブ式)熱交換器4bに、仮設循環ライン3、仮設循環ポンプ2、仮設循環タンク1を含む仮設循環回路5(図1参照)を設け、スルファミン酸の含有量が8質量%に調整したスルファミン酸溶液を循環させて酸濃度を測定し、その後30分毎に酸濃度を測定して直前の測定値から低下があれば初期の酸濃度になるまでスルファミン酸を追加し、連続した測定値間の酸濃度の低下がほぼ無くなれば、続いて、フッ化水素アンモニウムの含有量が3質量%に調整したフッ化水素アンモニウム溶液を循環させて酸濃度を測定し、その後30分毎に酸濃度を測定して直前の測定値から低下あれば初期の酸濃度になるまでフッ化水素アンモニウムを追加し、連続した測定値間の酸濃度の低下がほぼ無くなれば洗浄液を流体用容器から排出し、浄水により流体用容器を洗浄した。ここで、各流体の温度は20℃とし、酸濃度の測定には標準液として1mol/Lの水酸化ナトリウム溶液を用い、指示薬としてフェノールフタレイン溶液を用いた。
Example 1
It consists of a fluid container 4 and a heat exchange member 4a (for example, a tube) formed of copper provided inside the fluid container 4, and a metal corrosion product or silica is formed on the inner or outer surface of the heat exchange member 4a. A temporary circulation circuit 5 (see FIG. 1) including a temporary circulation line 3, a temporary circulation pump 2, and a temporary circulation tank 1 is provided in a heat exchanger 4 b to which a scale or the like is attached (shell and tube type). The acid concentration is measured by circulating a sulfamic acid solution whose content is adjusted to 8% by mass, and then the acid concentration is measured every 30 minutes. If there is a decrease from the previous measured value, the sulfamic acid solution is maintained until the initial acid concentration is reached. When acid was added and there was almost no decrease in acid concentration between consecutive measurements, the acid concentration was then measured by circulating an ammonium hydrogen fluoride solution adjusted to 3% by mass of ammonium hydrogen fluoride. Then, acid concentration is measured every 30 minutes, and if it decreases from the previous measured value, ammonium hydrogen fluoride is added until the initial acid concentration is reached, and if the decrease in acid concentration between consecutive measured values is almost eliminated The cleaning liquid was discharged from the fluid container, and the fluid container was washed with purified water. Here, the temperature of each fluid was 20 ° C., and the acid concentration was measured using a 1 mol / L sodium hydroxide solution as a standard solution and a phenolphthalein solution as an indicator.

(実施例2)
実施例1で、酸溶液中のスルファミン酸の含有量は8質量%で、フッ化水素アンモニウム溶液中のフッ化水素アンモニウムの含有量を7質量%とした以外は同様にして試験を行った。
(Example 2)
The test was conducted in the same manner as in Example 1 except that the content of sulfamic acid in the acid solution was 8% by mass and the content of ammonium hydrogen fluoride in the ammonium hydrogen fluoride solution was 7% by mass.

(実施例3)
実施例1で、酸溶液中のスルファミン酸の含有量は8質量%で、フッ化水素アンモニウム溶液中のフッ化水素アンモニウムの含有量を1質量%とした以外は同様にして試験を行った。
(Example 3)
In Example 1, the test was performed in the same manner except that the content of sulfamic acid in the acid solution was 8% by mass and the content of ammonium hydrogen fluoride in the ammonium hydrogen fluoride solution was 1% by mass.

(実施例4)
実施例1で、酸溶液中のスルファミン酸の含有量を12質量%とし、フッ化水素アンモニウム溶液中のフッ化水素アンモニウムの含有量は3質量%とした以外は同様にして試験を行った。
(Example 4)
A test was conducted in the same manner as in Example 1 except that the content of sulfamic acid in the acid solution was 12 mass% and the content of ammonium hydrogen fluoride in the ammonium hydrogen fluoride solution was 3 mass%.

(実施例5)
実施例1で、酸溶液中のスルファミン酸の含有量を2質量%とし、フッ化水素アンモニウム溶液中のフッ化水素アンモニウムの含有量は3質量%とした以外は同様にして試験を行った。
(Example 5)
The test was performed in the same manner as in Example 1 except that the content of sulfamic acid in the acid solution was 2% by mass and the content of ammonium hydrogen fluoride in the ammonium hydrogen fluoride solution was 3% by mass.

(実施例6)
実施例1で、酸溶液中のスルファミン酸の含有量は8質量%で、フッ化水素アンモニウム溶液中のフッ化水素アンモニウムの含有量は8質量%とした以外は同様にして試験を行った。
(Example 6)
A test was conducted in the same manner as in Example 1 except that the content of sulfamic acid in the acid solution was 8% by mass and the content of ammonium hydrogen fluoride in the ammonium hydrogen fluoride solution was 8% by mass.

(実施例7)
実施例1で、酸溶液中のスルファミン酸の含有量は8質量%で、フッ化水素アンモニウム溶液中のフッ化水素アンモニウムの含有量は1質量%とした以外は同様にして試験を行った。
(Example 7)
A test was conducted in the same manner as in Example 1 except that the content of sulfamic acid in the acid solution was 8% by mass and the content of ammonium hydrogen fluoride in the ammonium hydrogen fluoride solution was 1% by mass.

(実施例8)
ステンレスにより形成されている2枚の熱交換部材4a(例えばプレート)が、流体流路形成ガスケットをサンドしてセットを構成するとともに、そのセットが複数積層されてなり、熱交換部材4aの表面等に金属腐食生成物やシリカスケール等が付着している流体用容器4である(プレート式)熱交換器4bに、仮設循環ライン3、仮設循環ポンプ2、仮設循環タンク1を含む仮設循環回路5(図2参照)を設け、スルファミン酸の含有量が8質量%に調整したスルファミン酸溶液を循環させて酸濃度を測定し、その後30分毎に酸濃度を測定して直前の測定値から低下があれば初期の酸濃度になるまでスルファミン酸溶液を追加し、連続した測定値間の酸濃度の低下がほぼ無くなれば仮設循環回路からスルファミン酸溶液を排出し、続いて、水酸化カリウムの含有量が6質量%に調整したアルカリ溶液を循環させてアルカリ濃度を測定し、その後30分毎にアルカリ濃度を測定して直前の測定値からの低下があれば、初期のアルカリ濃度になるまで水酸化カリウムを追加し、連続した測定値間のアルカリ濃度の低下がほぼ無くなれば洗浄液を流体用容器から排出し、浄水により流体用容器を洗浄した。ここで、各流体の温度は20℃とし、酸濃度の測定には標準液として1mol/Lの水酸化ナトリウム溶液を用い、指示薬としてフェノールフタレイン溶液を用いた。またアルカリ濃度の測定には標準液として1mol/Lの塩酸溶液を用い、指示薬としてブロモクレゾールグリーン・メチルレッド混合溶液を用いた。
(Example 8)
Two heat exchange members 4a (for example, plates) formed of stainless steel sandwich a fluid flow path forming gasket to form a set, and a plurality of the sets are stacked, and the surface of the heat exchange member 4a, etc. A temporary circulation circuit 5 including a temporary circulation line 3, a temporary circulation pump 2, and a temporary circulation tank 1 in a (plate type) heat exchanger 4 b, which is a fluid container 4 to which metal corrosion products, silica scales, and the like are attached. (Refer to FIG. 2), the sulfamic acid solution whose sulfamic acid content was adjusted to 8% by mass was circulated to measure the acid concentration, and then the acid concentration was measured every 30 minutes and decreased from the previous measured value. If there is, the sulfamic acid solution is added until the initial acid concentration is reached, and when there is almost no decrease in the acid concentration between consecutive measured values, the sulfamic acid solution is discharged from the temporary circulation circuit. Then, an alkali solution whose content of potassium hydroxide is adjusted to 6% by mass is circulated to measure the alkali concentration, and then the alkali concentration is measured every 30 minutes. Potassium hydroxide was added until the alkali concentration was reached, and when there was almost no decrease in alkali concentration between consecutive measurements, the cleaning liquid was discharged from the fluid container, and the fluid container was washed with purified water. Here, the temperature of each fluid was 20 ° C., and the acid concentration was measured using a 1 mol / L sodium hydroxide solution as a standard solution and a phenolphthalein solution as an indicator. The alkali concentration was measured using a 1 mol / L hydrochloric acid solution as a standard solution and a bromocresol green / methyl red mixed solution as an indicator.

(実施例9)
実施例8で、酸溶液中のスルファミン酸の含有量は8質量%で、アルカリ溶液中の水酸化カリウムの含有量を12質量%とした以外は同様にして試験を行った。
Example 9
In Example 8, the test was performed in the same manner except that the content of sulfamic acid in the acid solution was 8% by mass and the content of potassium hydroxide in the alkaline solution was 12% by mass.

(実施例10)
実施例8で、酸溶液中のスルファミン酸の含有量は8質量%で、アルカリ溶液中の水酸化カリウムの含有量を1質量%とした以外は同様にして試験を行った。
(Example 10)
In Example 8, the test was performed in the same manner except that the content of sulfamic acid in the acid solution was 8% by mass and the content of potassium hydroxide in the alkaline solution was 1% by mass.

(実施例11)
実施例8で、酸溶液中のスルファミン酸の含有量を12質量%とし、アルカリ溶液中の水酸化カリウムの含有量は6質量%とした以外は同様にして試験を行った。
(Example 11)
A test was conducted in the same manner as in Example 8, except that the content of sulfamic acid in the acid solution was 12% by mass and the content of potassium hydroxide in the alkaline solution was 6% by mass.

(実施例12)
実施例8で、酸溶液中のスルファミン酸の含有量を2質量%とし、アルカリ溶液中の水酸化カリウムの含有量は6質量%とした以外は同様にして試験を行った。
(Example 12)
A test was conducted in the same manner as in Example 8, except that the content of sulfamic acid in the acid solution was 2% by mass and the content of potassium hydroxide in the alkaline solution was 6% by mass.

(実施例13)
実施例1で、酸溶液としてスルファミン酸に代えてメタンスルホン酸を用いた以外は同様にして試験を行った。
(Example 13)
A test was conducted in the same manner as in Example 1 except that methanesulfonic acid was used as the acid solution instead of sulfamic acid.

(実施例14)
実施例8で、酸溶液としてスルファミン酸に代えてメタンスルホン酸を用いた以外は同様にして試験を行った。
(Example 14)
In Example 8, the test was conducted in the same manner except that methanesulfonic acid was used in place of sulfamic acid as the acid solution.

(実施例15)
実施例1で、酸溶液としてスルファミン酸に代えてグリコール酸を用いた以外は同様にして試験を行った。
(Example 15)
The test was conducted in the same manner as in Example 1 except that glycolic acid was used as the acid solution instead of sulfamic acid.

(実施例16)
実施例8で、酸溶液としてスルファミン酸に代えてグリコール酸を用いた以外は同様にして試験を行った。
(Example 16)
The test was conducted in the same manner as in Example 8 except that glycolic acid was used as the acid solution instead of sulfamic acid.

(実施例17)
実施例8で、アルカリ溶液として水酸化カリウムに代えて水酸化ナトリウムを用いた以外は同様にして試験を行った。
(Example 17)
The test was conducted in the same manner as in Example 8 except that sodium hydroxide was used instead of potassium hydroxide as the alkaline solution.

(実施例18)
実施例8で、アルカリ溶液(中に水酸化カリウム6質量%含有)に沈殿防止剤としてEDTAを1質量%含有させた以外は同様にして試験を行った。
(Example 18)
A test was conducted in the same manner as in Example 8 except that 1% by mass of EDTA was contained as an anti-precipitation agent in the alkaline solution (containing 6% by mass of potassium hydroxide therein).

(実施例19)
実施例1で酸溶液(スルファミン酸8質量%含有)に洗浄性向上剤としてEDTAを1質量%含有させた以外は同様にして試験を行った。
(Example 19)
A test was conducted in the same manner as in Example 1 except that 1% by mass of EDTA was contained in the acid solution (containing 8% by mass of sulfamic acid) as a detergency improver.

(比較例1)
実施例1と同様に仮設循環回路を設置し、スルファミン酸の含有量が10質量%に調整したスルファミン酸溶液を120分間循環させた後、フッ化水素アンモニウムの含有量が5質量%に調整したフッ化水素アンモニウム溶液を120分間循環させた。その後、洗浄液を排出し、浄水で洗浄した。各流体の温度は20℃とした。
(Comparative Example 1)
A temporary circulation circuit was installed in the same manner as in Example 1, and after the sulfamic acid solution in which the content of sulfamic acid was adjusted to 10% by mass was circulated for 120 minutes, the content of ammonium hydrogen fluoride was adjusted to 5% by mass. The ammonium hydrogen fluoride solution was circulated for 120 minutes. Thereafter, the washing liquid was discharged and washed with purified water. The temperature of each fluid was 20 ° C.

(比較例2)
実施例1と同様に仮設循環回路を設置し、スルファミン酸の含有量が8質量%に調整したスルファミン酸溶液を120分間循環させた後、フッ化水素アンモニウムの含有量が3質量%に調整したフッ化水素アンモニウム溶液を120分間循環させた。その後、洗浄液を排出し、浄水で洗浄した。各流体の温度は20℃とした。
(Comparative Example 2)
A temporary circulation circuit was installed in the same manner as in Example 1, and after the sulfamic acid solution in which the content of sulfamic acid was adjusted to 8% by mass was circulated for 120 minutes, the content of ammonium hydrogen fluoride was adjusted to 3% by mass. The ammonium hydrogen fluoride solution was circulated for 120 minutes. Thereafter, the washing liquid was discharged and washed with purified water. The temperature of each fluid was 20 ° C.

(比較例3)
実施例8と同様に仮設循環回路を設置し、スルファミン酸の含有量が10質量%に調整したスルファミン酸溶液を120分間循環させた後、スルファミン酸溶液を排出し、水酸化カリウムの含有量が10質量%に調整したアルカリ溶液を120分間循環させた。その後、洗浄液を排出し、浄水で洗浄した。各流体の温度は20℃とした。
(Comparative Example 3)
In the same manner as in Example 8, a temporary circulation circuit was installed, and after the sulfamic acid solution in which the content of sulfamic acid was adjusted to 10% by mass was circulated for 120 minutes, the sulfamic acid solution was discharged and the content of potassium hydroxide was The alkaline solution adjusted to 10% by mass was circulated for 120 minutes. Thereafter, the washing liquid was discharged and washed with purified water. The temperature of each fluid was 20 ° C.

(比較例4)
実施例8と同様に仮設循環回路を設置し、スルファミン酸の含有量が8質量%に調整したスルファミン酸溶液を120分間循環させた後、スルファミン酸溶液を排出し、水酸化カリウムの含有量が6質量%に調整したアルカリ溶液を120分間循環させた。その後、洗浄液を排出し、浄水で洗浄した。各流体の温度は20℃とした。
(Comparative Example 4)
In the same manner as in Example 8, a temporary circulation circuit was installed, and after the sulfamic acid solution in which the content of sulfamic acid was adjusted to 8% by mass was circulated for 120 minutes, the sulfamic acid solution was discharged and the content of potassium hydroxide was The alkaline solution adjusted to 6% by mass was circulated for 120 minutes. Thereafter, the washing liquid was discharged and washed with purified water. The temperature of each fluid was 20 ° C.

(比較例5)
実施例1と同様に仮設循環回路を設置し、メタンスルホン酸の含有量が10質量%に調整したメタンスルホン酸溶液を120分間循環させた後、フッ化水素アンモニウムの含有量が5質量%に調整したフッ化水素アンモニウム溶液を120分間循環させた。その後、洗浄液を排出し、浄水で洗浄した。各流体の温度は20℃とした。
(Comparative Example 5)
A temporary circulation circuit was installed in the same manner as in Example 1, and after the methanesulfonic acid solution in which the content of methanesulfonic acid was adjusted to 10% by mass was circulated for 120 minutes, the content of ammonium hydrogen fluoride was reduced to 5% by mass. The adjusted ammonium hydrogen fluoride solution was circulated for 120 minutes. Thereafter, the washing liquid was discharged and washed with purified water. The temperature of each fluid was 20 ° C.

(比較例6)
実施例8と同様に仮設循環回路を設置し、メタンスルホン酸の含有量が10質量%に調整したメタンスルホン酸溶液を120分間循環させた後、メタンスルホン酸溶液を排出し、水酸化カリウムの含有量が10質量%に調整したアルカリ溶液を120分間循環させた。その後、洗浄液を排出し、浄水で洗浄した。各流体の温度は20℃とした。
(Comparative Example 6)
A temporary circulation circuit was installed in the same manner as in Example 8, and after the methanesulfonic acid solution in which the content of methanesulfonic acid was adjusted to 10% by mass was circulated for 120 minutes, the methanesulfonic acid solution was discharged, The alkaline solution whose content was adjusted to 10% by mass was circulated for 120 minutes. Thereafter, the washing liquid was discharged and washed with purified water. The temperature of each fluid was 20 ° C.

実施例1〜19の評価結果を表1〜3に示し、比較例1〜6の評価結果を表4に示す。各表中の循環水中濃度は、各々の循環水で測定された酸濃度指標、フッ化物濃度指標、およびアルカリ濃度指標から算出された各成分の濃度を質量%で表示したものであり、経時での循環水中濃度は各溶液を追加前の濃度を示す。スケール状況は、洗浄後のスケール状況を洗浄前後の質量減少により5段階評価で示し、5(80%〜100%除去)、4(60%〜80%除去)、3(40%〜60%除去)、2(20%〜40%除去)、1(20%以下)で評価した。   The evaluation results of Examples 1 to 19 are shown in Tables 1 to 3, and the evaluation results of Comparative Examples 1 to 6 are shown in Table 4. The circulating water concentration in each table is the concentration of each component calculated from the acid concentration index, the fluoride concentration index, and the alkali concentration index measured in each circulating water, expressed in mass%. The concentration in circulating water indicates the concentration before adding each solution. The scale status shows the scale status after cleaning with a five-step evaluation based on the decrease in mass before and after cleaning. 5 (80% to 100% removed), 4 (60% to 80% removed), 3 (40% to 60% removed) ), 2 (20% to 40% removal), 1 (20% or less).

Figure 2018151132
Figure 2018151132

Figure 2018151132
Figure 2018151132

Figure 2018151132
Figure 2018151132

Figure 2018151132
Figure 2018151132

表1〜表3に示すように、実施例1〜19での洗浄により熱交換器に付着していたスケールはほぼ完全に除去されていた。特にアルカリ溶液に沈殿防止剤を含有させた実施例18、および酸溶液に洗浄性向上剤を含有させた実施例19での洗浄によりスケールは完全に除去されていた。これらに対して表4に示すように比較例1〜6ではスケールの除去は不完全であった。   As shown in Tables 1 to 3, the scale adhering to the heat exchanger was almost completely removed by washing in Examples 1 to 19. In particular, the scale was completely removed by washing in Example 18 in which a precipitation inhibitor was contained in an alkaline solution and in Example 19 in which a detergency improver was contained in the acid solution. On the other hand, as shown in Table 4, in Comparative Examples 1 to 6, scale removal was incomplete.

1 仮設循環タンク
2 仮設循環ポンプ
3 仮設循環ライン
4 流体用容器
4a 熱交換部材
4b 熱交換器
5 仮設循環回路
DESCRIPTION OF SYMBOLS 1 Temporary circulation tank 2 Temporary circulation pump 3 Temporary circulation line 4 Fluid container 4a Heat exchange member 4b Heat exchanger 5 Temporary circulation circuit

Claims (14)

流体用容器と、該流体用容器の内部に設けられた熱交換部材とを備えた熱交換器の洗浄方法であって、
第一洗浄液を前記熱交換部材内又は流体用容器に流入、循環させ、定期的に循環水の第一洗浄液濃度指標を測定して該濃度指標の低下が実質停止するまで第一洗浄液を追加流入させて第一洗浄液濃度を制御することで前記熱交換部材に付着したスケールを膨潤又は剥落させ、
その後、第二洗浄液を、前記熱交換部材内又は流体用容器の循環水に流入、循環させながら、定期的に循環水の第二洗浄液濃度指標を測定して該濃度指標の低下が実質停止するまで第二洗浄液を追加流入させて第二洗浄液濃度を制御することで前記熱交換部材に付着したスケールを溶解除去することを特徴とする熱交換器の洗浄方法。
A heat exchanger cleaning method comprising a fluid container and a heat exchange member provided inside the fluid container,
The first cleaning liquid is allowed to flow into and circulate in the heat exchange member or the fluid container, and the first cleaning liquid concentration is periodically measured until the first cleaning liquid concentration index of the circulating water is measured and the decrease in the concentration index substantially stops. The scale attached to the heat exchange member is swollen or peeled off by controlling the first cleaning liquid concentration,
Thereafter, the second cleaning liquid is periodically flown into and circulated in the heat exchange member or in the fluid container, and the second cleaning liquid concentration index of the circulating water is periodically measured to substantially stop the decrease in the concentration index. A method of cleaning a heat exchanger, wherein the scale adhering to the heat exchange member is dissolved and removed by adding a second cleaning liquid until the second cleaning liquid is added to control the concentration of the second cleaning liquid.
前記第一洗浄液が酸溶液であり、第二洗浄液が水に溶解してフッ化物イオンを生成するフッ化物を含むフッ化物水溶液であることを特徴とする請求項1に記載の熱交換器の洗浄方法。 2. The heat exchanger cleaning according to claim 1, wherein the first cleaning liquid is an acid solution, and the second cleaning liquid is a fluoride aqueous solution containing a fluoride that is dissolved in water to generate fluoride ions. 3. Method. 前記フッ化物水溶液がフッ化水素アンモニウムを含有することを特徴とする請求項2に記載の熱交換器の洗浄方法。 The method for cleaning a heat exchanger according to claim 2, wherein the fluoride aqueous solution contains ammonium hydrogen fluoride. 前記熱交換部材内又は流体用容器に流入させた酸溶液の循環水の酸濃度指標、およびフッ化物水溶液の循環水のフッ化物濃度指標として酸濃度を用いることを特徴とする請求項2または請求項3に記載の熱交換器の洗浄方法。 The acid concentration is used as an acid concentration index of circulating water of the acid solution introduced into the heat exchange member or the fluid container, and a fluoride concentration index of circulating water of the aqueous fluoride solution. Item 4. A heat exchanger cleaning method according to Item 3. 前記熱交換器にステンレス製およびチタン製の部材が使用されていないことを特徴とする請求項2から請求項4のいずれか一項に記載の熱交換器の洗浄方法。 5. The heat exchanger cleaning method according to claim 2, wherein a member made of stainless steel or titanium is not used in the heat exchanger. 前記第一洗浄液が酸溶液であり、該酸溶液を、前記熱交換部材内又は流体用容器に流入、循環させ、定期的に循環水の酸濃度指標を測定して酸濃度指標の低下が実質停止するまで酸溶液を追加流入させて濃度を制御することで前記熱交換部材に付着したスケールを膨潤又は剥落させ、次いで、前記熱交換部材内又は流体用容器から酸溶液を排出し、
その後、第二洗浄液としてアルカリ溶液を、前記熱交換部材内又は流体用容器に流入、循環させ、定期的に循環水のアルカリ濃度指標を測定してアルカリ濃度指標の低下が実質停止するまでアルカリ溶液を追加流入させてアルカリ濃度を制御することで前記熱交換部材に付着したスケールを溶解除去することを特徴とする請求項1に記載の熱交換器の洗浄方法。
The first cleaning liquid is an acid solution, and the acid solution is allowed to flow into and circulate in the heat exchange member or fluid container, and the acid concentration index of the circulating water is periodically measured to substantially reduce the acid concentration index. The acid solution is additionally introduced until it stops and the scale attached to the heat exchange member is swollen or peeled off by controlling the concentration, and then the acid solution is discharged from the heat exchange member or the fluid container,
Thereafter, an alkaline solution is introduced into the heat exchange member or the fluid container as a second cleaning liquid and circulated, and the alkali concentration index of the circulating water is periodically measured until the decrease in the alkali concentration index is substantially stopped. The heat exchanger cleaning method according to claim 1, wherein the scale adhering to the heat exchange member is dissolved and removed by adding an additional amount of alkali to control the alkali concentration.
前記アルカリ溶液が、水酸化カリウム及び水酸化ナトリウムから選ばれる少なくとも一種を含有するアルカリ溶液であることを特徴とする請求項6に記載の熱交換器の洗浄方法。 The method for cleaning a heat exchanger according to claim 6, wherein the alkaline solution is an alkaline solution containing at least one selected from potassium hydroxide and sodium hydroxide. 前記アルカリ溶液が、キレート作用及びスケール分散作用を有する沈殿防止剤を含有することを特徴とする請求項6または請求項7に記載の熱交換器の洗浄方法。 The method for cleaning a heat exchanger according to claim 6 or 7, wherein the alkaline solution contains a precipitation inhibitor having a chelating action and a scale dispersing action. 前記熱交換器にステンレス製またはチタン製の部材が使用されていることを特徴とする請求項6から請求項8のいずれか一項に記載の熱交換器の洗浄方法。 The method of cleaning a heat exchanger according to any one of claims 6 to 8, wherein a member made of stainless steel or titanium is used for the heat exchanger. 前記熱交換部材内又は流体用容器に流入させたアルカリ溶液の循環水のアルカリ濃度指標としてアルカリ濃度を用いることを特徴とする請求項6から請求項9のいずれか一項に記載の熱交換器の洗浄方法。 The heat exchanger according to any one of claims 6 to 9, wherein an alkali concentration is used as an alkali concentration index of circulating water of the alkaline solution introduced into the heat exchange member or the fluid container. Cleaning method. 前記酸溶液及びアルカリ溶液が、食品添加物により構成されていることを特徴とする請求項6から請求項10のいずれか一項に記載の熱交換器の洗浄方法。 The said acid solution and alkali solution are comprised with the food additive, The washing | cleaning method of the heat exchanger as described in any one of Claims 6-10 characterized by the above-mentioned. 前記酸溶液が、水溶性カルボン酸類、スルファミン酸、メタンスルホン酸、及びそれらの塩から選ばれる少なくとも一種を含有する溶液であることを特徴とする請求項1から請求項11のいずれか一項に記載の熱交換器の洗浄方法。 The acid solution is a solution containing at least one selected from water-soluble carboxylic acids, sulfamic acid, methanesulfonic acid, and salts thereof, according to any one of claims 1 to 11. The method for cleaning the heat exchanger as described. 前記酸溶液が、キレート作用及びスケール分散作用を有する洗浄性向上剤を含有することを特徴とする請求項1から請求項12のいずれか一項に記載の熱交換器の洗浄方法。 The method for cleaning a heat exchanger according to any one of claims 1 to 12, wherein the acid solution contains a detergency improver having a chelating action and a scale dispersing action. 前記酸溶液が、スルファミン酸またはその塩を含有することを特徴とする請求項1から請求項13のいずれか一項に記載の熱交換器の洗浄方法。 The method for cleaning a heat exchanger according to any one of claims 1 to 13, wherein the acid solution contains sulfamic acid or a salt thereof.
JP2017048052A 2017-03-14 2017-03-14 How to clean the heat exchanger Active JP7042030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017048052A JP7042030B2 (en) 2017-03-14 2017-03-14 How to clean the heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017048052A JP7042030B2 (en) 2017-03-14 2017-03-14 How to clean the heat exchanger

Publications (2)

Publication Number Publication Date
JP2018151132A true JP2018151132A (en) 2018-09-27
JP7042030B2 JP7042030B2 (en) 2022-03-25

Family

ID=63680348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017048052A Active JP7042030B2 (en) 2017-03-14 2017-03-14 How to clean the heat exchanger

Country Status (1)

Country Link
JP (1) JP7042030B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021122773A1 (en) 2019-12-18 2021-06-24 Covestro Intellectual Property Gmbh & Co. Kg Method of cleaning an apparatus used in the concentration of a mineral acid
CN115475447A (en) * 2022-10-11 2022-12-16 华能济宁运河发电有限公司 Cleaning process of cartridge filter element for recycling reclaimed water

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141804A (en) * 1997-11-06 1999-05-28 Kurita Engineering Co Ltd Method of chemically cleaning boiler
JP2000064069A (en) * 1998-08-13 2000-02-29 A & K Kk Scale removing agent
JP2000065495A (en) * 1998-08-21 2000-03-03 Kubota Corp Method for cleaning inside of pipeline
JP2002097586A (en) * 2000-09-22 2002-04-02 Ebara Shinwa Ltd Method for cleaning and removing scale in cooling tower, and apparatus therefor
JP2002353185A (en) * 2001-05-29 2002-12-06 Dainippon Screen Mfg Co Ltd High-pressure processor
JP2003027263A (en) * 2001-07-10 2003-01-29 Hakuto Co Ltd Method for removing silicate scale
JP2004277675A (en) * 2003-03-19 2004-10-07 Ebara Corp Scale cleaning agent
JP2005042026A (en) * 2003-07-23 2005-02-17 Shoowa Kk Cleaning agent for heat-exchanger and cleaning method using the same
JP2006300404A (en) * 2005-04-20 2006-11-02 Mitsubishi Heavy Ind Ltd Method of removing scale
JP2013031823A (en) * 2011-07-29 2013-02-14 Amtec Co Ltd Method for removing scale
CN104406452A (en) * 2014-11-14 2015-03-11 攀枝花钢企欣宇化工有限公司 Water scale cleaning method for nickel heat exchanger
US20150107626A1 (en) * 2010-01-25 2015-04-23 Joseph J. Franzino Descaling system for heat exchange equipment

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141804A (en) * 1997-11-06 1999-05-28 Kurita Engineering Co Ltd Method of chemically cleaning boiler
JP2000064069A (en) * 1998-08-13 2000-02-29 A & K Kk Scale removing agent
JP2000065495A (en) * 1998-08-21 2000-03-03 Kubota Corp Method for cleaning inside of pipeline
JP2002097586A (en) * 2000-09-22 2002-04-02 Ebara Shinwa Ltd Method for cleaning and removing scale in cooling tower, and apparatus therefor
JP2002353185A (en) * 2001-05-29 2002-12-06 Dainippon Screen Mfg Co Ltd High-pressure processor
JP2003027263A (en) * 2001-07-10 2003-01-29 Hakuto Co Ltd Method for removing silicate scale
JP2004277675A (en) * 2003-03-19 2004-10-07 Ebara Corp Scale cleaning agent
JP2005042026A (en) * 2003-07-23 2005-02-17 Shoowa Kk Cleaning agent for heat-exchanger and cleaning method using the same
JP2006300404A (en) * 2005-04-20 2006-11-02 Mitsubishi Heavy Ind Ltd Method of removing scale
US20150107626A1 (en) * 2010-01-25 2015-04-23 Joseph J. Franzino Descaling system for heat exchange equipment
JP2013031823A (en) * 2011-07-29 2013-02-14 Amtec Co Ltd Method for removing scale
CN104406452A (en) * 2014-11-14 2015-03-11 攀枝花钢企欣宇化工有限公司 Water scale cleaning method for nickel heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021122773A1 (en) 2019-12-18 2021-06-24 Covestro Intellectual Property Gmbh & Co. Kg Method of cleaning an apparatus used in the concentration of a mineral acid
CN114787079A (en) * 2019-12-18 2022-07-22 科思创知识产权两合公司 Method for cleaning a plant for concentrating mineral acids
CN115475447A (en) * 2022-10-11 2022-12-16 华能济宁运河发电有限公司 Cleaning process of cartridge filter element for recycling reclaimed water
CN115475447B (en) * 2022-10-11 2023-05-23 华能济宁运河发电有限公司 Filter element cleaning process of cartridge filter for reclaimed water

Also Published As

Publication number Publication date
JP7042030B2 (en) 2022-03-25

Similar Documents

Publication Publication Date Title
US3413160A (en) Passivation of ferrous metal surface
CN106032966A (en) Method for cleaning heat exchangers
JP2004277675A (en) Scale cleaning agent
JP7042030B2 (en) How to clean the heat exchanger
US6761774B2 (en) Composition and method for the in situ removal scale from a substrate
CN106197139A (en) A kind of cleaning method for Thermal Corp's heat exchanger
JP2000263088A (en) Method for washing circulating water system
CN104841674A (en) Method for cleaning cooler pipeline
CN108342256A (en) A kind of heat transmission equipment water system cleaning agent and preparation method thereof
JPS59189998A (en) Scale removing method
CN104129862A (en) Cleaning agent for removing boiler silicon scale
CN103509653A (en) Sulfamic acid composite cleaning agent for condensers in thermal power plants
CN103834956B (en) Clean-out system of a kind of household heating system for being made up of various metals material and preparation method thereof
CN106367762B (en) Thermal power plant condenser formic acid complex cleaning and washing agent
CN104949570B (en) The cleaning method of boiler
CN102515372A (en) Composite scale inhibitor using recycled water in circulating cooling water system and preparation method of composite scale inhibitor
CN108754509A (en) Multi-functional full effect cooling water system complex cleaning and washing agent
KR20140042396A (en) Chemical cleaning agent composition for high temperature oxidation scales and method for cleaning high temperature oxidation scales using the same
Olczak et al. Eco-innovative method of cleaning heat exchangers from boiler scale
JP6060097B2 (en) Cleaning kit and cleaning method
RU2525036C1 (en) Method for cleaning and passivation of inner surface of boiler tubes with successive exposure to chemical agent and water-oxygen mixture
RU2520839C1 (en) Cleaning of outer surface of aluminium or aluminium alloys of air cooling hardware
CN107473407A (en) A kind of indicator colour developing type powdered scale-removing agent of sea water desalinating unit
CN115161629B (en) Automatic dosing system and method for chemical cleaning and passivating process of power station boiler
CN115478278A (en) Cleaning corrosion inhibitor for aluminum alloy heat exchange tube of seawater desalination device and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210901

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20220106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R150 Certificate of patent or registration of utility model

Ref document number: 7042030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220426